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ABSTRACT

Asset returns have traditionally been modeled in the literature as following continuous-time

Markov processes, and in many cases diffusions. Can discretely sampled financial rate data help us decide

which continuous-time models are sensible? Diffusion processes are characterized by the continuity of

their sample paths. This cannot be verified from the discrete sample path: by nature, even if the

underlying sample path were continuous, the discretely sampled data will always appear as a sequence

of discrete jumps. Instead, this paper relies on a characterization of the transition density of the discrete

data to determine whether the discontinuities observed in the discrete data are the result of the

discreteness of sampling, or rather evidence of genuine jump dynamics for the underlying continuous-

time process. I then focus on the implications of this approach for option pricing models.
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In many instances in financial econometrics, we make inference about a postulated

continuous-time model on the basis of discretely sampled observations. Among potential

continuous-time models, most specifications adopted have been diffusions, although the

literature is more and more frequently allowing for jumps (see Ahn and Thompson (1988), Bates

(1991), Das and Foresi (1996), Duffie, Pan and Singleton (2000), Aït-Sahalia, Wang and Yared

(2001) among others).

A diffusion process is a Markov process with continuous sample paths. Suppose we

observe the process every ∆ units of time, with ∆ not necessarily small. Presented with such a

discrete subsample of the continuous-time path, can we tell whether the underlying model that

gave rise to the data was a diffusion, or should jumps be allowed into the model? Intuition

suggests that the answer should be no. After all, the discrete data are purely discontinuous even

if the continuous-time sample is not so, faced with two discontinuous samples, how could we

ever rule out that one came from a diffusion but not the other? It turns out that this question is

not as hopeless as it first sounds. A finer look reveals that there are different degrees of

discontinuity in the discrete observations, some compatible with the continuity of the underlying

sample path, some not.

The approach I use relies on identifying a necessary and sufficient restriction on the

transition densities of diffusions, at the sampling interval of the observed data. The theory is

based on Karlin and McGregor (1959b)’s notion of coincidence probabilities combined with

crossing arguments. The total positivity restriction characterizes the continuity of the

unobservable complete sample path. It must be satisfied by the transitions densities of a diffusion

and is valid for every sampling interval including long ones.

In a nutshell, the argument is based on the fact that if a diffusion on the real line starts

below another diffusion, it cannot finish above the second one without their sample paths having

crossed at least once.1 Since the discrete data reveal the transition density at whatever sampling

interval is available, one can actually discriminate between diffusions and non-diffusion Markov

processes on the basis of their discrete subsamples.

1 An alternative property is that the eigenvalues of the infinitesimal generator of the diffusion are all real

and nonnegative (see Mandl (1968)). This property has been exploited by Florens, Renault and Touzi

(1998). As a practical matter, however, eigenvalues and eigenfunctions of generators can be difficult to

calculate. The first eigenvalue and eigenfunctions can be determined only in certain special cases (see e.g.,

Aït-Sahalia (1996a) and Hansen, Scheinkman and Touzi (1998)).
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An essential property of the characterization is that if the transitions over an interval of

length ∆ satisfy the inequality characterization, then longer transitions will satisfy it as well. That

is, we only need to focus on a single criterion, rather than attempt to verify a large number of

conditions, to determine whether the process is a diffusion. Furthermore, the criterion can

determine whether a discrete transition function is compatible with some diffusion without

requiring that a list of potential candidate diffusions be exhibited.

To provide some intuition, I give the corresponding version of the criterion for discrete-

state models, both for continuous-time Markov chains and discrete-time trees. In a discrete-state

world, by definition, all the state changes are jumps and the appropriate notion of continuity

distinguishes between small or continuous jumps, which are those from one state to an

immediately adjacent one, from large or discontinuous jumps, which are those from one state to

a nonadjacent one. One consequence for trees in option pricing is that binomial and trinomial

trees with branches continuously spaced are inappropriate as approximations to jump-diffusions,

despite their common use in that context.

Finally, I employ the criterion function to determine whether the risk-neutral transition

density of the S&P 500 implied by observed option prices is compatible with an underlying

continuous-time diffusion for the index, or whether jumps should be included. The latter happens

to be the case empirically. I examine the consequences of this finding for the implied diffusion,

implied tree and Edgeworth expansion approaches that are widely used in practice to price and

hedge equity derivatives. Another possible empirical motivation, which is not pursued here,

would be to substantiate, or invalidate, the approach of modeling the dynamics of the short term

interest rate, or other factors taken individually, as continuous-time diffusions: should they be

diffusions, or something else within the Markov class?

The paper is organized as follows. Section I examines the implications of the continuity

of the sample paths for the discrete data and obtains a necessary and sufficient characterization

of the transition density of diffusions. Section II interprets this criterion in terms of discrete-state

processes. Section III gives two examples and two consequences. Section IV focuses on the

dynamics implicit in S&P 500 option prices. Section V summarizes the results and concludes.
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I. Implications of the Continuity of the Sample Paths for
the Discrete Data

A. Sample Path – Level Characterization of Continuity

I start with some mathematical preliminaries and by establishing the notation used

throughout the paper. Let us assume that the process { }tr , t 0≥ is Markovian. That is, the

continuous-time process { }tr , t 0≥ is defined on a probability space ( ), ,PW ¡ , takes values in

D Õ � and, with ( )sr : s t∫ s £tF , assume that

( ) ( )t s t s tP r I | P r I | r
+ +
Œ Œ=tF (1)

for all t, s ≥ 0 and open interval I in D. This by itself can be an interesting hypothesis to examine

(see the companion paper Aït-Sahalia (2000)), but will be maintained throughout this paper. We

are then interested in learning, from discrete observations { }0 2 nr , r , r , , r…

D D D
, whether it belongs

to the smaller class of diffusion processes. Note that I restrict attention to univariate processes,

so the state space is an interval D on the real line.

Let ( )p s, y | t, x be the conditional density of rs=y given rt=x. This is the transition

function of the process. To be able to infer the transition function from a time series of

observations on r, we must assume that the joint densities of the process are time-homogenous.

That is, each pair of observations (rt+∆, rt) at each date t are drawn from the same joint density,

which I denote as ( )p , y,xD and is independent of t. This assumption lets us in effect transform

what would have been a single data point, the observed path, into repeated observations on the

pair (rt+∆, rt) drawn from a common distribution (see Figure 1).

Then let ( )p , y | xD denote the transition function of the process over a time interval of

length ∆, i.e., the conditional density of rt+∆=y given rt=x. Without time-homogeneity, the

transition function would be ( )p t , y | t, x+ D , i.e., a function of t and ∆ separately. This does not

mean that we are only considering stationary processes. Time-homogeneity is necessary for the

stationarity of the process, i.e., all finite dimensional distributions being identical no matter

where taken in time, but not sufficient. For instance, a Brownian motion is time-homogenous but

of course not stationary.

I further assume that the sample paths of r are right-continuous, so the finite-dimensional

distributions determine the probabilities of all events, and that r is a strong Markov process. That

is, r restarts at the first passage of a given point and retains its transition densities afterwards.
More precisely, recall that sF is the σ-algebra generated by { }tr ,0 t s£ £ . A stopping time of the
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process { }tr , t 0≥ is a random variable τ such as the events { }tt £ belong to tF for all t≥0.

Then { }tr , t ≥ t is a Markov process independent of tF and has the same transition densities as

before τ. A sufficient condition on the transition density p of the process which guarantees that it

is a strong Markov process is Feller’s property: for every bounded continuous real function f,

and for every t>0,
D

x f (y)p(t, y | x)dy� Ú defines a continuous function on D (see Ray (1956)

and Friedman (1975), Theorem 2.2.4).

Note also that the transition densities of a Markov process must satisfy the Chapman-

Kolmogorov equation

( ) ( ) ( )
r

r
p 2 , y | x p , y | z p ,z | x dzD = D DÚ (2)

for every x in D, Y⊂D, and ∆>0. This fact will be handy later.

Then a diffusion is a process satisfying the assumptions above and whose sample paths

are continuous everywhere, except possibly for jumps from the boundaries of the state space D.

B. Transition – Level Characterization of Continuity

Given that the full path is not observable, the first step in the approach will be to move

away from the sample path characterization of diffusions that was just given, and examine what

can be said about their transitions. Since the process is Markovian, and its transitions are time-

homogenous, the information contained in the discrete data can be summarized through the

transition function p(∆,y|x). The following example describes what an easy solution to the

problem would be, if it were available. Suppose that we find, using any available data analysis

technique, that the discrete data can be represented accurately by the conditional density

( )2
t t 0 1 t 0r | r ~ N r ,
+D

g + g d (3)

i.e., a Gaussian transition density with affine mean and constant variance.

Can we then construct a continuous-time diffusion which, based on the empirical

evidence (3), could have generated the data as a discrete sample off its continuous sample path?

The answer is yes. Consider the diffusion

( )t t tdr r dt dZ= k a - + s (4)
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for which p(∆,y|x) is Gaussian with [ ]t tE r | r
+D

= ( )t tr r exp[ ]+ a - -kD and [ ]t tV r | r
+D

=

2 (1 exp[ 2 ]) /(2 )s - - kD k . Now set 1Ln[1 ]/k = - - g D , 0 1/(1 )a = g - g and 2
s =

2
0 12 Ln[1 ]- d - g

2
1/ [(1 ) ]- g D : the continuous-time diffusion is fully determined. Based on the available data, we

cannot rule out (4) as a continuous-time model that could have generated the discrete data.

Unfortunately, such explicit calculations are impossible to conduct in most cases, since,

in general, one cannot compute in closed-form the transition function p(∆,y|x) implied by a

particular diffusion model, or vice versa, although very accurate closed-form approximations can

be formed, see Aït-Sahalia (1997, 1999). On the other hand, this explicit calculation, whenever

available, provides a constructive answer to the problem in that not only do we get to answer that

a diffusion could have generated the discrete data, but we also get to identify that diffusion.

Alternatively, if we knew what specific diffusion to look for, i.e., had an idea as to what

functions µ and σ2 to use in ( ) ( )t t t tdr r dt r dZ= m + s , then we could place a restriction on the

discrete transitions of the process for any ∆, even without knowing in closed-form what its

transition density is. As shown in Aït-Sahalia (1996b), time-homogeneity of the transition

density can be exploited by re-writing the forward and backward Fokker-Planck-Kolmogorov

equations: note that by stationarity ( )p s, y | t, x = ( ) ( )p s t, y | 0,x p s t, y | x- ∫ - for any s > t > 0

and therefore p s p t∂ ∂ = -∂ ∂ . We can then eliminate derivatives of p with respect to ∆ = s-t,

i.e., the left hand side terms in:

( )
( ) ( )( ) ( ) ( )( )

( )
( ) ( )( ) ( ) ( )( )

2
2

2

2
2

2

p , y | x 1
y p , y | x y p , y | x

y 2 y

p , y | x 1
x p , y | x x p , y | x

x 2 x

Ï∂ D ∂ ∂
= - m D + s DÔ ∂D ∂ ∂Ô

Ì
∂ D ∂ ∂Ô = m D + s DÔ ∂D ∂ ∂Ó

(5)

for all x and y in the interior of D since the two right hand sides must be equal.2 So the terms that

could not be estimated with discrete data, i.e., the derivatives p∂ ∂D , are now gone. But if we

wish to test whether p(∆,y|x) could possibly be the discrete transition function from a diffusion,

(5) is of no help, since obviously we cannot examine every possible pair of functions (µ,σ2),

unless by sheer luck we happened to stumble upon the right choice for (µ,σ2).

2The rationale for eliminating the term ∂p / ∂∆ is that it this term cannot be estimated given data sampled at

a fixed interval ∆. We can only estimate p(∆|y,x), p(2∆|y,x), etc., and their derivatives with respect to the

starting and ending state levels x and y.
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C. Implications of Continuity for Small Time Transitions

So, what can be said about the transition densities of a diffusion without pre-committing

to specific choices of (µ,σ2)? In other words, does the fact that the underlying model is a

diffusion –any diffusion-- imply that its transition densities will have distinguishing features? I

will maintain that the transition functions of the process preserve the probability, in the sense

that

( )
y x0

lim p , y | x dy 1
- £eDÆ

D =Ú (6)

for any fixed ε>0 and x in the interior of D. For technical reasons, let me also assume throughout

that the convergence in equation (6) occurs at least at some unrestricted polynomial rate.3

The natural first approach is to examine whether the small time characterizations of

continuity, i.e., those valid in the limit where ∆ goes to zero, extend to any discrete time interval.

For instance, it is known that the sample paths of r are almost surely continuous functions of t if

and only if, for every compact interval I DÕ and ε>0, Lindeberg’s condition

( )
y x0

1
lim p , y | x dy 0

- >eDÆ

D =
D
Ú (7)

is satisfied uniformly in x on D (see Ray (1956)). This condition maps out the continuity of the

sample path into a bound on the size of the probability of leaving a given neighborhood in the

amount of time ∆; intuitively, this probability must be small as ∆ goes to 0 if the sample paths

are to remain continuous. Condition (7) says how small this probability must be as ∆ gets

smaller: the answer is o(∆), that is, negligible compared to ∆. Condition (6) only says that it is of

order o( )α∆ for some α>0. Condition (7) says that α must be greater than or equal to one.

In terms of deciding whether the discrete data came from a diffusion, condition (7)

represents a step forward compared to the notion of continuity of the sample path. However it is

also clear that this condition still cannot be used as a basis of a test for diffusions. Indeed, unless

we are presented with ultra-high frequency data, we do not have the necessary data to examine

3 This means that, as ∆ goes to zero, the difference between the integral on the right hand side of equation

(6) and its limit one is of order o( )aD , for some α>0.
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the behavior of the transition densities as the sampling interval ∆ goes to zero.4 Condition (7)

does not restrict the observable transition function ( )p , y | xD for the fixed sampling interval of

the dataset.5 An alternative is to focus on a sufficient characterization for the continuity of

sample paths such as Kolmogorov’s criterion: if there exist three constants β, γ, C >0 such that

as ∆ goes to 0

1
t tE r r C

b +g
+D

È ˘- £ D
Î ˚

(8)

then the process r (has a version which almost-surely) has continuous sample paths (see e.g.,

Friedman (1975), Theorem 1.2.2). For the same reason, this criterion can not be used either to

form a test: it only restricts the transitions of the process over infinitesimal instants6 and does not

extend to longer time intervals.

How about checking whether the density is determined by its conditional mean and

variance? The Markov process r is entirely determined by the two functions µ and σ2 defined by

the limits

( ) ( ) ( )

( ) ( ) ( )

y x0

2 2

y x0

1
lim y x p , y | x dy x

1
lim y x p , y | x dy x

- <eDÆ

- <eDÆ

Ï - D = mÔÔ D
Ì
Ô - D = s
Ô DÓ

Ú

Ú
(9)

uniformly for x in the interior of D (see e.g., Feller (1971), Section X.4). But this is equally

unhelpful, as it is only true in the limit where ∆ goes to 0. If all discrete transitions were

characterized by the first two moments, then they would all be Gaussian.

4 Testing whether the underlying data generating process is a diffusion might not be a sensible thing to do

with ultra-high frequency data given market microstructure noise (such as bid-ask bounces). This might be

less of an issue with decimalization.

5Since the Markov property is assumed, we can imply the shorter transitions p(∆/m,y|x), m≥2, from the

longer ones, p(∆,y|x) by solving equation (2), i.e., solving p ∆, y | x( ) = p ∆ / 2, y | z( )p ∆ / 2, z | x( )
r

r
∫ dz for

the function p(∆/2,y|x). To base a test on the behavior of p(∆/m,y|x) as m→∞ would necessitate that this

difficult numerical task be repeated a number of times.

6For alternative characterizations, all sharing a local character in ∆, see Gikhman and Skorohod (1969),

section IV.5.
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D. Transition – Level Characterization of Continuity for Any Sampling Interval

In light of the above discussion, we would like a characterization of diffusions that

satisfies the following criteria: (D1) the characterization must not rely on observing very fine

transitions in time of the process; (D2) unlike the approaches suggested just above, it must not

require that either we already know what candidate drift and diffusion functions (µ,σ2) to use or

that the discrete transition happen to match those of the small set of diffusions for which a

closed-form solution is available; (D3) it should be based on a necessary and sufficient

characterization of diffusions; (D4) and require that a single property be checked, for the

particular sampling interval ∆ of the available data; (D5) but nevertheless be sufficient to ensure

that the property is satisfied for the longer observable time intervals. By that, I mean that if we

observe the process at say, the daily frequency, and verify that the property holds at that

frequency, then it should automatically be the case that the property is also satisfied at the lower

observable frequencies of one observation every two days, or one every three days, etc.

So, what works? The approach that I propose to use to discriminate between diffusions

and non-diffusions on the basis of discrete-time information relies on total positivity of order 2

property of the transition function of a diffusion (see Karlin and McGregor (1959b)). This

approach leads to identifying and then verifying the necessary and sufficient condition that the

function p(∆,y|x) must satisfy if it were to correspond to the discrete transition function of a

continuous-time diffusion, without ever requiring that we identify in closed-form the diffusion.

Unless the transition function p(∆,y|x) fails to satisfy that condition, after accounting for the

sampling noise of the estimator if any, the hypothesis that the discrete observations came from a

diffusion will not be rejected.

What follows is a heuristic approach that delivers the main result of this theory.

Consider two processes { }tr , t 0≥ and { }tr , t 0≥� on � , having the same transition probability

densities p, but otherwise independent. Suppose that tr x= , while tr x=� � with x x< � . The

essential consequence of the continuity of sample paths is that, at any future date t+∆, r cannot

be above r� without their sample paths having crossed at least once between t and t+∆. Consider

two potential values at t+∆, y y< � , and two sets Y and Y� such that all values in Y are smaller

that those in Y� . The probability that tr Y
+D

Œ and tr Y
+D

Œ
�

� , without their sample paths having

ever crossed between t and t+∆ is (see Figure 2):
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[ ]{ }( )
( )

[ ]{ }( )

t t t t

t t t t

t t t t

Pr r Y, r Y, t, t , r r r x, r x

Pr r Y, r Y | r x, r x

Pr r Y, r Y, t, t / r r r x, r x

+D +D t t

+D +D

+D +D t t

Œ Œ Œ

Œ Œ

Œ Œ Œ

"t + D π = =

= = =

- $t + D = = =

�

� � � �

�

� � �

�

� � � �

(10)

To evaluate the second term on the right-hand side, let τ be the first coincidence time

between t and t+∆, i.e., the smallest τ such that r r
t t
= � (see Figure 3). Of course, we do not

actually observe the time τ, since we do not see what happens between t and t+∆; we simply

know that τ exists as part of the event to be evaluated, and that τ is a stopping time by the strong

Markov property discussed above.

By the reflection principle and the communality of distributions, after time τ, we can no

longer tell which is r and which is r� . Therefore we can interchange them as

[ ]{ }( )
[ ]{ }( )

( )

t t t t

t t t t

t t t t

Pr r Y, r Y, t, t / r r r x, r x

Pr r Y, r Y, t, t / r r r x, r x

Pr r Y, r Y | r x, r x

+D +D t t

+D +D t t

+D +D

Œ Œ Œ

Œ Œ Œ

Œ Œ

$t + D = = =

= $t + D = = =

= = =

�

� � � �

�

� � � �

�

� � �

(11)

where the last equality follows since the sample paths r and r� must have crossed between t and

t+∆, for r, having started below r� at t, to finish above it at t+∆. This fact intrinsically

characterizes the continuity of the sample paths. For instance, if the process can have jumps, r

and r� may reverse order without ever crossing (see Figure 4).

Incidentally, Figures 3 and 4 illustrate why the argument is inherently univariate. If the

process can evolve in three dimensions as opposed to being restricted to the plane, then the two

replications r and r� can interchange order without jumping, and without ever crossing as they do

in Figure 3. Just imagine in Figure 4 that, instead of representing a jump on the plane, the dotted

part of the path of r� represents a bridge that goes continuously over, or under, the path of r. In

that situation, the two paths of r and r� remain continuous throughout, yet the two processes have

reversed order without crossing.

Back now to the univariate case, by independence of r and r� , we have

( ) ( ) ( )

( ) ( ) ( )

t t t t

t t t t

Pr r Y, r Y r x, r x P ,Y | x P ,Y | x

Pr r Y, r Y r x, r x P ,Y | x P ,Y | x

+D +D

+D +D

Œ Œ

Œ Œ

Ï = = = D DÔ
Ì

= = = D DÔ
Ó

� �

� � � �

� �

� � � �

(12)
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where ( ) ( )
y Y

P ,Y | x p , y | x dx
Œ

D ∫ DÚ denotes the common cumulative distribution function of

the two processes.

Consequently the probability that tr Y
+D

Œ and tr Y
+D

Œ
�

� , without their sample paths

having ever crossed between t and t+∆, is

( ) ( ) ( ) ( )P ,Y | x P ,Y | x P ,Y | x P ,Y | x 0D D - D D >� �

� � . (13)

The inequality follows from the fact that the probability of any possible event is positive. For the

inequality to be strict, assume that every transition is possible in the sense that ( )P ,Y | x 0D > for

every x in D, Y⊂D, and ∆>0, i.e., the process is strict. Otherwise, replace strictly greater by

greater or equal to in inequality (13). Intuitively, this inequality states that the probability that the

relative ranking of r and r� remain unchanged, between t and t+∆, is greater than the probability

that their ranking be reversed. If the process is a diffusion, then inequality (13) must be satisfied

for every x x< � and Y Y<
� in the state space.

Assuming that the density function ( )p , y | xD is continuous in y for each x, it follows

from inequality (13) that the transition function of any diffusion process must obey the inequality

( ) ( ) ( ) ( ) ( ), y, y | x,x p , y | x p , y | x p , y | x p , y | x 0d D ∫ D D - D D >� � � � � � (14)

for any x x< � and y y< � in D.

E. Properties of the Transition – Level Characterization of Continuity

I now verify that the total positivity characterization (14) of diffusions satisfies the

criteria that I had set earlier to be the basis of a discriminating criterion for discretely sampled

diffusions. Firstly, inequality (14) is valid for any ∆, not just infinitesimally small ones, so (D1)

is satisfied. Secondly, (D2) is obviously verified as well: unlike condition (5), inequality (14)

makes no reference to the unknown µ and σ2 functions of the diffusion process. I now check that

this inequality is not only necessary, but also sufficient to characterize a diffusion process:

Proposition 1: If its transition densities satisfy the inequality (14) for every ∆>0, then the

process is a diffusion.

Therefore, if inequality (14) holds for all ∆>0, then the process r has (almost surely)

continuous sample paths. Hence the characterization of diffusions (14) satisfies (D3).

Determining whether the discrete data could have come from a diffusion will be based on
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checking the property (14), or its equivalent forms (13) or (15) below, for the sampling interval ∆

corresponding to that of the data, thereby satisfying (D4). All that remains to be proved is that

(D5) is satisfied, i.e.:

Proposition 2: If inequality (14) holds for the sampling interval ∆, then it must hold for longer

observable time intervals as well.

Thus all five requirements are satisfied. Finally, condition (14) can be expressed in even

simpler terms when the transition function is smooth:

Proposition 3: Assume that p(∆,y|x) is strictly positive and twice-continuously differentiable on

D×D. Then (14) is equivalent to:

2

Ln( p( , y | x )) 0
x y

∂ ∆
∂ ∂

> for all ∆>0 and (x,y)∈D×D. (15)

In the rest of the paper, I will refer to inequality (15) as the “diffusion criterion.” Given a

transition function p(∆,y|x), satisfying (15) is equivalent to the proposition that the underlying

continuous-time model that gave rise to those discrete transitions was a diffusion. For a given ∆,

finding a pair of (x,y) where the criterion fails is sufficient (absent sampling noise) to reject the

hypothesis that the underlying model could have been a diffusion.

One final remark. We know that if X is a diffusion, then any deterministic, twice-

continuously differentiable and strictly monotonic function of X will also be a diffusion.7 It

would be desirable for the diffusion criterion to also satisfy this invariance property. This is

indeed the case. Namely, we have that:

Proposition 4: The criterion (15) is invariant with respect to Itô transformations of the process.

7 Such transformations are commonly used in finance, for instance to go from an arithmetic Brownian

motion to a geometric Brownian motion, from a Cox-Ingersoll-Ross square-root process to a Bessel

process, from a CEV process (with geometric mean) to a Bessel process, etc. Indeed, most closed-form

solutions we rely on are obtained through such a transformation.
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II. Interpretation: Discrete-State Processes

A. Continuous-Time, Discrete-State Markov Chains

To help interpret condition (14), or equivalently (15), and understand its implications for

trees in derivative pricing, consider a continuous-time, stationary, Markov chain that can only

take countable discrete values, say, {...,-1,0,1,...}. When does such a process have continuous

sample paths? Obviously, the notion of continuity of a sample path depends on the state space: in

� , this is the usual definition of a continuous function. More generally, by continuity one means

continuity with respect to the order topology of the state space of the process. In a discrete state

space, the appropriate notion of continuity of the chain’s sample paths is the following intuitive

one: it constraints the chain to never jump by more than one state at a time, either up or down. It

turns out that the restriction on the chain’s transition probabilities analogous to (14)

characterizes precisely this form of continuity.

Specifically, assume that the Markov chain is right-continuous and let J0,J1,... be the

jump times of the chain X= t t 0{X }
≥

, defined by

{ }n0 n 1 n t JJ 0, J inf t J / X X
+

= = ≥ π (16)

for n=0,1,..., with the convention that { }inf ∆ = • (see Figure 5). Consider now the restriction

for the transition matrix of the Markov chain that is analogous to condition (14) for the

conditional density of a diffusion, namely

( ) ( ) ( )

( ) ( )

t t t t

t t t t

, j, j | i, i Pr X j X i Pr X j X i

Pr X j X i Pr X j X i 0

� � � �

� �

+D +D

+D +D

d D ∫ = = = =

- = = = = ≥

(17)

for all quadruplets of states such that i i<
� and j j<

� , and all real ∆>0 (by stationarity, the

probabilities above are independent of t). The inequality is strict if we further assume that

t tPr (X j X i) 0
+D

= = > for every pair of states (i,j) and every ∆>0. Then we have:8

Proposition 5: Condition (17) is equivalent to the restriction that X can only jump from a given

state to one of the two immediately adjacent states.

That is, for every state i, there exists i0 1£ l £ such that:9

8 See Karlin and McGregor (1959a) for birth and death Markov chains.
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( )
i

n 1 n i

if j i 1

Pr Y j Y i 1 if j i 1

0 otherwise
+

λ = +
= = = − λ = −



(18)

For instance, the example in Figure 5 violates the continuity condition (17) at jump times J2 and

J3.

B. Discrete-Time, Discrete-State Trees

If we not only discretize the state space but also discretize the time dimension, then the

natural representation of the dynamics of the process takes the form of a tree. Let Yn in this case

denote the state of the process after n moves, i.e., Yn=Xn∆. In full generality, a tree is multinomial

so that if Yn=i is the state after n moves, then Yn+1 can take any one of the possible states. As in

the continuous-time Markov chain with transitions described by equation (18), continuity now

means that the only possible moves occur to the immediately adjacent states or, in tree parlance,

nodes. That is, binomial and trinomial trees are the natural approximation of a diffusion since by

construction they restrict moves to take place to the immediately adjacent nodes. Conversely,

binomial and trinomial trees with branches spaced with the same order of magnitude cannot

approximate discontinuous processes such as jump-diffusions and more general Lévy processes

despite the fact that they are commonly used in practice to price derivatives written on assets

with discontinuous price dynamics. Basically, a jump is a move by one than one state at a time

and, from what precedes, allowing for the possibility of jumps requires non-zero probabilities of

moves to non-adjacent nodes (see Figure 6). I will explore below the implications of this for

option pricing models based on binomial trees.

III. Some Examples

For now, I return to the continuous-state case of diffusions and give a few examples

illustrating the applicability of the criterion function (15) to discriminate between diffusion and

non-diffusion continuous-time models on the basis of their discrete-time transition functions.

9 Note that λi is independent of n by stationarity.
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A. Example 1: Brownian Motion vs. Cauchy Jump Process

The simplest possible illustration of the applicability of criterion (15) to distinguish a

diffusion from a non-diffusion Markov process is provided by contrasting a Brownian motion,

which has continuous sample paths, with a Cauchy process, which jumps.10 The Brownian

motion density

( ) { }2 1/ 2 2 2p , y | x (2 ) exp (y x) (2 )-

D = ps D - - s D (19)

satisfies (15), since 2 2Ln(p( , y | x)) x y 1 ( ) 0∂ D ∂ ∂ = s D > . However, the Cauchy density

( ) ( )2 2p , y | x ( ) (y x)D = D p - + D (20)

does not satisfy (15) --nor, consequently, (7)-- since

2 2 2

2 2

Ln(p( , y | x)) (y x)
2 0

x y (y x)

Ê ˆ∂ D D - -
= <Á ˜∂ ∂ D + -Ë ¯

(21)

for y sufficiently far apart from x: y x- > D . However, being Markov processes, they of course

both satisfy the Chapman-Kolmogorov equation (2). They also satisfy the conservation

requirement (6). Figure 7 plots the transition densities and the diffusion criterion (15) for these

two models.

B. Example 2: Variance Gamma Lévy Process

This example illustrates that the approach applies to all non-diffusion processes – not

just the usual Poisson jumps, but also more general Lévy jump processes. The Variance Gamma

Lévy process is obtained by evaluating a Brownian motion at a random time with Gamma

distribution. The result is a pure jump Lévy process. To create a model for stock prices, let

( )t 0 tS S exp t VG= m + where
ttVG BM

g
= . BMt is an arithmetic Brownian motion with drift θ

and diffusion σ2, and γt is a random variable with a Gamma distribution with mean one and

variance ν. The transition density of t tX Ln(S )= given X0 is given by (see Madan, Carr and

Chang (1998)):

10 While both models have time-homogenous transition densities, neither model is stationary.
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( )
( )

( )

1
2 2 2 22 2 4

12 2 2/
2

2exp z(y | x) / z(y | x) ( 2 / )z(y | x)
p , y | x BesselK

2 /2 /

D
-

n

DD n
-

n

Ê ˆq s Ê ˆ q + s n
D = Á ˜Á ˜ Á ˜q + s n spsn G D n Ë ¯ Ë ¯

(22)

where z(y | x) y x= - - mD and BesselKα is the modified Bessel function of the second kind of

order α. Of course, this density violates the diffusion criterion.

IV. The Implied Model from Option Prices: Is It a Diffusion?

A. The Transition Density Implicit in Option Prices

I now turn to the empirical question of determining whether the dynamic model for the

underlying asset that is implied by observed option prices could be a diffusion. Suppose that we

are interested in pricing at date zero a derivative security written on a traded underlying asset

with price process X tt | ≥ 0l q , and with payoff function Y
D

Xb g at some future date ∆. Let us

assume for simplicity that the riskless rate r and the dividend yield δ paid by the asset are

constant. It is well-known that when markets are dynamically complete, the only price of the

derivative security that is compatible with the absence of arbitrage opportunities is

( ) ( ) ( )r r
0 0 0 00

P e E X X x e x p , x | x dx
+•

- D - D

D
È ˘= Y = = Y DÎ ˚ Ú (23)

where p(∆,x|x0) is the transition function (or risk-neutral density, or state-price density) induced

by the dynamics of the underlying asset price.

Throughout this section, whenever I refer to the implied dynamics, or the implied model,

I refer to their risk-neutral version. Note however that because the risk-neutral and actual

probability measures assign zero probability to the same events (they have the same null sets),

the underlying asset does not jump under one set of probabilities if and only if it does not jump

under the other. So if we do not reject the null hypothesis that the underlying asset is a diffusion

under the risk-neutral measure, then it must also be a diffusion under the actual probability

measure. Conversely, if we reject it under the risk-neutral measure, then the underlying asset

must be allowed to jump under the actual probability measure as well.

The Black-Scholes option pricing formula is the prime example of equation (23), when

the underlying asset is a diffusion with σ(x) = σ x, σ constant. The corresponding transition

density is the lognormal density
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( ) ( ) ( ){ }
22 2

BS 0 0

1
p ,x | x exp Ln(x / x ) (r / 2) 2

2 x
D = - - - d - s D s D

pDs
(24)

and so the integral in equation (23) can be evaluated explicitly for specific payoff functions, such

as the call option’s ( ) ( )X max 0, X K
D D

Y = - for a fixed strike price K:

( ) ( ) ( ){ }r
BS 0 1 2H ,K, x , e F d K d- D

D
D s = F - F (25)

where { }0F x exp (r )
D
= - d D is the forward price for delivery of the underlying asset at date ∆

and ( )2 1/ 2
1 0d Ln(K / x ) ( / 2) ( )= + s D sD , 1/ 2

2 1d d= - sD .

At this point, the common practice when pricing and hedging equity options is to

describe the market prices of call options for a given maturity ∆ as given by the parametric

equation (25) except that the volatility parameter for that maturity is a smooth function

( )IMP K / F
D

s of the option's moneyness M K / F
D

= :

( ) ( )( )0 BS 0 IMPH ,K, x H ,K,x , K / F
D

D = D s . (26)

The function ( )IMP K / F
D

s is often known as the “implied volatility smile.”  A direct

differentiation of the basic no-arbitrage pricing equation (23) with respect to the strike price,

yields the corresponding risk neutral density.11

In the present setup, the only transition function compatible with the observed option

prices H must be

( ) ( )

( )( )

2
r

0 02

2
r

BS 0 IMP2

22 2 2 2
r BS BS BS BSIMP IMP IMP

2 2 2 2 2

p ,K | x e H ,K,x
K

e H ,K,x , K / F
K

H H H Hd d d2 1 1
e

F dM K dMK F F dM

D

D

D

D

D D D

∂
D = D

∂
∂

= D s
∂
Ï ¸∂ ∂ ∂ ∂s s sÔ ÔÊ ˆ= + + +Ì ˝Á ˜Ë ¯∂ ∂s ∂s∂ ∂sÔ ÔÓ ˛

(27)

11 See Banz and Miller (1978) and Breeden and Litzenberger (1978), and Aït-Sahalia and Lo (1998) for a

nonparametric version.
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B. Telling Whether the Implied Dynamic Model is a Diffusion

I now turn to an empirical implementation of formula (27) with option price data. Option

prices, or equivalently their implied volatilities, give us the function H in equation (26). Then

equation (27) gives us the transition function for one maturity ∆ implicit in the cross-section of

option prices at one point in time. I will then check whether this transition function is compatible

with an underlying diffusion model for the asset price by applying the criterion (15) to that

implied transition function.

The data come from the Chicago Board Options Exchange (CBOE) and represent price

quotes for call and put options on the Standard & Poor's 500 Index (SPX). The options are

European, and to illustrate the methodology, I will focus on a single randomly chosen trading

day, March 19, 2001. I repeated the experiment on different days, drawn from different time

periods, to insure the robustness of the findings; the results are similar. I report the results for the

most complete cross-section of traded strikes that day, the June 2001 expiration. Table I contains

the full dataset used in the empirical application.

The raw data present three challenges. First, future dividends are not observable; second,

S&P 500 futures are traded on the Chicago Mercantile Exchange, and cannot easily be time-

stamped synchronously with the options to obtain F∆; and third, there are often substantial

differences in the traded volume and open interest in the call and put with the same strike and

maturity, except near the money where both are usually very liquid. I solve the first problem by

relying on the spot-forward parity relationship under which the left hand side of equation (26)

depends on the dividend yield δ only through F∆. To solve the second problem, I use prices of at-

the-money options, where both the put and call are liquid, to infer the value of the implied

futures F∆ according to put-call-parity:

( ) ( ){ }r
0 0F K e H ,K,x G ,K,x- D

D
= + D - D (28)

where G denotes the put price and K is the strike closest to being at-the-money. Note that this

equation does not require that the spot price of the index be recorded; it simply requires the

market prices of the at-the-money call and put. Given the futures price F∆, I then replace the

prices of all illiquid options, with the price implied by put-call parity applied at each value of the

strike price, using the price of the more liquid option. For instance, if the put is more liquid then

the call price is inferred from that of the put with the same strike as

( ) ( ) ( )r
0 0H ,K, x G ,K,x e F KD

D
D = D + - (this equation is instead solved for G given H when the

call is more liquid). This solves the third problem. After this procedure, all the information
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contained in liquid put prices has been extracted and resides in corresponding call prices. I can

now concentrate exclusively on call options.

The first step consists in estimating the implied volatility function ( )IMP K / F
D

s  in

equation (26) . The data reveal quite clearly that an appropriate model for the implied volatility

smile is a simple third order polynomial:

( ) ( ) ( ) ( )
2 3

IMP 0 1 2 3K / F K / F K / F K / F
D D D D

s = b +b +b +b . (29)

In fact, Table II shows that this model fits the data so well (R2 = 0.99!) that one cannot help but

wonder whether self-fulfilling prophecies are at play here. The same is true of other trading days

and maturities in this market: the estimated parameters change, but not the quality of the fit.

These options do indeed appear to “trade on a curve,” the curve which is displayed in the top

part of Figure 8. In the same way that in the 1970s and pre-1987 1980s the Black-Scholes model

in its standard constant volatility form was a reasonably well-accepted paradigm, the current

pricing model appears to be well-represented by equation (29) or slight variations of it, including

for instance slightly different definitions of moneyness. The bottom plot in Figure 8 reports the

estimated transition function from equation (27) corresponding to the implied volatility smile in

the top plot.

I then apply the diffusion criterion (15) to test whether the underlying continuous-time

model that produced the observed discrete-time transition represented by the function

0p( ,K | x )D could have been a diffusion. Figure 9 displays the criterion function
2

0 0Ln(p( ,K | x )) x K∂ D ∂ ∂ , which gives the answer: the criterion function is negative in places,

hence the underlying model for the S&P 500 index cannot be a diffusion.

Could the sampling noise, introduced by the fact that we need to estimate the parameters

i{ | i 0,...,3}s = in equation (29), be sufficient to overturn the rejection of the diffusion

hypothesis? The fact that model (29) describes the data in an accurate yet parsimonious way

suggests that this is unlikely, but let us verify this formally. The effect of the estimation of the

implied volatility parameters in equation (29) on the accuracy of the transition density estimator

resulting from equation (27) can be assessed by the delta method. The parameter vector β is

estimated using a sample of size n from the regression ( )IMP K / F
D

s = s + e , of implied

volatilities σ on moneyness K / F
D

; ε is white noise with variance s2 and M denote the vector of

observed K / F
D

. The distribution of the parameter estimates b̂ is ( )1/ 2 ˆn ( ) N 0,Vbb -b Æ , where
2 1V s (M 'M)-b = . From this it follows that
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( )
2 2

d1/ 2 0 0
n

0 0

ˆLn(p( ,K | x )) Ln(p( ,K | x ))
n N 0, D'.V .D

K x K x bÆ•

Ê ˆ∂ D ∂ D
- æææÆÁ ˜∂ ∂ ∂ ∂Ë ¯

where D denotes the gradient of 2
0 0Ln(p( ,K | x )) x K∂ D ∂ ∂ with respect to the parameter vector

β, and D’ the transposed vector. D is easily calculated from equation (27).

A formal test can be based on calculating the minimum value reached by the criterion

function 2
0 0Ln(p( ,K | x )) x K∂ D ∂ ∂ over the interval of traded strikes ( )K,K . Define this

minimum, as a function of the parameters of the implied volatility smile, to be λ(β). Let κ(β) be

the strike level at which this minimum is reached, i.e., the solution of the first order condition for

the minimization of the criterion function. The minimum value is ( )l b ∫
2

0 0Ln(p( , ( ) | x )) x K∂ D k b ∂ ∂ . Keep differentiating each operation with respect to β to get to the

gradient —l of the minimum λ(β) with respect to β. Then again by the delta method,

( ) ( )d1/ 2
n

ˆn ( ) ( ) N 0, .V .bÆ•
l b - l b æææÆ —l —l¢ . (30)

Given estimates b̂ and V̂b of the implied volatility smile, we calculate ˆ ˆ( )l ∫ l b (negative

otherwise there is no rejection) and ˆ ˆV .V .l b∫ —l —l¢ by evaluating the gradient at b̂ . Then the

probability that the diffusion null hypothesis is true in the one-sided test of 0H : ( ) 0l b ≥ against

1H : ( ) 0l b < is given by

( ) ( ) ( )1/ 2 1/ 2
0

ˆ ˆ ˆˆ ˆ ˆProb H true | ,V Prob 0 | ,V 1 n V-

l l l
l = l > l = - F - l . (31)

where Φ is the standard Normal cumulative distribution function.

Not surprisingly, I find empirically that this noise is insufficient by itself to account for

the negativity of the criterion function, i.e., the probability (31) is essentially zero, with the

minimum value l̂ being negative and approximately ten times larger than its standard error
1/ 2 1/ 2ˆn V-

l
. The rejection of the diffusion hypothesis follows.12 Given the quality of the fit of the

implied volatilities, it is not surprising that the sampling noise is not sufficient to overturn the

12 The situation would be quite different if the implied volatility model (29) were nonparametric, since we

would then be subjected to the curse of differentiation in equation (27) and the sampling noise would be

substantially greater. But given the fit of the basic parametric model, there seems to be no need for

additional flexibility when modeling implied volatilities, at least with S&P 500 index options during that

time period.
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rejection, i.e., to make the negativity of 2
0 0Ln(p( ,K | x )) x K∂ D ∂ ∂ become statistically

insignificant.

One last remark. Recall that the test for diffusion relies on a one factor assumption for

the underlying asset returns. Could it be that rejecting that the underlying asset returns came

from a diffusion is due to that univariate maintained hypothesis? The answer is no. Suppose that

the model for the underlying asset price involves two factors, X as before and Y. For

concreteness, think of Y as representing either another asset or X’s stochastic volatility. Let

( )0 0p ,x, y | x , yD be the corresponding transition density. The price of a derivative contract with

payoff dependent on X∆ is

( )

( ) ( )

( ) ( ){ }
( ) ( )

r
0 0 0 0 0

r
0 00

r
0 00

r
0 00

P e E X X x ,Y y

e x p ,x, y | x , y dxdy

e x p , x, y | x , y dy dx

e x p , x | x , y dx

- D

D

+• +•
- D

-•

+• +• +•
- D

-• -•

+•
- D

È ˘= Y = =Î ˚

= Y D

= Y D

= Y D

Ú Ú

Ú Ú Ú

Ú

where now ( ) ( )0 0 0 0p ,x | x , y p ,x, y | x , y dy
+•

-•

D ∫ DÚ represents the marginal in x from the

conditional density of (x,y) given (x0,y0). Since the conditioning information is irrelevant in

equation (27), the density extracted by the method of equation (27) should therefore be

( )0 0p ,x | x , yD instead of ( )0p ,x | xD .

Hence if there were an additional factor, it should appear in the conditioning set of that

density. For that, it should appear in the pricing formula H. Given that H is given by equation

(26), the only place an additional factor could enter would be in the function IMPs , i.e., in the

market-driven implied volatility smile. So to the extent that the market prices options using a

deterministic smile model (the function IMPs which does not depend upon a second factor), and

the evidence suggests that this is an accurate description of the reality (recall that R2 = 0.99 for

model (29)), the transition density implied by the market data will be a function of (x,x0) only,

not (x,x0,y0). By contrast, it is clear that trying to model the evolution in time of the transition

density would undoubtedly require additional factors.
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C. Consequences for Approximations of the Dynamics of the Underlying Asset and

Implied Models

Dupire (1994) showed that, if the underlying model is a diffusion, then the call pricing

function ( )t 0H ,K,xD for maturity ∆ at instant t necessarily satisfies the following forward form

of the no-arbitrage pricing partial differential equation

{ }
2

2 2t t t
t2

H H H1
r K (K, t) K H

K 2 K

∂ ∂ ∂= − − δ + σ − δ
∂∆ ∂ ∂

(32)

from which it follows immediately that the “implied volatility function” compatible with the call

pricing function is

{ }
2

2 2t t t
t 2

H H H1
(K, t) r K H K

K 2 K

 ∂ ∂ ∂ σ = + − δ + δ   ∂∆ ∂ ∂   
. (33)

Dumas, Fleming and Whaley (1998) used this methodology to empirically test different

specifications of the function σ2 against option data.

The analysis of the preceding section shows that, in light of the options data, there exists

no such implied volatility function no matter how general it is allowed to be, since the

underlying model is not a diffusion. In other words, the right hand side of (33) will not produce a

function of (K,t) only. An appropriate modification of equation (32) allowing for discontinuities

in the sample paths of the underlying asset would have to include difference terms (in addition

to, or instead of, the differential terms).

Derman and Kani (1994) and Rubinstein (1994) propose binomial and trinomial tree

approximations to the risk-neutral dynamics of the underlying asset that, by construction,

replicate the observed option prices. Combining the empirical result of this section –that the

underlying model is not a diffusion—with the characterization of tree approximations for

continuous path processes in Section II.B, the conclusion is that these implied trees should be

extended to more than three path possibilities at each node in order to be approximate

discontinuous price paths. Otherwise, their continuous-time limit is constrained to be a

continuous path process which we have seen is not the case empirically.

Therefore, contrary to the common practice in derivative pricing, jump-diffusion

processes should be approximated by multinomial trees with more than three branches at least at

some of their nodes. Of course, a binomial or trinomial tree could approximate a jump process
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but only if at least one of the branches leads to a discrete change in the asset value, i.e., a change

of order 1. This is not usually the case when trees are used in practice: the branches are often

equally spaced, or at least the price changes from one node to the next over a time interval of

length ∆t are continuous in magnitude, i.e., of order t∆ .

D. Structural Alternatives to Implied Volatility Smiles

Modeling option prices by an implied volatility smile is inherently a purely descriptive

approach. It is a very accurate description of actual market prices, but nevertheless remains a

reduced-form approach. One of the main structural alternatives to the implied smile approach

consists in extending the Black-Scholes in a variety of possible directions, which all involve

relaxing the Normality assumption for the underlying asset returns that is built into equation (24)

for the price density.

Consider first the ad hoc Edgeworth expansions that have been proposed in the

literature.13 These expansions replace the Normal density for returns with an Edgeworth

expansion that allows for excess skewness and kurtosis in risk-neutral asset returns. If the stock

price is S, the riskless rate r, σ the standard deviation of the stock return, and µ3 and µ4 denote

the standardized skewness and kurtosis respectively, these expansions for the log-returns are

typically in the form

( )
{ }

( ) ( )
2

3 4 23 4
0

exp z / 2
p ,x | x 1 z 3z z 6z 3

6 242

- m mÊ ˆD = + - + - +Á ˜Ë ¯p
(34)

where

( )
( )2

0

0

x x r / 2
z z ,x | x

- - - s D

= D =
s D

with x = Ln(S∆) and x0 = Ln(S0). Given equation (34), option pricing formulae can be obtained

by applying equation (23) with the density p for prices replaced by its implication from the

returns density (34).

Note that the transition density p(∆,x|x0) in this model is a function of (x,x0) only

through z = x – x0. Note that, beyond option pricing, this form of space-homogeneity has

13 See for example Jarrow and Rudd (1982).
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important statistical consequences when combined with time-homogeneity. Even if the model is

not stationary, its first differences are, thereby making the analysis of maximum-likelihood

estimators substantially simpler. Indeed, treating the first observation as fixed, the likelihood

function is

( ) ( ){ } ( ){ }n n
n i (i 1) i (i 1)i 1 i 1

Ln p , r | r Ln p , r r�
q D - D q D - D= =

q ∫ D = D -Â Â (35)

and in the latter form involves only the data (ri∆ - r(i-1)∆).

But could equation (34) represent the transition density of a diffusion? In other words,

we need to find out what are the diffusions with space-homogeneous transition functions. Using

the diffusion criterion, it turns out that the class of such processes is rather small:14

Proposition 6: The only diffusion with a space-homogenous transition function is the

(arithmetic) Brownian motion, i.e., the process with σ(x) = σ and µ(x) = µ both constant.

The Edgeworth expansion (34) is in the space-homogenous class p(∆,x|x0) = q(∆,x-x0).

But from Proposition 6 the Gaussian distribution is the only diffusion process with a space-

homogeneous transition function q(∆,x-x0). Hence there is no diffusion model for the underlying

stock returns that can be represented by these ad hoc expansions, other than the Gaussian density

for which µ3 = µ4 = 0. Note that this is not just saying that equation (34) is not, in general, a

proper density. There is just no density, other than the Gaussian, that can represent a diffusion

and be space-homogeneous.15

This leads quite naturally to the next idea. How about maintaining the Gaussian

assumption but making the conditional mean and variance more complex than in the Black-

Scholes model? Could that accommodate a diffusion process? Unfortunately, the answer is, here

too, negative. Suppose that we restrict attention to processes with Gaussian distributions, and use

14 The result can be obtained differently by calculating the Laplace transform of a Polya frequency density

of order 2 (see Karlin (1968, Chapter 7) for definitions and Theorem 5.2).

15 Since the transition density of the Variance Gamma Lévy process is space-homogeneous but not

Gaussian, it cannot represent the transition function of a diffusion. However, the function p(∆,K|x0)

produced by equation (27) is not a function of K – x0. Hence Proposition 6 cannot be applied to rule out

immediately the possibility of an underlying diffusion model when using an implied volatility smile. We

must use the diffusion criterion (15) to be able to tell.
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the results here to prove differently a well-known result regarding Markov processes with

Gaussian transitions. Namely, we have:

Proposition 7: The Ornstein-Uhlenbeck process

( )= - +t t tdX X dt dZa b s (36)

is not only the only diffusion with a Gaussian transition function, but also the only such Markov

process.

The conditional mean and variance of the process are affine and constant respectively,

t tE[X | X x] / (x / )e-bD+D = = a b + -a b and 2 2
t tV[X | X x] (1 e ) 2- bD
+D = = s - b , which reduce

to t tE[X | X x] x
+D

= = and 2
t tV[X | X x]+D = = s D if β=0 (the arithmetic Brownian motion

special case). The implication of this for potential structural extensions of the Black-Scholes

model wishing to remain within the diffusion class is that, in the same fashion that the model

cannot be extended to non-Gaussian but space-homogenous densities, it cannot be extended

either to Gaussian densities with conditional mean and variances that are more complex than

affine and constant respectively. The latter extension would in fact take us even outside of the

Markov class in which case pricing via risk-neutral expectations conditioned on the current asset

price given by equation (23) no longer holds.

V. Conclusions

Within the Markov world, diffusion processes are characterized by the continuity of their

sample paths. When looking at discrete data, are the discontinuities observed the result of

discreteness, or are they the result of non-diffusion behavior on the part of the underlying

continuous-time data-generating process? This paper examined the implications for the discrete

data of having been generated by a univariate diffusion, on the basis of a criterion that uniquely

characterizes the transition densities of diffusions, and is equivalent to continuity of the

continuous-time, unobservable, sample paths. It relies solely on the transition function, an object

that can be inferred from the discrete observations.

I also interpreted this characterization in terms of discrete-state processes, first

continuous-time Markov chains and then discrete-time trees. The intuitive result is that the

characterization is this case means that the process can only jump by one state at a time. I then

drew some implications for the approximations used in derivative pricing, depending upon

whether the underlying model is or is not a diffusion. Finally, I tested whether the underlying



25

model for the asset price dynamics that is implied by S&P 500 option prices could have been a

diffusion, and spelled out some implications for the implied diffusion, implied tree and

Edgeworth expansions approaches to option pricing.

One final remark. From a discretely sampled time-series { }0 2 nr , r , r , , r…

D D D
, one could

test nonparametrically the hypothesis that the data were generated by a continuous-time diffusion

{ }tr , t 0≥ . Formally,

2
0

2
1

H : Ln(p( , y | x)) x y 0 for all x, y

H : Ln(p( , y | x)) x y 0 for some x, y

Ï ∂ D ∂ ∂ >Ô
Ì

∂ D ∂ ∂ £ÔÓ

and one could base a test on checking whether (15) holds for a nonparametric estimator of the

density ( )p , y | xD . Locally polynomial estimators can be used for that purpose (see Aït-Sahalia

(2000)). Their use in the present context is left to future work.
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Appendix

Proof of Proposition 1

To prove this claim, it suffices to show that (14) implies that the convergence in (7) is

uniform in x , which is known to be a necessary and sufficient condition for the continuity of the

sample paths. Let I be a compact interval included the domain D=( r , r ) of the process r. That

(7) holds for every fixed 0e > and fixed x in I is fairly innocuous. Indeed, assume (this is a mild

additional requirement) that the convergence in the limit (6) occurs at an arbitrary polynomial

rate, that is

( ) ( ) ,x
,xy x

P ,(r, x ) (x , r ) | x 1 p , y | x dy c e
k

e
- £e

D - e » + e = - D £ DÚ (37)

for some constants cε,x>0 and κ>0 (κ is not necessarily greater or equal to 1). Then it follows

from (13) that

( ) ( )

( ) ( )

P ,(x , r ) | x P ,(x / 4, x 3 / 4) | x / 2

P ,(x / 4,x 3 / 4) | x P ,(x , r ) | x / 2

D + e D + e + e + e

£ D + e + e D + e + e
(38)

From (37), we have that

( )

( )
/ 4,x

/ 2,x / 2

P ,(x / 4,x 3 / 4) | x c

P ,(x , r ) | x / 2 c

k

e

k

e +e

Ï D + e + e £ DÔ
Ì

D + e + e £ DÔÓ

and, since from (6) there exists z >0 such that ( )P ,(x / 4,x 3 / 4) | x / 2 1/ 2D + e + e + e ≥ for all

0 £ D £ z , it follows from (38) that ( ) 2
x,P ,(x , r ) | x 2 d k

e
D + e £ D for some constant dε,x>0.

This process can be repeated an arbitrary number of times, each time multiplying the constant κ

by a factor of 2. Therefore the constant κ can be replaced by 1, or for that matter any number, but

1 will be sufficient in what follows.

The crucial aspect now is to prove the uniformity of the convergence in x. Fix ε>0 and

let 0 1 mx x x< < <… be a finite partition of I, such that i i 1x x 2
-

- = e for i=1,...,m. Fix e� >0.

From what precedes wit κ now replaced by 1, for each i=1,...,m, there exists ξi>0 such that for all

∆, i0 £ D £ x implies ( )i iP ,(x 2, r ) | xD + e ( )2£ e D� . For x in I, consider the particular xi such

that i 1x 2 x x
-

- e < £ ix x 2< < + e . For i0 £ D £ x , it follows from (13) that
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( ) ( ) ( ) ( )
( )

( )

( )

i i

i

i i

P ,(x , r ) | x P ,(r, x ) | x P ,(x , r ) | x P ,(r, x ) | x

P ,(x , r ) | x

P ,(x 2, r ) | x

2

D + e D + e £ D + e D + e

£ D + e

£ D + e

£ e D�

(39)

Now, from (6), there exists iz >0 such that ( )i 1 iP ,(r, x ) | x 1 2
-

D + e ≥ for all i0 £ D £ z .

Next, for ∆ satisfying i i0 inf { , }£ D £ h z , we have that ( )P ,(x , r ) | xD + e £ eD� since

( )iP ,(r, x ) | xD + e ( )i 1 iP ,(r, x ) | x
-

≥ D + e . Now define Ih ∫ { }i iinf { , }| i 1, ,mx z = … , which is

independent of the particular x in I. Thus there exists Ih >0 such that for any I0 £ D £ h ,

( )P ,(x , r ) | xD + e £ eD� for all x in I. Similarly, there exists Ic >0 such that for any I0 £ D £ c ,

( )P ,(r, x ) | xD - e £ eD� for all x in I. Since

( ) ( ) ( )
y x

p , y | x dy P ,(r, x ) | x P ,(x , r ) | x 2
- >e

D = D - e + D + e £ eDÚ � ,

it follows that the convergence in (7) holds uniformly over x in the compact interval I.

Proof of Proposition 2

First recall that diffusions are Markov processes, hence they must satisfy the Chapman-

Kolmogorov equation (2). Therefore

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

r r

r r

r r

r r

2 , y, y | x,x p , y | z p ,z | x p , y | z p ,z | x dzdz

p , y | z p ,z | x p , y | z p ,z | x dzdz

d D = D D D D

- D D D D

Ú Ú

Ú Ú

� � � � � � �

� � � � �

( ) ( ) ( )

( ) ( ) ( )

( ) ( )

r r

r r

r r

r r, z z

, y, y | z,z p ,z | x p ,z | x dzdz

, y, y | z,z p ,z | x p ,z | x

p ,z | x p ,z | x dzdz

<

= d D D D

È= d D D DÎ

˘- D D ˚

Ú Ú

Ú Ú
�

� � � � �

� � � �

� � �

where we have exploited the symmetry property that ( ), y, y | z,zd D =� � ( ), y, y | z,z-d D � � for any

(z, z� ), so we only need to integrate over the half-quadrant where z< z� . As a result

( )2 , y, y | x,xd D =� � ( ) ( )
r r

r r, z z
, y, y | z,z ,z,z | x,x dzdz

<

d D d DÚ Ú
�

� � � � � > 0 (40)

since (14) holds for all transitions of length ∆. The same argument shows that the property is

satisfied for all integer multiples of ∆, i.e., for all observable frequencies.
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Proof of Proposition 3

Consider x x< � and y y< � . Rearranging inequality (14) yields the equivalent

formulation

1 Ln(p( , y | x)) Ln(p( , y | x)) Ln(p( , y | x)) Ln(p( , y | x))
0

y y x x x x

Ê ˆD - D D - DÏ ¸ Ï ¸- >Ì ˝ Ì ˝Á ˜- Ë - - ¯Ó ˛ Ó ˛

� � � �

� � �

. (41)

The necessity of (15) then follows by taking the limit as x x+

Æ� and y y+Æ� in (41). The

sufficiency of (15) follows from the fact that a function whose derivative is positive is

increasing: at a fixed x, Ln(p) x∂ ∂ is an increasing function of y, hence Ln(p( , y | x)) x�∂ D ∂ >

Ln(p( , y | x)) x∂ D ∂ . Thus { } { }Ln(p( , y | x)) Ln(p( , y | x)) y y� �D - D - is an increasing function of

x. Then (41), or equivalently (14), follows.

Proof of Proposition 4

We want to show that, if condition (15) is satisfied by the transition density pX of a

process X, then the same condition is fulfilled by the transition density pY of the process
1Y (X)-= j where the function j  is twice continuously differentiable and strictly monotonic.16

Indeed the transition density of Y is given by the Jacobian formula:

( ) ( ) ( )

( ) ( )

Y 0 t t 0 t t 0

(y)

X 0 X 0

p , y | y Prob Y y Y y Prob X (y) X (y )
y y

p , x | (y ) dx '(y) p , (y)| (y )
y

+D +D

j

∂ ∂
D = £ = = £ j = j

∂ ∂

∂ È ˘= D j = j D j jÍ ˙Î ˚∂ Ú
(42)

Consequently, if X is a diffusion then ( ) 2
X 0, x | x Ln(p( , y | x)) x y 0d D ∫ ∂ D ∂ ∂ > from condition

(15) and it follows from equation (42) that

( ) ( )
2

Y 0 Y 0 0 X 0
0

, y | y Ln(p ( , y | y )) '(y) '(y ) , (y) | (y ) 0
y y

∂
d D ∫ D = j j d D j j >

∂ ∂
(43)

so the transition function of the Y process automatically satisfies condition (15).

16 Such transformations are commonly used in finance, for instance to go from an arithmetic Brownian

motion to a geometric Brownian motion, from a Cox-Ingersoll-Ross square-root process to a Bessel

process, from a CEV process (with geometric mean) to a Bessel process, etc. Indeed, most closed-form

solutions we rely on are obtained through such a transformation.
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Proof of Proposition 5

With J0,J1,... denoting the jump times of the chain X= t t 0{X }
≥

, and S1,S2,... its holding

times, defined by

n n 1 n-1
n

J J if J
S

otherwise
-

- < •Ï
= Ì

•Ó
(44)

right-continuity forces Sn>0 for all n. If Jn+1=∞ for some n, define
nJX X

•

∫ , otherwise X
∞

is

undefined. For convenience, we set Xt=∞ if t is greater than the first explosion time

{ }n nn 1
sup J / n 0 S

•

=

≥ =Â .

From the theory of continuous-time Markov chains (see e.g., Norris (1997), page 87),

condition (18) on the transition matrix of the jump chain Y is equivalent to the restriction that

the generator matrix A of the Markov chain X be of the Jacobi form: zero entries except on the

diagonal, supra-diagonal and infra-diagonal lines, i.e.:

i i i iA 0 0

Ê ˆ
Á ˜= b -a -b a
Á ˜
Ë ¯

� � � ��

� �

� � � � �

(45)

where αi>0, βi>0 and then i i i i( )l = a a +b . The element [aij] of A determines the rate at which

the chain moves from state i to state j.

To prove that (17) is equivalent to (45), first note from (2) --where the integral is

replaced by a sum over all the possible intermediary states-- that it suffices to prove the

equivalence for an infinitesimal ∆, and the equivalence will then be carried forward in time by

repeated use of (2). Next express the transition matrix P(∆) in terms of the generator matrix A:

( ) [ ]
k k

k 1

A
P exp A

k!
•

=

D
D = D =Â . (46)

Suppose that A has a non-zero element outside the three lines indicated in (45), say

i 1,i 1 i 1a
- + -

= g >0, with i 1,i 1 i 1 i 1 i 1a
- - - - -

= -a -b - g now being the required diagonal term on the

row. Then it follows from ( )P I A o( )D = + D + D that (17) is violated since

( ) 2
i 1, i, i 1| i 1,i O( ) 0
-

d D + - = -g D + D < (47)

By contrast, if A has the form (45), then it follows from
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( ) 2 2 2P I A A / 2 o( )D = + D + D + D . (48)

that

( ) 2 2 2 2
i i 1 i i 1 i i 1, i, i 1| i 1,i / 2 o( ) / 2 0

- - -

d D + - = a a D -a a D + D = a a D ≥ (49)

and similarly for the other transitions. The equivalence is therefore proved. Note that the form of

the generator (45) characterizes birth and death processes, where the size of the population either

goes up or down by one individual at a time. As a special case, this class includes Poisson

processes for which Yn=n with probability one, so λi=1 for all i.

Proof of Proposition 6

The criterion (15) in the case of a transition density depending only on z reduces to
2 2Ln(p( ,z)) z 0∂ D ∂ < , i.e., log-concavity of the density. A large number of densities are log-

concave. But one must remember that the process must be Markovian, i.e., satisfy (2). The

combination of both is enough to reduce the set of admissible models to the arithmetic Brownian

motion.

Indeed, consider the leading term at order 1-
D of the expansion of the transition density

of such a space-homogeneous diffusion:

( )( ) ( ) ( ) ( )2( 1)
X 0 0 0 0 0

1 1
Ln p , x z | x Ln 2 Ln (x z) (x z) (x )

2 2
− ∆ + = − π∆ − σ + − γ + − γ

∆
� (50)

(see Aït-Sahalia (1997, 1999)). We are asking when this function depends on z but not on x0. By

a Taylor expansion in z around 0, the right hand side of equation (50) is independent of x0 if and

only if the function σ is, in which case γ(x) = x/σ. Looking then at the next order term,

( )( ) ( )( ) ( )0

0

(x z)(0) ( 1)
X 0 0 X 0 0 Y(x )

Ln p , x z | x Ln p , x z | x v dv
γ +−
γ

∆ + − ∆ + = µ∫� � (51)

where

1 1 1
Y (y) ( (y)) / ( (y)) ( (y)) / 2− − −′µ = µ γ σ γ − σ γ . (52)

Given that γ is linear, the right-hand-side of equation (51) can only be independent of x0 if µY(.)

is constant. From equation (52) and σ(x) = σ, γ(x) = x/σ, this can only occur if µ(x) = µ is

constant. Hence the only process with space-homogeneous transition density is the arithmetic

Brownian motion with σ(x) = σ and µ(x) = µ both constant.
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Proof of Proposition 7

First note that if t t(X ,X )
+D

has a Gaussian distribution, then so does t tX | X
+D

and

moreover [ ]t tE X | X
+D

must be affine in Xt and [ ]t tV X | X
+D

constant in Xt. This follows for

instance from Theorem III.6.5 page 86 of Feller (1971). Let us therefore consider Gaussian

transition functions p(∆,y|x) with conditional mean ( )e x
D [ ]t tE X | X x

+D
∫ = x

D D
= a +b and

conditional variance [ ]t tv V X | X x
D +D
∫ = , and let us see what further restrictions on the

dependence of α∆, β∆ and v∆ on ∆ make these functions compatible with the conditions (2) for

Markovianity and (15) for diffusion. That is, should further restrictions on the conditional mean

and variance be placed to insure that the discrete observations are embeddable in a diffusion?

It turns out that in this case the Markov requirement alone is sufficient to reduce the set

of compatible transition densities to the Ornstein-Uhlenbeck case which we already know is a

diffusion.17 In other words, there exists no non-diffusion Markov process with Gaussian

transitions. Equivalently, this means that for Gaussian transitions once the Markov requirement

is imposed, the diffusion condition (15) is automatically satisfied. Indeed, the Chapman-

Kolmogorov equation (2) implies by a direct calculation that

( ) ( )2 2
2 2 21 , , v v 1
D D D D D D D D

a = a +b b = b = +b .

With α0=0, β0=1 and v0=0, the only solution is of the form

( ) ( )2v
1 e , e , v 1 e

2
-bD -bD - bD

D D Da = a - b = = -
b

where α, β and v>0 are constants. Applying now condition (15) to

( ) ( ) ( ) ( ){ }1/ 2 2
p , y | x 2 v exp y e (x) 2v

-

D D D
D = p - -

yields 2Ln(p( , y | x)) x y v 0
D D

∂ D ∂ ∂ = b > . Therefore the diffusion condition puts no additional

constraints on the model’s parameters in the Gaussian case so that saying that the process is

Markovian and Gaussian is enough to reduce the admissible set to the Ornstein-Uhlenbeck class.

17 Note that this includes the arithmetic Brownian motion as the special case where β=0.
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Table I

SPX Option Data

Strike Call Price Moneyness Implied Volatility

750 408.50 0.6449 0.4131
800 359.90 0.6879 0.3903
850 311.60 0.7309 0.3638
900 264.40 0.7739 0.3463
950 218.40 0.8169 0.3274
995 178.30 0.8556 0.3081

1025 153.00 0.8814 0.2978
1050 132.70 0.9029 0.2885
1075 113.60 0.9244 0.2805
1100 95.30 0.9459 0.2706
1125 78.60 0.9674 0.2624
1130 75.30 0.9717 0.2601
1140 69.30 0.9803 0.2575
1150 63.20 0.9889 0.2533
1160 57.60 0.9975 0.2502
1170 52.30 1.0061 0.2473
1175 49.60 1.0104 0.2451
1180 47.50 1.0147 0.2453
1190 42.50 1.0233 0.2412
1200 37.80 1.0319 0.2372
1210 33.60 1.0405 0.2341
1225 28.00 1.0534 0.2303
1250 20.35 1.0749 0.2253
1275 14.05 1.0964 0.2190
1300 9.50 1.1179 0.2144
1325 6.10 1.1394 0.2092
1350 3.85 1.1609 0.2057
1375 2.40 1.1824 0.2033
1400 1.475 1.2039 0.2017
1425 0.875 1.2254 0.1999
1450 0.475 1.2469 0.1968
1475 0.350 1.2684 0.2019
1500 0.225 1.2898 0.2035

These options are European calls on the S&P 500 index with prices recorded on March 19, 2001, at 10:30

AM CST. For each option’s price, I use the bid-ask midpoint. The riskless rate is r=5.50% (which,

following market convention, is slightly higher than the 3-month T-Bill rate, reflecting the fact that T-Bill

rate is not the relevant riskless rate faced by traders). The options expire on June 15, 2001. With the

calendar convention, these options have ∆ = 88 days to expiration. The at-the-money implied forward price

of the index for that maturity is F∆=1,162.93 while the value of the index itself is X0=1,151.10. Time

calculations are performed with a 365-day calendar. The moneyness of an option with strike K is M =

K / F
D
. 
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Table II

Fitted Implied Volatility Smile

Variable Coefficient t-statistic p-value

1 0.4775 10.02 6.10-11

M 0.5221 3.42 2.10-3

M2 -1.3714 -8.59 2.10-9

M3 0.6208 11.39 3.10-12

This table reports the results of fitting the model (29) to the implied volatility data given in Table I. M

denotes the option’s moneyness M = K / F
D
. The R2 of the regression is 0.9993; the adjusted R2 is 0.9992.

The fitted implied volatility function ( )IMP K / F
D

s is plotted in Figure 8.
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Figure 1: Discrete and Continuous Sample Paths

This figure contrasts the discretely-observed sample path from the continuous-time one (which generated

the observed sample). It also illustrates the notion of repeated sampling under time-homogeneity, with pairs

of successive observations (ri∆,r(i+1)∆), sampled ∆ units of time apart and drawn from a common joint

distribution which depends on ∆ but not i.
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Figure 2: Two Sample Paths with No Crossing

time

rt r
t+∆

t t+∆

x

x

y

y

Y

Y

~

~~

This figure shows the sample paths between two successive sampling dates t and t+∆ followed by the two

processes r (thin curve) and r� (thick curve), with r positioned at time t at x, below r� which starts at x� .

The processes reach time t+∆ having maintained the same order throughout, r finishing in the set Y below

r� in the set Y� .
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Figure 3: Two Sample Paths Crossing
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This figure shows the sample paths between two successive sampling dates t and t+∆ followed by the two

processes r (thin curve) and r� (thick curve), with r starting below r� at date t but finishing above it at date
t+∆. If the sample paths are continuous, this can only happen if they cross (at least) once in between. In the

figure, the coincidence time (where the two processes are in the same state C) is denoted at τ.
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Figure 4: Two Sample Paths with Jumps
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This figure shows the sample paths between two successive sampling dates t and t+∆ followed by the two

processes r and r� , with r starting above r� at date t but finishing below it at date t+∆. By contrast with the

situation illustrated in Figure 3, if the sample paths can jump, this reversal of order may happen without the
two processes having ever been coincident, i.e., having occupied the same state at the same time. Note that

in both Figure 3 and Figure 4, we do not observe what actually happens between t and t+∆ (we only see the

process every ∆ units of time). We will draw inference about what happened in between from the ∆-apart
sample, specifically from features of the transition density p(∆,y|x).
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Figure 5: Discrete Time Markov Chain
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This figure illustrates the concept of continuity of sample paths for a continuous-time, discrete-state

Markov chain. By definition, all the state changes are “jumps” and the appropriate notion of continuity
distinguishes between “small” or “continuous” jumps, which are those from one state to an immediately

adjacent one (+1 or –1), from “large” or “discontinuous” jumps, which are those from one state to a

nonadjacent one. The jumps occurring at jump times J1, J4, J5 and J6 are all of size +1 or –1, so that the
process jumps from one state to an immediately adjacent one. By contrast, the jump taking place at jump

times J2 and J3 are of size +2 and –5 respectively. The first set is compatible with continuity of the sample

paths whereas the second set is not.



41

Figure 6: Discrete-Time, Discrete-State Multinomial Tree

This figure illustrates the concept of continuity of sample paths for a discrete-time, discrete-state
multinomial tree. For the approximated continuous-time, continuous-state process to be Markovian, the tree

must be recombining. For the approximated process to be a diffusion, the tree must lead to continuous

sample paths, which in this case means that all the discrete-time jumps along the tree must occur from one
node to an immediately adjacent state. If at date n∆ the process is in state i, then for the tree to be an

approximation to a continuous-path process it must be that the only non-zero branch probabilities are pi-1, pi

and pi+1. Since binomial and trinomial trees only have adjacent nodes, these by construction can only
approximate a continuous-time, continuous-state process with continuous sample paths – that is., a

diffusion. Conversely, for the tree to approximate a process with discontinuous sample paths, some of the

nonadjacent nodes must be attainable.
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Figure 7: Diffusion and Jump-Diffusion Transition Functions
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The top plot in this figure represents the transition densities of a Brownian motion (solid curve) and a
Cauchy process (dotted curve) as a function of the difference z = y – x between the forward and backward

state values. The fact that the tails of the Cauchy distribution are larger is apparent. The bottom plot graphs

the criterion function 2Ln(p( , y | x)) x y∂ ∆ ∂ ∂ for both distributions. While the criterion is always positive
for the Brownian motion (solid curve), it is negative in the tails (where z is large in absolute value) for the

Cauchy distribution (dashed curve).
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Figure 8: SPX Implied Volatility Smile and State-Price Density
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The top plot in this figure reports the fitted implied volatility function ( )IMPK / F K / F�
D D

s . The dots

represent the actual implied volatilities from Table I. The parameter estimates are reported in Table II. The
solid curve bottom plot in the figure represents the implied transition density 0K p( ,K | x )� D for the

maturity ∆ and current index value x0 described in Table I. For comparison purposes, the Black-Scholes

state-price density (dotted curve) evaluated at the at-the-money implied volatility is also included. The
skewness of the implied density is apparent. All by itself, however, skewness is not sufficient indication of

non-diffusion behavior.
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Figure 9: Diffusion Criterion Applied to the State-Price Density

600 800 1000 1200 1400
strike price K

-0.25

0

0.25

0.5

0.75

1

d
i
f
f
u
s
i
o
n
c
r
i
t
e
r
i
o
n

600 800 1000 1200 1400
strike price K

950

1000

1050

1100

1150

1200

1250

1300

c
u
r
r
e
n
t
i
n
d
e
x
v
a
l
u
e
X
0

� 0

� 0.25

� 0.5

� 0.75

� 1.

� 1.3

� 1.5

� 1.5

Criterion

The two plots in this figure determine whether the option-implied transition density is compatible with a

diffusion model for the underlying (risk-neutral) asset price dynamics. The top plot graphs the criterion
function 2

0 0K Ln(p( ,K | x )) x K∂ ∆ ∂ ∂� for the fixed ∆ and x0 corresponding to the option data that are

given in Table I. For display purposes, the criterion function is multiplied by a fixed constant (this is

irrelevant to the conclusions, since we only care about the sign of the criterion). Notice that there are
regions where the criterion function becomes negative The bottom plot is a contour plot, for the fixed ∆ in

the data, of the three-dimensional surface 0(K, x )� 2
0 0Ln(p( ,K | x )) x K∂ ∆ ∂ ∂ . White areas in the

contour plot indicate regions where the criterion function is negative. Anything short of nonnegativity of
the criterion function for all values of 0(K, x ) is incompatible with an underlying diffusion model. The

conclusion from the analysis is that there exists no diffusion model that could have generated the transition

density (reported in Figure 8) which prices these options.


