Job Tasks, Time Allocation, and Wages
While a burgeoning literature has extolled the conceptual virtues of directly measuring the underlying job tasks that define work activities, in practice task-based approaches have been hampered by well-known data limitations. We study wage determination using data collected specifically to address these limitations. Most fundamentally, we construct the first longitudinal dataset containing job-level task information for individual workers. New quantitative task measures take advantage of unique survey questions that ask respondents to detail the amount of time spent performing People, Information, and Objects tasks at different skill levels. These measures have clear interpretations, suggest natural proxies for on-the-job human capital accumulation, and provide methodological guidance for future data collection initiatives. A model of comparative advantage highlights the benefits of the unique data features, and guides the specification and interpretation of empirical models. We provide new findings about the effect of current and past tasks on wages. First, current job tasks are quantitatively important, with high skilled tasks being paid substantially more than low skilled tasks. Second, there is no evidence of learning-by-doing (i.e., effects of past tasks) for low skilled tasks, but strong evidence for high skilled tasks. Current and past high skilled information tasks are particularly valuable, although high skilled interpersonal tasks also play a significant role. Shifting 10 percent of work time from low skilled people tasks to high skilled information tasks increases a worker’s yearly wage by 22 percent after ten years. The accumulation of valuable task-specific experience accounts for 70 percent of this increase, and the direct current-period effect of performing different tasks accounts for the remainder.
Published Versions
Ralph Stinebrickner & Todd Stinebrickner & Paul Sullivan, 2019. "Job Tasks, Time Allocation, and Wages," Journal of Labor Economics, vol 37(2), pages 399-433.