Forecasting and Conditional Projection Using Realistic Prior Distributions
This paper develops a forecasting procedure based on a Bayesian method for estimating vector autoregressions. The procedure is applied to ten macroeconomic variables and is shown to improve out-of-sample forecasts relative to univariate equations. Although cross-variables responses are damped by the prior, considerable interaction among the variables is shown to be captured by the estimates.We provide unconditional forecasts as of 1982:12 and 1983:3.We also describe how a model such as this can be used to make conditional projections and to analyze policy alternatives. As an example, we analyze a Congressional Budget Office forecast made in 1982:12.While no automatic causal interpretations arise from models like ours, they provide a detailed characterization of the dynamic statistical interdependence of a set of economic variables, which may help inevaluating causal hypotheses, without containing any such hypotheses themselves.
Published Versions
Doan, Thomas, Robert B. Litterman and Christopher A. Sims. "Forecasting and Conditional Projection Using Realistic Prior Distributions," Econometric Reviews, Vol. 3, No. 1 Jan. 1984, pp. 1-100.