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Perhaps the most popular application of financial theory is capital budgeting. Virtually

every student of finance starts his education in the field by learning how to discount future

cash flows. By the end of a first course, the student has developed the basic tools to imple-

ment a discounted cash flow analysis in a real world setting. Because the real world setting

must account for the relative advantage of debt financing, arising from the debt interest

tax subsidy, students of finance generally learn that such subsidies can be accounted for by

discounting unlevered cash flows (also referred to as “free cash flows”) at a tax-adjusted

weighted average cost of capital (or WACC). Such tax adjustments to the discount rate

generate a value for levered assets that exceed the value they would have if they were not

levered with debt financing.1

Despite the central importance of this topic, research on how to do a proper valuation

for capital budgeting purposes is sparse and largely ancient, particularly when it comes to

debt tax shields. An intrinsic difficulty associated with the valuation of debt tax shields

is identifying the risk of the tax deductions arising from the stream of future debt interest

expenses. The rate at which one discounts the future stream of interest-related tax shields,

and hence the value of those tax shields, has eluded prior research, except for the simplest

of cases.

These cases impose stringent restrictions on the cash flow process and debt policy to cir-

cumvent the complex issue of risk and valuation. Among these are the models of Modigliani

and Miller (1958) and Miles and Ezzell (1985). The Modigliani and Miller debt policy is

one where the debt level is constant and debt is both perpetual and default-free. This debt

policy implies that one can discount the stream of future interest-based tax shields at the

risk-free rate. If the tax rate is constant, as they assume, the debt tax shield’s present value

is necessarily proportional to the present value of the debt because the cash flow stream from

debt and the tax shield are proportional to one another. Here, since the constant of propor-

tionality is the corporate tax rate, the present value of the debt tax shield is the product of

the corporate tax rate and the present value of the debt. Modigliani and Miller (1958) also

use this model to develop formulas for discount rates that account for the value of the tax

shield when cash flows have no tendency to grow.

The interesting case studied by Miles and Ezzell focuses on the dynamic issuance of

perpetual risk-free debt. This case assumes: 1) the unlevered cash flow realization at each

date follows a random walk with no drift, which is paid out upon its realization (hence there

is no expected growth), 2) the unlevered cash flow stream is valued by applying a constant

discount rate, and 3) the debt-to-asset ratio is constant. Under these assumptions, the cash

flow from each date’s tax shield is of the same risk as the one period lagged unlevered cash

flow. As Grinblatt and Titman (1997, 2002) and Brealey and Meyers (2000) point out,

1Despite attempts to introduce the Adjusted Present Value method into the classroom, the Weighted
Average Cost of Capital approach still vastly dominates the practitioner landscape. For example, Graham
and Harvey (2001) observe that of twelve capital budgeting techniques, many of which are long out of favor
with finance academics, the Adjusted Present Value method is the least-used method.
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in the continuous time limit of this model, the cash flow stream from future debt-related

tax deductions is of the same risk as the stream of unlevered cash flows and thus can be

discounted at the same rate as the unlevered cash flows. Miles and Ezzell, as well as the

standard textbooks, present formulas analogous to those in Modigliani and Miller for this

alternative debt policy.

It would be an extraordinary coincidence if cash flow processes and debt policies matched

those of the Modigliani-Miller or Miles-Ezzell models. For this reason, a more general analysis

is of great importance to the field of finance. In this paper we provide a comprehensive

analysis of the value of the risky debt tax shield for the highly general class of Markovian debt

adjustment policies. For a large set of dynamic debt policies, which have state-contingent

(and hence risky) issuance and retirement of risk-free debt, we obtain closed-form solutions.

For a still larger class of cases, we can point to a system of ordinary differential equations,

which are easily solved numerically, that generate the tax shield’s value.

The discount rate for unlevered cash flows that accounts for the debt tax shield is also of

critical importance, both to practitioners and researchers. We study the theoretical under-

pinning of such a discount rate and relate it to the weighted average cost of capital. We can

generally derive closed-form solutions for this discount rate whenever we have closed-form

solutions for the debt tax shield. However, we also are able to show what adjustments are

needed to convert the WACC to an appropriate discount rate. Such adjustments are almost

always needed as the WACC is an appropriate discount rate only in the Modigliani-Miller

and Miles-Ezzell cases, or in some linear hybrid of these two well-known cases.

Finally, we derive a formula for more general debt policies that characterizes the equity

beta as a function of the leverage ratio and the unlevered asset beta . This formula generalizes

the standard textbook formulas of Hamada (1972) and Miles and Ezzell (1985), which are

associated with the Modigliani-Miller and Miles-Ezzell models, respectively.

Our approach differs from that found in prior research on debt tax shield valuation.

In lieu of strong restrictions on cash flows, project values, asset values, discount rates, or

debt policy, we impose restrictions on the information structure. Using the option pricing

approach of Black-Scholes (1973) and Merton (1973), we assume that information follows a

Markov diffusion process. The advantage of this information structure is that it makes the

market dynamically complete. In our case, as long as the short-term risk-free rate and the

discount rate (which can be any function of the information set) for an otherwise identical

unlevered asset are specified, we can use the standard continuous-time valuation methodology

to price any future payoff, be it a future cash flow generated by the unlevered asset or a tax

shield from a complex, yet realistic, debt policy. Essentially, we are viewing the tax shield

as a derivative of the underlying unlevered asset. We can write down a dynamic portfolio

of the unlevered asset and a risk-free security that tracks the flow from the asset’s debt tax

shield for any reasonable dynamic debt policy. The no arbitrage condition, which is a partial

differential equation, generates the value of the tax shield as a function of the value of the
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unlevered asset (or equivalently, the unlevered cash flow).

The no arbitrage valuation methodology of asset pricing theory has been applied before in

a corporate setting, perhaps most elegantly by Ross (1978). However, interesting functional

forms that link the interest tax deduction associated with an asset’s financing mix to its

unlevered cash flows provide economic insights that elude a more general framework. One

example of this is a heuristic description of how the value of the debt tax shield, as well

as the appropriate discount rate, vary with debt policies that can be viewed as weighted

averages of the Modigliani-Miller and Miles-Ezzell debt policies.

Our paper also analyzes the discrete setting, but to a more limited extent. Here, when

debt policies are linear functions of cash flows, we obtain closed-form solutions for the value

of the debt tax shield.

Section I of the paper develops a general approach for valuing debt tax shields. It also

analyzes an extraordinarily large class which has a closed-form solution for the tax shield

and presents two larger classes of cases for which numerical computation of the value of

the debt tax shield is trivial. Section II examines the weighted average cost of capital and

relates it to valuation. It also characterizes how the WACC is affected by dynamic debt

policies and studies when the WACC can be used to obtain valuations that properly account

for the value of the debt tax shield. Finally, this section derives closed-form solutions for

tax-adjusted discount rates that generate the correct valuations of cash flow streams. In

most cases outside of the Modigliani-Miller and Miles-Ezzell frameworks, we show that these

discount rates differ from the WACC. Section III analyzes how to lever and unlever equity

betas and equity risk premia for arbitrary debt policies. Section IV concludes the paper.

I. The Valuation of Debt Tax Shields

In a dynamically complete market, two assets with payoffs driven by the same source of

uncertainty, and thus instantaneously perfectly correlated, can be valued in relation to one

another. Just as an option is valued in relation to its underlying security, so too can a debt

tax shield be valued in relation to the unlevered asset it is associated with. So long as the

uncertainty behind the debt policy that generates the tax shield is tied only to uncertainty

in the unlevered cash flows, debt tax shields are simply derivatives. For this reason, most

of the paper assumes that the unlevered cash flow, the after-tax cash flow that would be

generated in the absence of debt financing, satisfies a general Markov diffusion process.

An asset that is levered with risk-free debt has two sources of after-tax cash flow at date

t : 1) the unlevered cash flow, Xtdt, which is the after-tax flow that directly stems from the

real asset, which is assumed to be unaffected by the asset’s financing mix, and 2) the flow

from the debt interest tax shield, τcDtrfdt, which is the product of the tax rate τc and the
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debt interest payment Dtrfdt.2 Because valuation is linear, the value of a levered asset is

the sum of the values of its two cash flow components.

For simplicity (and without loss of generality), we let one Brownian motion, B, drive the

uncertainty. That is, between dates 0 and T , with T possibly infinite,

dXt = g(t,X)Xdt + σ(t,X)XdBt.

With this assumption, the market is dynamically complete with two assets.3 This means

that a dynamic trading strategy can transform a levered asset into an unlevered asset, and

vice versa. Similarly, knowing the value of an asset for any given debt policy allows us to

compute the value of its tax shield for all debt policies. Solutions can be found with a variety

of mathematically equivalent approaches, but the most popular method involves the solution

of a differential equation generated by Ito’s Lemma and the principle of no arbitrage.

The continuous-time setting, described above, allows valuation of almost any derivative,

including tax shields, by applying the well-known no arbitrage principle. Hence, the following

assumptions are primarily used for expositional clarity and explicit solutions:

• The corporate tax rate, τc, is constant.

• The risk-free interest rate, rf , is constant.4

• There are no personal taxes,5 bankruptcy, or other market frictions associated with

debt beyond the corporate tax (implying that the debt interest coupon rate equals the

risk-free rate).

2In order for the levered asset to have the same investment policy in the presence of debt, we assume,
without loss of generality, that the flow from the interest-based tax shield is paid out. It could be retained
in a risk-free interest bearing account and distributed later, but this has tax consequences for the firm. In
essence, such retention amounts to negative debt and it is the net debt policy for which we are computing
the tax shield. Given this definition of how to account for debt, and appropriate care taken to avoid double
counting when this cash is eventually distributed, our results apply irrespective of whether cash is retained
or paid out.

3B can be a vector provided that the instantaneous changes in debt are perfectly correlated with in-
stantaneous changes in X. If the unlevered cash flow has J Brownian motion components and debt policy
depends differently on each of them, our results still go through whenever we can value the levered assets at
J distinct debt levels. Alternatively, J distinct securities can be used to value the tax shield. These could
include equity, equity options, or comparable assets at the same or distinct debt levels.

4This implies that the risk-free yield curve is flat and nonstochastic. Debt maturity is irrelevant in our
model.

5Personal taxes are clearly important for asset valuation and debt policy, as Green and Hollifield (2002)
prove theoretically and document empirically. Their paper analyzes the optimal capital structure for a firm
with a Modigliani-Miller debt policy, bankruptcy costs, and a cash distribution policy to equity holders that
is sensitive to the economic effects of the corporate and capital gains taxes.
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A. Debt Policy and Levered Asset Valuation: The General Case

We begin by studying the valuation of a levered asset under a general class of debt policies.

The debt policy D can be any differentiable function of time t, unlevered cash flow X, levered

asset value V L, and history H.6That is,

Dt = D(t,Xt, V
L
t , Ht).

These general debt policies can depend, in a quite complicated manner, on the history of

the asset, such as past cash flows, past debt values, past asset values, in addition to current

cash flow and current asset value. We only require that the history dependence at a given

date t be summarized by additional date t state variables. This allows us to maintain the

Markovian setting. Without loss of generality, we simplify notation by treating these state

variables as the single variable Ht.
7 As long as the uncertainty associated with the path of

X spans the relevant state space for H, we will still be able to value the debt tax shield as a

function of the value of the unlevered assets. To maintain this desirable property, we assume

that Ht satisfies the diffusion

dHt = µH(t,Xt, Dt, V
L
t )dt + σH(t,Xt, Dt, V

L
t )dXt,

= µh(t,Xt, Dt, V
L
t )dt + σh(t,Xt, Dt, V

L
t )dBt

where

µh(t,Xt, Dt, V
L
t ) = µH(t,Xt, Dt, V

L
t ) + σH(t,Xt, Dt, V

L
t )g(t,Xt)Xt

and

σh(t,Xt, Dt, V
L
t ) = σH(t,Xt, Dt, V

L
t )σ(t,Xt)Xt.

Recognize that the functional form of the exogenously specified µh and σh can be quite

general. It would be difficult to imagine any empirically relevant debt policy that could not

be captured with this flexibility.

Given this description of debt policy and history, it follows that the date t value of

the levered asset, V L
t = V L(t,Xt, Ht), depends on the current date, cash flow, and history.

Moreover, if the unlevered cash flow stream terminates at date T , (essentially, becomes

zero at date T and forever thereafter), the functional form of the valuation function will be

influenced by the proximity to the termination date.

6The optimal debt policy, while a critical issue both in formulating Dt and the value of the tax shield, is
beyond the scope of this paper. A continuous-time model with closed-form solutions for the optimal debt
level when bankruptcy costs are traded off against a Modigliani-Miller debt policy is found in Leland’s (1994)
seminal research. In our paper, because debt can be adjusted continuously, firms can avoid bankruptcy with
certainty.

7We can also regard H and the coefficients in its diffusion as vectors with virtually no change to any of
our equations.
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In the absence of arbitrage, dynamic completeness implies that this value necessarily

satisfies the partial differential equation (PDE)

∂V L

∂t
+ (g − η)X

∂V L

∂X
+

1

2
σ2X2∂2V L

∂X2
− rfV

L

+(µh − ησh)
∂V L

∂H
+

1

2
σ2

h

∂2V L

∂H2
+ σσh ∂2V L

∂H∂X
X = −(X + rfτcD). (1)

where we have dropped the arguments of g, σ, etc. for notational simplicity. If the asset has

a finite life, the terminal condition is

V L(T, XT , HT ) = 0.

This partial differential equation, a familiar extension of the well-known Black-Scholes

differential equation, is simply the no arbitrage condition associated with an asset whose

uncertainty is spanned by the payoff to a dynamic trading strategy in the unlevered asset

and a risk-free security. The η(t,X) term in equation (1), (shortened to η for notational

simplicity), is the premium per unit of risk generated by changes in B. In a corporate setting,

it would be traditional to think of this parameter as being determined by the instantaneous

discount rate of the unlevered asset. However, η also can be inferred from the levered asset’s

value for any debt policy.

To derive the partial differential equation, note that Ito’s Lemma implies that the change

in the value of a levered asset plus all distributions of cash flow:

dV L
t + (Xt + rfτcDt)dt =

∂V L

∂t
dt +

∂V L

∂X
dX +

∂V L

∂H
dH

+

(
1

2

∂2V L

∂X2
σ2X2 +

∂2V L

∂H∂X
σσh +

1

2

∂2V L

∂H2
σ2

h

)
dt + (Xt + rfτcDt)dt

=

(
∂V L

∂t
+

∂V L

∂X
gX +

∂V L

∂H
µh

)
dt

+

(
1

2

∂2V L

∂X2
σ2X2 +

∂2V L

∂H∂X
σσhX +

1

2

∂2V L

∂H2
σ2

h + Xt + rfτcDt

)
dt

+

(
∂V L

∂X
+

∂V L

∂H
σH

)
σXdB.

The analogous equation for an otherwise identical unlevered asset with date t value

V U
t = V U(t,X) is

dV U
t + Xtdt =

(
∂V U

∂t
+

∂V U

∂X
gX +

1

2

∂2V U

∂X2
σ2X2 + Xt

)
dt +

∂V U

∂X
XσdB

= (V Urf +
∂V U

∂X
Xη)dt +

∂V U

∂X
XσdB.
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where η, defined by its placement above, is simply a convenient symbol for a scaling of the

risk premium attached to dB. We can express η in terms of the instantaneous unlevered

cost of capital, rU
t as

η(t,X) =
rU
t − rf

∂ ln(V U
t )

∂ ln(Xt)

. (2)

Clearly, instantaneous changes in V L and V U are perfectly correlated. Thus, to prevent

arbitrage, the ratios of the risk premia per dollar invested in the levered and unlevered assets

must be proportional to the risk born per dollar invested in each of the assets. This implies

∂V L

∂t
+

∂V L

∂X
gX +

∂V L

∂H
µh +

1

2

∂2V L

∂X2
σ2X2 +

∂2V L

∂H∂X
σσhX +

1

2

∂2V L

∂H2
σ2

h + Xt + rfτcDt − rfVL

=

(
∂V L

∂X
+

∂V L

∂H
σH

)
Xη

which, when rearranged, gives us equation (1). In analogous fashion, the value of the tax-

shield ∆ = V L − V U satisfies the PDE

∂∆

∂t
+ (g − η)X

∂∆

∂X
+

1

2
σ2X2 ∂∆

∂X2
− rf∆

+(µh − ησH)
∂∆

∂H
+

1

2
σ2

h

∂2∆

∂H2
+ σσh

∂2∆

∂H∂X
X = −rfτcD.

In principle, these partial differential equations can be solved. However, without further

restrictions, these differential equations are difficult to solve, even numerically. Hence, the

remainder of this section explores cases where solutions are insightful or, from a numerical

perspective, quickly attainable. Essentially, whenever we can transform the PDE into an

ordinary differential equation (ODE), numerical solutions are easily found. We explore two

such classes of cases. In the first, all of the model’s parameters depend only on the contem-

poraneous level of the unlevered cash flow, X. Here, because there is no time dependence,

equation (1) reduces to an ordinary differential equation in X. In the second class of cases,

which we refer to as “Additively Separable Assets,” the levered asset value is additively

separable in a set of arguments, which consist of H and a finite collection of real powers of

X: Xλ1 , Xλ2 , . . . , XλN . The coefficients of these arguments may be time dependent. The

additively separable class of cases is particularly interesting for its ability to generate re-

markably general closed-form solutions for the value of the debt tax shield. These apply to

both finite-lived and perpetual assets. They arise whenever the N cash flow coefficients of

the value additive functions for debt and history are growing at constant exponential rates

and the remaining coefficients are constant. Given this level of generality, it appears as if

our closed-form solutions could generate fairly good approximations for the value of a debt

tax shield for most conceivable debt policies.
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B. Cash Flows and Debt with Time Independent Parameters

When the parameters of the dynamic process for X do not depend explicitly on time t

(that is, g(t,X) = g(X), σ(t,X) = σ(X), and η(t,X) = η(X)) and the debt policy D

does not depend on either time t or the history Ht, the asset value V L depends only on the

contemporaneous cash flow level, X. In this case, the PDE for the value of the levered asset

(1) becomes the second order ODE:

(g(X)− η(X))
∂V L

∂X
+

1

2
σ2(X)X2∂2V L

∂X2
− rfV

L = −(X + rfτcD(X)).

which is trivial to solve numerically for any specification of g(X), σ(X), and η(X).8 Special

cases with closed-form solutions include the continuous-time versions of the Modigliani-

Miller debt policy (g(X) = 0, η(X) = η and D(X) = D implying V U = X/(rf + η) and

V L = V U + τcD) and the Miles-Ezzell debt policy, (g(X) = 0, η(X) = η and D(X) = dxX,

with dx constant, implying V U = X/(rf +η) and V L = V U+τcDrf/(rf +η)). We defer further

discussion of this as the class of debt policies analyzed next also includes the Modigliani-

Miller and Miles-Ezzell models as special cases.

C. Additively Separable Assets: Numerical Solutions

Additively separable assets have tax shields with values that are additively separable linear

functions of history, H, and any set of real powers of the cash flow, Xλ. Simple examples of

additively separable assets include the constant coefficient quadratic case,

V L
t = V U

t + cx
0 + cx

1Xt + cx
2X

2
t ,

which is generated by the constant coefficient history-independent quadratic debt policy

Dt = dx
0 + dx

1Xt + dx
2X

2
t ,

and the constant coefficient square root case,

V L
t = V U

t + cx
0 + cx

1/2

√
Xt,

which is generated by the constant coefficient history-independent square root debt policy

Dt = dx
0 + dx

1/2

√
Xt.

8Any two boundary conditions, which implicitly determine the debt level in all states of the world,
determine a unique solution to the differential equation. Hence, specifying the debt policy is clearly sufficient
for obtaining the levered asset’s value.
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A more complicated case arises when the debt level is history dependent with history

given by

Ht = H0e
−mht− 1

2
(lh)2t−lhBt + mx

∫ t

0

e−mh(t−s)− l
2
(lh)2(t−s)−lh(Bs−Bt)Xsds

+ md

∫ t

0

e−mh(t−s)− 1
2
(lh)2(t−s)−lh(Bs−Bt)Dsds + mv

∫ t

0

e−mh(t−s)− 1
2
(lh)2(t−s)−lh(Bs−Bt)V L

s ds

+ lx
∫ t

0

e−mh(t−s)− 1
2
(lh)2(t−s)−lh(Bs−Bt)XsdBs + ld

∫ t

0

e−mh(t−s)− 1
2
(lh)2(t−s)−lh(Bs−Bt)DsdBs

+ lv
∫ t

0

e−mh(t−s)− 1
2
(lh)2(t−s)−lh(Bs−Bt)V L

s dBs.

In this special case, the diffusion process for Ht satisfies

dHt = (mxXt + mdDt + mvV L
t −mhHt)dt + (lxXt + ldDt + lvV L

t − lhHt)dBt,

and thus has drift and volatility of

µh = mxXt + mdDt + mvV L
t −mhHt, σh = lxXt + ldDt + lvV L

t − lhHt.

This history process, with the ms and ls constant, when combined with an analogous func-

tional form for the debt process, leads to a closed-form additively separable solution for the

value of the debt tax shield, as we show in the next subsection.

The most general class of additively separable assets has history diffusion and debt policy

of the form:

dHt =

(∑
λ

mx
λ(t)X

λ
t + mv(t)V L

t + md(t)Dt −mh(t)Ht

)
dt

+

(∑
λ

lxλ(t)X
λ
t + lv(t)V L

t + ld(t)Dt − lh(t)Ht

)
dBt,

and

Dt =
∑

λ

dx
λ(t)X

λ
t + dv(t)V L

t + dh(t)Ht,

along with risk premia, η(t), unlevered cash flow growth rate, g(t), and volatilities, σ(t) and

σH(t), that depend only on time. An implication of g(t) and η(t) depending only on time is

that the “price-earnings ratio” for an unlevered asset, yU
t = V U

t /Xt, depends only on time.9

9To prove this, note that Xt drops out of the ratio

V U
t

Xt
=
∫ T

t

e
∫ s

t
g(ω)dωe−

∫ s
t

rU
ω dωds.
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One can show that the value of a levered asset with debt policy and history satisfying

these properties is of the additively separable form

V L
t = V U

t +
∑

λ

cx
λ(t)X

λ
t + ch(t)Ht

and the PDE, equation (1), is of the form10

∑
λ

∂cx
λ

∂t
Xλ +

∂ch

∂t
H + (g − η)

∑
λ

λcx
λX

λ +
1

2
σ2
∑

λ

cx
λλ(λ− 1)Xλ

+

[
−
(
kh − kddh − (kv + kddv)ch

)
H +

∑
λ

(
kx

λ + kddx
λ + (kv + kddv)cx

λ

)
Xλ + (kv + kddv)V U

]
ch

−rf

(∑
λ

cx
λX

λ + chH

)
= −rfτc

[∑
λ

dx
λX

λ + dv

(
V U +

∑
λ

cx
λX

λ + chH

)
+ dhH

]
with kq = mq − ηlq for q ∈ {x, d, v, h}.

Equating the coefficients of H and Xλ on each side produces N + 1 ordinary differential

equations with N being the number of powers of X that appear in the debt and history

equations:

dcx
λ

dt
+ (g − η)λcx

λ +
1

2
σ2cx

λλ(λ− 1) +
(
kx

λ + kddx
λ + (kv + kddv)cx

λ + (kv + kddv)yU
t δλ,1

)
ch

−rfc
x
λ + rfτc

(
dx

λ + dvcx
λ + dvyU

t δλ,1

)
= 0

dch

dt
−

(
kh − kddh − (kv + kddv)ch

)
ch − rfc

h + rfτc

(
dvch + dh

)
= 0

with δ1,λ a binary variable that takes on the value 1 if λ = 1 and 0 otherwise,11 and with the

terminal condition given by

cx
λ(T ) = ch(T ) = 0.

This system of Riccati equations is easily solved numerically. However, there are large classes

of cases that have closed-form solutions. We explore these below.

D. Additively Separable Assets with Closed-Form Solutions

Suppose that each of the coefficients kd(t), kv(t), kh(t), dv(t), dh(t) are constant and

kx
λ(t) = kx

λ(0)egk
λt

dx
λ(t) = dx

λ(0)egd
λt

10Note that many of terms involving V U cancel because of the no arbitrage PDE for V U .
11Without loss of generality, and only for notational simplicity, we assume that one of the powers of λ is

λ = 1 if one of dv, kv, dx
1 , or kx

1 is non-zero. Also, note that if λi = 0, we have an exponentially growing
constant term. We explore a special case with this feature later.
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with the constant growth parameters gk
λ and gd

λ possibly 0. For expositional clarity, we also

assume that the mean and volatility of the unlevered cash flow growth rate, as well as the

market price of risk, are constant. That is, g(t,X) = g, σ(t,X) = σ, and η(t,X) = η. This

allows us to express the value of an unlevered asset with the growing annuity formula, as in

the Gordon Growth Model:

V U
t =

Xt

rU − g

(
1− e−(rU−g)(T−t)

)
. (3)

The Gordon growth assumptions imply that
∂ ln(V U

t )

∂ ln(Xt)
= 1 and that the risk premium on the

unlevered asset rU − rf = η.

We could allow g, σ, and η to be deterministic functions of time and still achieve solutions

similar to those developed below but at the cost of expressions with confusing sets of integrals

in them. As this discussion is about the valuation of tax shields for complex debt policies,

and not about the complexities of valuation in a no-tax setting, we opt for an approach that

makes the latter valuation as uncomplicated as possible.

Under these assumptions, the system of Riccati equations is solved by

ch(t) =
1− e−b(T−t)

1− ch
∞

ch
∞+b/a

e−b(T−t)
ch
∞, (4)

where12

a = kv + kddv,

b =
√

(kh − kddh + rf (1− τcdv))2 − 4aτcrfdh,

ch
∞ =

√
b2 + 4aτcrfdh − b

2a

and for λ = λ1, . . . , λN

cx
λ(t) = rfτcd

x
λ(t)C1(g

d
λ) +

rfτcd
v

rU − g
δλ,1

(
C1(0)− e−(rU−g)(T−t)C1(r

U − g)
)

+ kx
λ(t)C2(g

k
λ)

+ kddx
λ(t)C2(g

d
λ) +

a

rU − g
δλ,1

(
C2(0)− e−(rU−g)(T−t)C2(r

U − g)
)
, (5)

where

C1(z) =
1

1− ch
∞

ch
∞+b/a

e−b(T−t)

[
1− e−(gx

λ−z)(T−t)

gx
λ − z

− e−b(T−t) ch
∞

ch
∞ + b/a

(
1− e−(gx

λ−z−b)(T−t)

gx
λ − z − b

)]

C2(z) =
ch
∞

1− ch
∞

ch
∞+b/a

e−b(T−t)

[
1− e−(gx

λ−z)(T−t)

gx
λ − z

− e−b(T−t)

(
1− e−(gx

λ−z−b)(T−t)

gx
λ − z − b

)]
12For the tax shield of a finite-lived asset to have a finite value, b, given below, has to be a real number.

Also, for history to be stable, kh−kddh + rf (1− τcd
v) has to be positive. Throughout the paper, we assume

that parameters satisfy the transversality conditions so that the debt tax shield is finite.
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with gx
λ defined by

gx
λ = rf (1− τcd

v)− (kv + kddv)ch
∞ + (η − g)λ− 1

2
σ2λ(λ− 1).

Case 1: Perpetual Assets

As T →∞, equation (4) becomes

ch(t) = ch
∞

and the N cash flow coefficients given by equation (5) simplify to

cx
λ(t) =

kx
λ(t)ch

∞
gx

λ − gk
λ

+
(rfτc + kdch

∞)dx
λ(t)

gx
λ − gd

λ

+
ach
∞ + rfτcd

v

(rU − g)(rf (1− τcdv) + η − g)
δλ,1,

since, as T →∞,

C1(z) =
ch
∞

gx
λ − z

C2(z) =
1

gx
λ − z

.

This implies

V L
t =

(
1 +

ach
∞ + rfτcd

v

rf (1− τcdv) + η − g

)
V U

t +
∑

λ

(
kx

λ(t)ch
∞

gx
λ − gk

λ

+
(rfτc + kdch

∞)dx
λ(t)

gx
λ − gd

λ

)
Xλ

t + ch
∞Ht.

Case 2: Perpetual Debt as a Function of Cash Flows Only

When T →∞ and dv = dh = 0, ch
∞ = 0. In this case, the solution for Case 1 simplifies to

cx
λ(t) =

rfτcd
x
λ(t)

gx
λ − gd

λ

implying

V L
t = V U

t +
∑

λ

rfτc

rf + (η − g)λ− 1
2
σ2λ(λ− 1)− gd

λ

dx
λ(t)X

λ
t .

Case 3: Debt that is a Linear Function of Asset Value Plus Constant Growth

For this special case,

Dt = dx
0(0)egd

0 t + dvV L
t

with the sensitivity of debt to asset value constant; that is, dv(t) = dv. The remaining

coefficients are zero. Note that the constant growth rate component in debt, gd
0 , may differ

12



from g, the expected growth rate in cash flows. When dv is zero, debt grows at the constant

geometric rate of gd
0 (possibly zero). When dx

0(0) = 0, the debt to asset ratio is constant

over the life of the asset. Hence, this policy, as well as the stationary model described in the

prior subsection, nests both the Modigliani-Miller and Miles-Ezzell debt policies. (Note that

if dv is nonzero, the expected growth rate in debt is influenced both by the expected growth

rate in V L as well as gd
0 .)

This is a case where ch(t) = ch
∞ = C2(z) = 0 and the solution reduces to

V L
t = V U

t + cx
0(t) + cx

1(t)Xt,

with the values for cx
λ from equation (5) becoming

cx
0(t) = rfτcd

x
0(t)

(
1− e−(rf (1−τcdv)−gd

0)(T−t)

rf (1− τcdv)− gd
0

)

cx
1(t) =

rfτcd
v

rU − g

(
1− e−(rf (1−τcdv)+η−g)(T−t)

rf (1− τcdv) + η − g

)
A particularly simple expression exists for a perpetual levered asset in Case 3. Here, the

coefficients above imply13

V L
t = V U

t + τc

(
rf

rf (1− τcdv)− gd
0

dx
0(t) +

rf

rf (1− τcdv) + η − g
dvV U

t

)
(6)

Note that when g = gd
0 = dv = 0, equation (6) is the Modigliani-Miller value,

V L
t = V U

t + τcd
x
0(t)

= V U
t + τcDt.

When dv is zero but gd
0 and g are nonzero, we have an extension of the Modigliani-Miller

debt policy that allows for growing debt and unlevered cash flows that are expected to grow.

As we will learn in the next section of the paper on the WACC, the initial weighted average

cost of capital, used as a discount rate, does not generate this value as the value of the levered

asset when gd
0 6= g. However, there is a simple adjustment to the WACC that generates the

correct levered asset value.

13One can also map Dt into V L
t . A small amount of algebraic manipulation reveals

V L
t = V U

t +
rf

rf − gd
0

τc

(
Dt +

g − η − gd
0

rf (1− τcdv) + η − g
dvV U

t

)
.

Thus, the value of the debt tax shield is the sum of the Modigliani-Miller debt tax shield (with constantly
growing debt) and a term which may be positive or negative. The sign of the final term in parentheses
depends on whether g − η, the risk-adjusted growth rate of the unlevered cash flows, is larger than gd

0 , the
growth rate for the nonstochastic debt component.
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When dx
0(t) = 0, debt policy is an extension of the continuous-time Miles and Ezzell debt

policy that allows for cash flows with nonzero expected growth. In this case, equation (6)

indicates that there is a proportional relationship between the value of a levered asset and

its otherwise identical unlevered counterpart:

V L
t =

rf + η − g

rf (1− τcdv) + η − g
V U

t

implying

V L
t = V U

t +
rf

rf + η − g
τcDt.

If gd
0 = g, the debt tax shield can be written as a simple weighted average of the tax shields

for the Miles-Ezzell constant leverage ratio debt policy and the extended Modigliani-Miller

debt policy (with possibly growing debt). In this case, equation (6) reduces to

V L
t = V U

t + wt
rf

rf − g
τcDt + (1− wt)

rf

rf + η − g
τcDt

where the weight

wt =
rf − g

rf (1− τcdv)− g

(
1− dv

Dt/V L
t

)
.

This weight is monotonically decreasing in dv, the sensitivity of debt to the value of the

asset, holding Dt fixed.14

The Modigliani-Miller debt tax shield, which multiplies wt above, has a smaller value

than its Miles-Ezzell counterpart, which multiplies (1 − wt) above.15 Hence, for the same

initial debt level, increasing the debt sensitivity coefficient, dv, while holding the initial debt

level fixed, reduces the value of the tax shield. This is because the value of the debt tax

shield falls when its risk increases, other things equal. If the debt sensitivity coefficient, dv,

exceeds Dt/V
L
t , so that wt is negative, the leverage ratio will rise as the asset’s value increases

and fall when it decreases. In this case, the value of the asset will be below that obtained

with the constant leverage ratio Miles-Ezzell debt policy. Conversely, if dv is negative, so

that some of the existing debt is retired when the asset’s value rises,16 and debt is issued

when the asset’s value declines, the value of the debt tax shield will be above the τcDt value

proposed by Modigliani and Miller. This confirms the intuition in Grinblatt and Titman

(1997, 2002) and suggests that the appropriate discount rate for unlevered cash flows will be

14To see this, it is necessary to obtain an equation for the weight without V L
t . This is accomplished by

substituting the former equation into the latter and solving for wt.
15This and the statements that follow from it assume that η, the risk premium for the unlevered cash

flow, is positive. If the unlevered cash flow has a negative risk premium, the Miles-Ezzell value exceeds the
Modigliani-Miller value.

16This debt paydown pattern has been estimated in empirical work by Kaplan and Stein (1990).
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a weighted average of the WACCs proposed by Miles and Ezzell and Modigliani and Miller.

For dv > Dt/V
L
t , the weight on the Modigliani-Miller WACC must be negative, for dv < 0,

it is above 1, and otherwise, it lies between 0 and 1. As we will show later, the weighting

on the WACC formulas of Modigliani-Miller and Miles-Ezzell is identical to the weighting

of the respective tax shields given here.

The linear debt policy in Case 3 easily extends to discrete time. The linearity implies

that over any discrete interval, the levered asset is a fixed-weight portfolio of an otherwise

identical unlevered asset and a risk-free security. In this case, the values of the levered

and unlevered assets are perfectly correlated, as both are linear functions of the cash flow.

Solving the difference equations that generate the no arbitrage value of the levered asset in

an analogous manner yields the discrete time analogue to equation (6):17

V L
t = V U

t + τc

(
rf

rf (1− τcdv)− gd
0

dx
0(t) +

rf (1 + rf + η)

(1 + rf )(rf (1− τcdv) + η − g)− ηrfτcdv
dvV U

t

)
.

This valuation solution nests both the discrete-time Modigliani-Miller and Miles-Ezzell debt

policies as special cases.

The discrete case valuation formula, provided above, applies only to an infinitely-lived

asset. A similar approach generates a discrete time closed-form solution for a finite-lived

asset. It is omitted for the sake of brevity.

II. Tax-Adjusted Discount Rates for Unlevered Cash

Flows and the Weighted Average Cost of Capital

For finance practitioners, discounting expected unlevered cash flows at a tax-adjusted dis-

count rate is the most popular way to value an asset. This section studies the relation

between this discount rate and the after-tax weighted average cost of capital. It develops

formulas for these discount rates for a variety of debt policies and shows when and why

naive application of the weighted average cost of capital as the appropriate discount rate can

generate erroneous valuations.

We take the perspective of an investor at date 0. This investor would like to know the

discount rate, applied to expected future unlevered cash flows, that generates V L
0 . Our

analysis will show that this discount rate is rarely the WACC computed at date 0. Before

we do this, it is important to study the WACC and how it evolves through time.

17Simple algebraic manipulation indicates that the mapping from Dt to VL associated with the equation
below is given by

V L
t = V U

t +
rf

rf − gd
0

τc

(
Dt +

(1 + rf )(g − η − gd
0) + η(rf − gd

0)
(1 + rf )(rf (1− τcdv) + η − g)− ηrfτcdv

dvV U
t

)
.
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A. Risk, Expected Return, and the WACC

In continuous time, the weighted average cost of capital of an asset is defined to be the asset’s

instantaneous expected return, rL, less the return component due to the debt tax shield:

WACCt = rL
t − rfτc

Dt

V L
t

. (7)

A levered asset’s date t instantaneous expected return, equivalent to its “pre-tax weighted

average cost of capital,” is defined by18

rL
t dt =

Et(dV L
t ) + Xtdt + rfτcDtdt

V L
t

. (8)

This expected return has three components: the expected “capital gain,” the unlevered

cash flow, and the cash flow from the debt tax shield.19 One can readily show from the no

arbitrage condition that

rL
t = rf +

(
∂ ln V L

t

∂Xt

+ σH(t,Xt, Dt, V
L
t )

∂ ln V L
t

∂Ht

)
η(t,Xt)Xt.

Combining this equation with equation (7) provides a direct formula for computing a WACC

given the value of the levered asset:

WACCt = rf (1− τc
Dt

V L
t

) +

(
∂ ln V L

t

∂Xt

+ σH(t,Xt, Dt, V
L
t )

∂ ln V L
t

∂Ht

)
η(t,Xt)Xt. (9)

Equation (9) is a generalization of the Modigliani-Miller adjusted cost of capital formula.

It is convenient formula for computing the WACC given the extensive closed-form solutions

computed in the last section. For example, in the case of constant debt for a finite-lived

asset with zero expected growth and a constant risk premium for unlevered cash flows,

∂ ln V L

∂H
= 0

and
∂ ln V L

t

∂Xt

=
V U

t

V L
t

1

Xt

.

In this case, the levered asset has a value of

V L
t = V U

t + τcDt(1− erf (T−t)),

18This expected return is the appropriate discount rate for the “capital cash flow stream,” which is the
net payout to all cash flow claimants. See Ruback (2002) for a lucid discussion of the advantages of this
approach.

19As mentioned earlier, the latter flow must be paid out to maintain the same investment policy and
capital gains appreciation as an otherwise identical unlevered asset.
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the formula for the WACC reduces to

WACCt = rU

(
1− τc

Dt

V L
t

)
−
[
τcη

Dt

V L
t

(1− erf (T−t))

]
.

Note that the term in brackets is decreasing in T and converges to zero for perpetual assets.

Hence, this formula generates a smaller WACC than that generated by the Modigliani and

Miller formula for perpetual assets.

It is also possible to write down a differential equation for the WACC. Substituting the

expected return formula, equation (8), into equation (7) implies

WACCtdt =
Et

[
dV L

t

]
+ Xtdt

V L
t

. (10)

Applying Ito’s lemma to this equation, we find that the WACC satisfies the PDE

WACC × V L =

(
∂V L

∂t
+ gX

∂V L

∂X
+

1

2
σ2X2∂2V L

∂X2
+ µh ∂V L

∂H
+

1

2
σ2

h

∂2V L

∂H2
+ σσh

∂2V L

∂H∂X

)
V L + X.

To understand the relation between the WACC and stochastic discount rates for unlev-

ered cash flows, observe that ρt, the date t stochastic instantaneous discount rate for Xt that

generates the value of the levered asset, satisfies the stochastic integral equation

V L
t =

∫ ∞

t

Et

[
e−

∫ s
t ρωdωXs

]
ds.

By the Feynman-Kac theorem, any ρt that satisfies this stochastic integral equation also

satisfies the PDE

ρV L =

(
∂V L

∂t
+ gX

∂V L

∂X
+

1

2
σ2X2∂2V L

∂X2
+ µh ∂V L

∂H
+

1

2
σ2

h

∂2V L

∂H2
+ σσh

∂2V L

∂H∂X

)
V L + X.

Since the PDE that ρ has to solve is identical to the PDE that the WACC solves (by Ito’s

lemma), the following proposition must hold:20

Proposition 1 The WACC is identical to the stochastic instantaneous discount rate that
generates the levered asset value when applied to the unlevered cash flows.

This insight is not very useful for capital budgeting practitioners. As equation (9) indi-

cates, the WACC at a future date depends on the state variables, X and H, at that date.

Hence, future WACCs are generally stochastic when viewed from date 0, the relevant date

of the valuation.

20Obviously, there is no reason for the boundary conditions to differ or for either of the partial differential
equations to be ill-behaved.
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B. The Appropriate Tax-Adjusted Discount Rates

Even though the WACC is generally stochastic, it may be that some construct related

to the WACC can be used to discount expected future unlevered cash flows to date 0 in

a manner that accounts for the tax shield. This subsection explores this issue. We first

begin by analyzing a discount rate, known at date 0, that translates the expected unlevered

cash flow at date s into its value an instant earlier. We call this the “tax-adjusted forward

rate.” Once having developed an understanding what this tax-adjusted forward rate is,

and how to compute it, we prove that the WACC is an appropriate tax-adjusted discount

rate whenever the term structure of tax-adjusted forward rates is flat. These forward rates,

while computable, are fairly impractical for capital budgeting purposes. However, they

are consistent with a single tax-adjusted discount rate for unlevered cash flows — the tax-

adjusted hurdle rate for the IRR — which generates the same present value. Moreover,

when the unlevered assets are perpetual and the Gordon-Growth assumptions apply, this

hurdle rate, denoted ρ∗, is easily obtained with a simple formula.

Define date 0’s tax-adjusted forward discount rate for cash flows at date s, fs, by

fsds =
E0

[
dV L

s + Xsds
]

E0 [V L
s ]

. (11)

This is clearly an appropriate discount rate. It is known at date 0, and the recursive rela-

tionship expressed in equation (11), applied iteratively, implies

V L
0 =

∫ ∞

0

e−
∫ t
0 fsdsE0 [Xt] dt. (12)

How does this series of forward rates relate to the WACC? At most horizons, the

comparison is meaningless because the future WACCs are stochastic when viewed from date

0. As a general matter, the ratio of date 0 expectations in equation (11), used to compute

the date s forward rate, differs from the date 0 expectation of WACCs. Moreover, the

expectations in equation (11), while obtainable, do not lend themselves to simple expressions.

Despite this, developing an understanding of tax-adjusted forward rates is useful for

understanding when the WACC can be used for discounting. Trivially, fs converges to

WACC0 as s approaches zero. Because f0 = WACC0, and fs is an appropriate instantaneous

discount rate for date s cash flows, it follows that whenever fs = f0 for all s, WACC0 is an

appropriate discount rate for unlevered cash flows.

Proposition 2 Whenever the term structure of tax-adjusted forward rates is flat (fs =
f0, ∀s), the WACC is an appropriate tax-adjusted discount rate for unlevered cash flows.

Two cases where this situation arises are the no-growth Modigliani-Miller model and the

Miles-Ezzell model (with or without cash flow growth). The only other situation where the
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forward term structure is flat is when debt policy is any weighted average of debt policies in

these two models, but only for g = gd
0 . We explore this shortly.

The rarity of an equivalence between the initial WACC or expected future WACCs and

the corresponding forward rates should not be surprising. Although equations (10) and (11)

look similar, Jensen’s inequality alone prevents the expectation of the former from equalling

the latter when V L
t , as well as the overall ratio in equation (10), are stochastic.

Date 0’s constant tax-adjusted discount rate, ρ∗, is defined by the equation

V L
0 =

∫ ∞

0

e−ρ∗tE0[Xt]dt.

In cases where the unlevered cash flows have perpetual constant growth g, this tax-adjusted

discount (hurdle) rate is most easily computed as

ρ∗ = g +
X0

V L
0

. (13)

Equation (13), an algebraic manipulation of the growing perpetuity formula, allows us to

obtain ρ∗ from the formulas for V L
0 developed in the prior section.21

C. Classes of Cases with Easy Numerical Solutions

Recall from the last section that the values of assets with time-independent cash flows and

debt policy, as well as assets with additively separable history diffusion and debt equations

could easily be obtained numerically. In the former class of cases, the fundamental valuation

equation reduces to an ordinary differential equation in X. In the latter class, it reduces to

a system of Riccati equations. In these cases, the WACC and appropriate discount rate, ρ∗

are similarly solved. Just as numerical solutions for V L are easily obtained, so too are the

WACC using equation (9). For ρ∗, the formula in equation (13) generates the discount rate

directly from the numerically solved V L. 22 Similarly, the forward rates are the solutions to

ordinary differential equations which can be solved numerically.23

Obviously, it is more illuminating to analyze closed-form solutions for these interesting

variables. We turn our attention to this next.

21With a finite-lived asset, ρ∗ is easily identified implicitly as the parameter that solves

V L
0 =

X0

ρ∗ − g

(
1− e−(ρ∗−g)(T−t)

)
.

22For finite-lived assets, this discount rate can be easily solved implicitly, as described in the prior footnote.
23The ODEs are available upon request.
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D. Additively Separable Assets with Closed-Form Solutions

Consider, as in the last section, the case where history follows the diffusion

dHt = (mx(t)Xt + mdDt + mvV L
t −mhHt)dt + (lx(t)Xt + ldDt + lvV L

t − lhHt)dBt,

and debt policy has the functional form

Dt =
∑

λ

dx
λ(t)X

λ
t + dvV L

t + dhHt.

Recall that g, η, and σ are constant, dx
λ(t) = dx

λ(0)egd
λt, mx

λ(t)− ηlxλ(t) = kx
λ(t) = kx

λ(0)egk
λt ,

and T = ∞. Here, the partial derivatives in equation (9) have closed-form solutions, allowing

us to express the WACC as an explicit function of the unlevered cash flows, history state

variable, and leverage ratio, Dt/Vt, as follows:

WACCt = rf

(
1− τc

Dt

V L
t

)
+

1/(rf + η − g) +
∑

λ cx
λ(t)λXλ−1

t + ch(t)σH

V U
t +

∑
λ cx

λ(t)X
λ
t + ch(t)Ht

ηXt, (14)

where the c coefficients are explicitly given in the prior section of the paper and with

σH =
∑

λ

lxλ(t)Xt + ldDt + lvV L
t − (lh + σ)Ht.

Case 1: Perpetual Assets

Here, equation (14) simplifies to the same expression, but with

ch(t) = ch
∞

and

cx
λ(t) =

kx
λ(t)ch

∞
gx

λ − gk
λ

+
(rfτc + kdch

∞)dx
λ(t)

gx
λ − gd

λ

+
(kv + kddv)ch

∞ + rfτcd
v

(rU − g)(rf (1− τcdv) + η − g)
δλ,1,

and where the constants gx
λ and ch

∞ are given in the previous section of the paper. By

contrast, the constant tax-adjusted discount rate is

ρ∗ = g +
X0∑

λ cx
λ(0)X

λ
0 + ch

∞H0

.

Case 2: Perpetual Debt as a Function of Cash Flows Only

Consider, as in the last section, the case where

Dt =
∑

λ

dx
λ(t)X

λ
t ,
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g, η, and σ are constant, dx
λ(t) = dx

λ(0)egd
λt, and T = ∞. For this case, we showed that

V L
t = V U

t +
∑

λ

rfτc

rf + (η − g)λ− 1
2
σ2λ(λ− 1)− gd

λ

dx
λ(t)X

λ
t .

This valuation solution simplifies equation (14) to

WACCt = rf (1− τc
Dt

V L
t

) +
1/(rf + η − g) +

∑
λ cx

λ(t)λXλ−1
t

V U
t +

∑
λ cx

λ(t)X
λ
t

ηXt,

where

cx
λ(t) =

rfτcd
x
λ(t)

rf + (η − g)λ− 1
2
σ2λ(λ− 1)− gd

λ

,

while the constant tax-adjusted discount rate

ρ∗ = g +
X0

V U
0 +

∑
λ

rf τc

rf+(η−g)λ− 1
2
σ2λ(λ−1)−gd

λ

dx
λ(0)X

λ
0

.

This happens to be a case where the presentation of the term structure of tax-adjusted

forward rates computed from the date 0 valuation date will not significantly lengthen the

paper. To do this, we need to take date 0 expectations of V L
s . Given the lognormal process

for Xs, the formula for the conditional λth moment of Xs is

E0

[
Xλ

s

]
= Xλ

0 eλ(g− 1
2
σ2)s+ 1

2
λ2σ2s

which can be substituted into the expected value of equation (11). Thus,

E0[V
L
s ] = V U

0 egs +
∑

λ

τcrfd
x
λ

Xλ
0 eλ(g− 1

2
σ2)s+ 1

2
λ2σ2s

rf + (η − g)λ− 1
2
σ2λ(λ− 1)

.

It follows that

dE0[V
L
s ]

ds
= V U

0 gegs +
∑

λ

τcrfd
x
λ

(λ(g − 1
2
σ2) + 1

2
λ2σ2)Xλ

0 eλ(g− 1
2
σ2)s+ 1

2
λ2σ2s

rf + (η − g)λ− 1
2
σ2λ(λ− 1)

.

We now have all the ingredients to compute the date s tax-adjusted forward rate. It is given

by the formula:

fs =
V U

0 (rf + η)egs +
∑

λ τcrfd
x
λ

(λ(g− 1
2
σ2)+ 1

2
λ2σ2)Xλ

0 eλ(g− 1
2 σ2)s+1

2 λ2σ2s

rf+(η−g)λ− 1
2
σ2λ(λ−1)

V U
0 egs +

∑
λ τcrfdx

λ
Xλ

0 eλ(g− 1
2 σ2)s+1

2 λ2σ2s

rf+(η−g)λ− 1
2
σ2λ(λ−1)

.

It is easily verified that WACC0 = f0, but obviously, the date s WACC depends on

Xs and thus cannot be identical to fs. Moreover, the date s forward rate is not the date 0
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expectation of the date s WACC, irrespective of whether expectations are taken with respect

to the actual probability density function or the probability density function generated by

the risk-neutral measure.

Case 3: Perpetual Debt that is a Linear Function of Asset Value Plus Constant

Growth

Recall that for this special case, explored in the last section, debt policy is given by

Dt = dx
0(0)egd

0 t + dvV L
t

and a perpetual levered asset has a particularly simple functional form for its valuation:

V L
t = V U

t + τc

(
rf

rf (1− τcdv)− gd
0

dx
0(t) +

rf

rf (1− τcdv) + η − g
dvV U

t

)
.

This valuation solution simplifies equation (14) to

WACCt = rf (1− τc
Dt

V L
t

) +
ηXt

(rf (1− τcdv) + η − g)V L
t

,

with V L
t given by the equation immediately above, while the appropriate tax-adjusted con-

stant discount rate, ρ∗, is given by

ρ∗ = g +
X0

V U
0 + τc

(
rf

rf (1−τcdv)−gd
0
dx

0(t) +
rf

rf (1−τcdv)+η−g
dvV U

0

) .

Using equation (11), the simple valuation formula for this case can be used to show that

the tax-adjusted forward discount rate is given by the weighted average

fs =
γ0(s)

γ0(s) + γ1(s)
gd
0 +

γ1(s)

γ0(s) + γ1(s)
(rf (1− τcd

v) + η)

where the coefficients

γ0(s) =
rfτcd

x
0(0)

rf (1− τcdv)− gd
0

egd
0s,

γ1(s) =
X0

rf (1− τcdv) + η − g
egs,

and

V L
0 = γ0(0) + γ1(0).

It is possible to compare forward rates, WACCs, and appropriate constant tax-adjusted

discount rates here but the discussion is more illuminating if we focus on several special cases

of this example.
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Case 3a: Constantly Growing Debt with No Stochastic Component and No

Expected Cash Flow Growth

In this extension of the Modigliani-Miller debt policy that accounts for the possibility of

growing debt, g = dv = 0, and rf > gd
0 > 0. The γ0(s) and γ1(s) coefficients above simplify

to

γ0(s) =
rfτcD0

rf − gd
0

egd
0s = ∆0e

gd
0s,

γ1(s) =
X0

rf + η
= V U

0 ,

implying

fs =
∆0e

gd
0sgd

0

V U
0 + ∆0egd

0s
+

V U
0

V U
0 + ∆0egd

0s
rU .

The initial WACC, which is identical to f0, is

WACC0 =
∆0

V L
0

gd
0 +

V U
0

V L
0

rU

= rU

(
1− τc

D0

V L
0

)
− η

rf − gd
0

gd
0τc

D0

V L
0

However, the tax-adjusted constant discount rate is

ρ∗ =
X0

V L
0

= rU V U
0

V L
0

= rU

(
1− rf

rf − gd
0

τc
D0

V L
0

)
,

which the initial WACC exceeds by the amount

∆0

V L
0

gd
0 =

rf

rf − gd
0

gd
0τc

D0

V L
0

.

Case 3b: Modigliani-Miller Static Debt Policy with Constant Expected Growth

in Cash Flows

Here we assume that g > 0, but that dv = gd
0 = 0. In this case

γ0(s) = τcD0

γ1(s) =
X0

rf + η − g
egs = V U

0 egs,

implying

fs =
V U

0

V L
0

egsrU .
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The initial WACC, which is identical to f0, is

WACC0 =
V U

0

V L
0

rU = rU

(
1− τc

D0

V L
0

)
.

However, the tax-adjusted constant discount rate is

ρ∗ =
X0

V L
0

+ g =
V U

0

V L
0

(rU − g) + g

=
V U

0

V L
0

rU + gτc
D0

V L
0

which exceeds the initial WACC by gτc
D0

V L
0

.

Case 3c: The Modigliani-Miller Model with Equal Growth in Debt and Expected

Cash Flows

The last two cases illustrated that the WACC was not an appropriate tax-adjusted constant

discount rate. This is because it changed over time. In Case 3a, the initial WACC was too

large because it was expected to decrease. In Case 3b, the initial WACC was too small

because it was expected to increase. It is natural to think that if dv = 0 but gd
0 = g > 0, so

that debt growth keeps pace with the expected growth of the cash flows, the initial WACC

will still work. This indeed is the case. To prove this, note that here

WACC0 = f0 =
∆0

V L
0

gd
0 +

V U
0

V L
0

rU = rU

(
1− τc

D0

V L
0

)
− η

rf − gd
0

gd
0τc

D0

V L
0

Thus, WACC0 = ρ∗ whenever

∆0

V L
0

gd
0 +

V U
0

V L
0

rU = g +
(rU − g)V U

0

V L
0

,

which only occurs when gd
0 = g.

This happens to be a case in which the forward rate is independent of s. By Proposition

2, the initial WACC has to work as an appropriate tax-adjusted discount rate under this

condition.

Case 3d: A Combination of the Extended Modigliani-Miller and Miles-Ezzell

Debt Models with Equal Growth in Debt and Expected Cash Flow

Here, we generalize Case 3c and once again show that the initial WACC is an appropriate

discount rate for unlevered cash flows. In this example, gd
0 = g but dv may be nonzero.

These assumptions imply:

γ0(s)

γ0(s) + γ1(s)
= 1− X0

V L
0

× 1

rf (1− τcdv) + η − g

γ1(s)

γ0(s) + γ1(s)
=

X0

V L
0

× 1

rf (1− τcdv) + η − g
.
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To compute fs, the former ratio multiplies g, while the latter multiplies rf (1− τcd
v) + η,

and then the two products are summed. Thus,

fs = f = ρ∗ = WACC0 = g +
X0

V L
0

.

When gd
0 6= g, fs depends on s. Hence, within Case 3, it is only by imposing the condition

gd
0 = g that one can use the initial WACC as an appropriate discount rate. This discount

rate can be thought of as a weighted average of the WACC from a Miles and Ezzell debt

policy at an initial debt of D0 and the WACC from a Modigliani and Miller debt policy at

an initial debt of D0. Specifically, denote the WACCs of Modigliani-Miller and Miles-Ezzell

as

WACCMM
0 = rU(1− τc

D0

V L
0

)− gη

rf − g
τc

D0

V L
0

WACCME
0 = rU − τcrf

D0

V L
0

,

respectively. Then the discount rate given above

WACC0 = ρ∗ = f = w0WACCMM
0 + (1− w0)WACCME

0 ,

where

w0 =
rf − g

rf (1− τcdv)− g

(
1− dv

D0/V L
0

)
.

Case 3e: The Growth Extension of the Miles-Ezzell model

Consider the case with dv = D0/V0, dx
0(0) = 0. This is a continuous-time version of the

Miles-Ezzell model, but with the extension of expected growth in cash flows. Here,

V U
t =

Xt

rf + η − g

and

V L
t = V U

t +
rf

rf + η − g
τcDt.

In this case, since γ0(s) is zero, the date s forward rate is independent of s, which has the

value

f = ρ∗ = rU − rfτc
D0

V L
0

This tax-adjusted discount rate is identical to the weighted average cost of capital.
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To understand this from another perspective, recognize that everything is stationary

here, and that the flow from the debt tax shield, being proportional to the unlevered cash

flow, shares its discount rate, so that

rL = rf + η.

The WACC, from equation (7), is therefore the constant

WACCt = rf + η − rfτc
D

V L

where, by assumption, D/V L is the same at all points in time. Note that the growth rate of

the cash flows never appears when the WACC is written as a function of the leverage ratio,

but that it affects V L above.

E. Discussion

To develop an intuitive understanding of the results above it is useful to first review why

discounting unlevered cash flows at the initial after-tax weighted average cost of capital

sometimes accounts for the value of the debt tax shield. Let’s begin with the perpetual

level debt model of Modigliani and Miller. Because the market value of the debt financing

never changes in this model, it is useful to think of the Modigliani and Miller analysis as the

valuation of the debt tax shield of a zero beta debt strategy. In such a model, the familiar

equation V L = V U + τcD reflects the separate valuations of the two components of the asset:

the unlevered after-tax cash flow stream, with stochastic value Xt at date t, and the stream

of cash flows from the interest-based tax shield, Drfτc, which is constant and identical at

every date. Note that the gross (as opposed to net) pre-tax weighted average cost of capital,

which is also the gross expected return on the levered asset, is

1 + rL = 1 + (D/V L)rf + (E/V L)rE.

This can be viewed as the expected cash flow per dollar of assets to investors who buy an

asset, hold it for an instant, and then liquidate it. Both the asset value and the flow include

the debt tax shield. Hence, the gross after-tax WACC

1 + (D/V L)rf (1− τc) + (E/V L)rE

is just the expected flow to investors per dollar of levered assets, less the expected flow

per dollar of assets from the debt tax shield, (D/V L)rfτc. This net flow is identical to the

unlevered cash flow per dollar of levered assets. Viewed with the arrow of time in reverse,

this insight implies that if we discount the unlevered cash flows at the after-tax WACC,

we end up back where we started, with the one dollar value of the assets, including that

component of value generated by the debt tax shield.

26



It is easy to see that this insight about the zero beta debt strategy does not easily extend

to the case of an asset with a value that tends to grow. Here, the value of the unlevered

asset is affected by the growth rate, but the debt tax shield, having a perpetual value of τcD

is not affected by it. Because the value of such a constant debt tax shield tends to decline

over time as a proportion of total asset value, the initial after-tax weighted average cost of

capital is an inappropriate discount rate for all future cash flows. Essentially, the weighted

average cost of capital is changing over time. In this simple case, we learned that there is a

single discount rate that can be used to discount all future unlevered cash flows: the sum of

the initial after-tax WACC and gτcD/V L, the latter being the product of the growth rate

of the unlevered cash flows, the tax rate, and the debt to value ratio. For a firm with a 4%

growth rate, and a 50% tax rate and leverage, this alone represents a 100 basis point error

in the discount rate, even given the true unlevered cost of capital. We can see that if the

risk of the levered asset is not expected to change, as in the Modigliani-Miller model of debt

adjustment, which assumes no growth, discounting the expected unlevered cash flow stream

at the initial WACC generates the value of the levered assets, including the debt tax shield.

The other case where the risk of the levered asset is not expected to change arises in an

extension of the Miles and Ezzell (1985) model. Their case is one where the debt level is

adjusted over time to maintain a constant debt to value ratio. This is a positive beta debt

strategy even though the debt, at issue, is risk-free. The perpetually constant WACC is an

appropriate discount rate in this case, but the valuation is never out of peril if the actual

debt policy associated with the asset differs from the policy implicit in the formulas used for

the valuation. For example, if the unlevered asset’s risk premium is twice the risk-free rate,

the Miles-Ezzell tax shield is a mere one-third that of the Modigliani-Miller debt tax shield

for the same debt level. If the risk-free rate is 4%, the bias in the WACC from applying a

Miles-Ezzell formula to Modigliani-Miller debt policy becomes 200 basis points, even if the

unlevered cost of capital for the asset is estimated perfectly.

These problems can become much more severe when the unlevered cost of capital is from

comparison assets with debt policies that are also mismatched to the formulas. For example,

an asset with a nonstochastic trend to grow its debt but pay it down if the cash flows turn out

to be surprisingly good, has a very low WACC other things equal. Unless this is recognized,

unlevering such an asset with a standard formula tends to produce too low an unlevered

cost of capital. Similarly, obtaining the WACC of such an asset at a target debt level using

the standard formulas tends to produce too large a WACC. By contrast, consider an asset

for which debt has a nonstochastic retirement trend, but for which debt tends to increase

rapidly when cash flows are surprisingly good. Applying the standard formulas to such an

asset tends to generate unlevered costs of capital that are too high given a known WACC

and a WACC at a target debt level that is too low given the asset’s unlevered cost of capital.

If the former asset has a known WACC and is used to generate the WACC for the latter

27



asset, (or vice versa), the bias can easily run to 500 basis points or more.24

III. Levering and Unlevering Equity Betas

The relationship between equity betas and unlevered asset betas is critical for valuation.

Equity betas, unlike asset betas, are observed. Hence, to obtain the necessary discount

rates, valuations analyze the traded equity of assets that are deemed similar to the asset

being valued. The problem is that the risk of the traded equity of comparison assets is

affected by the leverage policy associated with the comparison asset. It is generally necessary

to undo the leverage-induced distortion on the equity beta of the comparison asset(s) in order

to obtain the critical valuation inputs: the unlevered asset beta or unlevered cost of capital.

This section explores how to do this.

The return on an unlevered asset is given by

dV U + Xtdt

V U
=

(
rf + η

∂ ln V U

∂ ln X

)
dt +

∂ ln V U

∂ ln X
σdB.

while the return on a levered asset is given by

dV L + Xdt + rfτcDdt

V L
=

(
rf +

(
∂ ln V L

∂X
+ σH

∂ ln V L

∂H

)
ηX

)
dt+

(
∂ ln V L

∂X
+ σH

∂ ln V L

∂H

)
σXdB.

The ratio of the terms that multiply dB in the two equations above represent the effect

of leverage on volatility. With risk-free debt, the proportional effect on beta is the same.

Moreover, with risk-free debt, the equity beta of a levered asset always is 1+D/E times the

beta of the underlying asset (including the asset component from the tax shield.)25 It follows

that the formula for levering and unlevering equity betas involves multiplying 1 + D/E by

the ratio of the terms that multiply dB above. That is,

βE
t =

(
1 +

Dt

EL
t

) ∂ ln V L

∂X
+ σH

∂ ln V L

∂H
∂ ln V U

∂X

βU
t

with the derivatives taken at date t.

The above equation suggests that whenever there is a closed-form solution for the levered

asset value, there is a closed-form solution for the equity beta formula, obtainable after first

taking partial derivatives. For example, the extension of the Modigliani-Miller debt policy

with g 6= 0 and gd
0 6= 0 has

∂ ln V L

∂H
= 0

24Moreover, this analysis assumes that the WACC is an appropriate discount rate, which it rarely is.
25This is just an inversion of the portfolio formula that generates the beta of the levered asset as a

portfolio-weighted average of the beta of its debt (zero) and equity (βE).
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and
∂ ln V L

∂X
=

V U

V L

∂ ln V U

∂X

which implies

βE
t =

[
1 +

(
1− τc

rf

rf − gd
0

)
Dt

EL
t

]
βU

t .

When gd
0 is nonzero, this formula differs from the leveraging-unleveraging formula proposed

by Hamada (1972) for the Modigliani and Miller debt policy. It also differs from this formula

when g = gd
0 = 0 but the asset has a finite life. In the latter case,

∂ ln V L

∂H
= 0

and
∂ ln V L

∂X
=

V U

V L

∂ ln V U

∂X
.

However, because the finite horizon debt tax shield has a different value than the perpetual

debt tax shield, the formula reduces to

βE
t =

[
1 +

(
1− τc(1− e−rf (T−t))

) Dt

EL
t

]
βU

t .

By contrast, the extension of the Miles-Ezzell policy with g 6= 0 has

∂ ln V L

∂H
= 0

and
∂ ln V L

∂X
=

∂ ln V U

∂X
= 1/X

implying

βE
t =

(
1 +

Dt

EL
t

)
βU

t .

This is identical to the formula proposed by Miles and Ezzell and it applies to both an

infinitely-lived and finite-lived asset (in contrast to the Hamada formula for the Modigliani-

Miller debt policy).

For a perpetual asset that is a hybrid of the Modigliani-Miller and Miles-Ezzell debt

policies, as given in Case 3 of the prior sections of the paper, the equity beta formula is

βE
t =

[
1 +

(
1 + τc

(
dv

Dt/Et

− 1

)
rf

rf (1− τcdv)− gd
0

)
Dt

Et

]
βU

t .
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The formula above is a weighted average of the beta leveraging formulas of Hamada/Modigliani-

Miller and Miles-Ezzell. That is

βE
t =

[
wt

(
1 +

(
1− τc

rf

rf − gd
0

)
Dt

EL
t

)
+ (1− wt)

(
1 +

Dt

Et

)]
βU

t

with the weight on Hamada/Modigliani-Miller formula

wt =
rf − gd

0

rf (1− τcdv)− gd
0

(
1− dv

Dt/V L
t

)
.

There are several additional cases with simple closed-form solutions for the equity beta.

These parallel cases 1 and 2 in the prior two sections of the paper. Since these involve mere

substitutions and elementary calculus, we omit them for the sake of brevity.

Finally, we note that since equity risk premia are proportional to equity betas, the for-

mulas for leveraging and unleveraging equity risk premia are the same as those above, with

the levered and unlevered equity risk premia substituting for their respective betas above.

IV. Conclusion

This paper has undertaken a comprehensive valuation of debt tax shields. In as many cases

as possible, we offered closed-form solutions for the values of levered assets and the associated

debt tax shields. Our approach for obtaining these present values was the APV approach.

The tax-adjusted discount rates that generate the present values were reverse engineered, in

that we needed to use the present values to generate closed-form solutions for the discount

rates. In this sense, we are in the APV camp, rather than the WACC camp, and like many

academics fail to understand why the APV approach is not viewed as the simpler technique.

Obviously, however, both approaches are equivalent and it is possible to generate correct

valuations either way once the debt policy and cash flow process are known.

The examples explored in this paper are particularly useful in that most dynamic debt

policies can be thought of as fitting into one of these examples. The examples demonstrated

that it is possible to develop intuition from polar cases so that a manager can heuristically

assess how his discount rate and debt tax shield value will change, given the dynamic nature

of the policy. For instance, firms with debt policies that sluggishly but positively react

to changes in the value of the firm’s unlevered assets might be expected to have a debt

tax shield with a value that lies somewhere between the Modigliani-Miller and Miles-Ezzell

values. The appropriate tax-adjusted constant discount rate for the future cash flows of the

unlevered assets, as well as the formulas for levering and unlevering equity betas will also

lie between the values given by the polar cases. Moreover, when firms engage in what we

term “negative beta debt policies,” paying down debt as the cash flow prospects brighten,
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and vice versa, the formulas for the debt tax shield, discount rate, and levered equity betas

are again weighted averages of the two polar cases, with a negative weight on the formula

associated with the Miles-Ezzell positive-beta debt strategy and a weight above one on the

Modigliani-Miller zero-beta debt strategy formula.

The comprehensive treatment of debt tax shields presented here is essential for practi-

tioners. Confusion has proliferated because the formulas that previously had been developed

for the simplest of cases are generally treated as black boxes without a clear understand-

ing of where they come from. It is rare when pedagogy appropriately links the formulas

for levering and unlevering betas to the value of the tax shield. The Miles-Ezzell valuation

can easily be 1/3 the valuation using the Modigliani-Miller approach. It is quite common,

however, to observe both students and finance professors mix the Miles and Ezzell formula

for leveraging and unleveraging equity with Modigliani-Miller inputs, thinking that they are

getting a valuation of τcD for the debt tax shield. In properly linking the values of tax shields

for different debt policies to discount rates and laying out the theory behind this linkage, we

hope to remedy some of this confusion.

This paper is important, however, not just for those doing corporate valuations, but for

those doing research on capital structure and bankruptcy costs. In particular, it provides

a comprehensive set of benchmarks for the impact of debt on asset values in a market that

is frictionless, except for taxes. Empirical research by Graham (2000) and by Kemsley and

Nissim (2001) indicates that for the average U.S. firm, debt tax shields in the U.S. are about

the size of τcD. Clearly, more research that describes the cross-sectional variation in this

estimate is coming, and is warranted. To properly estimate bankruptcy costs from extensions

of this research, it is critical to know the value of the debt tax shield in a market where the

only friction is taxes. We believe that research in this area has been hindered by a lack of

understanding of benchmark valuations. In plugging this hole in the literature, we hope to

stimulate additional research.
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