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1. INTRODUCTION

One of the most fundamental issues in finance is how the market compensates investors
for bearing credit risk. Events such the flight to quality that led to the hedge fund
crisis of 1998 demonstrate that changes in the willingness to bear credit risk can have
dramatic effects on the financial markets. Furthermore, these events indicate that
variation in credit spreads may reflect both changes in perceived default risk and in
the relative liquidity of bonds. Understanding the risk and return tradeoffs for these
types of securities may become even more important in the future if the supply of U.S.
Treasury securities available in the market decreases.

This paper studies the market price of credit risk incorporated into what is rapidly
becoming one of the most important credit spreads in the financial markets: interest
rate swap spreads. Since swap spreads represent the difference between swap rates
and Treasury bond yields, they reflect the difference in the default risk of the financial
sector quoting Libor rates and the U.S. Treasury. In addition, swap spreads may
include a significant liquidity component if the relevant Treasury bond trades special
in the repo market. Thus, swap spreads represent an important data set for examining
how both default and liquidity risks influence security returns. The importance of swap
spreads derives from the dramatic recent growth in the notional amount of interest
rate swaps outstanding relative to the size of the Treasury bond market. For example,
the total amount of Treasury debt outstanding at the end of June 2001 was $5.7
trillion. In contrast, the Bank for International Settlements (BIS) estimates that the
total notional amount of interest rate swaps outstanding at the end of June 2001 was
$57.2 trillion, representing ten times the amount of Treasury debt.

Since swap spreads are fundamentally credit spreads, our approach consists of
jointly modeling the interest rate swap and Treasury term structures using the reduced-
form credit framework of Duffie and Singleton (1997, 1999). To capture the rich dy-
namics of the swap and Treasury curves, we use a five-factor affine term structure
model which allows the swap spread to be correlated with the riskless rate. In ad-
dition, our specification allows market prices of risk to vary over time to reflect the
possibility that the willingness of investors to bear credit and liquidity risk may change.
We estimate the parameters of the model by maximum likelihood. The data for the
study spans nearly the full history of the swap market. We show that both the swap
and Treasury term structures are well described by the five-factor affine model.

A number of interesting results emerge from this analysis. First, we solve for the
short-term riskless rate implied by Treasury bond prices. We find that the implied
riskless rate can differ substantially from the Treasury-bill rate and is often much
higher. This is consistent with the widespread view on Wall Street that because of

1



the extreme liquidity of Treasury bills, their yields tend to underestimate the effective
riskless rate. Since the implied short-term riskless rate could also be interpreted as
special repo rate for the on-the-run Treasury bonds in the sample, we contrast them
with repo rates for generic or general Treasury collateral.1 We find that these implied
special repo rates are slightly less than the general repo rates on average, suggesting
that the prices of the on-the-run Treasury bonds in the sample include premia for their
liquidity or specialness relative to off-the-run Treasury securities. These specialness
premia can be large in economic terms. For example, the specialness premium for the
ten-year Treasury note can be as much as 0.57 percent of its notional amount. The
estimated specialness premia match closely those implied by a sample of market term
special repo rates provided to us.

We then solve for the implied spread process. We find that this spread varies
significantly over time, but is nearly zero for an extended period during the mid to
latter 1990s. Interestingly, much of the variation in the implied credit spread is related
to the difference between the general and implied special repo rates, suggesting that
changes in the liquidity of Treasury bonds may be one of the major driving factors of
swap spreads.

Finally, we examine the implications of the model for the market prices of interest-
rate and credit-related risk. Consistent with previous research, we find that there are
significant time-varying term premia embedded in Treasury bond prices. We also find
that there are significant credit premia embedded in the swap curve. On average,
these premia are positive, ranging from 0.1 basis points for a one-year horizon to 45
basis points for a ten-year horizon. These credit premia also display substantial time
variation. Surprisingly, we find evidence that credit premia were often negative during
an extended period in the 1990s. These results suggest that there have been major
changes over time in the expected returns from bearing the default and liquidity risk
inherent in interest rate swaps.

This paper complements and extends the recent paper by Duffie and Singleton
(1997) who apply a reduced-form credit modeling approach to the swap curve and
examine the properties of swap spreads. Our results support their finding that both
default-risk and liquidity components are present in swap spreads. By modeling both
the swap and Treasury curves simultaneously, however, we are also able to address
the issue of how credit risk is priced in the market, which is the primary focus of
this paper. Another related paper is He (2000) who independently uses a multi-factor
affine term structure framework similar to ours in modeling swap spreads. While He
does not estimate the parameters of his model, our empirical results provide support
for both swap spread modeling frameworks. Grinblatt (2001) models the swap spread

1In a recent paper, Duffie (1996) studies the causes and effects of special repo rates
in the Treasury repo market. See also Sundaresan (1994), Jordan and Jordan (1997),
Buraschi and Menini (2001), and Krishnamurthy (2001).
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as the annuitized value of an instantaneous convenience yield. If this convenience yield
is interpreted as the liquidity component of the spread process, then our results can
also be viewed as providing support for the implications of his model. Other related
papers include Sun, Sundaresan, and Wang (1993) who study the extent to which
counterparty credit risk affects market swap rates, and Collin-Dufresne and Solnik
(2001) who focus on the spread between Libor corporate rates and swap rates.

The remainder of this paper is organized as follows. Section 2 explains the frame-
work used to model the swap and Treasury term structures. Section 3 describes the
data. Section 4 discusses the maximum likelihood estimation of the model. Section
5 focuses on the implications of the results for the liquidity of Treasury securities.
Section 6 discusses the empirical results about the properties of swap spreads. Sec-
tion 7 presents the results about the pricing of default and liquidity risk. Section 8
summarizes the results and makes concluding remarks.

2. MODELING SWAP SPREADS

To understand how the market prices credit risk over time, we need a framework for
estimating expected returns implied by the swap and Treasury term structures. In
this section, we use the Duffie and Singleton (1997, 1999) credit modeling approach
as the underlying framework in which to analyze the behavior of swap spreads. In
particular, we jointly model the swap and Treasury term structures using a five-factor
affine framework and estimate the parameters of the model by maximum likelihood.2

Recall that under standard no-arbitrage assumptions, the value D(t, T ) of a risk-
less zero-coupon bond with maturity date T can be expressed as

D(t, T ) = EQ exp −
T

t

rs ds , (1)

where r denotes the instantaneous riskless rate and the expectation is taken with
respect to the risk-neutral measure Q rather than the objective measure P . In the
Duffie and Singleton (1997, 1999) framework, default is modeled as the realization of a
Poisson process with an intensity which may be time varying. Under some assumptions
about the nature of recovery in the event of default, they demonstrate that the value
of a risky zero-coupon bond C(t, T ) can be expressed in the following form

2Other examples of affine credit models include Duffee (1999, 2002), He (2000), Duffie,
Pedersen, and Singleton (2000), Duffie and Liu (2001), and Colin-Dufresne and Solnik
(2001).
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C(t, T ) = EQ exp −
T

t

rs + λs ds , (2)

where λ is a credit-spread process.3 They also show that this credit-spread process may
be viewed as the product of the time-varying Poisson intensity and the recovery-rate
process. Furthermore, they argue that the credit-spread process could also include a
time-varying liquidity component which may be either positive or negative. In this
paper, we simply refer to λ as the credit-spread process, keeping in mind, however,
that λmay include both default-risk and liquidity components. Consequently, the term
credit risk is used in a general sense throughout this paper, reflecting that variation
in credit or swap spreads may be due to changes in either default risk or liquidity.

In applying this credit model to swaps, we are implicitly making two assump-
tions. First, we assume that there is no counterparty credit risk. This is consistent
with recent papers by Grinblatt (2001), Duffie and Singleton (1997), and He (2000)
that argue that the effects of counterparty credit risk on market swap rates should
be negligible because of the standard marking-to-market or posting-of-collateral and
haircut requirements almost universally applied in swap markets.4 Second, we make
the relatively weak assumption that the credit risk inherent in the Libor rate (which
determines the swap rate) can be modeled as the credit risk of a single defaultable
entity. In actuality, the Libor rate is a composite of rates quoted by 16 banks and,
as such, need not represent the credit risk of any particular bank.5 In this sense, the
credit risk implicit in the swap curve can be viewed essentially as the average credit
risk of the most representative banks providing quotations for Eurodollar balances.6

3In the Duffie and Singleton (1999) model, the recovery rate is linked to the value
of the bond immediately prior to the default event. While this assumption has been
criticized, the fact that Libor is computed from a set of banks that may change over
time if some banks experience a deterioration in their credit rating argues that this
assumption may be more defensible when applied to the swap curve.

4Even in the absence of these requirements, the effects of counterparty credit risk
for swaps between similar counterparties are very small relative to the size of the
swap spread. For example, see Cooper and Mello (1991), Sun, Sundaresan, and Wang
(1993), Bollier and Sorensen (1994), Longstaff and Schwartz (1995), Duffie and Huang
(1996), and Minton (1997).

5The official Libor rate is determined by eliminating the highest and lowest four bank
quotes and then averaging the remaining eight. Furthermore, the set of 16 banks whose
quotes are included in determining Libor may change over time. Thus, the credit risk
inherent in Libor may be “refreshed” periodically as low credit banks are dropped
from the sample and higher credit banks are added. The effects of this “refreshing”
phenomenon on the differences between Libor rates and swap rates are discussed in
Colin-Dufresne and Solnik (2001).

6For discussions about the economic role that interest-rate swaps play in financial mar-
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To model the discount bond prices D(t, T ) and C(t, T ), we next need to specify
the dynamics of r and λ. In doing this, we parallel the approach used by Duffie
and Kan (1996), Duffie and Singleton (1997), Duffee (1999), Dai and Singleton (2000,
2001), and others by working within a general affine framework. In particular, we
assume that the dynamics of r and λ are driven by a vector X of five state variables,
X I = [X1, X2, X3, X4, X5]. Following Dai and Singleton (2000), we assume that

r = δ0 +X1 +X2 +X3 +X4, (3)

where δ0 is a constant. Thus, the dynamics of the riskless term structure are driven
by the first four state variables. This four-factor specification of the riskless term
structure is consistent with recent evidence by Dai and Singleton (2001) and Duffee
(2002) about the number of significant factors affecting Treasury yields.7

In modeling the dynamics of the spread λ, we assume that

λ = δ1 + γr +X5, (4)

where δ1 and γ are constants which may be positive or negative. Note that this
specification allows the spread λ to depend on the state variables driving the riskless
term structure in both direct and indirect ways. Specifically, λ depends directly on
the first four state variables through the term γr in Eq. (4). Indirectly, however,
the spread λ may be correlated with the riskless term structure through correlations
between X5 and the other state variables.

The advantage of allowing for both a direct and an indirect relation between the
spread λ and the factors driving the riskless term structure is that it enables us to
examine in more depth the determinants of swap spreads. For example, our approach
allows us to examine whether the swap spread is an artifact of the difference in the
tax treatment given to Treasury securities and Eurodollar deposits. Specifically, in-
terest from Treasury securities is exempt from state income taxation while interest
from Eurodollar deposits is not. Thus, if the spread λ were determined entirely by the
differential tax treatment, the parameter γ would represent the marginal state tax rate

kets, see Bicksler and Chen (1986), Turnbull (1987), Smith, Smithson, and Wakeman
(1988), Wall and Pringle (1989), Macfarlane, Ross, and Showers (1991), Sundare-
san (1991), Litzenberger (1992), Sun, Sundaresan, and Wang (1993), Brown, Harlow,
and Smith (1994), Minton (1997), Gupta and Subrahmanyam (2000), and Longstaff,
Santa-Clara, and Schwartz (2001).

7Also see the empirical evidence in Litterman and Scheinkman (1991), Knez, Lit-
terman, and Scheinkman (1994), Piazzesi (1999), and Longstaff, Santa-Clara, and
Schwartz (2001) indicating the presence of at least three significant factors in term
structure dynamics.
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of the marginal investor and might be on the order of .05 to .10. In contrast, struc-
tural models of default risk such as Merton (1974), Black and Cox (1976), Longstaff
and Schwartz (1995) (also see Duffee (1998)), suggest that credit spreads should be
inversely related to the level of r, implying a negative sign for γ. These hypotheses
can be tested directly within our framework.

It is also important to note that this specification implies that all five state vari-
ables impact the swap curve. Thus, this framework should be viewed as providing
a four-factor model of the Treasury curve and a five-factor model of the swap curve.
Because of the direct and indirect dependence of λ on the first four state variables, this
framework should not be characterized as a single-factor model of the swap spread.
Note also that we assume that the value of λ is the same under both the objective
and risk-neutral measures. This assumption is standard and allows the parameters of
the model to be identified by maximum likelihood estimation.8

To close the model, we need to specify the dynamics of the five state variables
driving r and λ. Following Duffie and Kan (1996), Dai and Singleton (2000), and
others, we assume that under the risk-neutral measure, the state variable vector X
follows the general Gaussian process,

dX = −βXdt+ ΣdBQ, (5)

where β is a diagonal matrix, BQ is a vector of independent standard Brownian
motions, Σ is lower diagonal (with elements denoted by σij), and the covariance matrix
of the state variables ΣΣI is of full rank and allows for general correlations among
the state variables. As shown by Dai and Singleton (2000), this is most general
Gaussian or A5(0) structure that can be defined under the risk neutral measure. Since
λ is linear in the state variables, this Gaussian specification implies that the spread
could potentially be negative. There are several reasons why this assumption may be
appropriate in this context. First, the process λ reflects the differential credit between
the swap and Treasury curves. While swap spreads have been uniformly positive in
the U.S., swap spreads have occasionally been negative in other currencies, and are
actually currently negative in Japan. Allowing λ to take on negative values enables the
model to be applied more generally. Secondly, λ also reflects potential differences in
liquidity. Again, while the liquidity of Treasury bonds has been very high historically,
the liquidity of the swaps market is growing rapidly while the total notional amount
of Treasury debt is not. Finally, Dai and Singleton (2001) argue that Gaussian models
are more successful in capturing the dynamic behavior of risk premia in the class of
affine models.

8Dai and Singleton (2002) show that if this assumption is relaxed, then the parameters
of the model may not be identifiable from historical data and additional assumptions
about objective default probabilities need to be appended to implement the model.
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To study how the market compensates investors over time for bearing credit risk,
it is important to allow a fairly general specification of the market prices of risk in
this affine A0(5) framework. Accordingly, we assume that the dynamics of X under
the objective measure are given by

dX = −κ(X − θ)dt+ ΣdBP , (6)

where κ is a diagonal matrix, θ is a vector, and BP is a vector of independent standard
Brownian motions. This specification has the advantages of being both tractable and
allowing for general time varying market prices of risk for each of state variables.9

Given the risk-neutral dynamics of the state variables, closed-form solutions for
the prices of riskless zero-coupon bonds are given by

D(t, T ) = exp(a(t) + bI(t)X), (7)

where

a(t) = −δ0(T − t) + 1
2
LIβ−1ΣΣIβ−1L(T − t)

− LIβ−1ΣΣIβ−2(I − e−β(T−t))L+
i,j

1− e−(βii+βjj)(T−t)
2βiiβjj(βii + βjj)

(ΣΣI)ijLiLj ,

b(t) = β−1 e−β(T−t) − I L,

and where LI = [1, 1, 1, 1, 0], and I is the identity matrix. Similarly, the prices of risky
zero-coupon bonds are given by

C(t, T ) = exp(c(t) + dI(t)X), (8)

9It is important to note, however, that even more general specifications for the market
prices of risk are possible. In principle, for example, the diagonal matrix κ could be
generalized to allow nonzero off-diagonal terms. Our specification, however, already
requires the estimation of ten market price of risk parameters which approaches the
practical limits of our computational techniques. Adding more market price of risk
parameters also raises the risk of creating identification problems.
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where

c(t) = −δ1(T − t) + 1
2
M Iβ−1ΣΣIβ−1M(T − t)

−M Iβ−1ΣΣIβ−2(I − e−β(T−t))M +
i,j

1− e−(βii+βjj)(T−t)
2βiiβjj(βiiβjj)

(ΣΣI)ijMiMj ,

d(t) = β−1 e−β(T−t) − I M,

and whereM I = [1+γ, 1+γ, 1+γ, 1+γ, 1]. With these closed-form solutions, market
price of bonds can be inverted to solve directly for the latent state variables.

3. THE DATA

Given this framework for modeling the swap and Treasury term structures, the next
step is to estimate the parameters of the model using historical market data. In doing
this, we use one of the most extensive sets of U.S. swap data available, covering the
period from January 1988 to February 2002. This period includes most of the active
history of the U.S. swap market.

The swap data for the study consist of weekly (Friday) observations of the three-
month Libor rate and midmarket constant maturity swap (CMS) rates for maturities
of two, three, five, and ten years. These maturities represent the most liquid and
actively-traded maturities for swap contracts. All of these rates are based on end-
of-trading-day quotes available in New York to insure comparability of the data. In
estimating the parameters, we are careful to take into account daycount differences
among the rates since Libor rates are quoted on an actual/360 basis while swap rates
are semiannual bond equivalent yields. There are two sources for the swap data. The
primary source is the Bloomberg system which uses quotations from a number of swap
brokers. The data for Libor rates and for swap rates from the pre-1990 period are
provided by Salomon Smith Barney. As an independent check on the data, we also
compare the rates with quotes obtained from Datastream; the two sources of data are
generally very consistent.

The Treasury data consists of weekly (Friday) observations of the constant ma-
turity Treasury (CMT) rates published by the Federal Reserve in the H-15 release
for maturities of two, three, five, and ten years. These rates are based on the yields
of on-the-run Treasury bonds of various maturities and reflects the Federal Reserve’s
estimate of what the par or coupon rate would be for these maturities. CMT rates are
widely used in financial markets as indicators of Treasury rates for the most-actively-
traded-bond maturities. Since CMT rates are based heavily on the most-recently-
auctioned bonds for each maturity, CMT rates provide accurate estimates of yields
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for liquid on-the-run Treasury bonds. As such, these rates are more likely to reflect
actual market prices than quotations for less-liquid off-the-run Treasury bonds. Since
CMT rates are based on more-recently-issued bonds, however, they may incorporate
the effects of any special repo financing that may be associated with these bonds. The
possibility that these bonds may trade special in the repo market is taken into account
explicitly in the estimation of the model. The sources of this data are the same as
for swaps. Finally, data on three-month general collateral repo rates are provided by
Salomon Smith Barney, who also provided us with a set of term special repo rates for
June 30, 2000. Data for three-month Treasury bill rates are obtained from the Federal
Reserve.

Table 1 presents summary statistics for the swap and Treasury data, as well as
the corresponding swap spreads. In this paper, we define the swap spread to be the
difference between the CMS rate and the corresponding-maturity CMT rate. Fig. 1
plots the two-year, three-year, five-year, and ten-year swap spreads over the sample
period. As shown, swap spreads average between 40 and 60 basis points during the
sample period, with standard deviations on the order of 20 to 25 basis points. The
standard deviations of weekly changes in swap spreads are only on the order of six
to eight basis points. Note, however, that there are weeks during which swap spreads
narrow or widen by as much as 45 basis points. In general, swap spreads are less
serially correlated than the interest rates. The first difference of swap spreads, however,
displays significantly more negative serial correlation. This implies that there is a
strong mean reverting component to swap spreads.

4. ESTIMATING THE TERM STRUCTURE MODEL

In this section, we describe the empirical approach used in estimating the term struc-
ture model and report the maximum likelihood parameter estimates. The empirical
approach closely parallels that of the recent papers by Duffie and Singleton (1997), Dai
and Singleton (2000), and Duffee (2002). This approach also draws on other papers in
the empirical term structure literature such as Longstaff and Schwartz (1992), Chen
and Scott (1993), Pearson and Sun (1994), Duffee (1999), and many others.

In this five-factor model, the parameters of both the objective and risk-neutral
dynamics of the state variables need to be estimated. In addition, we need to solve
for the value of the state variable vector X for each of the 734 weeks in the sample
period. At each date, the information set consists of observations of four points along
the Treasury curve and five points along the swap curve. Specifically, we use the
CMT2, CMT3, CMT5 and CMT10 rates for the Treasury curve, and the three-month
Libor, CMS2, CMS3, CMS5, and CMS10 rates for the swap curve. Since the model
involves only five state variables, using nine observations at each date provides us with
significant additional cross-sectional pricing information from which the parameters
of the risk-neutral dynamics can be more precisely identified.
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We focus first on how the five values of the state variables are determined. Similar
to Chen and Scott (1993), Duffie and Singleton (1997), Dai and Singleton (2000),
Duffee (2002), and others, we solve for the value of X by assuming that specific rates
are observed without error each week. In particular, we assume that the CMT2,
CMT3, and CMT10 rates, along with the three-month Libor and CMS10 rates, are
observed without error. These rates include the shortest and longest maturity rates
along both curves and are among the most-liquid maturities quoted, and hence, the
most likely to be observed with a minimum of error. Note that Libor is given simply
from the expression for a risky zero-coupon bond,

Libor =
a

360

1

C(t, t+ 1/4)
− 1 , (9)

where a is the actual number of days during the next three months. Since CMT and
CMS rates represent par rates, they are also easily expressed as explicit functions of
the values of riskless and risky zero coupon bonds,

CMTT = 2
1−D(t, t+ T )
2T
i=1D(t, t+ i/2)

, (10)

CMST = 2
1− C(t, t+ T )
2T
i=1 C(t, t+ i/2)

. (11)

Given a parameter vector, we can then invert the closed-form expressions for these
five rates to solve for the corresponding values of the state variables using a standard
nonlinear optimization technique. While this process is straightforward, it is compu-
tationally very intensive since the inversion must be repeated for every trial value of
the parameter vector utilized by the numerical search algorithm in maximizing the
likelihood function.

To define the log likelihood function, let R1,t be the vector of the five rates
assumed to be observed without error at time t, and let R2,t be the vector of the
remaining four observed rates. Using the closed-form solution, we can solve for Xt
from R1t

Xt = h(R1,t,Θ), (12)

where Θ is the parameter vector. The conditional log likelihood function for Xt+∆t is

−1
2
(Xt+∆t − θ −K(Xt − θ))IΩ−1(Xt+∆t − θ −K(Xt − θ)) + ln | Ω | , (13)
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where K is a diagonal matrix with i-th diagonal term e−κii∆t, and Ω is a matrix with
ij-th term given by

Ωij =
1− e−(κii+κjj)∆t

κii + κjj
(ΣΣI)ij .

Let 6t+∆t denote the vector of differences between the observed value of R2,t+∆t and
the value implied by the model.10 Assuming that the 6 terms are independently dis-
tributed normal variables with zero means and variances η2i , the log likelihood function
for 6t+∆t is given by

−1
2
6It+∆t Σ

−1
6 6t+∆t − 1

2
ln | Σ6 |, (14)

where Σ6 is a diagonal matrix with diagonal elements η
2
i , i = 1, . . . , 4.

Since Xt+∆t and 6t+∆t are assumed to be independent, the log likelihood function for
[Xt+∆t, 6t+∆t]

I is simply the sum of Eqs. (13) and (14).

The final step in specifying the likelihood function consists of changing variables from
the vector [Xt, 6t]

I of state variables and error terms to the vector [R1,t, R2,t]I of rates
actually observed. It is easily shown that the determinant of the Jacobian matrix is

given by | Jt |=| ∂h(R1,t)
∂R1,t

| . Summing over all observations gives the log likelihood
function for the data

−1
2

T−1

t=1

(Xt+∆t − θ −K(Xt − θ))IΩ−1(Xt+∆t − θ −K(Xt − θ))

+ ln | Ω | + 6It+∆t Σ
−1
6 6t+∆t + ln | Σ6 | + 2 ln | Jt | (15)

Given this specification, likelihood function depends explicitly on 37 parameters.

From this log likelihood function, we now solve directly for the maximum like-
lihood parameter estimates using a standard nonlinear optimization algorithm. In
doing this, we initiate the algorithm at a wide variety of starting values to insure that
the global maximum is achieved. Furthermore, we check the results using an alter-
native genetic algorithm which has the property of being less susceptible to finding
local minima. These diagnostic checks confirm that the algorithm converges to the

10We assume that the 6 terms are independent. In actuality, the 6 terms could be
correlated. As is shown later, however, the variances of the 6 terms are very small
and the assumption of independence is unlikely to have much effect on the estimated
model parameters.
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global maximum and that the parameter estimates are robust to perturbations of the
starting values.

Table 2 reports the maximum likelihood parameter estimates and their asymp-
totic standard errors. As shown, there are clear differences between the objective and
risk-neutral parameters. These differences have major implications for the dynamics
of the key variables r and λ which we consider in the next two sections. The differ-
ences themselves reflect the market prices of risk for the state variables and also have
important implications for the expected returns from bearing credit and liquidity risk.
We note that the β and κ parameters are all estimated to be positive; the estimation
procedure does not constrain these parameters to be positive. One key result that
emerges from the maximum likelihood estimation is that the five-factor model fits the
data well, at least in its cross-sectional dimension. For example, the standard devia-
tions of the pricing errors for the CMS2, CMS3, CMS5, and CMT5 rates (given by η1,
η2, η3, and η4, respectively) are 12.2, 9.0, 6.4, and 6.0 basis points respectively. These
errors are fairly small and are on the same order of magnitude as those reported in
Dai and Singleton (1997) and Duffee (2002). Note, however, that we are estimating
both the Treasury and swap curves simultaneously. In addition, with the exception
of a few of the parameters of Σ, all of the parameters of the model are statistically
significant based on their asymptotic standard errors.

Table 3 reports the correlation matrix for the state variables implied by the max-
imum likelihood estimates of the parameters defining Σ. As shown, a number of the
correlations are negative. As pointed out by Duffee (2002) and Dai and Singleton
(2002), it is not possible to capture the empirically-observed humped term structure
of interest rate volatility within an affine model unless there are negative correlations
among some of the factors. Thus, our results are consistent with these empirical
properties.

5. THE IMPLIED FINANCING RATE

The instantaneous riskless rate r plays a central role in many continuous-time term
structure models. In addition to being the shortest-maturity rate, r can also be
viewed as the cost of borrowing on short-term riskless loans such as those fully secured
by riskless Treasury bond collateral. Traditionally, the cost of riskless borrowing is
equated to the Treasury-bill rate since this is the rate at which the U.S. Treasury
can borrow short-term funds. Among practitioners, however, the Treasury-bill rate is
generally viewed as a noisy measure of the true riskless rate (see also recent academic
work by Duffee (1996)). The reason for this is the widespread belief that the extreme
liquidity of Treasury bills makes them worth slightly more than the present value of
their cash flows, and hence, that Treasury-bill rates can represent downward biased
estimates of the true cost of riskless borrowing. Some recent papers (for example,
Longstaff (2000)) suggest considering general collateral Treasury repo rates as an
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alternative measure of the riskless rate. The rationale for this measure is that repo
loans that are overcollateralized by default-free Treasury bonds are essentially riskless
short-term loans. Because repo loans are financial contracts rather than securities,
however, they may be less affected by liquidity events such as short squeezes (although
there are many examples of illiquid financial contracts).

A useful feature of our approach is that we can solve for the value of r endoge-
nously and then contrast it with market rates. This allows us to explore directly the
question of whether the implied value of r more closely resembles Treasury-bill rates
or repo rates. In this model, the implied rate r represents the cost of carrying a posi-
tion in the longer-term Treasury bonds defining the CMT rates. If these longer-term
bonds do not have special liquidity value, then r should represent the riskless interest
rate for the market. On the other hand, if longer-term Treasury bonds have liquidity
value, then the estimated value of r takes on the interpretation of a special repo rate
in the sense of Duffie (1996). Specifically, since r is implied from the cross section of
CMT rates (and from the swap rates), r represents the average or typical short-term
special repo rate for the on-the-run bonds in the sample.11 In this case, r may then be
less than the true riskless rate. To reflect the unique role that r plays in this model,
we designate r the implied financing rate.

To make estimates of the implied financing rate comparable with the three-month
general collateral repo and Treasury-bill rates in the sample, we redefine the implied
financing rate slightly to be the yield implied by a three-month riskless zero coupon
bond.12 Using the maximum likelihood parameter values, the values of the state vari-
ables are implied from the data as described previously. Given the values of the state
variables, the value of the riskless bond is obtained directly from the closed-form ex-
pression in Eq. (7). Table 4 reports summary statistics for the three-month general
collateral repo rates, implied financing rates, and Treasury-bill rates along with the
spreads between these rates. Fig. 2 graphs the difference between the implied financ-
ing rate and the Treasury-bill rate, and the difference between the repo rate and the
implied financing rate.

As shown, the implied financing rate generally lies between the general collateral
repo rate and the Treasury-bill rate. On average, the implied financing rate is 8.0
basis points below the repo rate, but 27.6 basis points above the Treasury-bill rate.
The median implied financing rate is 2.9 basis points below the median repo rate, but

11We are using a slightly broader interpretation of the special repo rate since special
repo rates are typically associated with a specific Treasury bond. The advantage of
this approach, however, is that since these implied special repo rates are based on the
dynamics of r, they reflect not only the current liquidity of the bonds, but also the
possibility of future increases in their liquidity. Thus, this interpretation lends itself
well to comparisons with term special repo rates.
12See Chapman, Long, and Pearson (1999) for a discussion of the effects of using
three-month rates as a proxy for instantaneous rates.
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27.5 basis points above the median Treasury-bill rate. These results are consistent
with the view that the general collateral repo rate may be closer to the actual riskless
rate than the Treasury-bill rate.

The spread between the implied financing rate and the Treasury-bill rate can
be interpreted as a measure of the relative liquidity of Treasury bills and on-the-run
Treasury bonds. As shown in Fig. 2, this spread is typically positive, suggesting that
Treasury bills tended to be more liquid than Treasury bonds during much of the sample
period. During the 1990-93 period, however, the liquidity of Treasury bonds and bills
appears to converge. After the hedge fund crisis of 1998, the implied financing rate
actually dips below the Treasury-bill rate, which suggests that longer-term on-the-run
Treasury bonds may have become more liquid that Treasury bills. This could possibly
be related to the fact that the U.S. Treasury no longer auctions one-year Treasury
bills on a regular basis.

Note that our estimates of this liquidity spread are consistent with those estimated
by Amihud and Mendelson (1991) and Kamara (1994) from the differences between
the yields on off-the-run Treasury notes and Treasury bills. For example, Amihud
and Mendelson find that the spread between off-the-run Treasury notes and T-bills
averages 42.8 basis points. Kamara reports an average difference between Treasury
note and bill yields of 34 basis points. Since we use on-the-run bonds while Amihud
and Mendelson and Kamara use off-the-run bonds in computing the liquidity pre-
mium in Treasury bills, one would expect our estimate to be less than theirs by the
amount of the liquidity difference between on-the-run and off-the-run Treasury bonds.
Subtracting our estimate of 27.6 basis points from their estimates implies a liquid-
ity difference between off-the-run and on-the-run bonds of 6.4 to 15.2 basis points.
While we acknowledge that that comparing spreads from different studies (calculated
using different data and time periods) is far from a rigorous analysis, it is intriguing
that these estimates are very consistent with the evidence from term repo rates to be
presented later in this section.

If one is willing to equate the general collateral repo rate with the riskless rate,
then the difference between the repo rate and the implied financing rate could be given
a simple interpretation of the average implied specialness of the on-the-run Treasury
bonds used to compute CMT rates. Fig. 2 shows that this implied specialness varies
significantly over time. During the first part of the sample period, the implied special-
ness is as high as 40 basis points, suggesting that the prices of Treasury bonds have a
large liquidity component. During the 1994-1998 period, the implied specialness of the
Treasury bonds essentially disappears and the implied financing rate approximates the
general collateral repo rate. After the hedge-fund crisis of 1998, however, the implied
specialness of the bonds increases dramatically, reaching a high of more than 75 basis
points near the end of the sample period.

To provide a simple “back-of-the-envelope” estimate of the size of the liquidity or
specialness component in the prices of on-the-run Treasury bonds, we do the following.
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First, we denote the implied specialness (general collateral repo rate - the implied
financing rate) by St, and assume that St follows a standard Ornstein-Uhlenbeck
process. Estimating the parameters of this process by maximum likelihood gives the
following dynamic specification for St,

dS = 5.91812 ( .000842 − S ) dt + .00799 dB, (16)

where B is a standard Brownian motion. For a zero-coupon Treasury bond with
maturity T , the present value benefit or specialness premium from being able to borrow
at the special repo rate rather than the general repo rate equals

D(T ) − D(T ) E exp −
T

0

St dt , (17)

under the assumptions that B is independent of the other Brownian motions in the
term structure model and that the market price of risk for S is zero. Evaluating
this expectation (using the Vasicek (1977) interest rate model) allows us to obtain
estimates of the size of the liquidity or specialness premia in the prices of the Treasury
bonds. Summary statistics for these premia are reported in Table 5.

As shown, the value of liquidity or specialness premium in the prices of on-the-
run Treasury bonds can be substantial. For the two-year Treasury note, the premium
ranges from about four cents to 14 cents during the sample period per $100 notional
amount, which translates roughly to a two to seven basis point effect on the yield.
Thus, there is significant time variation in the value of the premium. For the ten-
year Treasury note, the premium was typically in excess of 42 cents per $100 notional
or roughly six basis points in terms of yield to maturity. During the latter portion
of the sample period, the premium was as high as 57 cents, or eight basis points of
yield. These results indicate that the value of liquidity can represent an important
time-varying component of the value of a Treasury bond.

As an additional diagnostic for the estimated specialness premia, we also use a
set of term special repo rates provided to us by Salomon Smith Barney. This data set
reports the longest term special repo rates for individual Treasury bonds available in
the market as of June 30, 2000, along with the general collateral repo rate for the same
term. The implied premium per $100 value of the bond is given by simply taking the
difference between the general collateral and special repo rates and multiplying by the
term of the repo measured in years. This makes clear that the value of the specialness
premium can be viewed as the interest savings an investor who finances his purchase
of the bond would receive by being able to finance at the special repo rate rather than
the general collateral repo rate. Table 6 reports the special and general collateral rates
for the bonds with maturities of ten years or less along with the implied specialness
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premia. The two-year, five-year, and ten-year on-the-run bonds are denoted by an
asterisk.

As shown in Table 6, a number of Treasury bonds trade special in the repo mar-
ket. For many of these bonds, the difference between the term special and general
collateral repo rates is small, and the implied specialness premium is likewise small.
For the on-the-run bonds, however, the value of the specialness premia is substantial.
In particular, the specialness premia for the two-year, five-year, and ten-year on-the-
run bonds given in Table 6 are 8.0 cents, 50.5 cents, and 64.3 cents respectively.13 This
agrees well with the average implied specialness premia reported in Table 5. Further-
more, as discussed earlier, these estimates of the liquidity premia in on-the-run special
bonds are also in broad agreement with the estimated liquidity premia in Treasury
bills relative to on-the-run bonds shown in Table 5 and the average liquidity premia
for Treasury bills relative to off-the-run bonds reported by Amihud and Mendelson
(1991) and Kamara (1994) (see also Boudoukh and Whitelaw (1993), Longstaff (1995),
Jordan and Jordan (1997), Buraschi and Menini (2001), and Krishnamurthy (2001)).
This provides additional evidence that the model is capturing key features of the
Treasury and swap term structures.14

6. THE SPREAD PROCESS

The spread process λ plays a particularly important role in the Duffie and Singleton
(1997) credit modeling framework. Recall that in this framework, the spread λ may
consist of both default-risk and liquidity components. Since the Libor rate is fitted
exactly in the maximum likelihood estimation, the implied spread λ can be thought of
as the difference between the Libor rate and the implied financing rate. From Eqs. (3)
and (4), λ is a function of all five state variables. Table 2 reports that the maximum
likelihood estimate of the parameter γ is -.07126, which implies that there is a strong
negative relation between the level of λ and the level of the riskless rate r. This
relation is consistent with the negative relation between rates and spreads implied by
a number of fundamental models of credit spreads including Merton (1974), Black
and Cox (1976), and Longstaff and Schwartz (1995) and documented by Duffee (1998)
and others. As discussed earlier, an additional influence on the value of γ could be
taxation, since Treasury bills are not taxable for state income tax purposes while Libor
cash flows are. That γ is negative, however, argues against the hypothesis that swap
spreads are primarily an artifact of differential taxation.

13There is no on-the-run three-year bond on June 30, 2000 because the Treasury had
previously stopped auctioning three-year bonds.

14Conversations with market practitioners indicate that there are occasional periods
during which the specialness premia for some on-the-run Treasury issues implied by
market term special repo rates are on the order of twice those shown in Table 6.
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Fig. 3 graphs the time series of λ for the sample period. As illustrated, the spread
λ varies significantly over time. For example, at the beginning of the sample period,
the spread is on the order of 80 basis points. During the latter 1990s, however, the
spread decreases significantly and becomes nearly zero. The period during which the
spread is nearly zero coincides with the period in which there is little apparent liquidity
component in Treasury bonds as measured by the implied specialness estimate. This
suggests that this period may represent a time when the market viewed both the
liquidity of the swap market as identical to that of Treasury bonds and the probability
that banks quoting Libor rates could default as essentially zero. Although the model
allows the spread to become negative, relatively few observations are actually (slightly)
negative.

In theory, the spread λ could include both default-risk and liquidity components.
Although there is no simple way to decompose the spread into these two components,
it is interesting to compare the spread with several variables which may be correlated
with these components. For example, the spread between the general repo rate and the
implied financing rate can be viewed as a proxy for Treasury liquidity. Similarly, the
spread between the Libor rate and the general repo rate should contain information
about the default risk of banks quoting Libor rates. To explore this, Fig. 4 presents
scatterdiagrams of the credit spread against these two variables. As illustrated, the
correlation between the spread and the proxy for liquidity is much higher than the
correlation between the spread and the proxy for default risk. In particular, the
correlation of the spread with the default-risk proxy is .126 while the correlation of
the spread with the liquidity proxy is .830. Furthermore, the correlation of weekly
changes in the spread with changes in in the default-risk proxy is -.115 while the
correlation of weekly changes in the spread with changes in the liquidity proxy is .558.
Taken together, these results are supportive of the view that much of the variation in
spreads is driven by changes in liquidity.

7. THE MARKET PRICE OF CREDIT RISK

A major objective of this paper is to examine how the market prices the credit risk in
interest rate swaps. To this end, we focus on the premia that are incorporated into
the expected returns of bonds implied by the estimated term structure model. These
premia are given directly from the differences between the objective and risk-neutral
parameters of the model.

To provide some perspective for these results, however, it is useful to also examine
the implications of the model for the term premia in Treasury bond prices. Applying
Ito’s Lemma to the closed-form expression for the value of a riskless zero-coupon bond
given in Eq. (7) results in the following expression for its instantaneous expected
return

17



r + bI(t)((β − κ)Xt + κθ)). (18)

The first term in this expression is the riskless rate and the sum of the remaining terms
is the instantaneous term premium for the bond. This term premium is time varying
since it depends explicitly on the state variables. To solve for the unconditional term
premium, we take the expectation over the objective measure of the state variables
which gives bI(t)βθ.

Now applying Ito’s Lemma to the closed-form expression for the price of the
risky zero-coupon bond given in Eq. (8) leads to the following expression for the
instantaneous expected return

r + dI(t)((β − κ)Xt + κθ)). (19)

The first term in this expression is again the instantaneous risky rate. The sum of
the remaining terms can be interpreted as the combined term premium and credit
premium. To solve for the credit premium separately, we simply take the difference
between the expected return of a risky zero-coupon bond and the expected return on
a riskless zero-coupon bond with the same maturity. As before, the credit premium
is time varying through its dependence on the state variables. Taking the expectation
with respect to the objective measure for the state variables and subtracting the
expression for the unconditional term premium gives (d(t)− b(t))Iβθ.

Focusing first on the unconditional premia, Table 7 reports the unconditional
term premia for riskless zero-coupon bonds with maturities ranging from one to ten
years. Table 7 also reports the unconditional credit premia for risky zero-coupon
bonds with the same maturities. These unconditional premia are also graphed in
Fig. 5. As shown, the mean term premia are positive and monotonically increasing
functions of time to maturity. Mean term premia range from about 97 basis points for
a one-year horizon to about 321 basis points for a ten-year horizon. These estimates
of unconditional term premia are similar to those reported by Fama (1984), Fama and
Bliss (1987), and others.

Table 7 and Fig. 5 also show that unconditional credit premia are positive and
increasing functions of maturity. The mean credit premium for a one-year horizon is
only 0.1 basis points. Thus, there is very little compensation on average for bearing
short-term credit risk. At longer horizons, however, the mean credit premium is much
larger. For example, the mean credit premium for a ten-year horizon is 45 basis
points. The convex shape of the unconditional credit premium curve indicates that
investors require sharply higher credit premia as the maturity of the bond increases.
This pattern contrasts with that observed for the unconditional term premia.

To give some sense of the time variation in term and credit premia, Fig. 6 graphs
these premia for a ten-year maturity zero-coupon bond. As illustrated, the term
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premium displays a significant amount of variation. The term premium is usually
positive, but has generally tended downward throughout the sample period and is
significantly negative at the end of the sample period.

The time series of the credit premium displays a number of surprising features.
Recall that the average credit premium for a ten-year horizon is about 45 basis points.
Fig. 6 shows that the conditional credit premium varies significantly over time and is
often large in absolute terms. Most surprisingly, the credit premium is negative for
nearly one half of the sample period. The credit premium first becomes negative in
approximately 1992 and remains generally negative until the fall of 1998. This is about
when the Russian government defaulted on a large issue of its ruble-denominated debt.
Despite the variation, however, the credit premium appears to be less volatile than the
term premium. Although not shown, a very similar pattern holds for credit premia in
bonds with shorter maturities.

8. CONCLUSION

This paper examines how the market prices the credit and liquidity risk inherent in
interest rate swaps relative to Treasury bonds. A number of key results emerge from
this analysis. For example, we find that on-the-run Treasury bonds have a significant
liquidity component to their value. This liquidity component can be as much as 0.57
percent of the notional amount of a ten-year Treasury bond. The value of this liquidity
component varies significantly over time. In addition, we find that the market prices
the credit risk of swaps. The market price of credit risk, however, varies over time and
was occasionally negative for during the 1990s.

There are a number of possible extensions to this research. For example, the
approach of solving for the implied financing rate could be applied to the term struc-
tures for corporate bond issuers and then used to identify the liquidity components of
their spreads.15 One major puzzle is why the credit premia implicit in swap spreads
were negative during the 1990s, and only became significantly positive again after
the hedge-fund crisis of 1998. Certainly, these results are difficult to reconcile with a
view of the market in which investors are aware of the historical variability in swap
spreads and where expected returns compensate investors for their exposure to risk.
A possible resolution of this puzzle may be that most of the credit risk reflected in
swap spreads may actually represent the liquidity risk of Treasury bonds. From this
perspective, Treasury bonds may be subject to a unique risk which does not affect
pure contracts such as swaps, and may be priced accordingly in the market. Clearly,
further research is necessary to resolve this issue.

15Huang and Huang (2000) focus on the estimation of the liquidity components in
corporate bond prices.
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Table 2

Maximum Likelihood Estimates of the Model Parameters. This table reports the maximum likeli-
hood estimates of the parameters of the five-factor term structure model along with their asymptotic standard
errors. The asymptotic standard errors are based on the inverse of the information matrix computed from
the Hessian matrix for the log likelihood function.

Parameter Value Std. Error

β1 15.89001 1.12163
β2 1.03109 .01902
β3 .29298 .00669
β4 .00004 .00001
β5 .00487 .00028

κ1 10.12189 .78817
κ2 11.67224 .88389
κ3 1.78303 .42228
κ4 .46752 .14111
κ5 1.61688 .38056

θ1 -.00425 .00170
θ2 .00523 .00103
θ3 -.03555 .00458
θ4 .31595 .07564
θ5 -.14303 .00376

σ11 .08453 .00483
σ21 -.00326 .00129
σ22 .05613 .00125
σ31 .00073 .00135
σ32 -.00255 .00045
σ33 .04297 .00108
σ41 -.00354 .00025
σ42 .00001 .00006
σ43 -.00194 .00041
σ44 .00926 .00019
σ51 .00008 .00012
σ52 .00253 .00024
σ53 -.00011 .00022
σ54 -.00157 .00019
σ55 .00516 .00011

δ0 -.23047 .07574
δ1 .15072 .00861
γ -.07126 .00341

η1 .00122 .00025
η2 .00090 .00018
η3 .00064 .00014
η4 .00060 .00011



Table 3

Correlation Matrix for the State Variables. This table reports the instantaneous correlation
matrix for the state variable vector implied by the maximum likelihood estimates of the parameters
in Table 2.

X1 X2 X3 X4 X5

X1 1.0000

X2 -.0579 1.0000

X3 .0169 -.0602 1.000

X4 -.3505 .0209 -.1972 1.0000

X5 .0132 .4226 -.0440 -.2422 1.0000
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