Efficient Tests for an Autoregressive Unit Root
This paper derives the asymptotic power envelope for tests of a unit autoregressive root for various trend specifications and stationary Gaussian autoregressive disturbances. A family of tests is proposed, members of which are asymptotically similar under a general 1(1) null (allowing nonnormality and general dependence) and which achieve the Gaussian power envelope. One of these tests, which is asymptotically point optimal at a power of 50%, is found (numerically) to be approximately uniformly most powerful (UMP) in the case of a constant deterministic term, and approximately uniformly most powerful invariant (UMPI) in the case of a linear trend, although strictly no UMP or UMPI test exists. We also examine a modification, suggested by the expression for the power envelope, of the Dickey-Fuller (1979) t-statistic; this test is also found to be approximately UMP (constant deterministic term case) and UMPI (time trend case). The power improvement of both new tests is large: in the demeaned case, the Pitman efficiency of the proposed tests relative to the standard Dickey-Fuller t-test is 1.9 at a power of 50%. A Monte Carlo experiment indicates that both proposed tests, particularly the modified Dickey-Fuller t-test, exhibit good power and small size distortions in finite samples with dependent errors.
Published Versions
Elliott, Graham, Thomas J. Rothenberg and James H. Stock. "Efficient Tests For An Autoregressive Unit Root," Econometrica, 1996, v64(4,Jul), 813-836.