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ABSTRACT

We propose a framework for understanding recurrent historical episodes of vigorous

economic expansion accompanied by extreme asset valuations, as exhibited by Japan in the

1980's and the U.S. in the 1990's.  We interpret this phenomenon as a high-valuation equilibrium

with a low effective cost of capital based on optimism about the future availability of funds for

investment.   The key to the sustainability of such equilibrium is feedback from increased growth

to an increase in the supply of funding.  We show that such feedback arises naturally when the

expansion is concentrated in a “new economy” sector and when it is supported by sustained

financial surpluses-both of which would constitute an integral part, as cause and consequence, of

a “speculative growth”equilibrium.  The high-valuation equilibrium we analyze may take the

form of a stock market bubble.  In contrast to classic bubbles on non-productive assets, the

bubbles in our model encourage real investments, boost long run savings, and may appear in

dynamically efficient economies.
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1 Introduction

The last two decades have witnessed stark “speculative growth” episodes of extreme stock

market valuations accompanied by brisk economic growth. Most notable was the experience

of Japan in the 1980s and the United States in the 1990s. Figure 1a illustrates the sharp rise

in the Nikkei in the 1980s, followed by the two-year slide of 1990-1992; and the sharp rise

in the NASDAQ in the 1990s, followed by the collapse of 2000-2001. The extremes reached

by valuations shown in figure 1b, and their collapse in the absence of obvious changes in

fundamentals, are suggestive of a stock market bubble. Figures 1c and 1d illustrate the

growth and investment boom-and-bust that accompanied the market’s gyrations.

Note: Panel b: numerator is real (inflation-adjusted) Datastream Total Market Index; denominator is moving average over preceding
ten years of real earnings corresponding to the index.
Sources: Panel a: Nasdaq Composite Index from The Nasdaq Stock Market, Inc; Nikkei 225 from Datastream. Panel b: Datastream
Total Market Index for US and Japan; CPIs from OECD Main Economic Indicators (all items). Panel c: Bureau of Economic Analysis
(BEA), NIPA Table 1.2; Economic and Social Research Insitute (ESRI). Panel d: BEA, NIPA Table 1.1; Annual report on national
accounts (CD-ROM) 1998

1.a: The Nikkei 225 and the NASDAQ
Indices

0
10000
20000
30000
40000
50000
60000

-5 -4 -3 -2 -1 0 1 2 3 4 5

Years from Peak

N
ik

ke
i2

25

0

1000

2000

3000

4000

5000
N

A
S

D
A

Q
Japan

US

1.b: Price/Earnings Ratio
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1.c: Real GDP Growth (%)
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Figure 1: Speculative Growth Episodes

The nature and policy dilemmas of speculative expansions have attracted much atten-

tion (e.g., International Monetary Fund 2000, Shiller 2000, Cecchetti et al. 2000), but our

formal understanding of the macroeconomic mechanisms that underlie the relation between

stock market speculation and real economic activity remains quite limited. In fact, the clas-
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sic literature on bubbles in general equilibrium bears little relation to speculative growth

episodes. In this literature, bubbles – understood as asset prices that deviate from funda-

mental values – can only appear in a “dynamically inefficient” economy, that is one whose

structure is conducive to the over-accumulation of capital. Their emergence helps to absorb

saving away from investment and to alleviate the over-accumulation problem. However, the

notion that the emergence of a bubble would crowd out investment, while its bursting would

increase investment, is contrary to the patterns depicted in figure 1. Moreover, empirical

testing of “dynamic inefficiency” has been negative. Abel et al. (1989) tested an implication

of dynamic inefficiency, whether the aggregate market for assets acts as a long-term “cash

sink” for investors, but found no evidence of it in OECD economies.

This paper proposes an alternative framework for understanding speculative expansions

that is better able to address the facts. Our interpretation of this phenomenon rests on two

premises: (i) the rise in market valuations in speculative growth episodes results from a

low effective long-term cost of capital; and (ii) the boom in investment and growth during

such episodes is a response to increased asset prices along the standard q-theory line. The

central question that arises under this interpretation is: How are expectations of a low

long-term cost of capital consistent with the high demand for savings needed to fund a

high-investment equilibrium? A key component of our equilibrium account is a growth-

saving feedback by which the future supply of savings increases as a result of the conditions

created by a speculative expansion, and ends up lowering the effective cost of capital.

The kind of stock market bubbles that can arise in the presence of growth-saving feed-

back have very different implications from standard bubbles. First, rather than crowding

out capital accumulation, they naturally encourage investment and growth. Conversely,

their bursting leads to an investment slump as the economy rids itself of what appears ex

post as widespread overcapacity. Second, because they induce greater saving, such bubbles

are expected to reduce the long-run cost of capital; this, one can show, allows them to

arise in a dynamically efficient context. Finally, such bubbles and the resulting specula-

tive expansions are manifestations of a more general class of low cost-of-capital equilibria

that are the result of the feedback from growth to saving. Such equilibria are qualitatively

similar to bubbly equilibria, in that they exhibit high asset valuations and can involve a

collapse in asset prices in the absence of any news. However, these equilibria may or may

not incorporate a bubble in asset markets, depending on how extreme valuation levels are.

In other words, although consistent with market participants’ perception of a stock market

bubble, our account of speculative expansions does not hinge on ascertaining the presence
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of a bubble.

In the particular case of the U.S. in the 1990s, we argue, at least two factors created the

conditions for a speculative growth episode: the emerging information technology sector

and conservative fiscal policy. Both factors created favorable conditions for growth-saving

feedback and for the possibility of a speculative equilibrium characterized by extreme stock

market valuations and a potential crash.

How does the information technology sector generate feedback from growth to saving?

This is an emerging sector of the economy, subject to a lesser degree of diminishing returns

than more mature sectors. As the economy expands, such a “new economy” sector naturally

will expand proportionally more than the rest of the economy and will have a greater

ability to generate income for saving. Moreover, in an endogenous growth version of this

model, we show that a bubble not only might be necessary for productivity growth to

accelerate, but that the resulting expansion in productivity, income, and saving also might

be critical to creating the growth-saving feedback necessary to support the bubble. Thus,

a fundamental expansion in productivity and stock market speculation are not necessarily

competing explanations. A technological revolution might form an integral part – both as

cause and consequence – of a speculative growth equilibrium.

What about fiscal policy? We note that a significant share of increased saving in the

recent U.S. speculative expansion is attributable to the public sector. To the extent that

pro-cyclical government revenues increase public saving, they reinforce the feedback from

growth to saving. In the short run, fiscal surpluses can arise as a consequence of the stock

market boom and can facilitate the initial rise in investment. More importantly, fiscal

surpluses can play a central role in making the speculative equilibrium feasible by providing

the funding necessary to sustain high investment in the long run. This consideration has

a particularly stark implication for fiscal policy during a speculative growth episode. The

possibility of using the fiscal surpluses that result from such expansions to cut taxes and raise

spending might be illusory, as these surpluses might be necessary to sustain the speculative

growth equilibrium that generated them.

The speculative growth episodes to which our theory relates are a recurrent phenomenon.

Earlier episodes of vigorous economic expansion under speculative asset valuations have

been documented by economic historians. In the case of the U.S., this phenomenon also

can be observed in the expansions of the turn of the 20th century, the 1920s, and the 1960s

(see, e.g., Shiller 2000). Equally important, our theory can be brought to bear on sustained

low cost-of-capital equilibria, such as the prolonged expansions exhibited in a number of East
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Asian economies in the post-war period. In fact, the key feedback from growth to saving

in these economies has been documented. Examining the aggregate relationship between

income growth and saving in a cross-country panel of 64 countries over the period 1958-

1987, Caroll and Weil (1994) find that growth Granger causes saving with a positive sign,

but that saving does not Granger cause growth. The pattern of an acceleration in growth

followed by strong increases in saving rates is particularly clear in the high-growth, high-

saving East Asian economies of Japan, South Korea, Singapore, and Hong Kong. Gavin

et al. (1997) elaborate on this evidence and show that the estimated impact of growth on

saving is not only statistically significant but also very large in economic terms.

Relation to the literature

In its economic theme, this paper is part of a long tradition of studies of speculative

growth episodes (e.g., Kindleberger 1989). In terms of the recent U.S. experience, this

literature is divided between those who see a case of speculative behavior (e.g., Shiller

2000), and those who, based on the significant acceleration in underlying U.S. productivity

growth, conclude that the expansion was driven by a technological revolution that affected

real fundamentals (e.g., Greenwood and Jovanovic, 1999; Hobijn and Jovanovic, 2000).

From this perspective, our contribution is to provide a unified perspective under which these

two views need not be mutually exclusive. On the contrary, an expansion of technological

opportunities and stock market speculation may be inseparable complements.1

On the methodological side, our paper belongs to the literature on bubbles in general

equilibrium. As we mentioned earlier, the classic theory of bubbles in general equilibrium

(see Tirole 1985) is not designed well for addressing speculative growth episodes. It implies

that a bubble crowds out investment and only can arise in a dynamically inefficient econ-

omy. Neither of these elements is observed during these episodes. From this perspective,

the main distinctive feature of our framework is the centrality of the growth-saving mecha-

nism. The latter overturns standard conclusions by breaking the crowding-out mechanism

of equilibrium bubbles. Moreover, bubbly equilibria in our setting are a particular case of

low cost-of-capital equilibria, that exhibit the same qualitative features but do not hinge
1The standard “technological revolution” interpretation faces a double challenge. First, in order to

explain the collapse of the market, it must assume a reversal of technological market expectations that finds

no counterpart in the commentary of market participants and their broad consensus that a bubble had

burst. Second, this interpretation does not match well with the decline during the expansion of long-term

interest rates and other measures of the cost of capital. The interpretation we offer in this paper shows that

these two aspects of the US expansion are not only compatible with a technological revolution, but might

be essential factors in its emergence.
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on ascertaining the existence of a bubble.

More recently, several papers have demonstrated that, in the presence of externalities

that create a wedge between private and social returns on investment, bubbles can arise

even if the bubbleless economy is dynamically efficient (e.g., Saint-Paul, 1992; Grossman

and Yanagawa, 1993; King and Ferguson, 1993). That is because dynamic efficiency requires

that the social rate of return exceed the rate of growth of the economy; the possibility of a

bubble instead requires that the private rate of return be below the rate of growth. These

two conditions are simultaneously feasible in the presence of a wedge between private and

social returns. However, the cash-flow test for bubbles developed by Abel et al. (1989)

still applies in the case of externalities because it concerns private returns, and rejects the

possibility of standard bubbles. In contrast, our mechanism does not depend on a wedge

between private and social returns, and a bubble can arise even if the speculative path starts

with a private return that exceeds the rate of growth of the economy. In particular, our

mechanism passes Abel et al.’s test.

In standard models, bubbles reduce investment and growth by crowding out investment.

Olivier (2000) contributed to this literature by developing a model of bubbles on firm

creation which, like ours, leads to more rather than less investment.2 However, because

he does not incorporate a growth-saving feedback, bubbles in his model raise rather than

lower the long-term cost of capital. This makes it challenging for a bubble to account

simultaneously for high stock market valuations and high investment. In fact, for the

bubble in Olivier’s model to be price-increasing (see Weil 1990) – i.e., for the negative

effect on asset prices caused by the rise in the interest rate to be dominated by the positive

effect of the bubble – a large degree of ex-ante dynamic inefficiency is required.

The rest of this paper is organized as follows. In section 2, we present a prototypical

model of speculative growth. Our analysis is based on the Diamond (1965) overlapping-

generations model, to which we add adjustment costs and a special assumption about

the saving function. Adjustment costs allow us to characterize stock market booms and

their key role in facilitating the transition from low- to high-investment equilibria. Our

special saving function generically captures the growth-saving feedback that is central to

the existence of a high-valuation equilibrium. Section 3 presents a specific instance of the

generic mechanisms of section 2 in a model of the “new economy.” In section 4, we extend

our analysis to encompass fiscal surpluses and current account deficits as short- and long-

run funding mechanisms. Section 5 concludes and is followed by an appendix that presents
2See also Cozzi (1998) for a related model applied to education decisions (culture as a bubble).
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the proofs of the main propositions.

2 Speculative Growth: The Mechanics

In this section we present a prototypical model of speculative growth. Our analysis is based

on the Diamond (1965) overlapping-generations model, to which we add adjustment costs to

capital and a special assumption about the saving function. Adjustment costs are important

in any model in which changes in stock market valuations are central; otherwise the price

of capital would be constant. The special assumption about the saving function is intended

to capture the growth-saving feedback that is central to our interpretation of speculative

expansions. This section introduces the feedback generically through the functional form of

the saving function. The next two sections pay closer attention to specific macroeconomic

mechanisms – the “new economy” and fiscal conservatism– that can create feedback from

growth to saving and help explain recent speculative growth episodes.

2.1 Model Setup

Consider a standard Diamond (1965) overlapping-generations structure with no population

growth and a unit mass of young and old agents who coexist at any date t. Each generation

is born with a unit of labor, Lt = L ≡ 1, to be used when young, for which it receives a

total wage Wt determined in a competitive, full-employment labor market. The economy’s

single consumption good is used as a numéraire.

Technology. Consumption goods are produced with capital, Kt, and labor, Lt. The pro-

duction function at any time t is determined by the level of technology, At, which grows at

an exogenous rate γ:

At+1 = (1 + γ)At.

Production is given by a constant returns technology:

Yt = F (Kt, AtLt) = AtLf(kt), kt ≡ Kt/AtLt,

where f ′ > 0, f ′′ < 0, and limk↓0 f
′(k) = +∞. Purely technical conditions on this and

other functions are stated in appendix A. The labor market is competitive, and the wage

wt ≡Wt/AtL per unit of effective labor is

wt ≡ w(kt) = f(kt)− ktf
′(kt), w′ ≥ 0, w′′ ≤ 0. (1)
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Capital goods are accumulated with a constant returns technology:

Kt+1 −Kt = G(It,Kt) = g(xt)Kt, xt ≡ It/Kt, (2)

where It is the investment of consumption goods in capital goods production. The ad-

justment technology g(x) satisfies g′ > 0, g′′ < 0, g(0) = 0, limx↑∞ g(x) = +∞, and

limx↑∞ g′(x) = 0. Normalizing both sides of the accumulation equation by effective labor,

AtLt, yields

(1 + γ)kt+1 = (1 + g(xt))kt. (3)

Preferences and the saving function. Lifetime utility is a concave function of consump-

tion during youth and old age. Each member of generation t chooses the level of saving

when young, St, that maximizes lifetime utility. The relevant features of preferences are

summarized in the level of saving, st ≡ St/AtL, which we assume is given by

st = s(wt, rt), (4)

where rt denotes the interest rate between periods t and t+ 1, sw > 0, and 0 < sr <∞.

Capital market equilibrium. Following production in period t, the old sell their capital to

the young at a price qt. The young allocate their savings to the purchase of the existing

stock of capital and to investment in new capital. Thus the capital market equilibrium

condition is

st = (qt + xt)kt. (5)

For any level of saving, the young take the price qt as given and decide how much of

their savings will be allocated to purchase the existing stock of capital, kt, and how much

to invest in new capital. They do so to maximize their stock of capital when old:

max
{xt,kt}

kt+1 s.t. (3) and (5),

which yields the standard q-theory condition for investment:

qt =
1 + g(xt)

g′(xt)
− xt.

This equation implicitly defines the investment function

xt = x(qt), x′ > 0. (6)

The equilibrium interest rate can be expressed as a function of the stock of capital

and its price. Replacing the saving and investment functions, (4) and (6), into the capital

market equilibrium condition, (5), and substituting the wage from (1), yields

rt = r(kt, qt). (7)
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It is straightforward to verify that rq > 0. We postpone discussion of the sign of rk to the

next subsection.

Equilibrium dynamics. Equilibrium dynamics are given by the capital accumulation equa-

tion, (3), and the arbitrage condition for holding a unit of capital from t to t+ 1:

(1 + rt) qt = (1 +GK(It,Kt))
(
qt+1 + FK(Kt+1, At+1L)

)
. (8)

The right hand side of this expression is the gross return from holding the unit of capital.

The only somewhat unusual term in this return derives from the adjustment cost function, as

one unit of capital at time t yields 1+GK units of capital at t+1. Since GK = g(x)−g′(x)x,

we will write it, with some abuse of notation, as a function of x: GK = GK 〈x〉. Replacing

the interest rate function, (7), into the arbitrage condition, (8), and noting that FK = f ′,

the system governing equilibrium dynamics can be written as a two-dimensional system in

(kt, qt)-space:

kt+1 =
1 + g(x(qt))

1 + γ
kt; (9)

qt+1 =
1+ r(kt, qt)

1 +GK 〈x(qt)〉
qt − f ′

(
1 + g(x(qt))

1 + γ
kt

)
. (10)

2.2 The Growth-Saving Feedback and Speculative Growth

A generic way to introduce feedback from expansion to saving is through the functional

form of the saving function, s(w, r). We assume that if the economy expands past a level

ko of the capital stock, then the saving of the young increases sharply. We will analyze

specific instances of economic phenomena that can give rise to such feedback in subsequent

sections. Here we simply write the saving function as

s(w, r) =


 s̃(w, r), w < w(ko);

s̃(w, r +∆r), w ≥ w(ko),
(11)

where s̃(w, r) is continuous in both of its arguments and ∆r > 0. Savings jump by s̃r∆r

when the wage reaches w(ko).

The jump in the saving function as the economy expands past ko translates into a dip

in the equilibrium interest rate, r(k, q), at ko. Denoting by r̃(q, k) the equilibrium interest

rate, as defined in (7), where the saving function is s̃ instead of s, we can write

r(k, q) =


 r̃(k, q), k < ko;

r̃(k, q)−∆r, k ≥ ko,
(12)
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Under weak conditions discussed in appendix A, the equilibrium interest rate is an increasing

function of k ( rk > 0) everywhere except at k = ko, where it experiences a dip.

A sufficiently strong feedback from expansion to saving gives rise to the possibility of

multiple equilibrium steady states. This effect is stated formally in the following proposition:

Proposition 1 (Multiple Steady States)

There exist ∆r > 0 and ko > 0 such that dynamic system (9)-(10) has precisely two non-

degenerate steady states, (k∗1, q
∗) and (k∗2, q

∗), where k∗2 > k∗1.

Proof: See appendix A.

To provide a detailed illustration of this proposition, figure 2 presents a heuristic phase

diagram for dynamic system (9)-(10) under parameter configurations for which the result in

proposition 1 holds. We start by identifying the system’s steady states, which correspond to

the intersection of the two stable arms, {(kt, qt) s.t. kt+1 = kt} and {(kt, qt) s.t. qt+1 = qt},

given respectively by

g(x(qt)) = γ; (13)

1 + r(kt, qt) = (1 +GK 〈x(qt)〉)

[
1 +

1

qt
f ′

(
1 + g(x(qt))

1 + γ
kt

)]
. (14)

From equation (13), the k-constant arm is a horizontal line that corresponds to the single

level of qt that balances the capital accumulation rate with the economy’s growth rate. On

the other hand, the slope of the q-constant arm reflects equilibrium in the capital market.

The main factor behind this schedule’s negative slope is that, as the capital stock increases,

the price of capital must fall because the young’s ability to purchase the extra capital rises

less than proportionally with the additional investment requirement.3 The exception to this

slope is the upward jump in q at the level kt = ko where the saving of the young jumps

up. The first intersection of the two stable arms occurs at (k∗

1, q
∗), which corresponds to

the classic steady state in the Diamond model. As illustrated in figure 2, for a sufficiently

large feedback from growth to saving, the jump in the q-constant arm will be large enough

to result in a second intersection at (k∗

2, q
∗).

Turning to out-of-steady-state dynamics, figure 2 illustrates the dynamics generated by

the system of difference equations, (9)-(10). There are six distinct regions, characterized
3This effect dominates everywhere except at low levels of k. When k is small, the dominant reason for why

the q-constant is downward sloping is that the marginal product of capital declines sharply as k increases,

causing its price to decline.
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kt

qt

ko

q* kt+1 = kt

qt+1 = qt

qt+1 = qt

k*1 k*2

Figure 2: Dynamics in (kt, qt)-space

by the direction of movement of kt and qt over time. Each of the two steady states, k∗

1 and

k∗

2, is saddle-path stable. Moreover, if ∆r is large enough, the economy exhibits multiple

equilibria. Starting from the same initial value for the state variable, k, it is possible for

two equilibrium paths to arise: one that takes the economy to the high-capital steady

state, (k∗

2, q
∗), and one that converges to the low-capital steady state, (k∗

1, q
∗). These two

equilibrium paths are illustrated in the simulation we present next.

2.3 Discussion

The nature of equilibrium dynamics shown in figure 2 can be gauged from the simulation

illustrated in figure 3. The specific functional forms and parameter values underlying the

simulation are presented in appendix B. Starting from the initial conditions of steady-

state equilibrium (k∗

1, q
∗), figure 3 illustrates an unanticipated jump at time t = 1 to the

10



equilibrium path that converges to the steady state (k∗

2, q
∗). In the same order as the

empirical time series presented in figure 1, panels 3a-3d present time series for the stock

market index (qt), the price/earnings ratio (qt/ (1 +GK 〈x〉) f ′(k)), output growth (dYt/Yt),

and the investment/output ratio (It/Yt).

3.a: Stock Market Index

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Time

High Valuation

Low Valuation

3.b: Price/Earnings Ratio

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Time

3.c: Output Growth

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Time

3.d: Investment/Output Ratio

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Time

Figure 3: Low Cost-of-Capital Equilibrium

Market valuation. Starting from steady state (k∗

1, q
∗), the economy’s unanticipated

jump to the new equilibrium takes the form of an immediate rise in q and creates a stock

market windfall (panel 3a). The price of capital remains above its original level along the

equilibrium path, but it converges back to that level over time. On the other hand, the

market’s capitalization, qk, converges to a higher level, since k∗

2 > k∗

1.

When the economy moves to the new equilibrium, the key phenomenon is the rise in

market valuations. We do not mean by this the absolute price level of capital or market
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capitalization, but rather their increase relative to the earnings generated by capital. As

can be seen in panel 3b, the price/earnings ratio rises when the economy moves to the new

equilibrium and continues to rise along the equilibrium path. Compared to (k∗

1, q
∗), the new

steady state, (k∗

2, q
∗), exhibits a higher price/earnings ratio. What is the economic driving

force behind the increase in valuations? Note from arbitrage condition (14) that, in steady

state, the price/earnings ratio is the inverse of the effective cost of capital:

qt/ (1 +GK 〈x〉) f ′(k) = 1/(r −GK). (15)

Thus, higher valuations in steady state (k∗

2, q
∗) are due to a fall in the long-term effective

cost of capital.

The factor behind the increase in market valuations is the feedback from economic

expansion to saving, incorporated in the jump in the saving function at ko. This jump

creates an abundance in the supply of funds and results in a decline in the effective cost

of capital. The stock market boom that takes place when the economy moves to the new

equilibrium reflects optimism about the future availability of funds and the cost of capital.

With this in mind, we will refer to the equilibrium that converges to (k∗

2, q
∗) as the low

cost-of-capital equilibrium; and to the equilibrium that converges to (k∗

1, q
∗) as the high

cost-of-capital equilibrium.

Investment and growth. The low cost-of-capital equilibrium exhibits higher investment

and growth than the high cost-of-capital steady state. Since q is above its steady-state

level along the low cost-of-capital equilibrium path, x(q) is also above its steady state level

and the capital stock grows to k∗

2. The growth in the capital stock causes an expansion

in income growth during the transition (panel 3c). Over time, the growth rates of capital

and income return to normal, but the low cost-of-capital steady state is characterized by

permanently higher investment as a share of income (panel 3d).

Conversely, starting from the low cost-of-capital growth path, the economy could ex-

perience an unanticipated dip to a recessionary equilibrium path that takes it back to the

high cost-of-capital steady state. Along that path, the stock market crashes and triggers

a slump in investment and growth as the economy rids itself of what appears ex post as

widespread overcapacity.

2.4 Bubbles as a Low Cost-of-Capital Equilibrium

So far, our discussion deliberately made no reference to bubbles. It turns out that in

our framework an equilibrium with a stock market bubble in the price q of capital –
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understood as the difference between the price of an asset and its fundamental value –

can arise as a special case of the low cost-of-capital equilibrium described above. This kind

of bubble will arise if equilibrium investment is sufficiently high that it takes the economy

past a “satiation” point, where the production function is so saturated with capital that

its marginal product falls to zero. Besides the difference between the price of capital and

its fundamental valuation, bubbly equilibria in our model behave qualitatively the same as

non-bubbly low cost-of-capital equilibria.

Proposition 2 (Bubbles)

Suppose the production function has a finite satiation point, k = min{k: f ′(k) = 0}. There

exist ∆r > 0 and k0 > 0 such that dynamic system (9)-(10) has precisely two non-degenerate

steady states, (k∗

1
, q∗) and (k∗

2
, q∗), where k∗

1
< k0 < k∗

2
and k∗

2
≥ k. Along the low cost-

of-capital equilibrium path to (k∗

2
, q∗), the price of capital includes a bubble component and

becomes a pure bubble for all k > k.

Proof: See appendix A.

Intuitively, assume the production function reaches satiation at the level of capital k.

A bubbly low cost-of-capital equilibrium can be constructed by increasing the jump ∆r in

saving function (11) that drives the growth-saving feedback. This rise in saving increases

the capital stock, k∗

2
, in the low cost-of-capital steady state. If the increase in saving, ∆r, is

large enough, k∗

2
crosses the satiation point, k. At that point, a rational bubble emerges in

the price of capital. To see this, recall that the price of capital, q∗, remains the same across

all steady states, given by (13). However, the marginal product of capital for any k∗

2
≥ k

is zero. All output in steady state goes to labor, and the aggregate stock market generates

no earnings for its owners. Thus, the positive value of q∗ corresponds to a rational bubble

that is only sustained by the possibility of trading with other agents.

Thus, the bubble that can emerge in this economy can be interpreted as an extreme

case of high stock market valuations driven by a low effective cost of capital.

Looking at expression (15) for the steady-state price/earnings ratio, it is apparent that

as earnings decline to zero while the price of capital remains unchanged, the price/earnings

ratio goes to infinity and the effective cost of capital, r−GK , declines to zero. Moreover, if

the low cost-of-capital steady state is bubbly, then the price of capital along the equilibrium

path that converges to it also incorporates a bubble.

The type of bubble that arises in our model differs in several respects from the classic

analysis of bubbles on non-productive assets (e.g., Tirole 1985):
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1. While bubbles on non-productive assets absorb saving away from investment, bubbles

on capital can incentivize capital accumulation.4

2. In the classic analysis, by driving up the demand for saving, bubbles increase the cost

of capital. The key role of the growth-saving feedback in our theory is to reverse this

effect, and cause expansionary bubbles to drive down the effective cost of capital.

3. A low cost of capital increases the fundamental valuation of an asset even in the

absence of a bubble. Bubbles in our model are simply an extreme case of a high-

valuation equilibrium driven by a low cost of capital. Key to the continuity between

the characteristics of bubbly and bubbleless equilibria is the growth-saving feedback.

In the classic analysis, the introduction of a bubble raises the cost of capital and

generates a macroeconomic outcome that runs counter high fundamental valuations

due to a low cost of capital.

4. A central feature of the classical theory of bubbles is that they can only arise in

economies whose bubbleless equilibrium is dynamically inefficient. This need not be

the case in our model. The classic argument for the necessity of dynamic inefficiency

runs as follows.5 Asymptotically, a bubble cannot grow faster than the economy’s

growth rate, γ. Otherwise, there would come a time when no agent is wealthy enough

to hold it. Since a bubble must grow at the interest rate, r, its existence is only

compatible with r ≤ γ. Moreover, since the introduction of a bubble crowds out

investment and, therefore, increases r, we must have r < γ in the bubbleless equilib-

rium. This condition implies dynamic inefficiency: capital must be accumulated at a

rate γ that exceeds its return r, and therefore absorbs more resources than it gener-

ates. Contrary to this argument, the bubbleless equilibrium in our model need not be

dynamically inefficient for a bubble to arise. The main difference comes from the fact

that, in the presence of a growth-saving feedback, introducing a bubble eventually

reduces r. Thus, it is possible to start from a dynamically efficient (r > γ) bubbleless

situation, that turns dynamically inefficient (r < γ) as a bubble eventually lowers r.6

4See Chirinko and Schaller (2001) for evidence on the response of investment to bubbles in Japan.
5See the seminal discussion in Tirole (1985).
6Note also that the stock market bubble in our model does not need to grow at the rate of interest.

The reason is that the existence of a bubble in q increases the value qGK of the marginal improvement

in capital-accumulation capacity associated with existing units of capital. Essentially, a bubble on capital

generates additional bubbles on the capital this asset helps to produce.
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In our model, what makes a bubble emerge in the price of capital as opposed to other,

non-productive assets? If the bubbleless economy is not dynamically inefficient, the only

asset that might support a bubble is capital. However, it is interesting to note that once

a bubble on capital arises, then it makes room for other bubbles on non-productive assets.

The reason is that our bubbly equilibrium can be shown to always drive the economy into

a dynamically inefficient region.7

3 Speculation and “New Economy” Expansions

A distinctive characteristic of the U.S. speculative expansion of the 1990s is that it was

concentrated in the new technology sector. As shown in panel 4a, the stock-market price

of “new economy” technology and growth companies boomed, while the price of traditional

“old economy” companies did not appreciate nearly as much. Panel 4b shows that during the

same period the share of aggregate investment that went to technology capital experienced a

sharp increase. More generally, speculative growth episodes typically have been associated

with the expansion of newly emerging sectors of the economy (see, e.g., Rappoport and

White 1993). This was the case during the expansion of the turn of the twentieth century,

which witnessed the growth of such new sectors as railroads, steel, and oil, and during the

“Roaring Twenties,” which witnessed the emergence of mass-production manufacturing,

electrification, automotive transportation, etc.

In this section we argue that the emergence of a new production sector is associated

with a natural growth-funding feedback that provides a prime instance of the mechanisms

that can support a speculative growth equilibrium. We also argue, in an endogenous growth

context, that such speculative growth results in increased productivity growth.

3.1 An Emerging-Sector Model

We make two modifications to the model in section 2: we introduce a second production

sector in addition to the one experiencing speculative growth; and we drop the ad-hoc

7To see this, recall that the effective cost of capital, r − GK , is zero in a bubbly steady state. Since

GK = g − g′x < g and since, by (13), g = γ, we must have r < γ.

Also note that because of the latter, non-productive bubbles will vanish asymptotically if the stock market

bubble is to survive. If that was not the case, then r = γ and the stock market bubble could not exist.

Without the latter bubble it is still possible for the non-productive one to exist, but it must leave enough

space for capital to drive the economy into the dynamically inefficient region. If this is not the case, then

the steady-state non-productive bubble is not feasible and only an equilibrium with a stock market bubble

could survive.
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Note: Panel b: technology investment is investment on "Information processing equipment and software",
which consists of computers and peripheral equipment, software, communication equipment, instruments,
photocopy and related equipment and office and accounting equipment.
Sources: Panel a: Nasdaq Composite Index from The Nasdaq Stock Market, Inc; S&P 500 Composite
from Datastream. Panel b: BEA, NIPA Table 5.4.
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Figure 4: New Economy Boom

assumption that the expansion-saving feedback comes from preferences. The feedback now

results from the saving-generating features of the economy’s emerging sector.

Old and new sectors. Recall that production in the model in section 2 uses production

function Atf(kt)Lt, where kt is subject to adjustment function g(xt). We consider this the

“new” sector, and add an “old” sector that produces the same consumption good using a

different type of capital, denoted by Zt, and labor, Lo

t
. We assume the following old-sector

production function:

Y o

t
=




Ath(zt), Lo

t
≥ L

o

;

0, otherwise;
h′ > 0, h′′ ≤ 0,

where zt ≡ Zt/At. This production function allows us to capture in a concise manner the

main difference between the new and the old sectors, namely that the latter has more limited
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expansion opportunities and reaches maturity earlier than the former. More precisely,

expanding capital in the old sector leads to faster diminishing returns on capital (which

we capture below by assuming |h′′| to be large enough) and benefits wages less (which we

capture by eliminating any expansion opportunity in labor beyond L
o

). Both characteristics

are key drivers of our results.

To avoid increasing the dimension of the economy’s state space, we assume that con-

sumption goods can be transformed one-to-one into Zt with no adjustment costs. Thus, the

stock of capital in the old sector is related contemporaneously to the interest rate:

h′(zt+1) = rt. (16)

We also assume the old sector productive enough that we have an interior solution in the

region of interest:

Lo

t
= L

o

.

In this case, the wage rate in the old sector is equal to the marginal product of labor in

the new sector, wt. Also, labor employed in the new sector now differs from the total labor

force, and is equal to L = L−L
o

= (1− λ)L, where λ ≡ L
o

/L.

Growth-saving feedback. The second modification we make to the model in section 2 is

to drop the assumption of a jump in the saving function and assume a more conventional

undiscounted log-utility function.8 As is well known, this assumption implies the following

saving function for the young:

st =
1

2
wt. (17)

The feedback from expansion to saving no longer comes from the structure of preferences,

but from the saving-generating features of the new sector. As in section 2, capital market

equilibrium allows us to derive the interest rate rt = r(kt, qt) as a function of the new-

sector capital stock and its price. In equilibrium, the young’s saving must be equal to their

investment in the two capital stocks:

st = (1 + γ)zt+1 + (x(qt) + qt)(1− λ)kt. (18)

Given saving function (17), the saving surplus that can be used to fund old-sector capital

is therefore

zt+1 = (1 + γ)−1
[
1

2
w(kt)− (x(qt) + qt) (1− λ)kt

]
. (19)

8Note that diminishing returns in the old-sector production function implies the presence of rents, which

effectively accrue to quasi-factors of production. We assume that these quasi-factors do not save.
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The top panel of figure 5 illustrates the young’s total saving and their investment in the

new sector as a function of kt; the middle panel illustrates the saving surplus into the old

sector that results from the difference between the two. Note that concavity of the wage

function, w(kt), means that the saving surplus is initially increasing then decreasing in kt.

It is along the segment where the saving surplus is increasing that the economy exhibits

feedback from expansion in the new sector (as measured by kt) and saving (as measured by

the surplus).

k

k

(x*+q*)k

sT(w(k))

k*1 k*2

r

(1+GK)(1+f’(k)/q*)

r+

z

zo

z*L

z*H

r+-∆ro

Figure 5: Equilibria

The positive feedback from growth to saving induces a negative feedback from growth

to the interest rate, rt. To see this, note that by first-order condition (16) the saving surplus

determines interest rate function rt = r(kt, qt). While the interest rate function in section

2 was driven by preferences that exhibit an interest-elasticity of saving, it is here driven

by investment opportunities in the old sector. Because of diminishing returns to capital, a
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higher surplus results in a lower interest rate. Thus, for low kt, expanding the new sector

generates more saving than it uses and reduces the interest rate; for high kt, it generates

less saving than it uses and increases the interest rate. Given the interest rate function,

r(kt, qt), the model can then be solved exactly as in section 2, with equilibrium dynamics

given by the system, (9)-(10).9

Multiple equilibria. The grow-saving feedback opens the possibility for multiple equilibria

through the emergence of a low cost-of-capital equilibrium. We show this possibility under

a special functional form that preserves the stark discontinuity of the model in section 2

and highlights the parallels with that model. We assume that the old-sector production

function, h(z), is piece-wise linear:

h(zt) =




r+zt, zt < zo;

r+zo + (r+ −∆ro)(zt − zo), otherwise,

where ∆ro
∈]0, r+[ measures the degree of diminishing returns in the old sector. From (16),

this functional form results in two possible levels of the interest rate, depending on whether

zt is smaller or greater than zo. Given the inverted U-shaped form of the surplus function

in the middle panel of figure 5, there are two levels of kt, k̃
l(qt) and k̃u(qt), such that surplus

(19) equals zo. Thus, as illustrated in the bottom panel of figure 5, the interest rate is given

by

r(kt, qt) =




r+, kt < k̃l(qt) and kt > k̃u(qt);

r+ −∆ro, otherwise.

The range of kt in which the interest rate dips corresponds to the range where the growth-

saving feedback is positive and the saving surplus is increasing; and the range of kt in

which the interest rate jumps back up corresponds to the range where the saving surplus is

decreasing.

The following proposition establishes the possibility of multiple steady states:

Proposition 3 (Multiple Steady States)

There exist r+ > 0, ∆ro > 0 and zo > 0 such that dynamic system (9)-(10) has precisely

two non-degenerate steady states, (k∗1, q
∗) and (k∗2, q

∗), where k∗2 > k∗1.
9Note that since (16) allows us to solve out for zt+1 as a function of the interest rate, we can focus directly

on the saving that goes into the new sector, defined as skt ≡ st − (1 + γ)zt+1. By (16)-(18), it is given by

skt = 1

2
wt − (1 + γ) (h′)

−1
(rt) ≡ sk(wt, rt), with skw > 0 and skr > 0. Having solved out for the old-sector

capital stock, we obtain a saving function into the new sector that is similar to function (4) in section 2.

However, the difference is that the positive interest-elasticity of sk(wt, rt) does not come from preferences,

but from the possibility of reallocating saving from the old to the new sector.
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Proof: See appendix C.

To illustrate the emergence of multiple steady states, consider steady-state conditions

(13)-(14). Equation (13) equates qt to the level q
∗ that balances the capital accumulation

rate with the economy’s growth rate. Equation (14) is an arbitrage condition that equates

the interest rate r(kt, qt) to the marginal return from investing in a unit of kt. As illustrated

by the dashed line in the bottom panel of figure 5, this marginal return is decreasing in

kt because of diminishing returns in the new sector. Given qt = q∗, a steady state is the

intersection of the dashed line with the interest rate function. As shown in the figure, in

addition to steady state (k∗
1
, q∗), the economy can exhibit a second steady state, (k∗

2
, q∗),

characterized by a low cost of capital. This will happen if the growth-saving feedback is

sufficiently strong in the sense that the dip in the interest rate (given by the measure ∆ro of

diminishing returns in the old sector) be large enough compared to the slope of the dashed

line (given by the degree of diminishing returns in the new sector). This condition captures

the idea that the new sector is immature relative to the old sector, in the sense that it

exhibits a relatively low degree of diminishing returns. If this were not the case, the old

sector would compete for saving with the new sector and would cause the interest rate to

rise relative to the new sector’s marginal product. This would prevent a sufficient fall in

the effective cost of capital that is behind the second steady state.10

Equilibrium dynamics in the presence of multiple steady states are illustrated in figure

6. The heuristic phase diagram in this figure is similar to that in figure 2 of section 2.11 The

one difference is that, because now the discontinuity in the interest rate function r(kt, qt)

also depends on q, the phase diagram exhibits a discontinuity around the rising segment of

the q-stable arm – which, strictly speaking, does not exist in this case. This technicality

does not affect our analysis of equilibrium or dynamics.12 As before, there are two saddle-

path stable steady states: (k∗
1
, q∗) and (k∗

2
, q∗). Both are associated with the same price of

capital, q∗. However, (k∗
2
, q∗) exhibits a lower effective cost of capital than (k∗

1
, q∗).

A numerical simulation similar to that in section 2 can show that this economy exhibits
10Another factor behind multiple equilibria in our model is the fact that expanding the new sector generates

more income for saving than the old sector. In our model, the type of income that generates saving is the

labor income of the young, but more generally this could also correspond to profits.
11 If k∗1 < ˜kl(q∗), which we assume, there can be no equilibrium in the region k > ˜ku(q∗). The reason is that

in this region the q-stable arm is the continuation of the same arm for k < ˜ku(q∗), which is monotonically

decreasing and has already intersected the k-stable arm at k∗1 .
12For the latter, there is still a well defined value of q, for any given k in that region, such that dynamics

change from those below an (imaginary) q-constant arm to those above it.
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qt+1 = qt
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k*1 k*2

Figure 6: The Two-sector Model

multiple equilibria starting from the low steady state level of capital, k∗
1
.13 What determines

transitional dynamics along a speculative growth expansion? Suppose the economy starts

at kt = k∗1 and experiences an unanticipated jump onto the equilibrium path that converges

to (k∗2, q
∗). Sector reallocation plays an important role in this transition. The immediate

increase in capital accumulation in the new sector is caused by the reallocation of capital

from the old sector to the new accompanied by a jump in qt, combined with an initial increase

in the interest rate.14 As the new sector expands, it starts generating a saving surplus that

helps restore resources to the old sector and reverses the hike in the interest rate (increases
13The results of the simulation are available from the authors upon request.
14 Interestingly, had we introduced adjustment costs to the old-sector capital stock, zt, the initial impact

of jump to the speculative equilibrium path would include a drop in the price of old-sector capital, which is

reminiscent of the behavior of the stock price of “old economy” companies in the US expansion of the late

1990s.
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Table 1: US Multifactor Productivity Growth

time period growth rate (%, annualized)

1981-1985 0.51

1986-1990 0.52

1991-1995 0.58

1996-2000 1.21
Note: Multifactor Productivity is for the Private Nonfarm Business sector.

Source: Bureau of Labor Statistics.

zt past zo in our piece-wise linear model). Ultimately, as the economy converges to (k∗2, q
∗),

the old sector expands beyond its initial capital stock and the cost of capital falls below its

initial level.

3.2 Technology Bubbles

The U.S. speculative expansion of the 1990s not only was concentrated in the technology

sector, but also was associated with an increase in productivity growth beyond what is

attributable to pro-cyclical productivity (e.g., Baily and Lawrence 2001). Table 1 presents

average multifactor productivity growth for the U.S. economy in subsequent five-year inter-

vals. It illustrates the acceleration of productivity growth in the second half of the 1990s.

This type of evidence formed the basis for the case that the U.S. expansion was not caused

by market speculation, but rather by underlying fundamentals that pointed to a techno-

logical revolution (e.g., Greenwood and Jovanovic, 1999; Hobijn and Jovanovic, 2000). To

address this issue, we endogenize growth in our two-sector model and show that the spec-

ulative growth equilibrium is associated with higher productivity growth. Moreover, we

show that increased productivity growth provides increased future income, which fuels the

key feedback from growth to saving. Thus, increased productivity growth is not only a

result of market speculation, but also can play a central role in the mechanisms that make a

speculative equilibrium possible. In our model, a technological revolution can be considered

an integral part – both as cause and consequence – of a speculative growth equilibrium.

Endogenizing growth. In order to endogenize growth, we modify the production functions

in our two-sector model. We now assume linear production functions in the two sectors, set

∆ro = λ = 0, and write aggregate output as

Yt = AKe
tL+ r+Zt, A, r+ > 0.

As before, an expansion in K benefits labor (savers) while an expansion in Z does not. We
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interpret Kt as “technology” capital, subject to standard external spillovers, and make the

extreme assumption that Kt enters as a pure externality in production, which is indicated

by the superscript e on Ke
t . Because Kt enters as a pure externality, its private fundamental

value is qf ≡ 0. However, its price may be higher than qf and incorporate a bubble. As

before, Kt is accumulated according to (2), subject to adjustment costs; and Zt is subject

to no adjustment costs.

Accumulation of Kt is still determined by the q-theory relationship, xt = x(qt). In the

absence of a private dividend, arbitrage equation (8) governing qt becomes

(1 + rt) qt = (1 +GK 〈x(qt)〉)qt+1. (20)

As long as Zt > 0, the interest rate is equal to the marginal product of Zt:

rt = r+. (21)

Finally, since the wage is AKe
t , our assumption of undiscounted log-utility implies that

saving is 1

2
AKe

t , and the capital-market equilibrium condition is

1

2
AKe

t = Zt+1 + (x(qt) + qt)K
e
t . (22)

Speculative growth. Starting from an initial stock Ke
0 > 0, this economy can exhibit two

equilibria: a low-valuation equilibrium that corresponds to fundamental-value pricing of

technology, qf = 0; and a high-valuation equilibrium that incorporates a bubble q∗t > 0 in

the price of technology. Under the former equilibrium (denoted by “L”), x∗L = x(0) = 0 and

Ke∗
L ≡ Ke

0 is not accumulated. Z
∗

L = 1

2
AKe

0 is determined by capital-market equilibrium

condition (22) and, by the normalization L = 1, aggregate output is

Y ∗

L =
(
1 + 1

2
r+

)
AKe

0.

This equilibrium exhibits no productivity growth and no capital accumulation over time.

It is dynamically efficient since r+ > γ = 0.

Under the high-valuation equilibrium (denoted by “H”), as long as Z∗

Ht is positive, (20)

and (22) imply that GK 〈x(q∗t )〉 ≡ r+. The bubble is therefore equal to q∗t ≡ x−1
(
G−1

K 〈r+〉
)

and x∗Ht ≡ G−1

K 〈r+〉. By (2), Ke
t grows at rate γ

∗

H = g(x∗H). Capital-market equilibrium

condition (22) implies that Z∗Ht+1 =
(
1

2
A− x∗H − q∗

)
Ke
t and grows at the same rate as

Ke∗
Ht. Z

∗

Ht is positive if A > 2 (x∗H − q∗), which we assume. Aggregate output is given by

Y ∗

Ht =

[
A+

r+

1 + γ∗H

(
1

2
A− x∗H − q∗

)]
Ke∗
Ht.
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Thus, in the high-valuation equilibrium, productivity and output grow at endogenous rate

γ∗H .

Figure 7 illustrates these two equilibria.

Kt

qt

K0

r = GK

0

q*

equilibria

Figure 7: Endogenous Growth Model

Discussion. This model provides a stark example of speculative equilibrium that results in

sustained endogenous growth. Even though neither the K-sector nor the Z-sector are sub-

ject to social diminishing returns, only the former can be the engine of growth. The reason

is that it is the only one that can generate the feedback from growth to saving necessary

to fund investment along the balanced growth path. In the low-valuation trap, all saving is

trapped in the Z-sector, which does not generate more saving as it grows. If the economy

moves to the high-valuation equilibrium and incentivizes technology accumulation, saving

shifts to the technology sector which will create more saving as it grows. This growth-saving

feedback emerges through the technological spillover associated with technology investment,
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as productivity growth increases the income of savers. The feedback reduces the effective

cost of capital, r −GK , and gives rise to a high-valuation equilibrium.

Two aspects of the high-valuation equilibrium are worth noting. First, unlike our previ-

ous models, here the fall in the effective cost of capital does not occur through a fall in the

interest rate, which is equal to a constant, r+. High valuations in the stock market will not

be reflected by high valuations in the bond market. The reduction in the effective cost of

capital takes the form of an increase in the flow-value, qGK , offered by capital in opening

opportunities for profitable investment. This value increases along with the increase in the

investment ratio, x. Put differently, the speculative increase in the valuation of technology

is not associated with a fall in the interest rate, but rather with an increase in the value

of future investment opportunities opened by technology. This increase in value is tightly

linked with the high pace of investment in the high-valuation equilibrium.

Second, the effective cost of capital in the high-valuation equilibrium falls to an extreme

level, r −GK = 0, consistent with the emergence of a technology bubble. In the presence

of externalities, such a bubble – if sustainable – can enhance welfare. Speculation of this

type can substitute for well-functioning markets and can encourage investment and growth.

Obviously, the risk is that the bubble may crash and trigger a crisis, an aspect we do not

model in this paper.

4 Public and Foreign Saving

Starting from the initial conditions of the low-valuation steady state in the models of sections

2 and 3, the high-valuation equilibrium implies an investment boom. For this investment

boom to materialize, it is important that it be supported by an increase in saving both in

the short term and in the long term.15

Both models, whether we consider the short or the long run, rely on an increase in

private domestic saving. Of course, this is only one of the possible saving channels that

can fund investment. Figure 7 depicts the saving channels that funded the investment

booms associated with the Nikkei and the Nasdaq bubbles. The investment boom in both

episodes actually was accompanied by a decline in private domestic saving. The main

funding sources were government budget surpluses and the current account. This evidence

relates to the funding of investment at the inception and “early” stages of the speculative

expansion. Since the bubbles burst in this case, we have no direct evidence on the long-term
15Strictly, the model in section 3 does not need an increase in aggregate saving at impact since reallocation

from old to new sector is possible.
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Notes: Panel a: private dom estic saving is "Gross Private Saving"; government saving is "Gross
Governm ent Saving" minus "G ross Government Investm ent"; foreign saving is minus "Net Foreign
Investment". Panel b: for each dom estic sector, gross saving is used w hich is defined as the sum of
"Saving", "Consumption of fixed capital" and "Capital transfer etc. net"; foreign saving is minus "Net
lending to the rest of the w orld".
Sources: Panel a: BEA, N IPA Table 5.1. Panel b: Annual report on national accounts (CD-ROM ) 1998.
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Figure 8: Saving Channels

sources of funding, which are at the core of the theory.

Guided by the short-run evidence and its relevance for the policy debate, this section

focuses on two alternatives to domestic private saving in supporting speculative growth:

government saving and the current account.

4.1 Fiscal Policy and Surplus Illusion

The fiscal surpluses generated during the Japanese and U.S. speculative growth experi-

ences were the combined result of fiscal consolidation measures and the automatic effect of

procyclical tax revenues in a booming environment. The reduction in public debt had a

moderating effect on interest rates in the short run and substituted for increased private

saving to fund the investment boom. It is in this sense that a tight policy of paying down
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the national debt supported the boom in the short term. Turning to the more novel issue

of longer-term sustainability, and hence to a necessary condition for a rational speculative

growth episode, we argue that a continuing policy rule of generating fiscal surpluses provides

critical support to the high-valuation equilibrium.

To develop our argument, we add a government to the first model of section 3 (with

λ = 0). We assume the government taxes wage income at a rate τ t and spends gtAtL on

goods that do not enter agents’ utility function. Thus the government’s budget constraint

is

(1 + γ)dt+1 = (1 + rt)dt − (τ twt − gt) , (23)

where dt ≡ Dt/AtL denotes public debt per unit of effective labor.

Adding the public sector alters two equations in the model. The saving of the young

net of investment in z, skt , is now a function of after-tax wages:

skt = sk ((1− τ t)w(kt), rt) , (24)

while the capital-market equilibrium condition is now given by

(τ twt − gt − rtdt) + skt = dt + (qt + x(qt)) kt. (25)

The saving of the government and of the young must fund the purchase of the existing

public debt and capital stock from the old as well as funding new investment. Combined,

equations (24)-(25) implicitly define a new interest rate function rt = r(kt, qt, dt, τ t, gt). The

economy’s dynamics are described by system (9)-(10) with the new interest rate function

together with the government budget constraint, (23), and a fiscal policy rule.

Let us consider a benchmark fixed-parameters policy rule under which detrended government

spending and the tax rate are fixed at g > 0 and τ > 0. To facilitate comparisons, we

assume that this and other policy rules result in a balanced budget in the low-valuation

steady state – which requires g = τw∗

1
– and, therefore, result in the same low valuation

steady state. The important point to notice is that this fixed-parameters policy creates

primary surpluses during expansions beyond k∗
1
and primary deficits during contractions.

To see this, note that the fiscal rule implies that the primary government surplus, (τwt−g),

increases with wt in an expansion. Thus the response of the combined “gross” saving of

government and the young to an increase in wages is given by
(
τ + skw(1− τ)

)
dwt. As long

as the young’s marginal propensity to save is less than one (skw < 1), which we assumed,

the fixed-parameter rule generates surpluses as the wage rises.
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The increase in saving generated by the fixed-parameters rule not only facilitates the

funding of investment in the short run but, more importantly, plays a central role in facili-

tating the emergence of a speculative growth scenario. This feasibility point is made most

clearly by focusing on the low cost-of-capital steady state, (k∗
2
, q∗), rather than on the entire

path. One can show easily that if, instead of being fixed, government spending is raised

with the endogenous increase in the wage, then aggregate saving falls and so does the level

of k∗
2
. In fact this fiscal expansion experiment is similar to reducing ∆r in section 2. For a

high enough indexation of fiscal spending to wages, the high investment equilibrium is no

longer feasible. In other words, fiscal surpluses are not only a symptom of the speculative

growth episode, but also can be a central element of the factors that support it.

The notion that the fiscal surpluses generated by the speculative equilibrium can be

partly spent or rebated to the taxpayer may be an illusion. The surpluses could be a pillar

of the speculative equilibrium, and might swiftly disappear if this equilibrium unravels –

giving rise to what one might term as a surplus illusion.

Proposition 4 (Surplus Illusion)

Let gt = g + ατ(wt − w∗

1
). If the economy has two saddle-path steady state equilibria for

α = 0, there exists an αm > 0 such that for any α ≥ αm, the high valuation equilibrium

disappears.

Proof: See appendix D.

4.2 The Current Account

The second major source of funding for the investment boom in Japan and the U.S. was

the current account. As a short-term funding mechanism, international capital flows can

moderate the rise in interest rates needed to fund the investment boom.16 Over time, the

whole world may be dragged into a speculative path, with the home economy becoming the

chronic recipient of external resources.

A simple reinterpretation of the model in section 2 (or 3) helps isolate these short and

long run aspects of capital inflows. For this purpose, let domestic residents now correspond

to the old at time 0, and assume they owe foreigners b0A0L = q∗k∗
1
A0L. All future (active)

16Ventura (2001) describes an interesting alternative portfolio channel connecting the current account and

a domestic bubble. In his model, the main effect of the bubble is to raise domestic wealth. As domestic

agents attempt to rebalance their portfolios by investing in non-bubbly domestic equity, external borrowing

rises to finance the investment that is required to build domestic equity.
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generations are foreigners that live abroad and export to the domestic economy interme-

diate inputs with 100 percent labor content, measured by L. Only the domestic economy

accumulates capital, Kt. Except for the labeling of the intergenerational flows, this model

can be analyzed in exactly the same way as the model in section 2. Net exports correspond

to A0Lf(k0)− I0 − (q0K0 − b0A0L) at date 0 and AtLf(kt)− It thereafter.

Let us use as a benchmark the low-valuation steady state, where the economy experiences

de-trended trade surpluses f(k∗
1
)− x∗k∗

1
for the indefinite future. Now suppose that, starting

at the same level of capital, k∗
1
, the price of capital jumps to a speculative growth path.

Domestic residents sell the spread, (q0−q
∗)k∗

1
A0L0, to foreigners and consume the proceeds.

Thus the stock market rise fuels a domestic consumption boom financed by foreign capital

inflows. The new high-investment equilibrium is then financed fully by foreigners. If the

high-valuation equilibrium is dynamically inefficient, then net exports are asymptotically

negative, and the domestic economy becomes a resource sink for foreigners. The current

account remains negative throughout and, again, becomes an integral part of the speculative

growth episode.

5 Final Remarks

This paper builds a theoretical framework for thinking about episodes of speculative growth.

We characterize this phenomenon as a low effective cost-of-capital equilibrium based on

optimism about the future availability of funds for investment. Our framework highlights

the key short-term and long-term funding mechanisms necessary to sustain a speculative

growth equilibrium. The emergence of a new sector, fiscal surpluses, or current account

deficits not only are possible consequences of a high-investment equilibrium, but also are

central to generating the saving necessary to support it.

Ours is not a framework of “irrational exuberance,” although it offers a natural inter-

pretation of such episodes. These occur when a speculative growth path is not backed by

a long-run funding mechanism strong enough to eventually validate the explosive capital

gains dynamics that are needed in the short run to reallocate resources toward the sectors

that drive the boom. A prototypical example of such a scenario is when a bubble attaches

to the “wrong” sector, as it may have been the case in Japan during the 1980s with its large

real estate boom.

The U.S. experience during the 1990s probably had elements of both: A rational spec-

ulative growth component built on the information technology sector, sound fiscal policy,

and foreigners’ confidence, as well as some elements of irrationality during the late 1990s.
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From this perspective, it is not at all clear whether much of the U.S. asset markets boom

during the 1990s, even if bubbly, was comdemned to be reversed. In fact, there is a case

to be made for attempting to restart such process rather than letting the economy dwindle

toward the pre-1990s capital/output ratios. Our framework highlights the importance of

fostering long-run funding mechanisms and technology in achieving such goal.
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A Proof of Propositions in Section 2

First we give a summary of the assumption made in the text, supplementing them by some

technical conditions.

Assumption 1 The production function f : R+ → R+ is three times differentiable and

satisfies

1. limk↓0 f
′(k) = +∞, limk↑∞ f

′(k) = 0, limk↓0w
′(k) = +∞, limk↑∞w

′(k) = 0, and

2. f ′(k) ≥ 0, f ′′(k) ≤ 0, w′(k) ≥ 0, w′′(k) ≤ 0 for all R+,

3. for k ∈ R+, f
′(k) > 0 implies f ′′(k) < 0 and w′(k) > 0 implies w′′(k) < 0,

where w(k) = f(k)− f ′(k)k.

Assumption 2 The function s̃ : R+ × [−1,+∞)→ R+ is continuously differentiable and

satisfies

1. 0 < s̃w(w, r) ≤ 1, 0 < s̃r(w, r) <∞,

2. limr→∞ s̃(w, r) = w for all w ∈ R+,

3. s̃(w,−1) = 0 for all w ∈ R+.

In the main text it was pointed out that under weak conditions rk(k, q) > 0 in all

relevant regions except at points with k = ko. We will simplify the analysis further here

with a condition that ensures that this holds everywhere but at points with k = ko.

Assumption 3 The production function f and the function s̃ satisfy(
s̃w(w(k), r)w(k)

s̃(w(k), r)

)
·

(
w′(k)k

w(k)

)
< 1

for all k ∈ R+ and r ∈ (−1,+∞).

Assumption 4 The adjustment cost function g : R → R is twice continuously differen-

tiable and satisfies

1. g(0) = 0, limx↑∞ g(x) =∞ ,

2. g′(x) > 0 for all x ∈ R and g′(0) = 1,

3. limx↑∞ g
′(x) = 0,
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4. g′′(x) < 0 for all x ∈ R.

Assumption 5 The rate of technological progress is nonnegative, that is γ ≥ 0.

Proposition 1 Under assumptions 1—5, there exists a ∆r > 0 and a ko > 0 such that the

dynamic system (9)—(10) has precisely two steady states (k∗1, q
∗) and (k∗2, q

∗), where k∗2 > k
∗
1.

Lemma 5 Under assumption 4 the investment choice problem of the young agents has a

unique solution x(q) for all q > q and no solution for q ≤ q, where q ∈ (0, 1) is the

unique solution of the equation g(−q) = −1. The function x : (q,∞) → R is continuously

differentiable, strictly increasing and satisfies limx→∞ x(q) =∞. If assumption 5 holds as

well, then there exists a unique q∗ such that g(x(q∗)) = γ and we have q∗ ≥ 1.

Proof: As g(0) = 0, g′(0) = 1 and g′′(x) < 0, we have g(x) ≤ x with strict inequality

for x 
= 0. In particular we have limx→−∞ g(x) = −∞. Then the equation g(−q) = −1 has

precisely one solution q, which must lie the interval (0, 1).

Now consider the problem of a young agent with savings s > 0 of choosing his investment

optimally, facing a price of capital of q > 0. His problem is

max
(x,k)∈R2

(1 + g(x))k s.t. (x+ q)k ≤ s ∧ k ≥ 0.

Clearly this problem has no solution if g(−q) > −1, that is if q < q. In this case the agent

could set x = −q. Then the first constraint is satisfied for all k ≥ 0 and the objective

(1 + g(−q))k can be made arbitrarily large.

So consider the case g(−q) ≤ −1, that is q ≥ q. In this case the agent can achieve a

positive value of the objective by setting x = 0 and k = s
q
. As choosing x ≤ −q makes the

objective non-positive and setting k = 0 makes the objective zero, we only need to consider

x > −q ≥ −q and k > 0. Among these choices, it is clear that (x + q)k < s cannot be

optimal. So if
1 + g(x)

x+ q
(26)

has a unique maximizer x(q) in (−q,+∞), then
(
x(q), s

x(q)+q

)
is the unique solution to the

maximization problem of the agent. The derivative of this function with respect to x is

g′(x)(x+ q)− (1 + g(x))

(x+ q)2
.

Consider the numerator

Dq(x) = g
′(x)(x+ q)− (1 + g(x)).
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We have

Dq(−q) = g
′(−q)(q − q).

and

D′
q(x) = g

′′(x)(x+ q) < 0

for all x ∈ (−q,+∞). If q = q, then Dq(−q) = 0. In this case the agent would like to set x

arbitrarily close to −q, so the problem does not have a solution. However, if q > q, we have

Dq(−q) > 0.

Moreover, as g is concave,

Dq(x) ≤ g
′(x)q − 1,

so

lim
x→∞

Dq(x) ≤ −1.

Thus the equation Dq(x) = 0 has a unique solution x(q) which is the unique maximizer on

(−q,+∞) of the expression in equation (26).

So now we have constructed the function x : (q,+∞)→ R, and it satisfies

g′(x(q))(q + x(q)) = (1 + g(x(q))) (27)

for all q ∈ (q,+∞). By the implicit function theorem, the function x(q) is continuously

differentiable and we have

x′(q) =
−g′(x(q))

g′′(x(q))(x(q) + q)
> 0,

so x(q) is strictly increasing. Suppose limq→∞ x(q) = x̄ < ∞. As g′(x̄) > 0, taking limits

of (27) as q →∞ yields infinity for the left hand side but 1 + g(x̄) <∞ for the right hand

side. Thus it must be the case that limq→∞ x(q) =∞.

By substituting q = 1 into equation (27) we see that x(1) = 0.

Finally consider the equation

g(x(q)) = γ. (28)

We have

g(x(1)) = 0,

and since limq→∞ x(q) = ∞ and limx→∞ g(x) = ∞ we have limq→∞ g(x(q)) = ∞. Thus if

γ ≥ 0 there is a unique q∗ solving equation (28) and clearly q∗ ≥ 1. �

Lemma 6 Let assumptions 1—5 be satisfied. Then for all q > q, the equation

s̃(w(k), r) = (x(q) + q)k (29)
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has a unique solution r̃(k, q) for all k ∈ (0, k̄(q)) where k̄(q) > 0 is the unique solution to

the equation

w(k) = (x(q) + q)k. (30)

The function r̃(k, q) is continuously differentiable and satisfies limk↑k̄(q) r̃(k, q) =∞.

Proof: Let q > q and k > 0. We begin by analyzing equation (30). Consider the

function Eq : R+ → R where

Eq(k) = w(k)− (x(q) + q)k.

Then limk↓0Eq(0) = 0 and

E′q(k) = w
′(k)− (x(q) + q).

The assumption that limk↓0w
′(k) = +∞ ensures that Eq(k) is strictly positive for suffi-

ciently small k. As long as w′(k) is strictly positive, it is strictly decreasing. Taking into

account the limits of w′(k), this means that the equation E′q(k) = 0 has a unique solution

kmax which is the global maximizer of Eq. Then we have Eq(kmax) > 0 and E′q(k) < 0 for

k > kmax. Moreover, limk↑∞w
′(k) = 0 implies that Eq(k) eventually turns negative. Hence

there is a unique k̄(q) ∈ (0,+∞) such that Eq(k̄(q)) = 0. The function k̄ : (q,∞)→ R+ is

continuously differentiable by the implicit function theorem.

Now consider equation (29). The left hand side is increasing in r and satisfies s̃(w(k),−1) =

0 and limr→∞ s̃(w(k), r) = w(k). So the equation has at most one solution r̃(k, q), and this

solution exists if and only if k < k̄(q). The function r̃(k, q) is continuously differentiable by

the implicit function theorem and

r̃k(k, q) =
1−

(
s̃w(w(k),r̃(k,q))w(k)

s̃(w,r̃(k,q))

)
·
(
w′(k)k
w(k)

)
s̃r(w(k),r̃(k,q))k
s̃(w(k),r̃(k,q))

> 0.

It is also easy to see that limk↑k̄(q) r̃(k, q) = +∞. Suppose limk↑k̄(q) r̃(k, q) = r̄ < ∞, then

taking limits of

s̃(w(k), r̃(k, q)) = (x(q) + q)k

as k ↑ k̄(q) yields

s̃(w(k̄(q)), r̄) = (x(q) + q)k̄(q),

which contradicts the fact that for finite r̄ we have

s̃(w(k̄(q)), r̄) < w(k̄(q)) = (x(q) + q)k̄(q).

�
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Lemma 7 Let assumptions 1— 5 be satisfied. Then for all q > q, the equation

s(w(k), r) = (x(q) + q)k (31)

has a unique solution r(k, q) for all k ∈ (0, k̄(q)) and

r(k, q) = r̃(k, q)− I(k ≥ k0)∆
r

where the function k̄ and r̃ are as in lemma 6. The function r(k, q) is continuously differ-

entiable except at points (q, k) with k = ko, and limk↑k̄(q) r(k, q) =∞.

Proof: Suppose q > q and k ∈ (0, k̄(q)). Then the equation

s̃(w(k), r) = (x(q) + q)k

has the unique solution r̃(k, q). Suppose k < ko, then s(w(k), r) = s̃(w(k), r) for all r ∈

[−1,∞) and consequently r(k, q) = r̃(k, q) is the unique solution of equation (31).

If k ≥ ko equation (31) can be written as

s̃(w(k), r +∆r) = (x(q) + q)k,

which has the unique solution r(k, q) = r̃(k, q)−∆r. The properties of the function r(k, q)

then follow from lemma 6. �

Proof of proposition 1: Given the results of the preceding lemmas, (k∗, q∗) is a steady

state if and only if k∗ satisfies the equation m(k) = 0 where

m(k) =
r̃(k, q∗)− I(k ≥ k0) ·∆

r −GK 〈x(q∗)〉

1 +GK 〈x(q∗)〉
− f ′(k). (32)

The function m(k) is continuous and strictly increasing except for a downward jump at ko.

Hence the equation m(k) = 0 has at most two solutions. We will choose ko and ∆r so that

there are precisely two solutions. Consider the function

m̃(k) =
r̃(k, q∗)−GK 〈x(q∗)〉

1 +GK 〈x(q∗)〉
− f ′(k). (33)

It is continuous on (0,+∞) and has m̃′(k) > 0 for all k ∈ (0,+∞), limk↓0m(k) = −∞ and

limk↑k̄(q∗)m(k) = +∞. Thus there exists a unique k∗1 ∈ (0, k̄(q∗)) such that m̃(k∗1) = 0.

Choosing ko ∈ (k∗1, k̄(q
∗)), we also have m(k∗1) = 0.

Next consider the function

m̃∆r(k) =
r̃(k, q∗)−∆r −GK 〈x(q∗)〉

1 +GK 〈x(q∗)〉
− f ′(k). (34)

For each ∆r ∈ there is a unique k2(∆
r) such that m̃∆r(k2(∆

r)) = 0. The function k2(∆
r) is

strictly increasing and lim∆r→∞ k2(∆r) = k̄(q∗). Choosing ∆r such that k∗2 = k2(∆r) > ko,

we have m(k∗2) = 0. �
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Assumption 6 There exists k̄ ∈ (0,+∞) such that f ′(k) > 0 for all k < k̄ and f ′(k) = 0

for all k ≥ k̄. Moreover w(k̄) < (x(q∗) + q∗)k̄ where q∗ is as in lemma 5.

Definition 1 1. A speculative path {kt, qt}
∞
t=0 is an equilibrium path with origin k0 < ko

that converges to the high valuation steady state (k∗H , q
∗).

2. The price of capital at time t along a speculative path has a bubble component if there

exists N such that n ≥ N implies f ′(kt+n) = 0.

3. The price of capital at time t along a speculative path is a pure bubble if f ′(kt+n) = 0

for all n ≥ 1.

Proposition 2 Under assumptions 1—6, there exists a ∆r > 0 and a ko > 0 such that

the dynamic system (9)—(10) has precisely two steady states (k∗1, q
∗) and (k∗2, q

∗), where

k∗1 < ko < k∗2 and k∗2 > k̄. Along the low cost-of-capital equilibrium path, the price of capital

includes a bubble component and becomes a pure bubble for all k ≥ k̄.

Proof: The second part of assumption 6 implies k̄ < k̄(q∗) where k̄(q∗) is defined as

in lemma 5.

From proposition 1 we can choose ko and ∆r such that there are precisely two steady states

(k∗1, q
∗) and (k∗2, q

∗) with k∗1 < ko < k∗2.

Recall that in the proof of that proposition we constructed k∗2 by choosing ∆r such that

k2(∆
r) > ko. But as lim∆r→∞ k2(∆

r) = k̄(q∗) and both ko < k̄(q∗) and k̄ < k̄(q∗), we can

also choose ∆r such that k2(∆
r) > max(ko, k̄).

As a speculative path {kt, qt}∞t=0 converges to (k
∗
2, q

∗) by definition, there exists N such that

t ≥ N implies that kt ≥ k̄ and thus f ′(kt) = 0. Hence qt has a bubble component for all

t ≥ 0. As kt+1 ≥ kt for all t ≥ 0 along a speculative path, kt ≥ k̄ implies that qt is a pure

bubble. �

B Parametric Example Underlying Figure 3

This appendix provides the functional forms and parameter values underlying the simula-

tions presented in figure 3. The following functional forms were used:

f(k) = kξ,

g(x) = x− φx2,

s̃(w, r) = σ(r)w,
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Table A.1: parameters

parameter value

ξ 0.05

φ 0.4

β 0.76

θ 20

ko 0.157

∆r 0.054

γ 0.25

where

σ(r) =
βθ(1 + r)θ−1

1 + βθ(1 + r)θ−1
.

With ξ ∈ (0, 1) the production function satisfies all the assumptions stated in the text. The

functional form for g yields the investment function

x(q) = −q +

√
q2 +

q − 1

φ
.

The domain of x is [q,∞) and its range is given by
[
−q, 1

2φ

)
where

q = −
1

2φ
+

√
1

4φ2
+

1

φ
.

Note that the function g satisfies g′(x) > 0 only for x < 1
2φ , but as x(q) <

1
2φ we have

g′(x(q)) > 0 as well as g′′(x(q)) < 0 for all q ∈ [q,∞).

The functional form for g also yields

GK 〈x〉 = φx2.

The saving function s̃ is derived from a CES utility function with elasticity of substitution

θ and discount factor β. It satisfies s̃w > 0 and setting θ > 1 insures s̃r > 0.

Using equation (12) we obtain the interest rate function

r(k, q) =


 σ−1

(
(x(q)+q)k1−ξ

1−ξ

)
, k < ko;

σ−1
(
(x(q)+q)k1−ξ

1−ξ

)
−∆r, k ≥ ko.

Clearly rk > 0 for k < ko as well as for k > ko.

The parameter values used are given in table A.1.
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C Proof of Proposition 3

Assumption 7 The production function f satisfies assumption 1 and in addition f ′′(k) < 0

for all k ∈ R+.

Proposition 3 Under assumptions 3—5 and 7 there exist r+ > 0, ∆ro > 0 and zo > 0 such

that the dynamic system (9)—(10) has precisely two steady states (k∗1, q
∗) and (k∗2, q

∗), where

k∗2 > k
∗

1.

Proof: We begin by choosing r+, ∆ro and zo > 0 such that there are precisely two

steady states with positive levels of z. Then we show that for these values of r+, ∆ro and

zo > 0 there is no steady state with z = 0. We set ρ = 0 as this plays no qualitative role in

the proposition.

From lemma 5 the function x(q) is well defined and there is a unique q∗ such that g(x(q∗)) =

γ. Consider the function Eq∗ : R+ → R with

Eq∗(k) =
1

2
w(k)− (x(q∗) + q∗)k.

As discussed in the proof of lemma 6 this function has a unique global maximizer kmax such

that Eq∗(kmax) > 0, E′q∗(k) > 0 for k < kmax and E′q∗(k) < 0 for k > kmax. So we can

choose zo such that

0 < (1 + γ)zo < Eq∗(kmax),

and as limk→0Eq∗(k) = 0 and limk→∞Eq∗(k) = −∞ the equation Eq∗(k) = (1 + γ)zo has

precisely two solutions 0 < k̃l(q∗) < k̃u(q∗). Also note that there is a unique k̄(q∗) such

that Eq∗(k̄(q
∗)) = 0.

Now if z > 0 then

r(k, q∗) =


 r+, 0 < k < k̃l(q∗) or k̃u(q∗) < k < k̄(q∗),

r+ −∆ro, k̃l(q∗) ≤ k ≤ k̃u(q∗),

where ∆ro is still to be determined. The capital stock in a steady state with z > 0 must

satisfy the equation m(k) = 0 where

m(k) =
r(k, q∗)−GK 〈x(q

∗)〉

1 +GK 〈x(q∗)〉
− f ′(k). (35)

The function m(k) is strictly increasing and continuous except for a downward jump at

k̃l(q∗) and an upward jump at k̃u(q∗). Hence the equation m(k) = 0 has at most two

solutions. We will now choose r+ and ∆ro such that there will be precisely two solutions.
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Pick k∗1 ∈ (0, k̃l(q∗)) and set

r+ = (1 +GK 〈x(q
∗)〉)

(
1 +

f ′(k∗1)

q∗

)
− 1 > 0.

Similarly pick k∗2 ∈ (k̃l(q∗), k̃u(q∗)) and set

∆ro = 1 + r+ − (1 +GK 〈x(q
∗)〉)

(
1 +

f ′(k∗2)

q∗

)
.

Then k∗2 > k∗1 and both satisfy the equation m(k) = 0. Choosing k∗2 sufficiently close to

k̃l(q∗) insures that ∆ro < r+.

Now suppose there is a steady state with z = 0. Then the capital stock in this steady state

must be equal to k̄(q∗) > k∗1, which implies a steady state interest rate

r = (1 +GK 〈x(q
∗)〉)

(
1 +

f ′(k̄(q∗))

q∗

)
− 1 < r+,

but at this interest rate agents would want to invest in z, so z = 0 is inconsistent with

equilibrium. �

D Proof of Proposition 4

Assumption 8 The interest rate r+ − ∆ro is strictly less than the rate of technological

progress γ.

Proposition 4 Let gt = ḡ + ατ̄(wt − w∗). Suppose that the economy satisfies assumption

8. Also suppose that for α = 0 it has two steady states (k∗1, q
∗, d∗1) and (k∗2, q

∗, d∗2) with

k∗2 > k∗1. Then there exists αm > 0 such that for any α ≥ αm the high-valuation equilibrium

disappears.

Proof: Let α ≥ 0 be given and suppose the high-valuation equilibrium exists for this

α. The two steady state capital stocks are given by

k∗1 = (f ′)−1
(
r+ −GK 〈x(q∗)〉

1 +GK 〈x(q∗)〉

)
,

k∗2 = (f ′)−1
(
r+ −∆ro −GK 〈x(q∗)〉

1 +GK 〈x(q∗)〉

)
.

Note that k∗2 does not depend on α as there are only two levels for the interest rate in this

economy.

Now the interest rate in the high-valuation steady state must be r+ −∆ro. This requires

that the implied steady state value of z exceeds zo. This yields the condition

1

2
(1− τ̄)w(k∗2) + (τ̄w(k∗2)− g∗2)− (1 + r∗2)d

∗

2 − (x(q∗) + q∗)k∗2 > (1 + γ)zo (36)
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where g∗2 = ḡ+ατ̄(w(k∗2)−w(k∗1)) is government spending and r∗2 = r+−∆ro is the interest

rate in the high-valuation steady state. Using equation (23), we obtain

d∗2 = −
τ̄w(k∗2)− g∗2

γ − r∗2
.

Using the fact that ḡ = τ̄w(k∗1), we have

τ̄w(k∗2)− g∗2 = (1− α)τ̄(w(k∗2)−w(k∗1)).

Then we can rewrite condition (36) as

1

2
(1− τ̄)w(k∗2) +

1 + γ

γ − r∗2
(1− α)τ̄(w(k∗2)−w(k∗1))− (x(q∗) + q∗)k∗2 > (1 + γ)zo.

By assumption this condition is satisfied for α = 0. But as the left hand side is linear in α

with a negative coefficient, there exists αm > 0 such for all α ≥ αm the condition is violated

and the high-valuation steady state does not exist. �
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