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ABSTRACT

This paper extends our earlier analysis of interdependent security issues to a general class of

problems involving discrete interdependent risks with heterogeneous agents. There is a threat of an

event that can only happen once, and the risk depends on actions taken by others. Any agent’s

incentive to invest in managing the risk depends on the actions of others. Security problems at

airlines and in computer networks come into this category, as do problems of risk management in

organizations facing the possibility of bankruptcy, and individuals’ choices about whether to be

vaccinated against an infectious disease. Surprisingly the framework also covers certain aspects of

investment in R&D. Here we characterize Nash equilibria with heterogeneous agents and give

conditions for tipping and cascading of equilibria.
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1 Introduction

Certain events can only occur once. Death is the obvious example: it is irreversible
and unrepeatable. Extinction of a species takes this even further. More mundane
examples are bankruptcy, being struck off a professional register for life, and other
discrete events. There are in addition events that can in principle occur twice but
that are so unlikely or so dreadful that one occurrence is all that can reasonably be
considered. The events of 9/11/01 are of this type, as is a nuclear meltdown in a highly
populated region. The probabilistic nature of events like these, together with the fact
that the risk that one agent faces depends on the behavior of others, gives a unique
and unnoticed structure to the incentives that agents face to manage these risks. For
other recent papers dealing with the interdependence of security-related risks, see
Keohane and Zeckhauser [25] and Orszag and Stiglitz [29].Keohane and Zeckhauser
show how individual responses to collective threats may undermine the effectiveness of
government policies to combat them. Orszag and Stiglitz address the interdependency
issue by showing that homeowners do not take into account the positive externalities
associated with reducing damage to their neighbors when determining how Þreproof a
structure they should build. For reviews of the application of game theory to security
and terrorism at the national level, see Sandler [31] and Sandler and Acre [32].

The key point for these problems is that an agent�s incentive to invest in risk-
reduction measures depends on how he expects others like him to behave. If he thinks
that they will not invest in security, then this reduces the incentive for him to do so.
But should he believe that they will invest in security, then it may be best for him to
do likewise. So there may be an equilibrium where no one invests in protection, even
though all would be better off if they had incurred this cost, and indeed all incurring
this cost may be an equilibrium. This situation does not have the structure of a
prisoners� dilemma game, even though it has some similarities (see Kunreuther and
Heal [26]). It contains elements of the coordination problem discussed by Heller [19],
Crawford and Haller [8] and others, in that there may be many alternative equilibria
of the system, some of which are Pareto ranked, but it is nevertheless not clear which
equilibria will emerge.

It is also possible that a change in the behavior of one agent can tip the sys-
tem from one equilibrium to another (see Schelling [33]): a related phenomenon is
cascading, when a change by one leads to a change by a second which provokes a
change by a third, and so on (see Dixit [13] and also Farrell and Saloner [14]). The
interdependence between the strategies of agents means that in some cases there is a
complementarity between them: by investing in risk reduction, one agent makes this
strategy more attractive to others, so that the strategies work better when chosen by
several agents than when chosen singly. In this sense some of our results appear to be
similar to those in the literature on strategic complementarity (Bulow Geanakoplos
and Klemperer [5]). However the discreteness of our strategy space and the fact that
damages are non-additive - you only die once - means that the technical details are
different.
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1.1 Features of the Problem

There are several different versions of this interdependent security (IDS) problem but
all have certain features in common. We have already indicated one of these: a payoff
that is discrete. A bad event either occurs or does not, and that is the full range
of possibilities. You die or you live. A Þrm is bankrupt or not. A plane crashes or
it doesn�t. You catch a disease or you do not. In these examples it is not useful to
differentiate the outcomes more Þnely.

Another feature common to the problems that we consider is that the risk faced
by one agent depends on the actions taken by others � there are externalities. The
risk of an airline�s plane being blown up by a bomb depends on the thoroughness
with which other airlines inspect bags that they transfer to this plane. The risk that
a corporate divisional manager faces that her company will be sent into bankruptcy
depends not only on how she manages her divisional risks but also on how other
division heads behave.

Finally there is a stochastic element in all of these situations. The question
addressed is whether to invest in security when there is some probability, often a
very small one, that there will be a catastrophic event that could be prevented or
mitigated. This risk depends in part on the behavior of others, and the unfavorable
outcome is discrete in that it either happens or does not.

These three factors � non-additivity of damages, dependence of risks on the actions
of others, and stochasticity � are sufficient to ensure that there can be equilibria
where there is underinvestment in risk-prevention measures. The precise degree of
underinvestment depends on the nature of the problem. We focus initially on the
two extremes that span the spectrum of possibilities. Both relate to security, one
of airlines and the other of computer networks. If an airline accepts baggage that
contains a bomb, this need not damage one of its own planes: it may be transferred
to another airline before it explodes. So in this framework one agent may transfer a
risk fully to another. It may of course also receive a risk from another. There is a
game of �pass the parcel� here. The music stops when the bomb explodes. It can
only explode once, so only a single plane will be destroyed.

The structure of this game is quite different in the case of computer networks.
Here it is commonly the case that if a virus (or hacker) enters the network through
one weak point it (or he) then has relatively easy access to the rest of the network
and can damage all other computers as well as the entry machine. Indeed many
computer viruses are programmed to do this by sending themselves to all addresses in
an infected machine�s address book. In this case the bad outcome has a characteristic
similar to a public good: its consumption is non-rivalrous. Its capacity to damage is
not exhausted after it has inßicted damage once. A bomb, in contrast, has a limited
capacity to inßict damage, and this capacity is exhausted after one incident.

In both cases the incentives to take security measures depend on what others
do. Suppose that there are a large number of agents in the system. In [26] we show
that in the computer security problem, if none of the other machines are protected
against viruses or hackers, then the incentive for any agent to invest in protection
approaches zero as the number of agents increases. For airline security, if no other
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airline has invested in baggage checking systems and there is a high probability that
bags will be transferred from one airline to another, in the limit the expected beneÞts
to any airline from this investment approaches 63% of what it would have been in
the absence of contamination from others.

It is not only security problems that have this structure. It is common to all
problems with discrete and interdependent risks. It applies to units of a multi-unit
organization in which the risk of bankruptcy (a discrete event) faced by any unit is
affected by its own choices and by the choices made by other units. In such a situation
any unit�s incentive to take actions to reduce bankruptcy risks is compromised by
the knowledge that others are not being similarly diligent. A culture of risk-taking
can spread through the organization because knowledge that a few groups are taking
risks reduces the incentives that others have to manage them carefully.

Some decisions about research and development (R&D) investment also have this
structure. The central issue here is that if several Þrms want to solve a problem,
each may try on its own or may wait until another solves it Þrst. The greater the
probability that another will solve the problem Þrst, the less the incentive to try to
solve it oneself unless being Þrst conveys an advantage such as a right to patent.
With this type of interaction the externalities are negative rather than positive, in
the sense that action by others makes action by oneself less attractive.

The problem of choosing whether or not to be vaccinated against an infectious
disease has a similar structure. Firstly, vaccination is a yes-no choice and one can
in general only catch the disease once. Secondly, the risk of catching the disease
depends on the number of others who choose to be vaccinated, i.e. who invest in
risk-management. So once again we have the structure of an IDS problem.

In the vaccination case, as in the R&D case, the externalities between agents are
negative in the sense that protection by others makes vaccination less attractive to
oneself. In the security and bankruptcy models where externalities are positive, we
have, as mentioned before, some of the properties associated with strategic comple-
mentarity: in the other cases we have something closer to strategic substitutability
[5]. A good illustration of the complementarity case is provided by investment in
visible burglar alarms: the decision by others in a neighborhood to protect themselves
with alarms makes investment in protection more attractive to you because you are
now more likely to be a target.

Our earlier paper [26] studied IDS problems where all agents are identical. Here
we extend the analysis to the more general case of agents whose risks and costs
differ and study the possibility of tipping. There may be one Þrm occupying such
a strategic position that if it changes from not investing to investing in protection,
then all others will Þnd it in their interests to do the same. And even if there is
no single Þrm that can exert such leverage, there may be a small group. We show
when this can happen and how to characterize those agents having so much leverage
that by switching policy they can change the equilibrium choices of all others, in the
process introducing a measure of the leverage a Þrm can exercise over others. This
is a measure of its strategic importance within the group.1

1Tipping can also occur with indentical agents, the case considered in our earlier paper [26], but
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Obviously this Þnding has signiÞcant implications for policy-making. It suggests
that there are some key players whom it is particularly important to persuade to
manage risks carefully. Working with them may be a substitute for working with
the population as a whole. They are in a certain sense leaders or trendsetters. We
also show that equilibria in these models may be susceptible to cascading, in that a
change by a Þrst Þrm can lead to emulation by a second, and the actions of these two
can lead to emulation by a third, and so on.

In our earlier paper the probabilities describing the risks of loss were taken as
exogenous. That was a simpliÞcation. It does not apply to many deliberate acts such
as terrorism. Take the case of airline security. In practice terrorists will try to attack
the airlines with the weakest security records. So if one airline improves its security
then this will reduce the chances of an attack on it and increase the chances of attacks
on others. Probabilities often respond to the policies adopted by the agents (Sandler
[31], Woo [35]). We model this phenomenon here. The tragic fate of PanAmerican�s
ßight 103 in 1988 illustrates this and other points from this introductory discussion.
The ßight was destroyed by a bomb loaded onto Malta Airlines at Gozo, Malta, ßown
to Frankfurt and then transferred to PanAm in London. Malta Airlines and Gozo
were presumably chosen because they were seen as having weak security procedures
relative to PanAm in London, and in the knowledge that for cost and logistical reasons
inter-airline baggage is never screened.2

The next two sections of the paper develop an IDS model where the probabilities
and risks differ between agents and then characterizes the structure of the Nash
equilibria. Section 4 then considers tipping and cascading, introducing a measure of
a Þrm�s leverage over others and showing that in some cases those with the greatest
leverage are those which produce the greatest aggregate negative externalities: if you
can convince them to invest in security other agents are likely to follow suit. After
considering the case of endogenous probabilities in Section 5, we turn in Sections
6-9 to a set of other IDS problems to see how they differ in structure from the
airline security problem. We begin with computer security then turn to bankruptcy,
investment in R&D and Þnally to vaccinations. The concluding section summarizes
the Þndings and suggests directions for future research. An appendix contains formal
proofs of the results and also proves the existence of a Nash equilibrium in pure
strategies for the models considered here. Because of the discreteness of the strategy
space, the standard proof of existence as given by Nash in his classic article does not
apply.

2 The Model

Initially we think in terms of the security of airlines, as this is an example that is
both topical and canonical. There are n ≥ 2 separate airlines. During the course
of a given time period the airline makes a certain number of trips, each of which is

in that case if one agent can tip an equilibrium then so can any. All agents have the same leverage
over others, the same strategic importance.

2We believe that El Al is the only airline to screen bags received from other airlines.
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identical. Consider a given plane trip initiated by airline i. Assume that the airline
has made no investments in security systems. Let pij be the probability that on any
trip a bag containing a bomb is loaded onto airline i and is then transferred to airline
j and explodes on j. If i = j, we have the probability that an airline loads a bag
with a bomb and this explodes on its own plane. We denote by pi =

X
j

pij and by

epi =X
j 6=i
pij . Thus pi is the probability of airline i loading a bomb that explodes and

epi is the probability that it loads a bomb that explodes on another airline- a measure
of the risk that it poses to others. We expect that pi < 1 so that there is some
chance that the airline does not load a bag with a bomb that explodes. Each airline
can either invest in a security system S at a cost per trip of ci > 0 or not invest N.
Security systems are assumed to be completely effective so that they eliminate the
chance of a bomb coming through the airline�s own facility. In the event that a bomb
explodes on a plane the loss is L > 0. The initial income of an airline is Y > ci ∀i.

In the case of just airlines A1 and A2 maximizing expected proÞts this framework
gives rise to the following payoff matrix showing the outcomes for the four possible
combinations of N and S. If both airlines invest in security systems then their payoffs
per trip are just their initial incomes net of the investment costs. If A1 invests and
A2 does not, then A1 has a payoff of income Y minus investment cost c1 minus
the expected loss from a bomb transferred from A2 that explodes on A1 (i.e, p21L),
while A2 has a payoff of income Y minus the expected loss from a bomb loaded and
exploding on to its plane, p22L. If neither invests then A1 has a payoff of income
Y minus the expected loss from a bomb loaded and exploding on to its own plane
p11L minus the expected loss from a bomb transferred from A2,that explodes on A1

(i.e, p21L) conditioned on there being no explosion from a bomb loaded by A1 itself
(1− p11). A2�s payoff is determined in a similar fashion.

A1/A2 S N

S Y − c1, Y − c2 Y − c1−p21L, Y − p22L

N Y − p11L, Y − c2−p12L Y − p11L− (1− p11) p21L, Y − p22L− (1− p22) p12L

Choosing to invest in security measures is a dominant strategy for 1 if and only if

c1 < p11L and c1 < p11 [1− p21]L (1)

The condition that c1 < p11L is clearly what we would expect from a single airline
operating on its own. The tighter condition that c1 < p11 [1− p21]L reßects the risk
imposed by a Þrm without security on its competitor: this is the risk that dangerous
baggage will be transferred from an unsecured airline to the other. This negative
externality plays a critical role in our analysis and we need to understand its structure
as the analysis is expanded to cover n airlines.

Let Xi (n,K) be the expected negative externality from all other airlines to airline
i when airlines in the set K invest in security and there are n airlines in total. For
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three airlines and i = 1 possible values include

X1 (3, {2, 3}) = 0

X1 (3, {3}) = Lp21

X1 (3, ∅) = L {p21 + (1− p21) p31}
The last case reßects the fact that a loss from a bomb transferred from the third
airline is possible only if there is no loss from a bomb transferred from the second.

For four Þrms and i = 1 we have terms of the form

X1 (4, {2, 3, 4}) = 0

X1 (4, {3, 4}) = Lp21

X1 (4, {2, 4}) = Lp31

X1 (4, {4}) = L {p21 + (1− p21) p31}
X1 (4, {3}) = L {p21 + (1− p21) p41}
X1 (4, {2}) = L {p31 + (1− p31) p41}
X1 (4, ∅) = L {p21 + (1− p21) p31 + (1− p21) (1− p31) p41}

In the Appendix we show that this last expression, for X1 (4, ∅) , can readily be
derived from the event tree corresponding to the four agent problem. In all cases
when transfers from more than one airline are possible then the losses from transfers
from the second and subsequent Þrms have to be conditional on there being no losses
from previous transfers. For n airlines when none of them invest in security this
generalizes to the following formula for the externality inßicted on the Þrst:

X1 (n, ∅) = L
j=nX
j=2

pj1

k=j−1Y
k=2

(1− pk1)

where it is understood that
k=j−1Y
k=2

(1− pk1) = 1 when j = 2. If Þrms in the set K are

investing in security then the total externality to Þrm 1 is given by an extension of
this formula, replacing ∅ by K and noting that pkj = 0∀k ∈ K :

X1 (n,K) = L

j=nX
j=2

pj1

k=j−1Y
k=2

(1− pk1) (2)

We could alternatively write this as

X1 (n,K) = L

j=nX
j=2,j /∈K

pj1

k=j−1Y
k=2,k/∈K

(1− pk1)

The condition for S to be a dominant strategy for Þrm 1 when there are n Þrms
with none investing is that

c1 < p11 [L−X1 (n, ∅)] = c1 (n, ∅) (3)
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Here c1 (n, ∅) is the maximum cost to agent 1 consistent with S being the best strategy
for 1 when no other Þrms invest in security. More generally

Definition 1 ci (n,K) is the maximum cost of investment in security at which agent
i will choose to invest in security when there are n agents and those in the set K
have already invested in security.

Clearly X1 (n, ∅) > X1 (n, {2}) > X1 (n, {2, 3}) > ... > X1 (n, {2, 3, 4, ..n− 1}) so
that c1 (n, ∅) < c1 (n, {2}) < .... < c1 (n, {2, 3, 4...n− 1}) . This implies that as we
add more agents who do not invest in security the externality on any other agent
increases and the condition for them to want to invest in security becomes more
demanding and so such investment becomes less likely. We showed in [26] that if
all agents are identical then limn→∞X1 (n, ∅) = L (1− e−q). From now on, we will
drop the argument n from expressions for X and c, as in general n will be held Þxed
throughout the analysis.

3 Nash Equilibria

The nature of the Nash equilibrium in the interdependent security model naturally
depends on the parameters. From the payoff matrix it is clear that (S, S) is a Nash
equilibrium if ci < piiL and is a dominant strategy if ci < piiL (1− pji) where i and j
are 1 or 2. (N,N) is a Nash equilibrium if ci > piiL (1− pji) and a dominant strategy
if ci > piiL. From these inequalities we note that (S, S) and (N,N) are both Nash
equilibria if piiL (1− pji) < ci < piiL. Finally if c1 > p11L but c2 < p22L (1− p12)
then (N,S) is a Nash equilibrium, and if 1 and 2 are interchanged then the equilibrium
is (S,N) . This conÞguration of Nash equilibria is summarized in Figure 1. Note that
if c1 = c2 then we are on the diagonal of Þgure 1 and the only possible equilibria
are (S, S), either (S, S) or (N,N) , and (N,N) . In this case mixed equilibria are not
possible, as stated in our earlier paper [26].

Figure 1 shows that even for two agents there is a wide variety of Nash equilibria
for this problem including cases where there are two possible equilibria {S, S} and
{N,N}. As one expands the number of agents the number of possible equilibria
expands exponentially.

Recall that ci (∅) is the maximum cost at which agent i will invest in security if no
others are investing. Clearly if ci > ci (∅)∀i then {N,N, ....N} is a Nash equilibrium.
More generally we can characterize a Nash equilibrium as follows:

Definition 2 A Nash equilibrium is a possibly empty set E of agents choosing S
such that ci < ci (E)∀i ∈ E and ci > ci (E)∀i /∈ E.

In words, a Nash equilibrium is a situation where some Þrms are choosing S and
some N, and for those choosing S the actual cost of investing in security is less than
the maximum that is justiÞable economically, given the choices of others, and for
those choosing N, the actual cost is greater.

In the appendix we prove that a Nash equilibrium in pure strategies exists for the
general model of this section.
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S,S is dominant strategy
& Nash equilibrium

Either N,N or S,S
is Nash equilibrium

NN is
Nash and
dominant

S,N

N,S

S,S is Nash
equilibrium

S,S is Nash
equilibrium

N,N is Nash

N,N is Nash

c1

c2

P11[1-p21]L

P22[1-p12]L

P11L

P22L

Figure 1: Nash equilibria as a function of c1 and c2.

4 Tipping & Cascading

In some cases a change of strategy by one agent or a small set of agents can shift the
equilibrium radically. We refer to this change as tipping in the sense of Schelling
[33], Katz and Shapiro [23], Watts [34] (in the context of general networks) and more
recently Gladwell [15]. For example, there may be a Nash equilibrium at which no
agent invests in security. Yet if one agent changes strategy and invests - possibly in
response to events or incentives outside the game - then all other agents may follow
suit. We illustrate how tipping can occur for the case where all agents initially choose
strategy {N,N....N} : we give conditions for a change by a subset of these agents
to lead all the others to follow suit and invest in security, producing an equilibrium
{S, S....S}. Of course an equilibrium cannot be tipped from N to S if it is an equi-
librium in dominant strategies, so that the dominant strategy equilibria in Þgure 1
could not be tipped. These include the (N,S) and (S,N) equilibria. If we have an
equilibrium at which N is a dominant strategy for some Þrms and not for others then
this could be tipped provided that the Þrms for which N is dominant are included in
those whose strategies are exogenously altered as part of the tipping process, e.g. by
being taxed or some other policy change.

Intuitively it seems that there are two important aspects of the tipping phe-
nomenon. One is the vulnerability of an agent to being tipped from not investing
to investing, which depends on how close its cost is to the maximum cost at which
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investment is justiÞed. If this gap is small then a small change in the externalities
imposed on the agent by others may suffice to change its choice of strategy. The sec-
ond important aspect of tipping is the change in the externalities imposed on other
agents when one agent changes its policy. An agent for which this change is big is
more likely to cause tipping than one for which this is small. In general the possibil-
ity of tipping depends on both of these factors - on how close agents are to changing
their strategy choices and how large the negative externalities are from some agents
on others because they do not invest in protection.

Consider a Nash equilibrium where all agents choose strategy N . A critical coali-
tion K is a group of Þrms that by switching from N to S can tip the equilibrium to
one where all Þrms invest. It is a minimal critical coalition (MCC) if it is a critical
coalition and no subset is a critical coalition.3 Formally consider a Nash equilibrium
such that ci > ci (∅)∀i, so no agents invest in security, and ci < ci (K)∀i /∈ K. The
Þrms in K form a critical coalition: if they switch from N to S, then this leads all
other Þrms to follow suit because their critical costs will now be greater than their
actual costs of investment.

Firms in an MCC are an important group. If they change from not investing to
investing, then all others follow suit. The reason this occurs is that when these agents
invest they reduce the externalities on others sufficiently that it is now cost-effective
for the others to invest in security too. To understand the impact that an agent has
on others we need to know the total externalities that each agent generates on all
other agents by not investing in security.

We deÞne the externality from i to j when the Þrms in set K, i /∈ K, are investing
in security as the change in the total externality to j when i switches from not
investing to investing. Denote this by ∆ij (K) . Formally this is

∆ij (K) = Xj (K)−Xj (K + i) , i /∈ K
From the deÞnitions of Xj (K) and Xj(K + i) we have:

∆ij(K) = Lpij

k=j−1Y
k=2

(1− pkj) (4)

where as before pij = 0∀i ∈ K. The total externality generated by i is just the sum
over j of (4):

∆i {K} =
X
j

∆ij (K) = L
X
j 6=i
pij

k=j−1Y
k=2

(1− pkj) (5)

This is a reasonably compact and intuitive expression for the total externality gen-
erated by i when the Þrms K are investing in security. It is the loss from a single
occurrence times the sum of the probabilities of a transfer from i conditioned on
the other Þrms outside K not having inßicted damage on a Þrm already. We focus
on the case when no Þrms are investing in security, in which case the appropriate

3The concept of mimimum critical coalition is introduced in Heal [17]. The minimum critical
coalition is in general not unique, although it is in the particular case considered in proposition 2.
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index is ∆i {∅} .With these deÞnitions in place, we can now give the following formal
characterization of a critical coalition.

Proposition 1 A critical coalition is a set of agents K such that

pjj
X
k∈K

∆kj = cj − pj (L+Xj (∅))∀j /∈ K

The left hand side here is the reduction in the total externality imposed on agent
j when agents in K switch from N to S, multiplied by pjj . It can be viewed as the
expected beneÞt to j of having agents in the critical coalition invest in security. The
right hand side is derived from equation (3) and is the difference between the actual
cost of investment in security and the maximum that it is worth paying to invest.
The derivation of this inequality is almost immediate from (3) and the deÞnition of
∆kj . It juxtaposes the two issues referred to above - the impact of a change in policy
by one agent on the externalities faced by others, and the nearness of these others to
changing their strategy choices.

Some Þrms - those for which ∆i {∅} is large - are clearly more likely, in some
general sense, to cause tipping than others.

In general there is no easy way of characterizing the agents who have greatest
leverage. There is however one interesting case in which this is possible, which is
when the contagion probabilities pij are the same for all j for a given i. This is
the case in which an agent is equally likely to transfer a bag to any other agent,
so that pij = pik∀j, k 6= i. This case is implausible for airlines, but in some of the
applications considered later is quite realistic - for example the case of bankruptcy in
a multidivisional Þrm, or the case of a computer network. When pij = pik∀j, k 6= i
the agents with greatest leverage are those with the greatest values of ∆i {∅} , that
is, those that create the greatest externalities for others.4 These are the Þrms which
will �tip� a Nash equilibrium from not investing to investing.

Proposition 2 Assume that pij = pik∀j, k 6= i. If there is a minimal critical coalition
of k < n agents then it must consist of the first k agents ranked by ∆i {∅}.5

Proof. The proof is in the Appendix.
Note that in this case a minimum critical coalition is unique. Proposition 1

shows that if there is a minimal critical coalition, then it consists of agents who
impose the largest externalities on the others. There is a simple intuition for this
result. The decision to invest in protection is determined by the expected direct
reduction in damage (i.e. piiL) minus the likelihood that the agent will be harmed
by unprotected agents multiplied by the resulting loss L. Order the agents so that
agent 1 has max{∆i {∅}}, agent 2 has the second highest value, and so on. Agent

4 In general the distribution of the externalities matters as well as the total in calculating leverage.
However when all agents have the same chance of being impacted negatively by otheres only the total
matters.

5Ties will be broken randomly if needed. The ranking of agents by Ei {∅} is of course a function
only of the parameters of the model and is not affected by the strategy choices of agents.
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1 inßicts the highest expected harm on others. Hence by inducing it to invest in
protection one has the most impact on the incentive of other unprotected agents to
invest in protection. Should a change of strategy by agent 1 not be sufficient to do
this, then one has to convince agent 2 to invest in protection as well in the hopes
that this will lead the remaining unprotected agents to invest. The smallest number
of agents to induce this type of tipping behavior is deemed an MCC.

The following numerical example demonstrates that such an MCC can indeed
exist. We shall consider three airlines and let 1 and 2 be identical. The characteristics
of these airlines are such that the only Nash equilibrium is one where none of them
invest in security. Yet if airline 3 changes from not investing to investing - perhaps
as a result of a Þnancial incentive or regulatory pressure or some other factor outside
of the model - then both others will change as well and there is a new equilibrium at
which all are investing. The change was produced by the change in 30s behavior.

Let p1j = p2j = 0.1 and p3j = 0.5 and L = 1000. In addition p11 = p22 = 0.1 and
c1 = c2 = 85. We do not specify p3j or c3. In this setting

c1 (∅) = 0.1
·
1000− (0.5) (1000)

2
−
µ
0.1− 0.05

2

¶
1000

2

¸
= 71.25

As c1 = c2 = 85 > c1 (∅) = c2 (∅) = 71.25, neither Þrm 1 nor Þrm 2 will invest in
security if no other Þrm is investing. And we can clearly choose c3 so that it is large
enough that Þrm 3 will not invest either and (N,N,N) is the Nash equilibrium. And
if Þrm 3 does not invest, then not investing is a dominant strategy for both the other
Þrms for any cost above 75.

Suppose that for some reason airline 3 changes policy and invests. It now imposes
no externality on the other Þrms and so does not affect their decisions. To understand
the choices of Þrms 1 and 2 we simply have to apply inequality (1), which gives a
critical cost level of 90, meaning that investment will now be a dominant strategy
when the cost is less than 90. As the actual cost for Þrms 1 and 2 is less than this by
assumption at 85, we see that after Þrm 3 has changed strategy from N to S for both
Þrms 1 and 2 the dominant strategy has changed from not investing to investing.
Airline 3 therefore has the capacity to tip the equilibrium from not investing to
investing by changing its policy. It is easy to verify that airline 3 imposes the largest
externalities on the other airlines in accordance with Proposition 1 above.

The tipping phenomenon is shown geometrically in the following two diagrams.
These are similar to Þgure 1 above, showing the sets of {c1, c2} values corresponding
to different equilibrium types. The key point in seeing tipping geometrically is that
this diagram for Þrms 1 and 2 depends on what Þrm 3 does. A change by 3 alters the
entire equilibrium diagram for the other two Þrms.6 When Þrm 3 does not invest, as
in Þgure 2, not investing is a dominant strategy for the other Þrms as their cost point
(85, 85) lies in the quadrant bounded below by (75, 75) . When Þrm 3 changes and
invests, then the whole diagram for the other Þrms alters, now looking as in Þgure 3.
The region in which investing is a dominant strategy is now greatly enlarged because

6We are really looking at a three-dimensional version of Þgure 1, and the diagrams for Þrms 1
and 2 are slices through this for different strategy choices for Þrm 3.
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75, 75

71.25, 71.25

c1

c2

90, 90

100, 100

Equilibrium in DS is (N,N)

Actual costs (85, 85) 
in (N,N) region

Equilibrium in DS is 
(S,S)

Figure 2: Equilibria for Þrms 1 and 2 when 3 does not invest and imposes externalities
on them. In this case (85, 85) is in the region in which not investing is a dominant
strategy.

of the removal of the externalities generated by 3 and includes the point (85, 85) so
that it includes the point representing Þrms 1 and 2.

The tipping phenomenon that we are characterizing here is in fact more general
than the particular illustrative context as indicated by the following question: Given
a Pareto inefficient Nash equilibrium in a general game, does there exist a subset
of agents who by changing their strategy choices can induce all others to alter their
strategy choices in such a way that the new outcome is efficient? The previous
proposition and example show that this is the case in the interdependent security
problem. It would be interesting to ask this question for a broader class of games.

Our model can also give rise to the phenomenon of cascading (see also Dixit [13]).
This refers to a situation where one Þrm changes its policy, and this leads another to
follow suit. The fact that two Þrms have changed now persuades a third to follow,
and when the third changes policy this creates the preconditions for a fourth to do so,
and so on. The analogy with a row of dominoes is compelling: the Þrst knocks down
the second, which knocks down the third, and so on. To see how this can happen in
the our model, suppose that we have a Nash equilibrium at which all airlines choose N
and assume in addition we can number Þrms 1, 2, 3, ... so that the following conditions
are satisÞed:

� When 1 switches from N to S then 2�s best strategy changes from N to S but
no other Þrm�s best strategy changes

� When 1 and 2 have switched from N to S then 3�s best strategy changes from
N to S and no other Þrm�s best strategy changes.
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Equilibrium in DS is 
(S,S) 

75, 75
71.25, 71.25

c1

c2

90, 90

100, 100

Equilibrium in DS is (N,N)

Actual costs (85, 85)
in (S,S) region

Figure 3: Equilibria for Þrms 1 and 2 when 3 invests and imposes no externalities on
them. In this case (85, 85) is in the region in which investing is a dominant strategy.

� When 1, 2 and 3 have switched from N to S then 4�s best strategy changes
from N to S and no other Þrm�s best strategy changes.

or in general

� When 1, 2, 3, ..., J have switched from N to S then (J + 1)�s best strategy
changes from N to S and no other Þrm�s best strategy changes for all Þrms
J > 1.

If such an ordering of the Þrms exists then it is immediate that if Þrm 1 switches
from N to S then it will start a cascade in which 2 changes followed by 3 then by 4 etc
etc. We can readily modify the numerical example above to illustrate this cascading
process. SpeciÞcally, keep the probabilities as above and let c1 = 85 as before but
c2 = 95. Then it is immediate from Þgure 2 and 3 that (c1, c2) is in the region
where (N,N) are the dominant strategies when three does not invest but also is in
the region where (N,S) is the equilibrium when three does invest (see also Þgure 1).
So in this case when three changes from N to S this causes two to change from not
investing to investing as well. But once Þrms two and three are investing, Þrm one
is effectively on its own and will invest if c1 < p11L = 100, which is satisÞed. So
when two follows three and changes from not investing to investing it will cause one
to follow suit, generating a cascade.

5 Endogenous Probabilities

So far the risks faced by the airlines are assumed to be independent of their behavior.
In reality if some airlines are known to be more security-conscious than others, they
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are presumably less likely to be terrorist targets. There is a resemblance here to
the problem of theft protection: if a house announces that it has installed an alarm,
then burglars are likely to turn to other houses as targets [26]. In the case of airline
security, terrorists are more likely to focus on targets which are less well protected,
so that the ps depend on the investment in security. This is the phenomenon of
displacement or substitution, documented in Sandler [31].

We assume here that the risk faced by an airline that does not invest in security
increases as the fraction of airlines investing in security increases. In other words,
if more airlines from a given population invest in security then those who do not
invest become more vulnerable. Formally let #K be the number of airlines in K not
investing in security. The relevant probabilities facing those Þrms not investing in
security, pij (#K) , are increasing in #K. For airlines that have invested in security
the ps are assumed to be independent of #K.

Now return to equation (3) above, deÞning the cost of investment that marks the
boundary between a Þrm i investing and not investing in security when no other Þrm
invests when pij are exogenous:

ci < pii [L−Xi (∅)] = ci (∅)
As an increasing number of other Þrms invest in security, then for a non-investing

Þrm the probability pij will increase. Hence the value of Xi (K) will change. The
expression for the critical value of the cost of investment for airline i is thus :

ci (K) = pii (#K)L

1−X
j /∈K

pij (#K)

n− 1
Y

k<j,k/∈K

µ
1− pik (#K)

n− 1
¶ (6)

The right hand side of (6) increases in #K via pii but also depends on #K through
the piks that enter into the expression for the externality imposed on i. The sign
of the impact of a change in #K on the externality is not clear a priori : an in-
crease in the number of Þrms investing will raise

P
j /∈K

pij(#K)
n−1 but will also decreaseY

k<j,k/∈K

³
1− pik(#K)

n−1

´
.

We assume, as seems generally reasonable, that the total externality imposed on
any non-investing Þrm decreases as the number of investing Þrms increases, in which
case an increase in #K, the number of Þrms investing, will increase the right hand
side of (6) and raise the value of ci (K) . This means that an agent is more likely to
invest in security for the case where probabilities are endogenous than when these
probabilities are exogenous. This assumption also implies the analysis with constant
probabilities remains qualitatively valid in the endogenous case.

Of course the computation of ci (K) is now more complex due to the dependence
of the probabilities on the number of Þrms investing in security. The endogeneity of
probabilities should lead more Þrms to invest in protection given that they are now
more likely to be targets. The concept of a minimum critical coalition also carries
over unaltered to the world of endogenous probabilities, although the actual MCCs
will very likely be different.
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Given that the basic concepts do not change qualitatively, Propositions 1 and 2
on tipping are relevant to a model with endogenous probabilities. It should now be
easier for a coalition to tip the other Þrms into investing for the following reason: not
only does a decision by a Þrm to invest reduce the externalities but it also increase
the risk that a Þrm who did not invest in security will become a target.

The existence of a Nash equilibrium with pure strategies for the model of this
section is proven in the appendix.

In the next four sections we examine how the IDS model applies to a set of
problem contexts where damage are non-additive and there are negative stochastic
externalities but where the deÞnitions of pij may differ. To keep the analysis sim-
ple the probabilities are assumed to be exogenous. The qualitative results for each
of these problems is similar to the airline security case when the probabilities are
endogenous.

6 Computer Security

When a virus affects a computer (the equivalent of a bag with a bomb being loaded
by an airline) it can be transmitted to all other computers on the network and can
damage them all rather than just one of them (Anderson [2]). Let pi be the probability
that computer i is infected by a virus and epi be the probability that it is infected by
a virus and this is transmitted to all other computers. Clearly epi ≤ pi and the ps
do not refer to independent events. The other notation is the same as in the airline
security problem. The stochastic negative externalities for the case of four computers
are given by terms that include the following:

X1 (4, {2, 3, 4}) = 0

X1 (4, {3, 4}) = Lep2

X1 (4, {4}) = L {ep2 + (1− ep2) ep3}
X1 (4, ∅) = L {ep2 + (1− ep2) ep3 + (1− ep2) (1− ep3) ep4}

and in the general case of n computers when none of them invest in security this
generalizes to the following formula for the externality inßicted on the Þrst:

X1 (∅) = L
j=nX
j=2

epj k=j−1Y
k=2

(1− epk)
where it is understood that

k=j−1Y
k=2

(1− epk) = 1 when j = 2.
If agents in the set K are investing in security then the total externality to agent

1 is given by
X1 (K) = L

X
j /∈K

epj Y
k<j,k/∈K

(1− epk) (8)
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The condition for S to be a dominant strategy when there are n agents with none
investing is that

c1 < p1 [L−X1 (∅)] ≡ c1 (∅) (9)

Here as before c1 (∅) is the maximum cost to agent 1 consistent with S being a Nash
equilibrium when no other agents invest in security. In K-H [26] we show that if all
agents are identical the term X1 (∅) goes to L as n → ∞. The proof used there can
be modiÞed to apply to the present case, so that it is again the case that X1 (∅) goes
to L as n→∞.

The deÞnitions of Nash equilibrium and minimum critical coalition carry over
unchanged from the previous sections. Now it is natural to assume, as we have, that
the contagion probabilities are uniform, so that agents� leverage can be calculated by
the value of the externalities that they impose on others when they switch policy. We
can therefore prove an exact analog of proposition 2 for the computer network case:

Proposition 3 A minimal critical coalition of k < n agents must consist of the first
k agents ranked by Ei {∅} or equivalently by epi.

The proof is exactly as before, and we can use the same numerical example to
illustrate the proposition. In this case we Þnd that c1 (∅) = 45 and c1 ({3}) = 90 so
that if computer 1 switches policy, it tips the network from not investing to investing
in security.

7 Bankruptcy of Firms

Consider a multi-divisional organization, such as an investment bank, in which each
division has some degree of decision-making autonomy and can incur risks on behalf of
the entire organization. If any one division miscalculates grossly, incurring a large risk
that causes a catastrophic loss, it may force the entire organization into bankruptcy.
Several years ago the British merchant bank Barings, at that point the longest-
established bank in the UK, was destroyed by the actions of a single trader in its
Singapore branch. Nick Leeson incurred positions that put at risk sums that could
and indeed did destroy the company.7 In a rather different line of business Arthur
Anderson was recently sent into bankruptcy in large part by the actions of its Houston
branch in managing the Enron audits. Union Carbide suffered catastrophic losses
from the accident at Bhopal in 1984 that eventually led to the Þrm being bought by
Dow Chemical.

In each of these cases the situation is analytically similar to the computer security
problem. An organization consists of a group of divisions i = 1, ..., n, each of which
can incur risks for which the company as a whole is liable. Let pi be the probability
that division i incurs a loss so that management closes down only this division andepi be the probability that division i incurs such a large loss that the entire company
is bankrupt and every division is closed. As in the computer security case epi ≤ pi

7For a more detailed description of the factors causing the collapse of Barings Bank see chapter
1 of Hoch and Kunreuther [20].
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and the psdo not refer to independent events. The loss to a division in the event of
its being closed is L. One should view L as the costs that employees of the division
will incur if their division or the entire Þrm goes bankrupt. These include the search
costs for new employment and other negative features associated with losing ones job
including loss of reputation. Divisions can invest in monitoring their risks at a cost
ci, so they can avoid the loss L.8

Clearly when division i takes on a risk, it is imposing an external effect on other
divisions because there is some chance that a large loss to this division will cause
the Þrm to be closed down. Nick Leeson in Barings imposed risks on all branches of
Barings, and Anderson�s Houston branch similarly imposed risks on all of Anderson.
And as before these losses are non-additive: the risk is only relevant if the other
divisions have not already been closed down by losses originating elsewhere. So the
problem is identical in structure to the computer network problem. The total external
costs imposed on division 1 when no other divisions are managing risks are given by

X1 (∅) = L
j=nX
j=2

epj k=j−1Y
k=2

(1− epk)
In the present context this means that the incentive that any division faces to

invest in risk-control depends on whether others are making similar investments.
Senior management may want each division to invest in loss prevention. Due to the
negative externalities, divisions may be loathe to incur these costs because of their
adverse impacts on divisional proÞts. From the perspective in overseeing the entire
Þrm, senior management will seek policy measures that will change the payoffs and
make investing in risk-control a dominant choice, but it may be difficult for them to
do this if each of the divisions operates in a decentralized manner. There will also be
the possibility of tipping the equilibrium by persuading a small number of divisions to
adopt stricter controls, with an exact analog to proposition 2. For a more extensive
analysis of the managerial and organizational implications of this problem, see [27].

8 Investing in Research and Development

The same IDS structure has relevance to the problem of determining whether to invest
funds in research and development (R&D), a topic on which there is an extensive
literature (see e.g. Dasgupta and Stiglitz [9] and [10], Dixit [12] and Grossman and
Shapiro [16]). In this literature the concern is to characterize the privately and
socially optimal levels of investment in R&D and the relationship between them,
which typically depends on institutional structures such as patent rights. Here we
explore the investment levels that are privately optimal, and show that under the
assumption that the investment in R&D is discrete - a Þrm invests or does not invest
- the problem has the IDS structure, which enables us to give a more complete

8One could also think of ci as an opportunity cost resulting from avoiding certain deals that might
compromise the entire enterprise.
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characterization of the Nash equilibria than the earlier models. We also explore how
the strength of intellectual property rights affects the equilibrium.

Consider a group of Þrms, each of whom are trying to solve the same problem or
trying to discover the same new facts. If one Þrm solves the problem or discovers the
facts, then its solution may be available to some or all others at no cost or at a very
low cost. In such a situation each Þrm has to decide whether to invest in obtaining
the information or making the discovery, bearing in mind that another Þrm might
make the discovery. If the information from the other Þrm were freely available, any
investment of its own would be redundant.

The investment decision here has the same formal structure as the problems con-
sidered in previous sections. There is however one important difference. In this case
investment decisions are not mutually reinforcing. In the airline security, computer
security and bankruptcy cases, investment by one agent increases the incentive for
others to invest and it is this property that can lead to tipping behavior or cascading
behavior. A move by one Þrm may encourage other Þrms to do the same and could
start an avalanche. In the R&D case, investment by one Þrm discourages others from
following suit. Each Þrm knows that as the number of Þrms attacking a particular
problem increases, the chances that the problem will be solved by one of these or-
ganizations also increases. Therefore it is more efficient for them to wait until one of
these other entities discovers the solution. The R&D problem has the same formal
mathematical structure as the other IDS problems discussed above, except for a dif-
ference in the sign reßecting the interactions between Þrms. This means that we no
longer expect to see the tipping or cascading of equilibria.

Assume that Þrm i can invest in R&D at a cost of ci. This generates a payoff of
G with probability pi. There is, in addition, a chance pj that another Þrm j invests
and succeeds, in which case the information it gains reaches Þrm i. If I stands for
investing and N for not investing then the payoff for the two by two case is

Payoff matrix for Þrms 1 and 2 in the R&D problem

1/2 I N

I Y − c1+p1G+(1− p1) p2G, Y − c2+p2G+(1− p2) p1G Y − c1+p1G,Y + p1G

N Y + p2G,Y − c2+p2G Y, Y

Here if neither invests then there is no chance of either getting the information
and so both their payoffs are their initial income Y . If Þrm one invests and two
does not, then the payoff to the investor is Y − c1+p1G, income net of the cost of
investing plus the expected gain from the investment. The payoff to the non-investor
here is Y + p1G, income plus the expected gain as the information is transferred to
it from the successful investor. Finally if both invest then Þrm i has a payoff of
Y − ci+piG+(1− pi) pjG, which is income net of the cost of investment plus the
expected gain from its own investment plus the expected gain from the other�s in-
vestment conditional on its own investment not having succeeded.

In this payoff matrix I is a dominant strategy if and only if

ci < pi [1− pj ]G (10)
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Thus the possibility of getting the information free from someone else reduces the
incentive to invest in R&D: without this possibility the equivalent inequality would
obviously be ci < piG. The term [1− pj ] represents what was previously labeled
contagion in [26]. In this context it might be called the free rider effect since there
is a temptation for each Þrm to take advantage of the other Þrm�s R&D investment.
The knowledge that Þrm j is investing will reduce the incentive that Þrm i has to do
likewise.

8.1 Nash Equilibrium

The Nash equilibrium for this problem differs from the airline and computer security
cases because there is less incentive to invest in R&D if others have already done so.
If no Þrms are investing then the return from investment is at its highest level while
if all other Þrms are investing then the expected returns from investment is at its
lowest level. We work with the simplest possible case of two Þrms where there is no
advantage of being the Þrst to discover: the results generalize readily. We initially
suppose the Þrms to be different and show how this simpliÞes when Þrms are identical.

We know already from (10) that (I, I) is a Nash equilibrium if

c1 < p1 [1− p2]G and c2 < p2 [1− p1]G

Similarly (I,N) is a Nash equilibrium if

p1G > c1 and c2 > Gp2 [1− p1]

and (N, I) is an equilibrium if

p2G > c2 and c1 > Gp1 [1− p2]

We can now look at the plane with c1 and c2 as its axes, position the other
parameters on this and analyze when (I, I) , (N, I) , (I,N) and (N,N) are Nash
equilibria. The c1 − c2 plane is divided into Þve regions by the above inequalities on
c1 and c2. In the lower left region the only possible equilibria are those where both
Þrms choose to invest and in the upper right region the only equilibria are those where
neither chooses to invest. Between these regions is one where there are two possible
outcomes, (N, I) and (I,N) , and to the upper left the only possible outcomes are
(I,N) and to the lower right (N, I) . If both Þrms are identical then the Þgure is
completely symmetric and of course c1 = c2 so we are restricted to the diagonal.
We therefore have three possible outcomes: (I, I) for low c values, (N,N) for high c
values; in between both (N, I) and (I,N) are possible. The asymmetric regions are
not possible if the Þrms are identical.

There are two possible generalizations to an n-agent framework. Scenario 1 is
where the Þrm tries to keep the information proprietary but there is a probabilityepj > 0 that any other Þrm obtains the information from Þrm j if Þrm j is successful.
Scenario 1 is the analog of the computer network case in that once the information
becomes public all Þrms can obtain the information, just as once a virus is spread
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Figure 4: Equilibria of the DR&D game as a function of costs c2 and c2 and other
parameters.

from one computer it affects all other computers. Scenario 2 is where the information
once discovered leaks, but only to one speciÞc Þrm. Let pji be the probability of a
leak from j to i if j is successful. Scenario 2 is the analog of the airline security case.

We examine Scenario 1 so that each Þrm undertaking investment provides a pos-
itive external effect to the others and in so doing reduces its own incentives to invest.
This external effect is referred to as technological spillover in the endogenous growth
literature - see Aghion and Hewitt [1]. In this case the external beneÞts to Þrm 1
of four Þrms consist of terms such as the following where {2, 3, 4} , {3, 4} etc. now
denote the set of Þrms that are not investing in R&D):

X1 (4, {2, 3, 4}) = 0

X1 (4, {3, 4}) = Gep2

X1 (4, {4}) = G {ep2 + (1− ep2) ep3}
X1 (4, ∅) = G {ep2 + (1− ep2) ep3 + (1− ep2) (1− ep3) ep4}

If no other Þrms invest, then the external effects are clearly zero. If Þrm 2 invests (3
and 4 do not) then the expected gain to one is Gep2 : if Þrms 2 and 3 invest then we
have the expected gain from Þrm 2 plus the expected gain from Þrm 3 conditional
on there being no gain from Þrm 2 etc. This is the same pattern as in the computer
security case except that we are now dealing with gains rather than losses.

If Þrms in the set K are not investing in research then the total expected exter-
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nality to Þrm 1 is given by

X1 (K) = G
X
j /∈K

epj Y
k<j,k/∈K

(1− epk) (12)

The condition for I to be a dominant strategy when there are n Þrms with all
investing is that

c1 < p1 [G−X1 (∅)] ≡ c1 (∅) (13)

Here as before c1 (∅) is the maximum cost to agent 1 consistent with I being the best
choice for 1 when all other Þrms invest in research. We expect that X1 (∅) increases
with n, although unlike the identical agent case we cannot establish a precise limit.
If all agents are identical then from K-H [26] limn→∞X1 (∅) = G.

In the case of three Þrms we can conduct an analysis similar to the 2-person
case of the possible Nash equilibria. For the case of identical companies we Þnd the
following pattern of equilibria:

For c between zero and pG (1− ep)2 the only equilibrium is where all invest. For
pG (1− ep)2 < c < pG (1− ep) we have mixed equilibria where two firms invest and
one does not - there are three such equilibria and each is equally likely. Again there
are mixed equilibria for pG (1− ep) < cpG, in this case with one firm investing and
two not. Finally for pG < c the only equilibrium is where no one invests.

The 2 and 3-agent pattern of equilibria generalizes straightforwardly to the n-
agent case when all agents are identical - this is the case of the diagonal in Þgure
4.

In the n−agent identical case the regime changes for the Nash equilibria
occur at c values given by pG (1− ep)n−1 , pG (1− ep)n−2 , etc. For c <
pG (1− ep)n−1 all invest: for pG (1− ep)n−1 < c < pG (1− ep)n−2 all but
one invest, for pG (1− ep)n−2 < c < pG (1− ep)n−3 all but two invest, and
in general for pG (1− ep)n−k < c < pG (1− ep)n−k−1 all but k will invest.

There is an obvious intuition behind this result. The more individuals who invest in
R&D, the lower the cost will have to be for you to want to invest yourself.

8.2 Gains for being first

Now we extend the results of the previous section by assuming that there is some
advantage to a Þrm that discovers the information Þrst, even if this eventually per-
colates to all the others. There could for example be a patent giving property rights
for a limited period of time, so that we are studying a patent race - see e.g. [9], [10].
Most literature on patent races assumes that all beneÞts accrue to the winner - here
in contrast we are assuming that some signiÞcant beneÞts accrue to others, perhaps
through the ability to licence inventions or to build on them, as in some of the models
in Aghion and Hewitt [1]. We formalize this by assuming that the payoff to acquiring
the information is F if you are the Þrst to do so, and G < F otherwise. In this case
the payoff matrix in the two Þrm case becomes
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I N

I Y − c1+p1F+(1− p1) ep2G,Y − c2+p2F+(1− p2) ep1G Y − c1+p1F, Y+ep1G

N Y+ep2G,Y − c2+p2F Y, Y

and the condition for investing to be a dominant strategy for Þrm 1 is

c1 < p1 [F − ep2G]

Not surprisingly the range of costs for which investing can be a dominant strategy is
now larger and investment is more likely. In the many Þrm version of this case the
formula (12) still describes the externalities received by Þrm 1 when Þrms in K are
not investing and formula (13) becomes

c1 < p1 [F −X1 (∅)]

with G replaced by F. In the identical Þrm case we have as before that

lim
n→∞X1 (∅) = G

Since G < F there is still an incentive to invest in R&D even with full spillovers and
a large number of Þrms.

9 Vaccination

The decision facing an individual deciding whether to be vaccinated against an infec-
tious disease is similar to the IDS problem in two respects. Catching these diseases
normally conveys immunity so that you can only catch the disease once. In other
words damages are non-additive. Secondly, the risk that each person faces depends
on whether others are vaccinated - security is interdependent. You can catch the
disease from the environment - i.e. from a non-human host - or from another person.
If everyone else is vaccinated then the remaining person faces only the risk of catch-
ing the disease from a non-human host. Like the R&D problem, there is less of an
incentive to adopt the vaccine as more people have protected themselves against the
disease.

Assume that it costs c to be vaccinated: this may reßect a combination of cash
costs, psychological costs and possible adverse reactions. If someone catches the
disease then the total cost to them is L (for loss). There are non-human hosts for
the infectious agent, so that one can be infected even if no one else is. Cholera is a
disease of this type: cholera pathogens are resident in the environment even when the
disease is not present in humans. The alternative case can be formulated as a special
case of this more general situation. Smallpox appears to be in the second category, a
disease that is not endemic in the environment, although a terrorist group could play
the role played by non-human hosts in the other case. In the absence of deliberate
infection by an enemy, we could not normally catch smallpox unless someone else
were already infected. We let p be the probability of catching the disease even if
no one else has it: this is the environmental risk of the disease, the background risk
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(positive for cholera and zero for smallpox). i is the probability that someone who
has the disease will infect someone else who is not vaccinated, and ip is the chance of
catching the disease and infecting another susceptible person . Y is person i0s initial
income or welfare, the reference point from which welfare changes are measured. We
denote the product ip by q, as this will occur frequently.

In the two person case we have the following payoff matrix to the strategies of
being vaccinated (V ) and not being vaccinated (NV ):

V NV

V Y − c, Y − c Y − c, Y − pL
NV Y − pL, Y − c Y − pL− (1− p)qL, Y − pL− (1− p)qL

If both are vaccinated then each has a payoff of Y −c, initial income net of the cost
of vaccination. If only one is vaccinated then her payoff is Y − c, and the other�s is
Y −pL: the latter person runs no risk of infection from the former as she is vaccinated
and by assumption cannot transmit the disease.

In the case in which neither individual chooses to be vaccinated, the payoffs are
the initial wealth Y minus the expected losses from two sources: (1) from an infection
from the environment pL and (2) from infection by the other person qL, which only
matters if you have not already been infected (1− p). From this payoff matrix it is
clear that:

1. When c < pL, (V, V ) is a Nash equilibrium.

2. For pL < c < pL+ (1− p) qL, both (N,V ) or (V,N) are equilibria, and
3. For (1− p) qL < c then (NV,NV ) is the equilibrium.

If the cost associated with a vaccination is sufficiently low then both individuals
will want to be protected. As c increases then only 1 person will want to be vaccinated.
If c is sufficiently high then neither person will want to be protected. This is likely to
occur if there is a sufficiently high probability of severe side-effects from the vaccine.
The critical values of c at which the equilibrium changes are the expected loss from
infection if the other person is vaccinated (pL), and the expected loss from infection
if she is not L (p+ (1− p) q). Here (p+ (1− p) q) is the probability of infection if
neither is vaccinated. As we shall see below, this structure persists as we consider
situations with more people. For a more general discussion of the vaccination problem
see Heal and Kunreuther [18].

10 Conclusions

This paper has modeled the management of risks that are discrete and interdepen-
dent, and examines how groups of agents react to these risks. The combination of
non-additive damages and interdependence of risks gives rise to a novel intellectual
structure. This structure is common to a wide range of problems that include airline
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security, computer network security, bankruptcy and risk-management within an or-
ganization, R&D and vaccination. A key aspect of all of these problems is that all
agents in the group face the same policy choice, and that the incentives that they
have to make this choice depend on the actions of others. The signs of this interde-
pendence vary in the different cases: we have strategic complementarity in the airline
and bankruptcy and network cases, and substitutability in the other cases.

Another issue that has some resemblance to our models is that of bank runs
or panics (see Calomiris and Gorton [6], Diamond and Dybvig [11] and Chari and
Jaganathan [7]). In these situations the failure of one bank leads depositors to revise
their estimates of the safety of remaining banks and can lead to panic withdrawals
from these even though they were otherwise facing no risks of failure. This is obviously
similar to our concept of �contagion", the spreading of a risk from one agent to
another. Via this mechanism one bank behaving in an imprudent manner can impose
risks on others even though they themselves behave with the utmost caution.9 There
is however an element of our model that is not present in the models of bank panics
just cited: in our model the knowledge that one Þrm will underinvest in security will
reduce the incentives that others have to invest. Hence in equilibrium there may
be underinvestment all around. This is not a feature of the banking panic models,
although if the banks are aware of the contagion effect then perhaps it should be.10

An interesting feature of the Þrst three cases - airline security, computer network
security, bankruptcy and risk-management within an organization - is the possibility
of tipping. Tipping occurs when changes in the behavior of a small number of players
lead all the rest to change their strategies, thus transforming the equilibrium radically.
In such situations, one or a few players are likely to have great leverage over the system
as a whole. In our 3-agent numerical example a change of strategy from N to S by
one airline leads the other two airlines to also invest in security. Closely associated
with the possibility of tipping is that of cascading, where a change of strategy by one
agent causes a domino effect that leads a second to change, then a third, and so on
until all have changed, a classical �domino effect".

The policy implications are interesting: it may be that the private sector through
some coordinating mechanism (e.g. a trade association) or the government can iden-
tify those �inßuentials� or �opinion leaders� whom it is cost-effective to persuade to
change their positions. As noted in our example, the tax needed to inßuence the
minimum critical coalition is much less than that needed to inßuence all players. In
[26] we examine private and/or public sector policy interventions that could be used
to correct the underinvestment. These include taxes, subsidies, regulations, third
party inspections and the use of associations and other coordinating mechanisms.

9For a similar treatment of contagion in the context of insurance see Polonchek and Miller [30]
with respect to equity issuances by insurers. In their model an announcement of an issuance by an
individual insurers reveals information about the quality of the announcing Þrm�s portfolio as well
as the quality of rival Þrms� portfolios.
10There is a literature on �fads" and their social transmission which could be thought of as mod-

elling a contagion process -see Bikhchandani Hirshleifer and Welch [4]. However the underlying
motivation is rather different from ours - there is no element of risk management or risk spreading
in those models.
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Figure 5: Event tree for the four Þrm case.

The equilibria for IDS problems are often inefficient because of the negative ex-
ternal effects between parties. The social return to an investment (in protection,
in R&D, in risk management or in infection-prevention) is greater than the private
return, thus leading to under-investment. In the special cases in which all agents are
identical and the number of agents is very large, we can quantify the under-investment
because we have a simple expression for the incentive to invest in security. In the com-
puter network case this incentive approaches zero and in the airline security case it
is reduced to about 60% of what its value would be in the absence of external effects.

Lakdawalla and Zanjani [28] also investigate ways in which the public sector can be
involved in reducing the negative externalities. In addition Keohane and Zeckhauser
[25] discuss ways of dealing with externalities associated with terrorism when there
are threats that affect speciÞc individuals who can contaminate others. They also
review collective threats where the number of people exposed to a threat affects the
probability of a terrorist attack. This is another version of the problem of endogenous
probabilities that we consider in section 5.

11 Appendix

The event tree in Þgure 5 shows the possible ways in which a bag can explode on
airline 1 when there are four Þrms in total and none have invested in security. A
bomb may or may not be transferred from 2, and then may or not be transferred
from 3, and then likewise from 4. If 1, 2 or 3 bombs are transferred, the loss is still L.
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This means that the expected externality imposed on Þrm 1 is, as stated in section 2

X1 (4, ∅) = L {p21 + (1− p21) p31 + (1− p21) (1− p31) p41}
Proposition 2. Assume that pij = epi∀j 6= i. If there is a minimal critical

coalition of k < n agents then it must consist of the first k agents ranked by ∆i {∅}
or equivalently by epi
Proof. To tip a Nash equilibrium from one at which none invest to one at which
all are investing requires that the minimum cost at which investing is justiÞed be
raised from below to above the cost of investing for all other than those in the critical
coalition. Formally this means that in the initial situation ci > ci (∅)∀i but in the
Þnal situation ci < ci (I)∀i /∈ I where the agents in the set I are investing in security
and form a critical coalition. Now from equation (3) ci (∅) = pii [L−Xi (∅)] and
ci (I) = pii [L−Xi (I)] . As agents in I change strategy the changes in the maximum
cost consistent with investing in security are ci (I)− ci (∅) and to tip the equilibrium
it is necessary (and sufficient) that ci (I) − ci (∅) ≥ ci − ci (∅)∀i /∈ I. Rank agents
by the size of ∆i (∅) , without loss of generality ordering them so that ∆1 (∅) ≥
∆2 (∅) ≥ ∆3 (∅) ≥ ...... If agent 1 switches then maximum cost consistent with
investing rises by pii∆i (∅)∀i /∈ I. If agents 1 and 2 switch then the returns rise

by pii (∆1 (∅) +∆2 (∅)), etc. Let max
i/∈K

[ci − ci (∅)] ≤ pii
³P

j≤k∆j (∅)
´
where k is the

smallest number for which this holds. ThenK is the minimum critical coalition where
K = {1, 2, ....k} are the Þrst k agents ranked by ∆j (∅) .
Proposition 4 Under the assumption of the paper, a Nash equilibrium in pure strate-
gies exists for the models of sections 2 and 5.11

Proof. We prove existence of an equilibrium constructively, giving an algorithm
which will terminate by locating an equilibrium. We consider the model of section 2:
essentially the same argument will apply for the other models considered in the text.

First set all strategies at Y, so that all Þrms are investing in security. If each
Þrm is playing a best response we have an equilibrium and we are done. Suppose
that without loss of generality the Þrst k Þrms are not picking best responses at
this conÞguration: change their strategies to N. It is clear that for these Þrms N
is a dominant strategy, as when all others are picking S their environment is most
conducive to S being the best strategy. If some other Þrm switches from S to N then
this can only make N more attractive to Þrms from 1 to k : hence N is a dominant
strategy for them. Next check whether we have an equilibrium when Þrms 1 to k
choose N and k + 1 to n choose S. If yes, we are done.

If not, there are some Þrms in k + 1 to n for which N is the best response to the
strategies now being played by the others: change their strategies to N. Now check
again if we have a Nash equilibrium. If yes, we are again done. If not, proceed as
before: change the strategies of the Þrms for which S is not a best response to N .

This process will terminate either when all Þrms are choosing N, which will be
a Nash equilibrium, or at a point when there is a Nash equilibrium with some Þrms
choosing N and others choosing S.
11This argument is taken with grateful thanks from Michael Kearns, personal communication [24].
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Next we extend this argument to the case of endogenous probabilities considered
in section 5. For the argument to work in this case we require that it still be the case
that a Þrm is most likely to choose S when all others are also choosing S and that if
in such a situation it chooses N then it will always choose N . But this is implied by
the assumption of section 5 that the total externality imposed on a Þrm decreases as
the number of other Þrms investing increases. Hence the same argument applies in
the case of endogenous probabilities.
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