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1. Introduction 
 Descriptions of the cyclical behavior of the price level play an important role in 

macroeconomics. Clearly, there are many ways to describe the properties of economic 

variables. Typically, a concise set of moments is used to estimate and/or test a model 

after a filter has been used to render the data stationary. The focus on only a limited set of 

statistics is often motivated either by the idea that the model is not intended to be an 

accurate description of the data in all dimensions, or by the fact that more efficient 

econometric techniques, like maximum likelihood, cannot be used because of technical 

difficulties.1 A crucial question, therefore, is what moments to use. Compounding the 

difficulty in answering this question is the fact that the moments of interest (standard 

deviation and correlation coefficients) typically require the data to be stationary.   

 This paper examines the correlation between prices and output for the G7 

countries (Canada, France, Germany, Italy, Japan, United Kingdom, and the United 

States) during the postwar period. We use both the correlation of VAR forecast errors as 

proposed in Den Haan (2000) and the correlations of prices and output after a frequency 

domain filter has been used to isolate the frequencies of interest as proposed by Baxter 

and King (1994). Den Haan (2000) shows that the VAR procedure can be used for 

stationary as well as integrated stochastic variables. In this paper we similarly show that 

                                                
*  Respectively: University of California at San Diego, CEPR, and NBER; University of California at San 
Diego. We are grateful to Marianne Baxter, Timothy Cogley, Marjorie Flavin, Clive Granger, Jim 
Hamilton, Robert King, Valerie Ramey, and Bharat Trehan for useful comments. 
1  Geweke (1999), for example, shows that the likelihood function of a dynamic economic model is 
typically zero, either because obtaining numerical solutions of the model requires discrete support of the 
stochastic driving process which happens in the data only with probability zero or requires the number of 
unobservable state variables to be small which leads to relationships between variables that are rejected 
with probability one in the data. The last problem can be avoided by following the standard practice in 
regression analysis to add a stochastic error term to each policy function, which would, of course, be 
ludicrous in a dynamic stochastic model. 
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the frequency domain filters can be used for stationary and I(1) and I(2) stochastic 

variables. By considering different forecast horizons and frequency domain filters that 

isolate different frequency bands, we capture important dynamic information about the 

comovement of prices and output. By considering these two alternative sets of dynamic 

statistics we offer a more complete description of the comovement between prices and 

output than other empirical studies in the literature, and are capable of drawing stronger 

conclusions about the kind of theoretical models that are consistent and inconsistent with 

the observed comovements.2  In particular, we find that, virtually always, the “long-run” 

correlations between prices and output are significantly negative and that the “short-run” 

correlations are substantially higher.  Although there is evidence of positive “short-run” 

correlations for some countries, it is not very robust to the choice of the price and output 

variables.   

Backus and Kehoe (1992), Cooley and Ohanian (1991), and Fiorito and Kolintzas 

(1994) show that the correlation between HP-filtered prices and output is negative for 

several countries during the postwar period.3  Initially these negative correlation 

coefficients were believed to support models in which supply shocks play a dominant 

role. Chadha and Prasad (1993), Judd and Trehan (1995), and Ball and Mankiw (1994), 

however, showed that these negative correlation coefficients do not provide much 

identifying information because sticky-price models with only demand shocks can easily 

generate a negative correlation between prices and output when the HP-filter is used to 

filter the data.  Den Haan (2000) shows, however, that the negative correlation between 

VAR forecast errors that we find in this paper cannot be generated by these type of 

models under sensible assumptions. This paper, therefore, provide support for the claim 

made by Kydland and Prescott (1990) that “any theory in which procyclical prices figure 

crucially in accounting for postwar business cycle fluctuations is doomed to failure”. 

In this paper, we also offer some methodological contributions. First, we propose 

a new procedure to implement the method proposed in Den Haan (2000). We show that 
                                                
2  Backus and Kehoe (1992) analyze the empirical comovement between annual prices and output for ten 
OECD countries for both the postwar and several prewar periods, Cooley and Ohanian (1991) provides a 
description of the comovement of US output and prices for both the postwar and several prewar periods, 
and Fiorito and Kollintzas (1994) investigates the behavior of output and prices for the G7 during the 
postwar period. 
3  Similarly, Pakko (2000) shows using a postwar sample that the cospectrum of US GDP and its deflator is 
negative at those frequencies corresponding roughly to the HP filter. 
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imposing the restrictions implied by the estimated VAR in calculating the correlation 

coefficients of VAR forecast errors results in substantial efficiency gains.  Second, in 

contrast to claims made in the literature4, this paper shows that band-pass and high-pass 

frequency domain filters succeed in eliminating that part of the series associated with 

frequencies outside of the specified band for stationary as well as integrated processes.  

 The paper is organized as follows. The following section describes the 

methodology to calculate the correlation coefficients of the VAR forecast errors 

discussed in Den Haan (2000) and the new procedure used to implement the method. 

Section 3 discusses how frequency domain filters can be used to provide a concise set of 

statistics to describe the comovement of stationary as well as I(1) and I(2) variables. 

Section 4 discusses the empirical findings and the last section concludes. 

 

2. Measuring correlations at different forecast horizons 

 In Section 2.1, we review the procedure proposed in Den Haan (2000) to measure 

the comovement between economic variables.  In Section 2.2, we discuss the relationship 

between this procedure and the impulse response functions from structural VARs.  

 

2.1 Using forecast errors to calculate correlation coefficients 

 Consider an N-vector of random variables, Xt.  The vector Xt is allowed to contain 

any combination of stationary processes and processes that are integrated of arbitrary 

order.  If one wants to describe the comovement between prices, Pt, and output, Yt, then 

Xt  has to include at least Pt and Yt. Consider the following VAR: 

(2.1) t

L

l
ltlt vXAtctbaX ++++= ∑

=
−

1

2                            

where Al is an N×N matrix of regression coefficients; a, b and c are N-vectors of 

constants; vt is an N-vector of innovations; and the total number of lags included is equal 

to L.  The elements of vt are assumed to be serially uncorrelated but they can be 

correlated with one another.  We denote the K-period ahead forecast and the K-period 

ahead forecast error of the variable Yt by Et Yt+K and Yt K t
ue
+ , , respectively.  We do the same 

                                                
4  See Cogley and Nason (1995) and Harvey and Jaeger (1993). 
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for Pt.  We denote the covariance between the random variables Pt K t
ue
+ , and Yt K t

ue
+ ,  by 

COV(K) and the correlation coefficient between these two variables by COR(K).   

 If the series are stationary, then the correlation coefficient of the forecast errors 

will converge  to  the unconditional correlation coefficient of the two series as K goes to 

infinity.  Den Haan (2000) shows that if some of the time series are not stationary then 

COV(K) and COR(K) can still be estimated consistently for a fixed K.  It is important to 

note that no assumption on the order of integration of the elements of Xt has to be made.  

For example, it is possible that Xt contains stationary as well as integrated processes.  

However, an important assumption for the derivation of the consistency results is that 

Equation (2.1) is correctly specified.  In particular, the lag order must be large enough to 

guarantee that νt is serially uncorrelated and not integrated.  That is, if Xt contains I(1) 

stochastic processes, then the lag order has to be at least equal to 1.  Likewise, if Xt 

contains I(2) stochastic processes, then the lag order has to be at least equal to 2.  When 

Xt includes integrated processes one might prefer to estimate a VAR in first differences or 

an error-correction system.  When the restrictions that lead to these systems are correct, 

then imposing the restrictions may lead to more efficient forecasts in a finite sample.  If 

they are not correct then the system is misspecified and the estimator might be biased.5 

 There are two ways to construct estimates of the covariance terms.  Den 

Haan (2000) constructs time series for the forecast errors using the difference between 

the realizations and their forecasts and calculates the covariance of the created time 

series.  A disadvantage of using the actual forecast errors is that one looses several 

observations, which shortens the sample size especially for longer forecast horizons.  The 

second way to construct estimates is to use the covariance that is implied by the VAR 

coefficients and the variance-covariance matrix of νt.  In the appendix we show that there 

are substantial efficiency gains by using the second method. 

 The correlation coefficients are calculated as follows using the second method. 

The VAR given in Equation (2.1) for a sample of T observations can be written as 

(2.2) ∑
=

− +=
L

l
TllTT vAXX

1

’ ,       

                                                
5   See Hamilton (1994, page 516) for a discussion. 
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where for simplicity we have set the constant and the trend terms equal to zero.  This 

system can be written as the following first-order VAR system 

(2.3) TTT uFZZ +′= −1 ,      

where ZT is a (T×LN) matrix equal to [ XT  XT-1 ⋅⋅⋅  XT-L+1], Tu  is a (T×LN) matrix equal to 

[ νT  0T,N ⋅⋅⋅  0T,N], and 

 



















′

′
′

=

NNNL

NNN

NNN

IA

IA

IA

F

K

MOMMM

L

L

00

00

00

’ 2

1

, 

where IN is an (N×N) identity matrix and 0N is an (N×N) zero matrix.  Let COV(K) now 

denote the (LN×LN) variance-covariance matrix of the K-period ahead forecast errors.  It 

is then relatively straightforward to show that 

(2.4) ∑
−

=
++ Ω=′−′−=

1

0

’/][]’[)(
K

j

jjK
TKT

K
TKT FFTFZZFZZEKCOV , 

where F0 = INL and Ω = E (uT′uT)/T. 

2.2 The relationship with impulse response functions 

 There is an alternative way to use the VAR to construct measures of 

comovements at different forecast horizons that clarifies the relationship between our 

procedure and impulse response functions.  We can write the K-period ahead forecast 

error, Yt K t
ue
+ , , as follows: 

(2.5) ( ) ( ) ( )Y Y Y Y Y Y Yt K t
ue

t K t K t K t K t K t K t K t t K t t K+ + + − + + − + + − + + + += − + − + ⋅ ⋅ ⋅ + −, E E E E E1 1 2 1  

In this equation, the K-period ahead forecast error is written as the sum of the updates in 

the forecast of Yt+K, starting at period t+1.  The first term on the right hand side is just the 

one-period ahead forecast error realized at period t+K.  The second term is the update of 

the two-period ahead forecast and the other terms are defined similarly. We denote the 

covariance between ( )E Et K k t K t K k t KY Y+ − + + + − +−1  and ( )E Et K k t K t K k t KP P+ − + + + − +−1  by 

COV∆(k).  Since the terms on the right hand side of Equation (2.5) are serially 

uncorrelated, there is a simple relationship between COV(K), defined in Section 2.1, and 

COV∆(k).  That is, 
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(2.6) COV K COV k
k

K

( ) ( )=
=

∑ ∆

1

. 

When K= k =1, then the two covariances are identical. The “COV∆(k)” covariances, 

therefore, contain the same information as the “COV(K)” covariances.  Calculating 

standard errors for the COV∆(k) statistics may seem easier since the updates of the K-

period ahead forecasts are serially uncorrelated and the K-period ahead forecast errors are 

not.  However, in both cases calculating standard errors is a complicated exercise because 

the forecasts are obtained from an estimated VAR and the standard errors of the 

covariance statistics should incorporate the sampling uncertainty due to the estimation of 

the VAR. Den Haan (2000) shows that the sign of the COV(K) terms has more 

identifying information than the sign of the COV∆(k) terms.6  Therefore, we will focus on 

the COV(K) terms not the COV∆(k) terms. 

 The “COV∆(k)” covariances are helpful in clarifying the relationship between the 

proposed statistics and impulse response functions.  Suppose that vt = Bεt, where B is an 

N×M matrix of coefficients and εt  is an M-vector of (independent) fundamental shocks.  

Without loss of generality assume that each element of εt has unit variance. Let Yk
imp m,  be 

the effect on output in response to a one standard deviation shock in the mth element of εt  

after k periods.  Thus, Yk
imp m,  is the impulse response of Yt after k periods. We define 

Pk
imp m,  in the same manner.  Then, COV∆(k) is equal to the sum of the products of the k-

step impulse responses across all fundamental shocks.  That is, 

(2.7) .)(
1

,,∑
=

∆ =
M

m

mimp
k

mimp
k PYkCOV    

When there is only one fundamental shock, i.e. M = 1, then COV∆(k) is equal to the 

product of the impulse response functions.  For the special situation, where Yk
imp  

andPk
imp always have the opposite sign, the COV∆(k) will be negative for every value of k.  

To understand Equation (2.7) for the case when M > 1, note that shocks that have a 

                                                
6  In particular, COV∆(k) could be negative for some k in models with only demand shocks as long as the 
effect of a demand shock on output and prices has the opposite sign at some point while COV(K) can only 
be negative when the accumulated effect of a demand shock on output and prices has the opposite sign. 
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bigger quantitative impact on output and prices obviously obtain more weight in the 

calculation of COV∆(k).  

 A set of impulse response functions provides complete information about the 

comovements of output and prices after any type of shock. Estimating impulse response 

functions, however, requires making identifying assumptions.  The results often depend 

on the particular type of identifying assumptions, and the assumptions are often ad hoc.  

The advantage of the procedure proposed in this paper is that it does not require making 

these types of ad hoc assumptions. The disadvantage of this procedure is that it does not 

identify all the different impulse response functions. 

 

3. Measuring correlations at different frequencies 

 This section describes how to use spectral analysis to decompose series by 

frequency and to measure the correlations of two series at different frequencies.7  The 

literature on frequency domain analysis typically assumes that the series of interest are 

stationary.  A short description of the relevant techniques is given in Section 3.1. In 

contrast to some claims made in the literature, we show in Section 3.2 that the procedures 

used in this paper can be easily extended to the case where the series are first or second-

order integrated processes, or the case where the series contain a deterministic linear or 

quadratic time trend.   

 
3.1 Frequency-domain filters for stationary processes 

 From the Wold-theorem, we know that any covariance stationary series has a 

time-domain representation.8  Similarly, any covariance stationary series has a frequency-

domain representation.  Informally, this implies that the variable xt can be represented as 

a weighted sum of periodic functions of the form cos(ωt) and sin(ωt), where ω denotes a 

particular frequency.  The frequency domain representation is given by 

                                                
7 Diebold, Ohanian, and Berkowitz (1998) propose to compare the cross spectrum of the data with that of a 
model. The procedure developed in this section is closer to the commonly used method of filtering the data 
with the Hodrick-Prescott filter described in Hodrick and Prescott (1997) but like Diebold, Ohanian, and 
Berkowitz (1998) we consider a more complete description of the data. Recall that the commonly used 
version of the Hodrick-Prescott filter is an approximate high-pass filter that eliminates cycles with a 
periodicity of more than 32 quarters. 
8 See Hamilton (1994) for regularity conditions. 
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(3.1) ωωωδωωωαµ
ππ

dtdtxt ∫∫ ++=
00

)(sin )()(cos )(  

Here, α(⋅) and δ(⋅) are random processes.  The spectrum of a series xt is given by 

(3.2) ,,
2

1
)( πωπγ

π
ω ω ≤≤−= ∑

∞

−∞=

−

j

ji
jx eS   

where γj  is the jth autocovariance and i2 = -1.  The spectrum is useful in determining 

which frequencies are important for the behavior of a stochastic variable.  If the spectrum 

has a peak at frequency ω = π/3, then the cycle with periodicity equal to 6 (= 2π / (π/3) ) 

periods is quantitatively important for the behavior of this stochastic variable.  

Consider the following examples.   If xt is white noise, then the spectrum is flat.   

A flat spectrum indicates that all cycles are equally important for the behavior of the 

variable xt.  Intuitively, this makes sense because the existence of cycles implies 

forecastibility, and white noise is, by definition, unforcastable.  As a second example, 

suppose that xt is an AR(1) with coefficient ρ, where 0 < ρ < 1.  The spectrum for this 

random variable has a peak at ω  =  0 and is monotonically decreasing with |ω|.  Since the 

periodicity of a cycle with zero frequency is “infinite”, this stochastic process does not 

have an observable cycle.  Finally, suppose that the stochastic variable xt has a unit root, 

then the spectrum would be infinite at frequency zero.   

 Baxter and King (1994) show how to construct filters that isolate specific 

frequency bands, while removing stochastic and deterministic trends. Suppose one wants 

to isolate that part of a stochastic variable xt that is associated with  frequencies  between  

ω 1  and ω 2, with 0 < ω 1  < ω 2   ≤ π.  If ω 2  = π, then the filter is called a high-pass filter 

since all frequencies higher than ω 1 are included. If ω 2  < π, then the filter is called a 

band-pass filter.  The filters are two-sided symmetric linear filters and can be expressed 

as follows. 

(3.3) t
F
t xLBx )(=  

where xt
F  is the filtered series, L is the lag operator, and  

(3.4) .         ,)( with hh
h

h
h bbLbLB −

∞

−∞=

== ∑    
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Let the Wold-representation for xt be given by 

(3.5) .)( tt LCx ε=  

Then, 

(3.6) .)()( t
F
t LCLBx ε=  

A useful result in spectral analysis is that the spectrum of xt
F  is given by 

(3.7) ),(|)(|)( 2 ωω ω
x

i

x
SeBS F

−=  

where | ( ) |B e i− ω  is the gain of the filter B(L).  The spectrum of the filtered series xt
F  has 

to be equal to Sx  if |ω| ∈ [ω 1, ω 2] and equal to zero if ω is outside this set. Therefore, the 

gain of the filter has to be equal to one if   |ω| ∈ [ω 1, ω 2] and equal to zero otherwise.  

Using the converse of the Riesz-Fischer theorem, one can find the time-series 

representation, i.e. B(L), that corresponds to these conditions for the gain of the filter.  

The formulas are as follows 

(3.8) K,1.
)sin()sin( 1212

0 ±=−=−= h
h

hh
bandb h π

ωω
π

ωω
 

 The ideal filter is an infinite moving average and cannot be applied in practice.  In 

practice one has to truncate B(L).  This gives an approximate filter )(LAH , where 

(3.9) ,)( ∑
−=

=
H

Hh

hH
h

H LaLA  

and H is the truncation parameter.9   Note that a higher value of H means a more accurate 

band-pass filter, but also the loss of more data points.  The ideal filter B(L) has the 

property that B(1) = 0.  To ensure the same property for the feasible filter )(LAH , we 

adjust the coefficients of )(LAH  in such a way that they add up to zero.  Let θ be equal to 

(3.10) .
12 +

−
=

∑
−=

H

b
H

Hh
h

θ  

As in Baxter and King (1994), we adjust the coefficients as follows 

                                                
9   Other approaches in the frequency domain also have to deal with the endpoints.  The HP filter deals with 
the endpoints by using a different filter for each observation in the sample. See Christiano and Den 
Haan (1996) for a discussion. Engle (1974) points out that band spectrum regressions assume that the last 
observation is at the same point in the cycle as the first observation. 
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(3.11) θ+= h
H
h ba  

Note that the distortion introduced by this adjustment approaches zero as H goes to 

infinity. 

3.2 Frequency-domain filters for non-stationary processes10 

 In this section, we analyze the properties of frequency-domain filters for more 

general stochastic processes.  In particular, we show that the properties derived in Section 

3.1 remain valid when the input series are integrated stochastic processes or when the 

input series have a linear or quadratic time trend.  To prove this, we have to define the 

spectrum of a non-stationary random process.  Although most of the literature on spectral 

analysis focuses on stationary processes, there are some exceptions.  In fact, Hannan 

(1970) and Priestley (1988) consider much more general non-stationary processes than 

the ones considered in this section. 

 First, we will consider first-order integrated processes.  When the series xt is 

integrated, then the covariances used to define the spectrum in Equation (3.2) are not 

well-defined.  Therefore, we will define the spectrum of an integrated process as the limit 

of the spectrum of a stationary stochastic process.  The motivation for this definition is 

the following.  According to the Beveridge-Nelson decomposition, one can, under mild 

regularity conditions, write an I(1) process as the sum of a random walk, initial 

conditions, and a stationary process.11  Thus, 

(3.12) ttt exx += −1 , 

where et is a stationary process. Consider the following “AR(1)-type” process:12 

(3.13) ttt exx += −1ρ  or xt = [1/(1-ρL)] Se(ω). 

Note that, as long as |ρ| < 1, the process defined in (3.13) is stationary and has a well-

defined spectrum Sρ(ω) = | 1/(1-ρ e-iω) |2 Se(ω). Equation (3.12) can be written as: 

(3.14) .lim 11 ttt exx += −→ ρρ  

Equation (3.14) motivates the following definition of the spectrum of an I(1) process: 

                                                
10   This section has benefited a lot from discussions with Clive Granger. 
11  See, for example, Hamilton (1994). 
12   This process is not necessarily an AR(1), since et  could be serially correlated. 
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(3.15) )(
1

1
lim)(lim)(

2

11 ω
ρ

ωω ωρρρ eix S
e

SS −→→ −
=≡ . 

Note that Sx(ω) is finite for all frequencies except possibly zero.  Similarly, we can define 

the spectrum of an I(2) stochastic process as 

(3.16) )(
21

1
lim)(

2

221 ω
ρρ

ω ωωρ eiix S
ee

S −−→ +−
=  

Since )(LAH  is a symmetric filter with AH(1) = 0 we can write AH(L) as 

 (3.17) AH(L)   =  (1-L) )(LA H  with 0)1( =HA .   

Consequently, AH(L)  has the property that it can make first-order integrated processes 

stationary. Let HF
tx , = AH(L) xt.  We want to show that even when the law of motion for xt 

is given by Equation (3.12) and xt is, thus, a first-order integrated process, the frequency 

domain filter still correctly eliminates that part of the series associated with frequencies 

outside the specified band.  That is, we want to show for 0 < ω1 < ω2 ≤ π that13 

 

(3.18) 
.and0if0)(lim)(

andif)()(lim)(
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xHx
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SSS
 

Note that 

 (3.19) .
)1(
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L

e
LAxLAx tH
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HHF

t −
==  

The spectrum of HF
tx ,  is given by 

(3.20) )()()(
1
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e

eA
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−
−

−

→−

−

=
−

=
−

=  

for 0 < ω ≤ π .  Since Sx(ω) is well-defined for all values of ω bigger than zero, 

Equation (3.20) directly implies the desired result described in (3.18) for 0 < ω ≤ π.  It 

remains to be shown that Fx
S is equal to zero when ω is equal to zero.  Because of (3.17) 

we have that )0(,HFx
S  is equal to zero for all H, which implies that 

                                                
13 Note that calculating the spectrum of xF involves taking two limits, namely the limit as ρ → 1 and the 
limit as H → ∝. In practice one would use a finite-order filter on integrated series and let the order of the 
filter, H, increase as the sample size increases. Therefore, we first let ρ go to one and then let H go to 
infinity.  



 12

(3.21) 00lim)0(lim)0( , ==≡
∞→∞→ HxHx HFF SS . 

 Harvey and Jaeger (1993) and Cogley and Nason (1995) argue that the properties 

of frequency-domain filters depend on the order of integration of the input series.  This 

clearly contradicts the analysis above.  These papers reach a different conclusion because 

they always focus on the stationary part of the series, although the filter is always applied 

to the level.  Consider, for example, the process 

(3.22) ,1 ttt exx += −ρ  

where et is an arbitrary stationary process.  When |ρ| < 1, these papers compare the 

filtered series B(L) xt with the stationary part of the series, i.e. xt.  But, when ρ = 1, they 

compare B(L) xt with the stationary part of the series, i.e. (1-L)xt.  Thus, when |ρ| < 1, 

they analyze the properties of the filter B(L), and when ρ = 1, they analyze the properties 

of the filter B(L)/(1-L).  Therefore, there is a discontinuity in the focus of their analysis 

when ρ equals 1.  We prefer the analysis above that uses the definition of the spectrum 

for integrated processes.  Note that if a researcher is interested in the first-difference of an 

integrated process instead of the level he can, of course, apply the filter to ∆xt as opposed 

to xt. 

 Now we turn our attention to second-order integrated processes. Since the filter 

AH(L) is a symmetric filter it can be written as  

(3.23) AH(L)   =  (1-L) (1-L-1) )(LA H =  -L-1 (1-L)2 )(LA H  with ∞<)1(HA .   

Now Equation (3.20) would be equal to 

(3.24) 

)()()(
21

)(
lim

)(
21

)(
)(

2
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ωω
ρρ

ωω

ω
ωω

ω
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ωω

ω

x
iH

eii

iH

eii

iH

x

SeAS
ee

eA

S
ee

eA
S HF

−
−−

−

→

−−

−

=
+−

=

+−
=

 

Again, it immediately follows that the spectrum of xF is equal to the squared gain of the 

filter B(L) times the spectrum of x for all ω > 0.  As a consequence, the spectrum of xF is 

equal to the spectrum of x for the included range of frequencies and equal to zero for the 

excluded range of frequencies. However, since it is not necessarily true that )1(HA  = 0 
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for second-order processes, it is no longer guaranteed that the spectrum of xF,H is equal to 

zero at ω = 0.  Hence, the result for second-order integrated processes is slightly less 

general then the result for first-order integrated processes.  

 For finite-order filters, however, there might be another reason why it matters 

whether the input series is integrated or not.  Consider the approximation of the filter that 

eliminates all frequencies below ω 1.  The squared gain of the approximate filter is not 

exactly equal to zero for frequencies less than ω 1, and not exactly equal to 1 for 

frequencies bigger than ω 1.  Since the spectrum of the filtered series is equal to the 

squared gain times the spectrum of the input series, the approximation error may be 

bigger for processes for which the value of the spectrum goes to infinity as the frequency 

goes to zero—that is, for integrated processes.  

 To address this question, we calculate the spectrum of three stochastic processes 

that are filtered using high-pass filters. Figures 3.1 and 3.2 document the results for the 

high-pass filters that eliminate all cycles associated with periods bigger than 32 periods 

and 10 periods, respectively.  In addition to examining the ideal infinite-order high-pass 

filter, we also consider two approximate filters with truncation parameters equal to 20 

and 40.  Panel A in Figures 3.1 and 3.2 presents the results for the case where the process 

is a white noise process. Panel B reports the results for the second process, an AR(1) with 

a coefficient equal to 0.95.  Finally, Panel C reports the results for the third process, an 

integrated AR(1) with a coefficient equal to 0.4.  The variance of the white noise process 

in Panel A is chosen in such a way that the spectrum of the filtered series presented in 

Panel A is equal to the squared gain of the filter used in Panels A, B, and C.   
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  FIGURE 3.1: SPECTRA OF FILTERED PROCESSES (ω1 = π/16,ω2 =π) 

A: White Noise (Squared Gain) 
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C: Integrated AR(1) with Coefficient equal to 0.4 
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Note: The variance of the white noise process in Panel A is chosen in such a way that Panel A also 
represents the squared gain of the filter used in these three panels. 
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FIGURE 3.2: SPECTRA OF FILTERED PROCESSES (ω1 = π/5, ω2 = π) 

A: White Noise (Squared Gain) 
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Note: The variance of the white noise process in Panel A is chosen in such a way that Panel A also 
represents the squared gain of the filter used in these three panels. 
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As documented in the graph, for all stochastic processes the approximation is 

better for the frequencies that are less than ω 1 than for the frequencies just above ω 1.  

Also, the approximation errors are bigger for the two serially correlated processes than 

for the white noise process.  This suggests that the truncation parameter that one uses 

should depend on the persistence of the underlying process; i.e., a higher truncation 

parameter is needed for more persistent processes.  The graph also shows that the study 

of approximation errors does not reveal a fundamental difference between the persistent 

stationary process and the integrated process studied here.  For example, for K equal to 

40 and ω 1 equal to π/5, the peak of the approximated spectrum is 14% and 12% less than 

the peak of the true spectrum for the stationary persistent process and the integrated 

process, respectively. 

 Now suppose that the series xt has a linear time trend.  That is, xt can be written as  

(3.25) xt  =  b t +  yt, 

where yt is a stationary or integrated process.  When one applies the filter AH(L) and uses 

the results shown in (3.17), then  

(3.26) t
HH

t
HHF

t yLAbAxLAx )()1()(, +==  

and 

(3.27) 
.,if0)(

and,if)()(

21

21

ωωωωω
ωωωωω

><=

≤≤=

F

F

x

yx

S

SS
 

Thus, the filter removes a linear trend, and (3.18) holds for the non-deterministic part of 

the series.  When one uses a finite-order filter to approximate B(L), then one can use the 

results in (3.23), and the filter will also take out a quadratic time trend. 

 
4. Empirical results 

 In this section, we discuss the empirical comovements between prices and output 

during the postwar period for the G7 countries.  We use both monthly data for industrial 

production and the CPI index, and quarterly data for GDP and its deflator.  Details about 

data sources and sample periods are given in Appendix A.  In Section 4.1, we discuss the 

results for the VAR forecast errors and in Section 4.2 we discuss the results for the 

frequency domain filters. 
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4.1 Comovement of prices and output using VAR forecast errors 

 In this section, we discuss the comovement of prices and output using the VAR 

forecast errors.  But instead of using the actual realized VAR forecast errors as in Den 

Haan (2000), we use the correlation coefficients implied by the estimated VAR 

coefficients and the estimated covariance matrix of the VAR residuals.  In Appendix B, 

we document the efficiency gains of using this alternative procedure.  First, we will 

discuss the results when the monthly CPI index and industrial production is used and then 

we will discuss the results when quarterly GDP and its deflator are used. 

 
Figure 4.1: The correlation coefficients for CPI and industrial production forecast errors  
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Note: This figure plots the correlation coefficients of the k-period ahead price and output forecast errors of a monthly VAR when a 
unit root is imposed in the estimation. The open circles indicate that the estimate is significant at the 10% level and the filled-in circles 
indicate that the estimate is significant at the 5% level. The sample period is from 1957 (from 1958 for Germany) to 1999 (to 1998 for 
Italy). See Appendix A for details. 

 

 Figure 4.1 plots the results for the comovement of the price level and output for 

the period starting in 1957 and ending in 199914 when a unit root is imposed in the 

                                                
14  The time series for Germany start in January 1958.  The time series for Italy end in December 1998.  See 
Appendix A for details. 
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estimation of the VAR.15 For all G7 countries the correlation coefficients at long-term 

forecast horizons are negative and significantly so at either the 5% or 10% level for all 

countries except Italy.  Moreover, for all countries the short-term correlation coefficients 

are substantially higher.  For France, Italy, and the US there are short-term positive 

correlation coefficients at either the 5% or 10% significance level.  Furthermore, these 

results are robust to relaxing the unit root restriction in the estimation of the VAR.  The 

main difference between the specifications imposing a unit root and those not imposing a 

unit root is that, when no unit-root is imposed in the estimation of the VAR, all countries 

(including Italy) display significant negative long-term correlation coefficients at the 5% 

significance level and the (negative) short-run correlation coefficients for Canada are no 

longer significant. 

Panel A of Figure 4.2 plots the comovement of quarterly GDP and its deflator for 

the longest sample period for which we have data for all seven countries, that is, from the 

first quarter of 1970 to the last quarter of 1999.  Again a unit root is imposed in the 

estimation of the VAR.  There are some similarities and some differences with the CPI 

and industrial production data.  For all countries the long-term correlation coefficients are 

negative.  Furthermore, for all countries except Italy and Germany, the long-term 

correlation coefficients are significant at either the 5% or the 10% level.  Also, the results 

are somewhat less robust to not imposing a unit root.  For example, without the unit-root 

restriction the Italian correlation coefficients become negative for forecast horizons 

longer than 2 years, but the German correlation coefficients are no longer negative for 

forecast horizons between 2 and 6 years, although both effects are insignificant.  As 

demonstrated in Panel B of Figure 4.2, the results change for some countries when we 

consider the full sample.  For Japan, the UK, and the US the long-term correlation 

coefficients remain significantly negative, but the US now shows evidence of positive 

short-run correlation coefficients.  Both Canada and Germany now show (insignificant) 

positive correlation coefficients.16 

 

                                                
15   The figures presented in this paper are all based on VARs estimated in first differences. See 
Appendix A for a description of the unit-root tests. 
16 For France and Italy the longest available sample period is from 1970 to 1999. 
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Figure 4.2: The correlation coefficients for GDP and the GDP deflator’s forecast errors  
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Note: These figures plot the correlation coefficients of the k-period ahead price and output forecast error of a quarterly VAR estimated 
over the indicated sample period when a unit root is imposed in the estimation. The open circles indicate that the estimate is 
significant at the 10% level and the filled-in circles indicate that the estimate is significant at the 5% level. The full sample period is 
from 1957:1 to 2000:2 for Canada and the U.K., from 1960:1 to 2000:2 for Germany, from 1947:1 to 2000:2 for the U.S., and from 
1955:2 to 1999:4 for Japan. See Appendix A for details. 
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To understand better what time periods are mainly responsible for the observed 

correlation pattern, we plot in Figure 4.3 a two-sided six-quarter moving average of the 

cross product of the quarterly price and output forecast errors for the four-year ahead 

forecast period.17  For each country we use forecast errors from the VAR estimated with 

the longest possible sample. Several interesting observations can be made.  First, it is 

clear from the graph that there are factors hitting the different countries at the same time 

and in the same way, but that the correlation across countries is far from perfect.  Second, 

it is clear that the seventies play a major role in contributing to the magnitude of several 

of the negative correlation coefficients, although a quantitatively important negative 

long-run comovement is also present in the early eighties for Canada, France, Italy, the 

UK, and the US.  In fact, for this set of countries and this forecast horizon, the moving 

average is not often above zero.18  Third, in the seventies there was no negative 

comovement in Canada, Germany, and Italy.  Canada experienced strong economic 

growth in the early seventies and experienced a reduction in economic growth that was 

mild compared to what was observed in the other countries.  Although Germany did 

show a considerable reduction in real growth rates, inflation rates did not rise in the 

seventies.  Italy experienced a strong increase in real growth rates and inflation rates in 

the early seventies.  When the oil crises lead Italy into a recession, inflation rates in fact 

first decreased.  Inflation rates in Italy only started to increase again, when economic 

growth started to recover.  Finally, in the middle of the eighties there was a long-run 

positive comovement in Canada, France, Italy, and the UK and to some extent Germany 

and the US. Although the sample is too short to say anything definitive, the last two 

findings suggest that the correlation between prices and output could very well be time-

varying and depend on the particular circumstances and economic institutions of the 

particular country, and the time period.19  

 

 
                                                
17 At other forecast horizons and for the monthly data the graphs displayed more noise and less interesting 
patterns.  Davis and Kanago (2000) look at the cross products of one-quarter ahead forecast errors for 
Canada, the UK, and the US.  
18 Results not shown here document the positive correlation coefficients at short-term forecast horizons are 
due to positive cross products in the fifties and sixties. 
19 An interesting paper that estimates the conditional covariance of the one-quarter ahead forecast errors of 
GDP and its deflator is Cover and Hueng (2000). 
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Figure 4.3: Time-varying comovement of the CPI and industrial production  
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Note: This figure plots a two-sided 6th-order moving average of the cross product of the 4-year ahead forecast errors of the price level 
and output. A unit root was imposed in the estimation of the (monthly) VAR. The sample period is from 1957:1 to 2000:2 for Canada 
and the U.K., from 1960 to 2000:2 for Germany, from 1947:1 to 2000:2 for the U.S., and from 1955:2 to 1999:4 for Japan, from 
1970:1 to 2000:1 for France, and from 1970:1 to 1999:4 for Italy. See Appendix A for details. 
 
 

4.2 Comovement of prices and output using frequency-domain filters  

 In this section, we analyze the comovement of prices and output using frequency 

domain filters.  Den Haan (2000) argues that the sign of the correlation coefficient of 

filtered prices and output may not have as much identifying power20 but, of course, that 

does not mean that the actual numerical values of these correlation coefficients provide 

any less information.  In Figure 4.4, we plot the correlation coefficients of (monthly) CPI 

and industrial production when frequency domain filters have been used to render the 

data stationary.  Panel A reports the results for the high-pass filters where the filter 

isolates that part of the series associated with cycles that have a periodicity less than the 

indicated periodicity.  Panel B reports the results for the band-pass filters where the filter 

                                                
20 Because negative correlation coefficients for filtered price and output series are consistent with models 
that only have demand shocks and models that have both demand and supply shocks. In contrast, negative 
correlation coefficients of VAR forecast errors cannot be generated by models with only demand shocks 
unless unreasonable assumptions are made. 
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isolates that part of the series associated with cycles that have the indicated periodicities. 

The truncation parameter H was set equal to 60, which means that five years of data are 

discarded at both sides of the sample. For smaller values of  H the results are sensitive to 

changes in H. The following observations can be made.  First, consistent with the results 

for the VAR forecast errors we find for all countries that the long-run correlation 

coefficients are negative and they are significant at the 5% significance level for five of 

the seven countries.  As shown in Panel B, when band-pass filters are used the correlation 

coefficients are significantly negative for all countries when the periodicity of the 

included frequencies exceeds four and one-half years and typically earlier.  Second, for 

all countries the short-term correlations are substantially higher than the long-term 

correlation coefficients.  Using high-pass filters, positive correlation coefficients are 

observed for France, Italy, Japan, the UK, and the US and significant positive correlation 

coefficients at the 10% level are observed for France, Italy and the US.  

 In Figure 4.5, we plot the correlation coefficients of quarterly GDP and its 

deflator when a high-pass filter has been used to filter the data both for the sample from 

1970 to 1999 (Panel A) and for the full sample (Panel B). The truncation parameter is set 

equal to 20 so that again 5 years of data are discarded at both ends of the sample. The 

main conclusion to be drawn from Figure 4.5 is that there is substantial evidence of 

negative correlation coefficients.  Also, just as we found with the VAR forecast errors, 

there is evidence of positive comovement in Italy for the 1970-99 sample period. 
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Figure 4.4: The correlation coefficients for filtered CPI and industrial production  
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Note: These figures plot the correlation coefficients of filtered monthly price and output series using the indicated filter. The high-pass 
filter isolates that part of the series associated with cycles with a periodicity that is less than the indicated periodicity. The band-pass 
filter isolates that part of the series associated with cycles with the indicated periodicity. The open circles indicate that the estimate is 
significant at the 10% level and the filled-in circles indicate that the estimate is significant at the 5% level. Standard errors are 
calculated using the VARHAC procedure proposed in Den Haan and Levin (1996). The sample period is from 1957 (from 1958 for 
Germany) to 1999 (to 1998 for Italy).  



 24

Figure 4.5: The correlation coefficients for filtered GDP and the GDP deflator  
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Panel B: Full Sample

Canada
France

Germany
Italy

Japan
UK
US

1 2 3 4 5 6 7 8
Periodicity of Frequencies Included (years)  

Note: These figures plot for the indicated sample period the correlation coefficients of filtered quarterly price and output series, where 
an (approximate) high-pass filter is used to isolate that part of the series associated with cycles with a periodicity that is less than the 
indicated periodicity. The open circles indicate that the estimate is significant at the 10% level and the filled-in circles indicate that the 
estimate is significant at the 5% level. Standard errors are calculated using the VARHAC procedure proposed in Den Haan and Levin 
(1996). The full sample period is from 1957:1 to 2000:2 for Canada and the U.K., from 1960:1 to 2000:2 for Germany, from 1947:1 to 
2000:2 for the U.S., and from 1955:2 to 1999:4 for Japan. See Appendix A for details. 
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5. Concluding comments 

 The results in this paper clearly provide more evidence for negative correlation 

coefficients than for positive correlation coefficients.  For some countries there is some 

evidence of a positive short-run correlation coefficient during some sample periods and 

for some price and output measures.  The paper also shows that the observed negative 

correlation coefficients are not just due to the price and output movements during the oil 

crisis of the seventies when prices soared and output dropped in many countries. 

Moreover, during that same period there did not seem to be a negative comovement of 

prices and output in Canada, Germany, and Italy.  This suggests that the correlation 

between prices and output may very well be time varying and depend on, for example, 

the particular monetary policies being followed.  Support for the assertion that the 

comovement is time varying can also be found in the observation that in the middle of the 

eighties there was a long-run positive comovement in Canada, France, Italy, and the UK, 

and to some extent, in Germany and the US, even though this comovement is typically 

negative. 
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 Appendix A: Data sources and time-series properties 
 In this appendix, we describe the data sources and sample periods necessary to 

duplicate all the results in this paper.  The actual period for which correlation coefficients 

are calculated is shorter, since the estimation of the VAR and the use of frequency filters 

reduces the length of the sample period.  We also provide the results of unit-root and 

cointegration tests performed on the data and the VAR specifications used in the 

calculations.         

 

A.1 Data sources and sample periods 

Monthly Data:21 

• Series: 
- Industrial Production Index (###66…IZF) 
- Consumer Price Index (###64…ZF) 

• Data is from the International Monetary Fund’s International Financial Statistics 
CD-ROM published in June 2000 

• Sample period for which observations are available for both series:22 
- Canada (156): 1957:1-1999:11 
- France (132): 1957:1-1999:11 
- Germany (134): 1958:1-1999:10 
- Italy (136): 1957:1-1998:12 
- Japan (158): 1957:1-1999:12 
- United Kingdom (112): 1957:1-1999:10 
- United States (111): 1957:1-1999:12 

 

Quarterly Data: 

• Series:23 
- Real Gross Domestic Product, seasonally adjusted (###99B.R.F)24 
- Nominal Gross Domestic Product, seasonally adjusted (###99B.CZF) 

                                                
21 The IFS time series code is given in parentheses after the variable name.  The “###” symbol represents 
the three digit country code.  For more information on the code descriptions, see the documentation file in 
the PRINT_ME directory of the IFS CD-ROM.    
22 The country code is given in parentheses following the country name.  This represents the “###” in the 
series code. 
23 Real and nominal Gross Domestic Product is in billions of units of the country’s national currency, 
except for Italy, which is in trillions of units of Italy’s national currency. 
24 Various versions of the series are spliced together to create the complete time series.  The series version 
is represented by the next to last character in the series code.  Canada, France, Germany, and Italy use 
versions Y and Z.  Additionally, France uses version X.  The United States and the United Kingdom use 
only version Z.  The most current observations were updated directly from the IFS monthly publication, 
including those for Japan. 
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- GDP Deflator—computed from the real and nominal GDP series (Nom. 
GDP/Real GDP) 

• Data for Japan is from the Bank of Japan.  For all other countries, the nominal 
GDP series is from the International Monetary Fund’s International Financial 
Statistics CD-ROM published in June 2000 and the real GDP series were obtained 
by request directly from the IMF. 

• Sample period for which observations are available for all series: 
- Canada: 1957:1-2000:2 
- France: 1970:1-2000:1 
- Germany: 1960:1-2000:225 
- Italy: 1970:1-1999:4 
- Japan: 1955:2-1999:4 
- United Kingdom: 1957:1-2000:2 
- United States: 1947:1-2000:2 

 

                                                
25 A trend break in real and nominal GDP in Germany 1990:4/1991:1 was adjusted by multiplying the 
observations before the break by AVE(t)*ANNUAL(t-1)/(AVE(t-1)*ANNUAL(t)), where AVE(t) is the 
year t average of the quarterly series with a trend break, and ANNUAL(t), is the year t observation of the 
available annual series without a trend break. 
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A.2 Unit-root tests 

A.4.2.A: Unit-root Test for Monthly Data 
Full Sample 1970-1999 Sample  

Country CPI IP CPI IP 

Canada -0.826    -1.663    0.4934    -2.703    
France 0.5102    -1.805    0.5235    -3.076    
Germany -0.021    -2.828    -1.490    -2.805    
Italy -1.202    -1.907    0.5326    -2.811    
Japan 1.3453    -0.977    -2.052    -1.960    
United Kingdom -0.615    -2.520    -0.247    -2.845    
United States -1.361    -2.383    0.0339    -2.802    

 
A.4.2.B: Unit-root Test for Quarterly Data 

Full Sample 1970-1999 Sample  

Country GDP 
Deflator 

GDP 
GDP 

Deflator 
GDP 

Canada -1.851    -1.399    -1.203    -3.264*   
France N/A N/A -0.471    -3.488**  
Germany -0.276    -2.110    -0.671    -3.119    
Italy N/A N/A -0.187    -1.797    
Japan 0.5631    -0.407    -2.383    -0.616    
United Kingdom -1.533    -2.965    -1.116    -2.509    
United States -1.906    -2.527    -1.046    -3.486**  
Note: These tables report the results of the augmented Dickey-Fuller test for a unit root using 
the estimated OLS autoregressive coefficient.  Four lags have been included in the regression 
along with a constant and linear trend.  When the null of a unit root is rejected at the 10% (5%, 
1%) level, it is indicated with a * (**,***).  See Hamilton (1994) for a description of these 
tests. 
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A.3 VAR specifications 

Table A.4.1: Specification for Monthly Data (Unit Root Imposed) 
Full Sample 1970-1999 Sample  

Country # of Lags 
Linear Trend 

Included? 
# of Lags 

Linear Trend 
Included? 

Canada 12 No 12 Yes 
France 12 Yes 6 Yes 
Germany 12 Yes 2 Yes 
Italy 12 Yes 6 Yes 
Japan 12 Yes 12 Yes 
United Kingdom 12 No 12 Yes 
United States 12 No 12 Yes 

 
A.4.2: Specification for Quarterly Data (Unit Root Imposed) 

Full Sample 1970-1999 Sample  

Country # of Lags 
Linear Trend 

Included? 
# of Lags 

Linear Trend 
Included? 

Canada 4 Yes 2 Yes 
France N/A N/A 2 Yes 
Germany 4 Yes 4 Yes 
Italy N/A N/A 3 Yes 
Japan 4 Yes 4 Yes 
United Kingdom 3 No 4 Yes 
United States 3 No 1 Yes 
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Appendix B: Efficiency gains of imposing VAR restrictions 
 In this appendix, we summarize the efficiency gains that can be made by 

imposing the VAR restrictions. Den Haan (2000) calculates the correlation coefficient of 

VAR forecast errors by constructing a time series of forecast errors and calculating the 

sample correlation coefficients. But, as was shown in Section 2.1, the estimated VAR 

directly implies a particular correlation coefficient. Using a VAR as the true data 

generating process, we performed the following Monte Carlo analysis. For each Monte 

Carlo replication we used the generated data to calculate the correlation coefficient with 

both procedures. After all 10,000 Monte Carlo replications are completed we calculate 

the bias and the Mean Squared Error. Such a Monte Carlo experiment was performed 

using virtually all estimated VARs as the true DGP. Since the results were very similar 

we present here just a summary of the results. In particular, Figure B.1 shows the bias 

and the (square root of the) mean squared error averaged across the seven countries for 

the VAR estimated with the monthly CPI and industrial production data over the full 

sample. The results in panel B confirm our conjecture that imposing the VAR restrictions 

leads to substantial efficiency gains especially in estimating the correlation coefficients 

for the long-term forecast horizons. This despite the fact that imposing the constraints 

typically increases the bias as documented in panel A. Given that the VAR coefficients 

are biased estimates and the correlation coefficients are non-trivial functions of these 

coefficients, it isn’t easy to understand the source of the bias. It seems plausible to us that 

the method that imposes the VAR restrictions has a larger bias because it makes more use 

of the estimated VAR coefficients in calculating the correlation coefficients. 
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Figure B.1: Efficiency gains of imposing VAR restrictions 
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Note: The “old method” referred to in the legend calculates the correlation coefficients using the realized forecast errors as in Den 
Haan (2000).  The “new method” referred to in the legend calculates the correlation coefficient by imposing the VAR restrictions and 
using the estimated VAR coefficients. 
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