
��
�	 ��&��'	���
�	�
��
�

���������	
������
�	���	�������	������	���
�	�����
����

�����������

����	
���	��������

�������	 ��!"��!

 ��#��$	��%���()**

�++%,--...��/�����$-%�%���-.()**

��������	���
��	��	
�������	�
�
���0

12*2	�������3��++�	����3�

��4/��!$�5	��	2)16(

�%��������

�����	
��
�
���������
����	
����
��������
��	
�������������������
�������������������������������������

����
�� ���������!��������"����������������
��"��	���#������������$$$%����������&�����
��������������
�����

'�(���������������	����������	#����#������������')*+���+�������#�������������,�������������������	�����

�����������������
"��������������')*+�

�

-������."������*�/���������������&�����
�������������

���#�����������������������������������,���������

�,�������������#���������"�.��0	����������	���,�
�������������������������������	

������������
	���#�-

�����������#��������������	����



��!���+��	
����/���	"��	�%+�4��	�����7	3�!��	��744�+���	��"��4�+���

����	
���	��������	��!	�������	 ��!"��!

��
�	 ��#��$	��%��	���	()**

�%���	)221

8
�	���	
695	
:95	
*)5	
*(

��������

���	�%+�4��	.��$�+�	��	��!���+���	��	4�!���	.�+�	%��+���	��"��4�+���	�/�3+	+��	�+�+�	�"	+��

�����47	 ��!	 "��.��!;���#��$	 �����/���	 ���	 !�����!	 ��!	 ��+��%��+�!5	 /�+�	 "��	 �<3���/���	 3�!��

!�����+���	��!	3�!��	��44�+4��+�	���	%����+�	���+��	��	���34�!	+�	����	��"��4�+���	�/�3+	+��	�+�+�

�"	+��	�����47	+��+	+��	%����74�#��	!���	��+	%�������	���������	�
����
����	��	���.�	+�	�%%�75	��

+��	�����	+��+	�%+�4��	%����7	����+����	+�	�%+�4���7	��+�4�+�!	�+�+��	�"	+��	�����47	���	��!�%��!��+

�"	+��	!�$���	�"	3����+���+7�	���	3�3��	������������������
�	!���	���	���!5	�����	+��	��+�4�+���	�"

+��	�+�+�	�"	+��	�����47	��	��+	��!�%��!��+	�"	�%+�4�=�+���	��!	��	��	$������	<3�+�	��4%��>�	 �

%�����+	�	$������	������+���=�+���	�"	�%+�4��	"��+����$	��!	���+���	��	��++��$�	�"	+���	#��!5	��!	!���3��

��	�%%����+���	�"	�3�	4�+��!�	+�	+��	%��/��4	�"	+��	�%+�4��	3��	�"	?����;+�4�@	4���������4��	!�+�

��	+��	���!3�+	�"	4���+��7	%����7�

����	
���	�������� �������	 ��!"��!

���+�+3+�	"��	��+����+�����	
����4��	�+3!��� ��%��+4��+	�"	
����4���

�+��#���4	��������+7 ������+��	��������+7

�
;12A	B1	�+��#���45	�.�!�� ������+��5	�8	2(*::

��!	��
�	��!	�
�� ��!	��
�

�������������C������3��� .��!"��!C%�����+����!3



1 Introduction

Monetary policy is inevitably conducted under considerable uncertainty about the state of the

economy and the nature of recent disturbances, and analyses of optimal policy that take no ac-

count of this are therefore of doubtful practical utility. However, in the case of purely backward-

looking models of the kind exclusively used by central banks prior to the 1990s, powerful general

principles for efficient estimation of the state of the economy and for determining the optimal

use to make of such estimates have been well-understood since at least the 1970s. In the case

of a linear economic model, a quadratic loss function for the policymaker, and uncertainty only

about the state of the economy (that is, the current values of certain additive terms in the

economic model), a principle of certainty equivalence applies: the optimal policy is the same as

if the state were fully observable, except that one responds to an efficient estimate of the state

vector rather than to its actual value. Furthermore, a separation principle applies, according to

which the determination of the optimal response coefficients to be applied to one’s estimate of

the state of the economy (the optimization problem) and the estimation of the current state of

the economy (the estimation or signal-extraction problem) can be treated as separate problems.

The optimal response coefficients are independent of the specification of the central bank’s in-

complete information; and the optimal weights to place on alternative indicators in estimating

the state vector are independent of the central bank’s objective function.1

This paper contributes to a program (initiated in Svensson and Woodford [12]) that seeks

to determine the extent to which similar methods may be applied in the context of the sort

of forward-looking models that are now widely used by central banks in policy simulations.

Forward-looking models — that is, models in which the state of the economy is determined,

among other factors, by expectations regarding the economy’s future state — raise non-trivial

complications not contemplated in the standard treatments of the 1970s. In [12], we consider

a general class of linear-quadratic models, in which the private sector and the central bank

are assumed to have the same partial information about the state of the economy. In this

special case, we are able to establish that both certainty equivalence and a separation principle

still obtain, when properly interpreted. We furthermore exhibit useful general formulas for

computation of the optimal policy response coefficients and efficient estimates of the state of the

economy in the context of a forward-looking (rational-expectations) model.

In the present paper, we instead consider the additional complications that arise in the
1 Important early treatments include Chow [3], Kalchbrenner and Tinsley [5], and Leroy and Waud [6].
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case of a particular type of asymmetry between the information available to the central bank

and that available to the private sector. The general problem of optimal policy in the case

of asymmetric information appears to be quite difficult, so we here restrict our analysis to a

particular, relatively simple case, that is nonetheless of considerable interest.2 This is the case

in which the private sector has complete information about the current state of the economy,

while the central bank observes only a particular set of indicators, which are also contaminated

by “noise” that is unrelated to the fundamental determinants of the state variables that matter

for its optimization problem.

One may or may not believe that central banks typically possess less information about the

state of the economy than does the private sector. However, there is at least one important

argument for the appeal of this assumption. This is that it is the only case in which it is

intellectually coherent to assume a common information set for all members of the private sector,

so that the model’s equations can be expressed in terms of aggregative equations that refer to

only a single “private sector information set,” while at the same time these model equations

are treated as structural, and hence invariant under the alternative policies that are considered

in the central bank’s optimization problem. It does not make sense that any state variables

should matter for the determination of economically relevant quantities (that is, relevant to

the central bank’s objectives), if they are not known to anyone in the private sector. But if all

private agents are to have a common information set, they must then have full information about

the relevant state variables.3 It does not follow from this reasoning, of course, that it is more

accurate to assume that all private agents have superior information to that of the central bank;

it follows only that this case is one in which the complications resulting from partial information

are especially tractable. The development of methods for characterizing optimal policy when

different private agents have different information sets remains an important topic for further

research.4

In this paper, we characterize both (Markov-perfect) equilibria in which the central bank op-

timizes under discretion and the optimal policy under commitment, giving particular attention
2 Examples of recent applications of the kind of general analysis offered here to particular problems include

Aoki [1], [2] and Dotsey and Hornstein [4]. The appendix to [4] independently derives some of the results presented
in section 2 below for the case of discretionary policy, building upon the analysis in Svensson and Woodford [12]
as we do. Here we also treat the more difficult case of optimal policy under commitment.

3 The kind of optimal policy problem treated in [12] is therefore not one for which rigorous microfoundations
can be supplied. Relations such as the Lucas [7] aggregate supply equation, which appear to be of the form
considered in that paper, are actually not fully structural; for they involve coefficients that are not invariant to
changes in the policy regime, as Lucas stresses.

4 Important early studies that develop methods for characterizing rational expectations equilibria in which
different private agents have different information sets include Townsend [14] Pearlman [9], and Sargent [10].
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to the optimal filtering problem of the central bank in each case. Our main results are parallel

in both cases. We establish a certainty-equivalence principle once again: optimal instrument

settings satisfy a feedback rule in which the coefficients (describing optimal central-bank re-

sponses to the bank’s estimates of the state of the economy) are independent of the nature of

the bank’s partial information (though the estimates that the bank responds to depend upon

this). On the other hand, we cannot obtain a separation principle of the sort obtained in the

full information case, or in the case of symmetric partial information treated in [12]. The central

bank’s optimal estimates of the unobserved state variables (used as inputs to the feedback rules

just described) are in general not independent of the objective function that it seeks to minimize.

Furthermore, the complete equilibrium evolution of the state of the economy, given the path

of the central bank’s estimates, can no longer be derived independently of the specification of

the bank’s partial information and hence of the filter that it uses to derive its estimates. In

this respect, asymmetric information results in complexities that do not arise in the case of

symmetric partial information.

In section 2, we set out the class of linear-quadratic models with which we are concerned,

and then consider optimization under discretion. Section 3 presents corresponding results for

the case of optimal policy with commitment. Finally, section 4 illustrates how our framework

applies to the optimal policy problem considered by Aoki [1] and [2].

2 Optimization under discretion

We begin with an exposition of the general linear-quadratic framework that we assume through-

out this paper, and then characterize optimizing policy under discretion.

2.1 The framework

We consider a linear model of an economy, in which a vector of state variables are determined by

a system of structural equations intended to represent the conditions for rational-expectations

equilibrium given optimizing private-sector behavior. We do not explicitly describe the op-

timization problems of private agents that underlie these equations, but we note that such

optimization results in the presence of forward-looking terms (that is, conditional expectations)

in the structural equations, and we take care to specify the common information set of all agents

in the private sector, with respect to which these conditional expectations are defined. The op-

timization problem of the central bank (or more generally, the policymaker) is instead described

3



explicitly; in this problem the structural equations resulting from private-sector optimization

appear as constraints. We also take care to specify the information set of the central bank,

which differs from that of the private sector.

The structural equations are given by a system of the form
 Xt+1

ẼEtxt+1


 = A


 Xt

xt


 + Bit +


 ut+1

0


 , (2.1)

where Xt is a vector of nX predetermined variables in period t, xt is a vector of nx forward-

looking variables, it is (a vector of) the central bank’s ni policy instrument(s), ut is a vector of nX

iid shocks with mean zero and covariance matrix Σuu, and A, B and Ẽ are matrices of appropriate

dimension.5 The nx×nx matrix Ẽ (which should not be confused with the expectations operator

E[·]) may be singular (this is a slight generalization of common formulations in which Ẽ is the

identity matrix).

We let Etzτ denote the rational expectation (the best estimate) of any variable zτ in period

τ , given private-sector information in period t. We will assume that the private-sector has full

information, If
t , so Etzτ ≡ E[zτ |If

t ]. We let zτ |t denote the rational expectation (the best

estimate) of zτ given the central-bank information in period t. We let It denote central-bank

information in period t, so zτ |t ≡ E[zτ |It]. The information is further specified below.

We let Yt denote a vector of nY target variables given by

Yt = C


 Xt

xt


 + Ciit, (2.2)

where C and Ci are matrices of appropriate dimension. We then let the quadratic form

Lt = Y ′
t WYt (2.3)

be the central bank’s period loss function, where W is a positive-semidefinite weighting matrix.

Let the vector of nZ observable variables, Zt, be given by

Zt = D


 Xt

xt


 + vt, (2.4)

5 In [12], we also allow the structural equations (2.1) that determine Xt and xt to also include general linear
terms involving the estimates Xt|t and xt|t of the state of the economy based on partial information (of a kind
specified below). However, the presence of such terms makes less sense when (as here) we assume that only
the central bank has partial information. Equations (2.1) indicate how the state variables are determined by
private-sector behavior given the central bank’s instrument settings it, and the beliefs of the central bank (as
opposed to those of the private sector) are not obviously relevant. Similar methods to those expounded here can
be employed even in the presence of the additional terms, but at the cost of additional algebraic complexity.
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where vt, the vector of noise, is iid with mean zero and covariance matrix Σvv. Central-bank

information It in period t is given by

It = {Zτ , τ ≤ t; A,B,C,Ci,D, Ẽ,W, δ,Σuu,Σvv}, (2.5)

where δ (0 < δ < 1) is a discount factor (to be introduced below). This incorporates the

case when some or all of the predetermined and forward-looking variables are observable by the

central bank. The full information If
t in period t, the private-sector information set, is given by

If
t = {Xτ , xτ , iτ , τ ≤ t; A,B,C,Ci,D, Ẽ,W, δ,Σuu,Σvv}. (2.6)

Thus, we here assume that the central bank has the same or less information than the private

sector. The special case where both the central bank and the private sector have the same

partial information is treated in Svensson and Woodford [12].6

2.2 Certainty equivalence

In the present section, we assume that there is no commitment mechanism, so the central bank

acts under discretion. Assume that central bank each period, conditional on the information It,

minimizes the expected discounted current and future values of the intertemporal loss function,

E[
∞∑

τ=0

δτLt+τ |It]. (2.7)

Svensson and Woodford [12, appendix A] show that certainty-equivalence applies for the

central bank’s optimization when the central bank and the private sector has the same informa-

tion. The same proof goes through in the present case of asymmetric information. Thus, the

equilibrium under discretion will be characterized by the instrument being a linear function of

the current estimate of the predetermined variables,

it = FXt|t. (2.8)

Furthermore, the estimate of the forward-looking variables will fulfill

xt|t = GXt|t, (2.9)

6 Note that the predetermined and forward-looking variables can be interpreted as deviations from uncondi-
tional means and the target variables can be interpreted as deviations from constant target levels. More generally,
constants, non-zero unconditional means and non-zero target levels can be incorporated by including unity among
the predetermined variables, for instance, as the last element of Xt. The last row of the relevant matrices will
then include the corresponding constants/means/target levels.
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where the matrix G by [12, appendix A] fulfills

G = (A22 − ẼGA12)−1[−A21 + ẼGA11 + (ẼGB1 − B2)F ], (2.10)

where the matrices A and B are decomposed according to Xt and xt,

A ≡

 A11 A12

A21 A22


 , B ≡


 B1

B2


 ,

and we assume that the matrix A22 − ẼGA12 is invertible. The matrices F and G depend on

A, B, C, Ci, Ẽ, W and δ, but (because of certainty equivalence) not on D1, D2, Σuu and Σvv.

2.3 Failure of the separation principle

We can show that the forward-looking variables evolve according to a relation of the form

xt = G1Xt + (G − G1)Xt|t, (2.11)

where the matrix G1 remains to be determined. In the case of symmetric information, [12] shows

that the matrix G1 is given by

G1 = − (A1
22)

−1A1
21 (2.12)

and hence depends only on A1 (A1
22 is assumed to be invertible). We will see that in the present

case of asymmetric information, G1 is determined in a more complex way. In particular, it is no

longer generally independent of the specification of the central bank’s partial information.

For a given G1, it follows from (2.1), (2.4), (2.8) and (2.11) that the dynamics for Xt and Zt

follow

Xt+1 = HXt + JXt|t + ut+1, (2.13)

Zt = LXt + MXt|t + vt, (2.14)

where

H ≡ A11 + A12G
1, (2.15)

J ≡ B1F + A12(G − G1), (2.16)

L ≡ D1 + D2G
1, (2.17)

M ≡ D2(G − G1), (2.18)
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and where D ≡ [D1 D2] is decomposed according to Xt and xt. (Note that the matrix L in

(2.17) should not be confused with the period loss function Lt in (2.3).)

We note that, as in the symmetric-information case, the problem of estimating the predeter-

mined variables has been transformed to a problem without forward-looking variables, with the

transition equation (2.13) and the measurement equation (2.14); once again, the only nonstan-

dard feature of this filtering problem is the circularity implied by the appearance of Xt|t on the

right-hand side of the measurement equation. Thus, as discussed in [12], with forward-looking

variables among the observable variables, there is a simultaneity problem because the forward-

looking variables depend on the current estimate of the predetermined variables and the latter

depend on the observables.

Temporarily ignoring the simultaneity problem, the optimal estimate of Xt+1 will be given

by a Kalman filter updating equation,

Xt+1|t+1 = Xt+1|t + K(Zt+1 − LXt+1|t − MXt+1|t+1), (2.19)

where the Kalman gain matrix K remains to be determined. The updating equation can, given

(2.14), be written

Xt+1|t+1 = Xt+1|t + K[L(Xt+1 − Xt+1|t) + vt+1]. (2.20)

The Kalman gain matrix is given by

K = PL′(LPL′ + Σvv)−1, (2.21)

where the matrix P ≡ Cov[Xt+1 − Xt+1|t] is the covariance matrix for the prediction errors

Xt+1 − Xt+1|t and satisfies

P = H[P − PL′(LPL′ + Σvv)−1LP ]H ′ + Σuu. (2.22)

Thus for given G1 and hence given H and L, P can be solved from (2.22), either numerically

or analytically, depending upon the complexity of the matrices H, L and Σuu. Then K is given

by (2.21).

The simultaneity in (2.19) means that the updating equation is not operational. Solving

(2.19) for Xt+1|t+1 eliminates the simultaneity and results in

Xt+1|t+1 = (I + KM)−1[(I − KL)Xt+1|t + KZt+1]

(I + KM)−1[(I − KL)(H + J)Xt|t + KZt+1], (2.23)

7



where we have used the fact that by (2.13) the prediction equation will be

Xt+1|t = (H + J)Xt|t. (2.24)

Equation (2.23) is an operational recursive updating equation, which avoids the simultaneity

problem and uses the current observable variables to update the previous estimate Xt|t.

It only remains to determine G1. Assuming a solution of the form (2.11), we must have

ẼEtxt+1 = ẼG1EtXt+1 + Ẽ(G − G1)EtXt+1|t+1. (2.25)

We would like to express the right-hand side as a function of Xt, xt and Xt|t. We can then equate

this with the second block of (2.1),

ẼEtxt+1 = A21Xt + A22xt + B2FXt|t (2.26)

(where we have used (2.9), solve for xt as a function of Xt and Xt|t, and identify G1.

We note that, by (2.13) and (2.20), we have

EtXt+1 = HXt + JXt|t

EtXt+1|t+1 = Xt+1|t + KL(EtXt+1 − Xt+1|t)

= (H + J)Xt|t + KLH(Xt − Xt|t).

Substituting this into (2.25), we obtain

ẼEtxt+1 = ẼG1(HXt + JXt|t) + Ẽ(G − G1)[(H + J)Xt|t + KLH(Xt − Xt|t)]

= Ẽ[G1 + (G − G1)KL]H(Xt − Xt|t) + ẼG(H + J)Xt|t. (2.27)

Equating this with (2.26) and solving for xt, we obtain a solution of the form (2.11), where G1

must satisfy

G1 = A−1
22 {−A21 + [G1 + (G − G1)KL]H}. (2.28)

Thus, in contrast to (2.12) for the case where the private sector and central bank have the

same information, the matrix G1 now depends not only on A but on KL as well. Thus G1, H,

L, K and P are all simultaneously determined, by the equations (2.28), (2.15), (2.17), (2.21)

and (2.22). In particular, since K and P depend on Σuu and Σvv, so do the other matrices.

In the special case when D2 = 0, that is, when none of the observable variables depend

directly on any forward-looking variables, L is by (2.17) independent of G1 and hence of K. The

8



other matrices are then still simultaneously determined. Recall that F and G only depend on

A, B, C, Ci, W and δ, and not on D, K or L, and hence not on Σuu and Σvv.

In the case when the private sector has the same information as the central bank, the terms

that are multiplied with the factor G1 + (G − G1)KL all vanish in (2.27) (since EtXt − Xt|t =

Xt|t −Xt|t = 0). As a consequence, the terms multiplying that same factor in (2.28) vanish, and

(2.28) reduces to (2.12) as in [12].

Thus, in the asymmetric-information case considered here, where the private-sector has full

information and the central bank has partial information, certainty-equivalence still applies for

the central bank’s optimization problem, in the sense that the implied reaction function and

response F to its estimate of the predetermined variables is independent of the variance of the

shocks, Σuu, and the information structure of the economy, D1, D2 and Σvv. However, the

separation principle does not apply in the way that it does in the symmetric-information case.

The estimation is now more complex and, in particular, it is not independent of the central

bank’s objective and its choice of F . (Note that G1 by (2.28) depends on G, which depends on

F and hence C, Ci, W and δ.)

3 Optimal policy with commitment

Again we assume the model (2.1), in which the private sector has full information, but now

suppose instead that the central bank commits itself to an optimal plan for the indefinite future

at information set I0 in period 0. As in the case of symmetric partial information treated in

[12], the optimal commitment can be derived using a Lagrangian approach to what is essentially

a planning problem in which the structural equations (2.1) are constraints. In the present

informational assumptions, the Lagrangian takes the form

L = E

{ ∞∑
t=0

δtLt −
∞∑
t=0

δtϕ′
1,t+1(Xt+1 − A11Xt − A12xt − B1it)

−
∞∑
t=0

δtϕ′
2,t+1(ẼEtxt+1 − A21Xt − A22xt − B2it) − δ−1ϕ′

10X0 | I0

}
,

where in each period t, ϕ1t and ϕ2t are vectors of Lagrange multipliers conformable to Xt and

xt respectively. The multipliers ϕ1,t+1 and ϕ2,t+1 indicate the value of relaxing the constraints

represented by the first and second rows of (2.1) respectively; the term −ut+1 has been suppressed

inside the first set of square brackets as it is irrelevant for the first-order conditions derived below.

Because the second row of (2.1) represents a set of equilibrium conditions for the determination

9



of xt as a function of information in If
t (rather than for the determination of xt+1 as a function

of later information), the multipliers ϕ2,t+1 are in fact measurable with respect to (that is,

depend only on) the period t information set If
t , whereas the multipliers ϕ1,t+1 are measurable

with respect to If
t+1. (The notation ϕ2,t+1 rather than ϕ2t is nonetheless convenient in writing

expressions such as (3.1) below.) The final term on the right-hand side corresponds to the

constraint imposed by the vector of initial conditions X0.

3.1 Certainty equivalence

The Lagrangian can be written more compactly7 in the form

L = E

{ ∞∑
t=0

δt
[
Lt + ϕ′

t+1(Ayt + Bit) − δ−1ϕ′
tĨyt

]
| I0

}
, (3.1)

where

yt ≡

 Xt

xt


 , ϕt ≡


 ϕ1t

ϕ2t


 , Ĩ ≡


 I 0

0 Ẽ


 .

We have added a term −δ−1ϕ′
20x0 to the terms inside the square brackets, for the sake of

symmetry in notation, but now correspondingly stipulate the initial condition

ϕ20 = 0.

(Note that these Lagrange multipliers do not correspond to any actual constraint upon the

planning problem.) This should be interpreted as an initial condition for each possible state in

period zero consistent with the information set I0, rather than a single initial condition for I0.

Differentiation of (3.1) with respect to yt and it then yields the first-order conditions

A′Etϕt+1 + Lyyyt + Lyiit − δ−1Ĩ ′ϕt = 0, (3.2)

B′ϕt+1|t + Liyyt|t + Liiit = 0, (3.3)

where the matrices Ljk represent second partial derivatives of the period loss function. Note

that equations (2.2) and (2.3) imply that Lt is a quadratic function of yt and it,

Lt =
[

y′t it

] 
 C ′

C ′
i


 W

[
C Ci

] 
 yt

it


 ≡ 1

2

[
y′t it

] 
 Lyy Lyi

Liy Lii





 yt

it


 , (3.4)

7 Here we use the fact that E[ϕ2,t+1Etxt+1 | I0] = E[Etϕ2,t+1xt+1 | I0] = E[ϕ2,t+1xt+1 | I0], by the law of
iterated expectations.
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so that the Ljk are matrices of constant coefficients, that depend only upon the elements of the

matrices C,Ci, and W.

Assuming that Lii is of full rank,8 we can solve (3.3) for it, obtaining

it = −L−1
ii Liyyt|t − L−1

ii B′ϕt+1|t. (3.5)

Substituting (3.5) into (2.1) and (3.2) to eliminate it, and taking the conditional expectation

of both equations with respect to It, we then obtain a system of equations for the expected

evolution of yt and ϕt, that can be written in the form
 0 R′

Ĩ U





 yt+1|t

ϕt+1|t


 =


 V δ−1Ĩ ′

R 0





 yt|t

ϕt|t


 , (3.6)

where

R ≡ A − BL−1
ii Liy,

U ≡ BL−1
ii B′,

V ≡ −Lyy + LyiL
−1
ii Liy.

Here it is worth noting that U and V are symmetric matrices.

Let us assume furthermore that the square matrix on the left-hand side of (3.6) is of full

rank. Then we can invert this matrix, to obtain a system of the form
 yt+1|t

ϕt+1|t


 = M


 yt|t

ϕt|t


 . (3.7)

We then wish to consider solutions to (3.7) that are consistent with given initial values for Xt|t

and ϕ2,t|t. We note that the number of variables in (3.7) is 2(nX + nx), where nX and nx is the

dimension of Xt and xt, respectively, and that there are nX + nx initial conditions (Xt|t and

ϕ2,t|t). We shall restrict our attention to bounded solutions, by which we mean solutions in which

for any t, yt+j|t and ϕt+j|t satisfy a uniform bound for all j. Such solutions necessarily satisfy

the transversality condition for an optimal plan, and since our equations (2.1)–(2.4) will usually

represent only a local approximation to the true structural equations and true loss function,

unbounded solutions need not correspond at all closely to solutions to the true equations.

As usual (and ignoring non-generic cases), there is a unique bounded solution to (3.7) con-

sistent with the initial conditions if the number of eigenvalues of M inside the unit circle (that
8 The case in which Ci = 0, with the consequence that Lii = 0, can be treated using similar methods, as shown

in appendix A.
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is, with modulus less than one) is exactly equal to the number of initial conditions, nX + nx.

The eigenvalues λ of M are the roots of the characteristic equation

Det


 V δ−1Ĩ ′ − λR′

R − λĨ −λU


 = 0. (3.8)

Multiplication of the right blocks of this matrix by −λ−1, then multiplication of the lower blocks

by −λ−1δ−1, and finally transposition of the matrix does not change the sign of its determinant.

Thus we may equivalently write

Det


 V δ−1Ĩ ′ − λ−1δ−1R′

R − λ−1δ−1Ĩ −λ−1δ−1U


 = 0.

Comparison of this with (3.8) shows that if λ is a root, λ−1δ−1 must also be. It follows that M
has as many eigenvalues with |λ| > 1√

δ
as with |λ| < 1√

δ
. Thus, since 1√

δ
> 1, at most half of

the eigenvalues (that is, at most nX + nx) are inside the unit circle (that is, with |λ| < 1), so

there is no possibility of multiple stationary solutions to (3.7). If δ is close to 1 (as will often

be the case), there are likely to be exactly half inside the unit circle. We shall assume this

condition from now on.9 Then (3.7) has a unique bounded solution in which yt+j|t and ϕt+j|t

can be expressed as linear functions of the initial conditions Xt|t and ϕ2,t|t, for arbitrary j ≥ 0.

Substitution of this solution into (3.5) implies evolution of the instrument according to a

relation of the form

it = FXt|t + ΦΞt−1|t, (3.9)

where F and Φ are matrices of constant coefficients, and we now introduce the notation Ξt−1 ≡
ϕ2t for the sub-vector of Lagrange multipliers that are predetermined state variables under our

characterization of the optimal commitment, just as in the symmetric-information case treated

in [12]. (We change the time subscript to emphasize that the elements of Ξt−1 are determined

at date t − 1.) Similarly, the conditional expectations of the forward-looking variables evolve

according to a relation of the form

xt|t = GXt|t + ΓΞt−1|t, (3.10)

9 In the case of an exact linear-quadratic model, as opposed to a mere local approximation to a nonlinear
model, this condition is not necessary in order for us to identify the unique relevant solution to (3.7), as the
unique solution that does not explode fast enough to violate the transversality condition. But in practice we are
not likely to deal with models that we can regard as exact, and instead assume that the optimal plan happens to
be stationary. In this case, the eigenvalue condition assumed in the text must hold, as there would otherwise be
no stationary solution.
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while the conditional expectations of the Lagrange multipliers associated with the forward-

looking variables evolve according to

Ξt|t = SXt|t + ΣΞt−1|t, (3.11)

where G,Γ, S,Σ are further matrices of constant coefficients. Substitution of these solutions

into (2.1) then implies that the conditional expectations of the predetermined variables evolve

according to

Xt+1|t = (H + J)Xt|t + ΨΞt−1|t, (3.12)

where H and J are again defined as in (2.15)–(2.16), and

Ψ ≡ A12Γ + B1Φ. (3.13)

These equations completely define the conditional expectations of both the state variables

and the central bank’s instrument settings at all future dates, as functions of the current es-

timates of the predetermined states Xt|t and Ξt−1|t. We note that all of the matrices F , Φ,

G, Γ, S, Σ, H + J , and Ψ are exactly the same as in the case of the optimal plan with full

information (and are independent of the matrices D and Σvv that define the partial information

of the central bank); they are furthermore the same as in the case where there is no uncertainty

at all (and independent of the matrix Σuu defining the fundamental uncertainty). This is the

sense in which the optimal commitment here continues to conform to the principle of certainty

equivalence.

The system of equations (3.9)–(3.12) are also exactly the same as those that characterize

the optimal commitment in the case of symmetric (though incomplete) information on the part

of the central bank and the private sector, as shown in [12]. The only difference is that in the

symmetric case, the Lagrange multipliers associated with the forward-looking variables satisfy

Ξt−1|t = Ξt−1|t−1 = Ξt−1, so that equations (3.9)–(3.12) can be written in terms of the multipliers

themselves rather than their conditional expectations, while this is not generally true when the

central bank has less information. (We show below that in general Ξt−1 depends on information

not possessed by the central bank at date t − 1.)

3.2 Failure of the separation principle

In the case of symmetric information, we can also take the second row of (2.1), subtract each

term from its expectation conditional upon It, and obtain a set of nx linear relations between
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xt − xt|t and Xt − Xt|t that must hold at all times. (The derivation of these relations depends

upon the fact that the Etxt+1 term in the second row of (2.1) is instead replaced by xt+1|t when

the private sector has the same incomplete information as the central bank.) These relations

can be solved for xt, yielding (when (3.10) is used as well) a solution for xt as a linear function

of Xt,Xt|t, and Ξt−1. Substituting this in turn into the first row of (2.1), one is able to solve

for the complete dynamics of the state variables (and not merely their expectations conditional

upon the central bank’s information) and of the Lagrange multipliers given the evolution of the

estimates Xt|t, with coefficients that are independent of the nature of the partial information.

This is an aspect of the separation principle that can be shown to hold in the case of symmetric

incomplete information, just as in the case of full information. However, that derivation (detailed

in [13]) cannot be applied here, given that Etxt+1 must be distinguished from xt+1|t.

However, the second row of (2.1) does imply that

Ĩ(Etyt+1 − yt+1|t) = Aŷt, (3.14)

where ŷt ≡ yt − yt|t. (Here we use the fact that it must be measurable with respect to It.)

Similarly, (3.2) implies that

A′(Etϕt+1 − ϕt+1|t) = δ−1 Ĩ ′ϕ̂t − Lyy ŷt, (3.15)

where ϕ̂t ≡ ϕt − ϕt|t. Let us write the system (3.14)–(3.15) as

Ã





 Etyt+1

Etϕt+1


 −


 yt+1|t

ϕt+1|t





 = B̃


 ŷt

ϕ̂t


 , (3.16)

where

Ã ≡

 Ĩ 0

0 A
′


 , B̃ ≡


 A 0

−Lyy δ−1Ĩ ′


 .

In order to solve (3.16) for the dynamics of ŷt and ϕ̂t, we must specify how the central

bank’s conditional expectations are updated (for instance, how yt+1|t+1 relates to yt+1|t). Let us

suppose that the Kalman filter for the bank’s problem takes the form
 yt+1|t+1

ϕt+1|t+1


 =


 yt+1|t

ϕt+1|t


 + K̃[L̄(X̄t+1 − X̄t+1|t) + vt+1], (3.17)

where

L̄ ≡ [L Λ1] and X̄t ≡

 Xt

Ξt−1


 ,
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where K̃ and L̄ are matrices that have yet to be identified. (We show below that the Kalman

filter does indeed take this form, and identify these matrices.)

Equation (3.17) implies

 Etyt+1|t+1

Etϕt+1|t+1


 =


 yt+1|t

ϕt+1|t


 + K̃L̄

(
EtX̄t+1 − X̄t+1|t

)
. (3.18)

By adding (Ety
′
t+1,Etϕ

′
t+1)

′ to both sides and rearranging, we can write the equation as

 Etyt+1

Etϕt+1


 −


 yt+1|t

ϕt+1|t


 =


 Etŷt+1

Etϕ̂t+1


 + K̃L̄

(
EtX̄t+1 − X̄t+1|t

)
. (3.19)

Let Ī be the submatrix of the identity matrix that selects the elements

X̄t ≡ Ī


 yt

ϕt


 .

Then we can write (3.19) as

 Etyt+1

Etϕt+1


 −


 yt+1|t

ϕt+1|t


 = (I − K̃L̄Ī)−1


 Etŷt+1

Etϕ̂t+1


 , (3.20)

where we assume that I − K̃L̄Ī is invertible. Substituting (3.20) into (3.16) results in

Ã(I − K̃L̄Ī)−1


 Etŷt+1

Etϕ̂t+1


 = B̃


 ŷt

ϕ̂t


 . (3.21)

Again, we are interested in bounded solutions of (3.21) consistent with given initial values

for X̂t and Ξ̂t−1. We assume the appropriate configuration of eigenvalues of the system. There

is then a unique bounded solution of the form

x̂t = Ḡ1(X̄t − X̄t|t), (3.22)

Ξ̂t = S̄1(X̄t − X̄t|t), (3.23)

where as usual the matrices Ḡ1 ≡ [G1 Γ1] and S̄1 ≡ [S1 Σ1] can be derived from the eigenvectors

of the system (3.21).

Combining (3.10) with (3.22), we find that

xt = Ḡ1X̄t + (Ḡ − Ḡ1)X̄t|t, (3.24)
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where Ḡ ≡ [G Γ], and the matrices G and Γ are the ones that appear in (3.10). This equation is

similar in form to the solution obtained in the case of symmetric partial information (discussed

above), except that it includes separate terms in Ξt−1 and Ξt−1|t (which now differ), and that the

matrix G1 no longer takes the simple form (2.12). In particular, the matrix G1 (and similarly

Γ1, which matters when Ξt−1 6= Ξt−1|t) depends in general upon the elements of the Kalman

gain matrix K̄, and so is no longer independent of the nature of the central bank’s partial

information.

A complete solution for the dynamics of the state variables also now requires that we solve for

the dynamics of the multipliers Ξt, which are no longer fully characterized by (3.11). Combining

(3.11) and (3.22), we find that

Ξt = S̄1X̄t + (S̄ − S̄1)X̄t|t, (3.25)

where S̄ ≡ [S Σ], and S and Σ are the matrices appearing in (3.11). It is the fact that S̄1 is

generally non-zero in this derivation that implies that Ξt is no longer measurable with respect

to It. Unless all elements of Xt are part of the central bank’s information set at date t + 1, Ξt

will generally not be measurable with respect to It+1, either.

It remains to determine the evolution of the estimates X̄t|t. We note that in the present

case (unlike that of symmetric partial information) it is necessary to derive a Kalman filter for

the evolution of the estimates Ξt−1|t as well as for the estimates Xt|t. Substitution of (3.9) and

(3.24) into the first row of (2.1), combination with (3.25), and substitution into (2.4) leads to

the transition equation for X̄t,

X̄t+1 = H̄X̄t + J̄X̄t|t + ūt+1, (3.26)

and to the measurement equation

Zt = L̄X̄t + M̄X̄t|t + vt. (3.27)

Here

H̄ ≡

 H Ψ1

S1 Σ1


 , J̄ ≡


 J Ψ2

S − S1 Σ − Σ1


 , ūt ≡


 ut

0


 , L̄ ≡ [L Λ1], M̄ ≡ [M Λ2],

(3.28)

H,J,L,M are again defined as in (2.15)–(2.18), and

Ψ1 = A12Γ1, Ψ2 ≡ A12(Γ − Γ1) + B1Φ, Λ1 ≡ D2Γ1, Λ2 ≡ D2(Γ − Γ1).
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Note that Ψ ≡ Ψ1 +Ψ2 is the same matrix as in (3.12), so that (3.26) is consistent with (though

not implied by) equations (3.11) and (3.12) for the evolution of the conditional expectations.

The system of equations consisting of (3.26) then represents a system of transition equations

with a form analogous to (2.13), in which the state vector Xt is replaced by the vector X̄t that

includes the elements of both Xt and Ξt−1. Equation (3.27) is similarly a measurement equation

with a form analogous to (2.14). It follows that the optimal estimates of Xt and Ξt−1 will be

given by a Kalman filter analogous to (2.20). We thus obtain updating equations for Xt and

Ξt−1 of the form indicated by the corresponding rows of (3.17),

X̄t+1|t+1 = X̄t+1|t + K̄[L̄(X̄t+1 − X̄t+1|t) + vt+1], (3.29)

where K̄ ≡ ĪK̃.

Using (3.26) to form the forecast X̄t+1|t, (3.29) may be written

X̄t+1|t+1 = (I − K̄L̄)(H̄ + J̄)X̄t|t + K̄(L̄X̄t+1 + vt+1). (3.30)

For a given Kalman gain matrix K̄, a complete system of equations for the evolution of the

endogenous variables is then given by (3.24), (3.26) and (3.30), which apply in each period t ≥ 0,

starting from given initial values for X0 and X0|0, and from the initial values Ξ−1 = Ξ−1|0 = 0.

It remains to determine the Kalman gain matrix in (3.29). Making use of the analogy

between equations (3.26)–(3.29) and (2.13), (2.14) and (2.20), we directly find that the Kalman

gain matrix is given by the equation

K̄ = P̄ L̄′(L̄P̄ L̄′ + Σvv)−1, (3.31)

analogous to (2.21), where the matrix P̄ ≡ Cov[X̄t − X̄t|t−1] is the covariance matrix for the

prediction errors X̄t − X̄t|t−1. The matrix P̄ in turn satisfies the Riccati equation

P̄ = H̄[P̄ − P̄ L̄′(L̄P̄ L̄′ + Σvv)−1L̄P̄ ]H̄ ′ + Σ̄uu (3.32)

analogous to (2.22), where

Σ̄uu ≡

 Σuu 0

0 0


 .

These equations are considerably more complicated to solve than in the case of symmetric

partial information, treated in Svensson and Woodford [12]. First of all, the matrices K̄ and

P̄ are larger (of dimension (nX + nx) × (nX + nx) rather than simply nX × nX). But more
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importantly, the elements of the matrices H̄ and L̄ that appear in (3.28) do not depend solely

upon the elements of A and D, as in the case of symmetric information. For the matrix G1

appearing in the definitions of H and L is no longer given by (2.12), but instead depends upon

the matrices of the system (3.21) and hence on the Kalman gain matrix K̃ (though we show

below that it only depends on K̄). The same is true of the matrices Γ1, S1 and Σ1 that enter

into H̄. Thus, one must solve a system of simultaneous equations for P̄ , K̄, and the matrices

that define the solution to (3.21); a separation principle no longer holds. This simultaneity is the

same as we found in section 2, except that now the matrices involved are all of larger dimension.

The definitions of the matrices in (3.21) refer not only to K̄ but also to the other elements

of the Kalman gain matrix K̃. These, however, are easily expressed as functions of K̄. Let us

decompose K̃ with obvious notation,

K̃ ≡




K̃X

K̃x

K̃ϕ1

K̃ϕ2




,

so that

K̄ ≡ ĪK̃ ≡

 K̃X

K̃ϕ2


 .

Then by (3.10) the Kalman gain matrix for the forward-looking variables, xt, is given by

K̃x = ḠK̄.

Similarly, the unique bounded solution to (3.7) allows us to write ϕ1t|t as a matrix times X̄t|t,

where the matrix is the same as in the case of full information (or certainty). This equation

implies that the Kalman gain matrix for the prediction equation for ϕ1t, K̃ϕ1, will be the same

matrix times K̄. Thus the only simultaneity that must be dealt with is the dependence of the

matrices G1,Γ1, S1 and Σ1 upon K̄.

4 Application: Optimal monetary policy with real-time data

As an example of an application of our results, we sketch here the analysis of Aoki [1] and [2]

of the way in which optimal monetary policy should make use of the preliminary estimates of

current macroeconomic conditions that are available in real time. As Orphanides [8] in particular

has stressed, policy must be made on the basis of preliminary estimates that are in fact revised
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substantially in subsequent months. Aoki models this by assuming that the available measures

of current inflation and output are subject to measurement error, while the true values come to

be known with a delay. The question that he considers is how the degree of uncertainty about

the current state should affect the degree to which policy responds to the available real-time

measures. Here we indicate how Aoki’s analysis could be cast in terms of our framework.

Aoki assumes that output yt and inflation πt are determined by a model consisting of two

structural equations,

yt = Etyt+1 − σ[it − Etπt+1 − ρt], (4.1)

πt = κ(yt − yn
t ) + βEtπt+1, (4.2)

which can be interpreted as an intertemporal “IS equation” and “aggregate supply equation”

respectively. Here the short-term nominal interest rate it is assumed to be the central bank’s

policy instrument. The dependence of both relations upon expectations regarding future output

and inflation introduces the forward-looking elements into the model’s structural relation that

complicates the central bank’s optimal filtering and control problems.10 Note that the expecta-

tions in these relations are conditional upon the full information set of the private sector.

The exogenous disturbances ρt and yn
t are assumed to evolve as first-order autoregressive

processes,

ρt = ηρt−1 + eρt, (4.3)

yn
t = νyn

t−1 + eyt, (4.4)

where 0 < η, ν < 1 and the disturbances eρt, eyt are i.i.d. mean-zero normal random variables,

with variance s2
ρ and s2

y respectively. The central bank is assumed to wish to minimize a

discounted loss function (2.7), where the period loss function is of the form

Lt = π2
t + a(y − yn

t )2, (4.5)

for a certain weight a > 0. This is a standard specification of “flexible inflation targeting” (see

Svensson [11]), and can also be justified as a utility-based welfare criterion given the individual

decision problems underlying relations (4.1)–(4.2) (see Woodford [18]).

Because the “natural rate of output” around which one wishes to stabilize output according

to (4.5) is exactly the shift factor in the aggregate supply relation (4.2), the aggregate supply
10 See Woodford [17] for the derivation of these relations from the underlying decision problems of households

and firms, and for further discussion of the model.
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relation itself implies no conflict between the goals of inflation and output-gap stabilization. It

is possible in principle to completely stabilize both target variables, since πt = 0 and yt = yn
t at

all times is consistent with equation (4.2), and also with equation (4.1) as long as the nominal

interest rate satisfies

it = rn
t ≡ ρt −

1 − ν

σ
yn

t . (4.6)

That is, complete stabilization of both target variables is a possible equilibrium, as long as

the interest rate it perfectly tracks the exogenous variation in the Wicksellian “natural rate of

interest” rn
t (discussed further in Woodford [17]). Under full information on the part of the

central bank, this would represent optimal policy, as this equilibrium achieves the theoretical

minimum value of the loss function (zero each period).11 However, the central bank’s real-time

information set may not allow it to estimate the current natural rate of interest with complete

accuracy. In this case, complete stabilization is not feasible, and the central bank faces a tradeoff

between the two goals of greater inflation or greater output-gap stabilization.

Aoki assumes that the central bank’s information set when setting it consists of complete

information about all state variables known to the private sector at date t − 1, plus noisy

preliminary estimates of current inflation and output. These preliminary estimates are assumed

to be given by

πo
t = πt + επt, (4.7)

yo
t = yt + εyt, (4.8)

where the measurement-error terms επt and εyt are i.i.d. mean-zero normal random variables,

with variance σ2
π and σ2

y respectively. These errors in the central bank’s preliminary estimates

are assumed to be distributed independently of the “fundamental” disturbances eρt and eyt.

Aoki’s model falls within the general framework set out in the previous sections. The struc-

tural equations (4.1)–(4.2), together with laws of motion (4.3)–(4.4) for the disturbances, com-

prise a model of the form (2.1). Here the predetermined/exogenous state variables consist of a

2-vector of exogenous disturbances X∗
t and the non-predetermined endogenous variables consist

11 That is, an optimal policy would bring about an equilibrium in which the nominal interest rate would
vary in this way. This does not necessarily mean that the optimal policy is for the central bank to set its
instrument according to the function (4.6) of the exogenous disturbances; for while such a policy rule would be
consistent with the optimal equilibrium, it would also allow an extremely large class of other rational-expectations
equilibria as well, which equilibria are less desirable. Other rules, that specify feedback from inflation and output-
gap outcomes as under the “Taylor rule”, are equally consistent with the optimal equilibrium and can render
equilibrium determinate as well (see Woodford [17]). There is no uniquely optimal rule of this form, since rules
that differ in the way that they specify out-of-equilibrium behavior may imply the same set of equilibria.
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of a 2-vector xt, where

X∗
t ≡


 ρt

yn
t


 , xt ≡


 πt

yt


 ,

and it is possible to write equations (4.1)–(4.2) in a form such that Ẽ = I. While it would be

possible to write the model’s equations in the form (2.1) with Xt = X∗
t , this notation would

not allow us to express the central bank’s period t observables as a function of Xt, xt and

measurement error alone, as assumed in (2.4). In order to directly apply our above expressions

for the optimal filtering problem, it is necessary to augment the state vector to include lagged

values of the fundamental disturbances, so that

Xt =


 X∗

t

X∗
t−1


 .

The system (2.1) then becomes a system of six difference equations, including two identities.

Aoki’s loss function (4.5) also falls under our framework. This is a loss function of the form

(2.3), where

C =


 0 0 0 0 1 0

0 −1 0 0 0 1


 , Ci = 0, W =


 1 0

0 a


 .

Because Ci = 0, we must apply the approach described in appendix A rather than the one

followed in the text, but we are still able to derive a system of first-order conditions for optimal

policy of the form (3.7).

Finally, the assumed information structure falls under the framework set out above, if we let

Zt ≡

 Z∗

t

X∗
t−1


 =


 I 0 0

0 I 0







X∗
t

X∗
t−1

xt


 +


 εt

0


 ,

where Z∗
t and εt are the 2-vectors of the observations, [πo

t yo
t ]′, and measurement errors, [επt εyt]′,

respectively. Under this specification, the central bank’s information set at date t includes the

entire history {X∗
t−j} for j ≥ 1, and so a complete description of the state of the world as of

date t − 1, but only the information about date t fundamentals that is contained in the noisy

measurements of current inflation and output (the two elements of Z∗
t ). Aoki assumes, as we

do, complete information on the part of the private sector.

Our results in sections 2 and 3 can then be directly applied. Discretionary optimization by

the central bank (treated by Aoki in [1]) results in the interest rate satisfying a relation of the
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form (2.8). Furthermore, the matrix F in this relation is the same as under full information.

This allows us to write the relation in the simpler form

it = f ′X∗
t|t,

since the state variables X∗
t−1 may be omitted from the vector Xt in the case of full information.

Furthermore, the corresponding relation in the full-information case is given by (4.6), allowing

us to identify the elements of the vector f ′. Optimal policy under discretion is thus characterized

by the relation

it = rn
t|t. (4.9)

A Kalman filter can then be used to describe the evolution of the central bank’s optimal estimate

of the current natural rate of interest.

Under an optimal commitment (treated by Aoki in [2]), instead, the interest rate satisfies a

more complex relation of the form

it = f ′X∗
t|t + φ′Ξt−1. (4.10)

(This similarly follows from (3.9), given that the elements X∗
t−1 of the state vector Xt are

irrelevant in the case of full information, and that Ξt−1|t = Ξt−1 under Aoki’s information

structure.) Once again, the vectors f ′ and φ′ are the same as in the case of full information.

Since the optimal equilibrium under full information satisfies (4.6),12 the vector f ′ is the same

as in the case of discretionary optimization, and (4.10) may equivalently be written

it = rn
t|t + φ′Ξt−1. (4.11)

Note that it would not be correct to argue on the basis of certainty equivalence that since

it = rn
t is the optimal commitment under full information, the optimal rule with incomplete

information will satisfy it = rn
t|t. The reason that the optimal commitment (4.6) can be written

without any feedback from a Lagrange multiplier in the case of full information is not because

φ′ = 0 for this model, but rather because Ξt−1 = 0 at all times. This is because under full

information, complete stabilization of the target variables is feasible, and so there is no gain

from relaxing the constraints imposed by the model’s structural equations. But one can show

(by computing the relevant eigenvectors of the matrix M in (3.7)) that φ′ 6= 0, so that the

second term on the right-hand side of (4.11) cannot be omitted. Nor is it true that Ξt−1 is
12 Note that in the case of full information, (4.6) describes the result of central-bank optimization under either

discretion or commitment—the optimal commitment happens in this case to be time-consistent.
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zero most of the time, in the case of imperfect information on the part of the central bank.

This is because when information is imperfect, it will generally not be possible for the central

bank to adjust its interest-rate instrument (which must depend only upon the central bank’s

information) so as to perfectly track variations in the natural rate of interest, and so perfect

stabilization will be unattainable. In this case, there will generally be non-zero state-contingent

Lagrange multipliers associated with perturbations of the constraints implied by the structural

equations (4.1)–(4.2).

This does not contradict our certainty-equivalence results above, because these do not imply

that the law of motion for the Lagrange multipliers must be the same as in the case of full

information. It is true that (3.11) must hold, with the same matrices S and Σ as in the case

of full information. In the case of full information, we know that S = 0, since Ξt will be zero

regardless of the realization of the exogenous disturbances Xt. Thus (3.11) reduces in Aoki’s

model to

Ξt|t = ΣΞt−1|t = ΣΞt−1, (4.12)

for a certain matrix Σ. However, Σ is not a zero matrix. In the case of full information, the

corresponding law of motion

Ξt = ΣΞt−1

implies that Ξt = 0 for all t as a result of the initial condition Ξ−1 = 0, despite the fact that

Σ 6= 0. But with incomplete information, the initial condition Ξ−1 = 0 no longer implies that

Ξt = 0 as well at all later dates. Instead, it implies only that Ξt|0 = 0 for all t ≥ 0. The actual

value of the Lagrange multiplier will be given by the law of motion

Ξt = S1[Xt − Xt|t] + ΣΞt−1,

where S1 6= 0. Thus (4.11) makes it a function not only of the central bank’s period-t estimate of

the current state, but also of what it has learned by period t about its past errors in estimation

of the economy’s state.

Specifically, Aoki [2] shows that the optimal commitment involves making interest rates

higher than the current estimate of the natural rate if the bank now knows that it underestimated

the natural rate in the past. The reason is that the private sector is aware of the bank’s

misperception, and if it understands that the bank will later correct its error, then even when

the current short rate is below the natural rate, the private sector’s expectation of higher future

short rates will dampen the high demand (and hence inflationary pressure) that would otherwise
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result. Of course, the cost of fulfilling such a commitment later is a short-term interest rate that

deviates to a greater extent from the natural rate at that time; but some use of this mechanism

can nonetheless improve the bank’s overall stabilization objectives. Optimal policy is thus

not purely forward-looking, in the sense discussed in Woodford [16]. Indeed, the response of

the bank’s interest-rate instrument to fluctuations in the natural rate of interest will be more

inertial than is the natural rate itself, just as in the analysis of Woodford [15]. In the case of a

positive innovation in the natural rate, the average immediate increase in the nominal interest

rate will be smaller, because of the bank’s inability to identify the increase immediately given its

imperfect observation of current conditions. At the same time, the increase in interest rates will

last longer, because in later periods the central bank will respond to its initial underestimate

of the natural rate by keeping interest rates higher than the natural rate at those later times.

Interestingly, Aoki obtains these results in the case of asymmetric information without any need

for the assumption of an interest-rate stabilization objective in the central bank’s loss function,

relied upon in the full-information analysis of Woodford [15].
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A Appendix: The case of a loss function independent of the instruments

Here we consider the extension of our results to the special case in which Ci = 0, so that the

policymaker’s objective function is independent of the path of the instruments it. In this case,

Lii = 0, so that the matrix is necessarily not invertible, as assumed in the text. In this case,

we cannot solve (3.3) for it. However, in this case we also must have Liy = 0; hence there is no

need to solve (3.3) in order to eliminate it from (3.2), as the equation is already in the desired

form. We can simply take the conditional expectation of (3.2) with respect to It and obtain

A′ϕt+1|t = −Lyyyt|t + δ−1Ĩ ′ϕt|t, (A.1)

which is of the same form as the upper half of the system of equations (3.6). The sticking point

is that we are unable to eliminate it from (2.1), as is also necessary in order to derive the system

(3.6) in the text.

It is nonetheless possible to derive a system of difference equations of the same general form.

We note that in the present case, (3.3) reduces to

B′ϕt+1|t = 0. (A.2)

This is a set of restrictions of the same form as those in the system (3.6), and independent of

(3.2). Let us suppose that B is of full rank;13 then (A.2) is a system of ni linearly independent

restrictions, where ni is the number of instruments. Let g be an (nX + nx) × (nX + nx − ni)

matrix, the columns of which all linearly independent of one another, and orthogonal to each of

the columns of B (so that g′B = 0). Then premultiplying (2.1) by g′ and taking the conditional

expectation with respect to It, we obtain

g′Ĩyt+1|t = g′Ayt|t. (A.3)

This provides an additional nX +nx −ni linearly independent restrictions, and equations (A.1),

(A.2) and (A.3) jointly comprise a system of the form (3.6). In the generic case, the matrix on

the left-hand side will be invertible as assumed in the text, and one will obtain a system of the

form (3.7).
13 This is purely a notational convenience, as our method here can be applied even when it is not. One simply

must eliminate redundant equations from (A.2), and augment the number of columns in the matrix g accordingly.
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