

���$��'�
������������

���������	�
���	�����	���
�
��������	����
���������
�����

����������������

���� �!��� �"#��

$��%#�&��"���()*+

 ��",--!!!��������&-"�"���-!()*+


����
�.�	���	�����
������������

)/0/�����1 2������3��2�

��4��#5&�6��/7)8(

���1 �����

����	��
���������������������������	������		�	�
���������
���������������� ���������!���	"������	�#

��$���%�	���"����	&���'���(	���	&&������
����� )"&������*+��$� 	�
� )	�#�!���&�� ���� ,��-� ��&��"&

��**������!���,��.����������
��������	��������������	"�����	�
����������	��&-������������/	���	&

%"��	"����0����*�������	����

1������+-���+������2�����	�	�
�(	��.������	�������3&&���$��������,�
���������������������������

�����
�.���	�	$�	�����*	-�+��4"��
�.���"����&�������*����������,�
�
��	��"&&����
������&"
��$�1

����������$�,����������"����



�#& ����92��1:�2���#�2�#����5� �����2��4����;��#1���5�<��

������������������5���� �!��� �"#��


���$��%#�&��"��
��()*+

���1 7//)

=�.
���>86�)8

���	
��	

� #�"�"��#�3���#&����� �2���; #& �;��92��1:�1�����5�����1�����21�"�#1�#�5�<���

��� �"�����1��;#�3�����:�� �3#��6���������	��5�
������
�	�:#�5#3#52�?�5#;;���3���#4��

������;�?#3#�&#�5�<��1����#??��1�����21��52�#�&5�����"2�1 ��������!��%?:5�����1����5

�2��6� �"�"��1��������!�5#;;������:"���;"�#1�#�5�<��,������������5�������#�5�<�����?:

� �;��4������ �����#1�??:1����1�6��5#�;�1�6� �1 �#��5#�5�<�� �3��"����2�1�52"!��5�#��

;��4�����&#����;� �	���� #�2"!��5�#��1����1�2��5�:1���24���"2�1 ��#�&&��5�;��

#�3�����:�� �"�"��"���������4�5#��1�����#��#1�?�2""���;��#�3�����:�� �3#����#�&� �1�2��

�;� �2"!��5�#��6� �2& �53���#�#�&��5�"�1#�?5#�"?�:��?�� �3��3��:�#&�#;#1���#4"�1���

� �""#�&"��������

���������������� ���� �!��� �"#��

��"���4����;�1���4#1� ��"���4����;�1���4#1�

	�#3���#�:�;��?#;���#�6��3#� 	�#3���#�:�;�#1 #&��

��3#�6��@0+)+ ��������6��>()/@

��5
��� ��5
���

�1;�������A215�3#���52 � �"#��A24#1 ��52



 1

1.      Introduction 

The availability of scanner data for a wide range of household products raises the 

possibility of improving the measurement of the Consumer Price Index (CPI).  Scanner data have 

a number of potential advantages over price measurements based on survey sampling. Scanner 

data include the universe of products sold, whereas sampling techniques capture only a small 

fraction of the population.  Scanner data are available at very high frequency, whereas the cost of 

survey sampling typically limits data to monthly or lower frequency.  Finally, scanner data 

provide simultaneous information on quantities sold in addition to prices, while survey 

techniques typically collect separate data on price and quantity – typically at different 

frequencies and for different samples. 

 Ongoing research on using scanner data for measuring the CPI has attempted to mimic 

the CPI’s monthly sampling frame and therefore abstracted from the high-frequency variation in 

prices and sales.  Reinsdorf (1999), for example, uses either monthly unit-values, or the prices in 

the third week of each month, to construct monthly price indexes for coffee.  The collection of 

prices on a single day, which are then used to construct monthly indexes, corresponds to current 

practice at the Bureau of Labor Statistics.  This practice has, of course, been constrained by the 

fact that prices are not sampled at frequencies greater than one month, but this constraint is no 

longer relevant with scanner data.   

This paper takes a step at toward using the higher-frequency data available from scanner 

data.  It examines how consumer behavior at high-frequency, i.e. weekly purchases of canned 

tuna, affect the application of index number formula that have been typically been implemented 

for lower-frequency or time-average data. 
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 Outside of price index research, it has been quite common to use the high-frequency 

variation in prices and sales available from scanner data.  In the marketing literature, it is well 

recognized that a great deal of substitution occurs across weeks in response to changes in prices 

and advertising.  For example, Van Heerde, Leeflang and Witting (1999) have found that store 

level data for tuna and toilet tissue contains a dip in sales in the weeks following a promotion, 

which is consistent with previous studies at the household level.  There is also high substitution 

between different varieties of tuna, depending whether they are on sale or not.  Given this 

evidence, it would be highly desirable to construct weekly price indexes in a way that takes this 

behavior into account. 

In order to construct “true” or “exact” price indexes, we need to have a well-specified 

model of consumer demand, which includes the response to sales and promotions.  Betancourt 

and Gautschi (1992) present a model that distinguishes between purchases and consumption by 

individuals; in the presence of inventory behavior, these differ over time.  Only purchases are 

observed when using data from retail outlets, as we do.  Despite this, we show in section 2 that 

by using the Betancourt and Gautschi framework, an exact price index can still be constructed 

that measures the true cost-of-living for an individual.  This index must compare one planning 

horizon (e.g. a month or year) to another, and cannot be constructed by comparing one week to 

the next. 

 In Section 3, we introduce the data on canned tuna, which is drawn from the ACNielsen 

academic database. They consist of weekly data over 1993-94, for 316 varieties of tuna over 690 

stores.  In Sections 4 and 5, we examine how several price indexes perform using these high-

frequency price and quantity data.  We construct two different types of weekly price indexes.  

The first – a fixed-base index – compares each week in 1993 to the modal price in 1992, using as 
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weights the average 1992 sales at the modal price.  We consider different formulas for the price 

index, including the Laspeyres, Geometric, and Törnqvist. The fixed-based Laspeyres index 

corresponds to the arithmetic average of price relatives traditionally used in the CPI.  The fixed-

based Geometric index corresponds to the “geometric mean” formula now used to produce the 

elementary price indexes for the majority of the CPI.1 The Törnqvist index uses changing 

expenditure weights to control for substitution among the goods.  We calculate the fixed-base 

Törnqvist index using the average of the 1992 sales (at the modal price) and the current 1993 

weekly sales as weights.  Hence, it uses long-term (i.e., base period to present) price relatives.  If 

we take one year as the planning horizon, then this formulation corresponds quite well to our 

theoretical model of section 2. 

 The second type of index we consider are chained formula, which update the weights 

continuously and cumulates period-by-period changes in the price indexes to get long-term 

changes.  The chained Törnqvist constructs the week-to-week Törnqvist using average sales in 

adjacent weeks, and then cumulates these results.2 

The fixed-base Törnqvist does not equal the chained Törnqvist in general, and for our 

sample of weekly tuna data, we find that the difference between these two indexes is rather large:  

the chained Törnqvist has a pronounced upward bias for most regions of the U.S.3   The reason 

for this is that periods of low price (i.e. sales) attract high purchases only when they are 

accompanied by advertising, and this tends to occur in the final weeks of a sale.  Thus, the initial 

price decline, when the sale starts, does not receive as much weight in the cumulative index as 

                                                 
1 The BLS uses unweighted averages for both the arithmetic and geometric means of price relatives.  The goods to 
be averaged are probability-sampled using expenditure weights.  Given that we will use the universe of 
observations, we use base-period expenditure weights rather than probability sampling.  
2 Since Cobb-Douglas utility, which underlies the Geometric formula, implies constant expenditure shares, we do 
not compute a chained Geometric index. 
3   An upward bias of the chained index with high-frequency data has also been noted by Triplett (1999). 
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the final price increase, when the sale ends.  The demand behavior that leads to this upward bias 

of the chained Törnqvist – with higher purchases at the end of a sale – means that consumers are 

very likely purchasing goods for inventory accumulation.  The only theoretically correct index to 

use in this type of situation is a fixed-base index, as demonstrated in section 3.  Thus, our 

empirical results reinforce our theoretical results in showing the validity of fixed-base indexes 

when using high-frequency data. 

In Section 6, we directly investigate the extent to which the weekly purchases of tuna are 

consistent with inventory behavior.  We find some statistical support for this hypothesis, more so 

in the Northern regions of the U.S. than in the South.  We also find that advertising and special 

displays have a very pronounced impact on shopping patterns.  Concluding remarks are given in 

section 7. 

 
2.     A Representative Consumer Model 

The purchases of consumers from a retail outlet, as distinct from their consumption, has 

been modeled in a “household production” framework by Betancourt and Gautschi (1992).  They 

have in mind any number of reasons why purchases differ from consumption, e.g. because the 

individual must spend time to transform the former to the latter.  Here we focus on the inter-

temporal decisions of a consumer purchasing a storable good, so that purchases and consumption 

differ due to inventory behavior.  With this simplification, we initially summarize the two-stage 

decision problem presented by Betancourt and Gautschi, and then show how even sharper results 

can be obtained by considering a single-stage decision problem. 

Suppose the consumer is making the purchases qt of a single brand of tuna, over the 

planning horizon t=1,…,T.  Consumption of tuna over the same horizon is denoted by xt, and the 

vector of purchases and consumption are q = (q1,…,qT) and x= (x1,…,xT).   Purchases and 
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consumption are related; for example, we might specify that the sums of each over the horizon 

are equal.  This would not allow for the decay of items (e.g. losing them), or any other reason 

why the consumer might limit purchases even when the item is on sale.  We capture the general 

relationship between purchases and consumption by the constraints f(q, x) < 0, where f is a 

vector of quasi-convex functions.  Given consumption x, the individual then solves the first-stage 

problem: 

  tqp
T

1t
t0q

min
∑
=

≥
  subject to  f(q, x) < 0 ,     (1) 

 
where the price of the item in period t is pt, and the vector of prices is p = (p1,…,pT).  It is 

assumed that consumers know the future prices with perfect foresight.  The constraint set 

represented by f(q, x) < 0 includes the feasibility constraints (e.g., that time t consumption cannot 

exceed time t purchases plus storage), the effect of depreciation during storage, and so on. 

Denote the solution to (1) as the costs C(p, x).  As usual, the derivative of this cost 

function with respect to prices give the optimal level of purchases,  q* = Cp(p, x).  In the second-

stage, the consumer maximizes utility subject to the constraint that these costs do not exceed the 

available income I: 

  )z,x(U
0x

max
≥

  subject to  C(p, x) < I ,     (2) 

 
where z = (z1,…,zN) is a vector of consumption of all other goods, which we take as exogenous.4  

By choosing N suitably large, this vector can include all goods that complement or substitute for 

canned tuna in all periods.  Let us denote the optimal level of consumption obtained from (2) as 

x* = g(p, z, I).  Then it follows that optimal purchases can be obtained as q* = Cp[p, g(p, z, I)].   

                                                 
4   Note that income I is net of the cost of purchasing the goods z. 
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This slightly complex formula for purchases does not shows their relation to underlying utility, 

however, so we now consider a simpler derivation. 

Consider combining (1) and (2) into a single-stage problem: 

 

 tqp
T

1t
t0x,q

min
∑
=

≥
  subject to  f(q, x) < 0 and U(x, z) > U ,   (3) 

 

where U  is an exogenous level of utility.   We can write the solution to (3) as an expenditure 

function, E(p, z, U ).  Differentiating this function with respect to prices, and using the envelope 

theorem, we obtain optimal purchases q* = Ep(p, z, U ).  These must equal purchases computed 

from our two-stage results above, so that Ep(p, z, U ) = Cp[p, g(p, z, E(p, z, U ))].  Clearly, the 

single-stage problem gives a much simpler expression.  In particular, the derivatives of the 

expenditure function are fully observable since they equal purchases.  We might expect, 

therefore, that this information will be enough to “work back” and reveal enough properties of 

the expenditure function itself so as to construct a cost-of-living index, i.e. to determine the 

expenditure needed to achieve utility U at various prices.  We now show that this is indeed the 

case, using some well-known results from the price index literature. 

 Let τ = 0,1 denote two planning horizons, each of length T periods.  For concreteness, we 

can say that the periods t denote weeks, and the planning horizons τ = 0,1 are years.  We then 

consider the problem of a consumer making weekly purchases in one year as compared to 

another.  This formulation ignores the issue that at the end of the first year, the optimal purchases 

should depend on the prices in the beginning of the next year; by treating the two planning 

horizons as distinct, we are supposing that there is no overlap in the information used by the 

consumer to make decisions in one year versus the next.  This is a simplification.  
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The price vectors pτ differ across the years, as do the exogenous variables zτ and the level 

of annual utility Uτ.  We will specify that the expenditure function in year τ, E(pτ, zτ, Uτ), takes 

on a translog functional form over its price arguments: 

 

  τ

= =

τ

=

τττ
∑∑∑ γ+α+α= t

T

1s

T

1t
sst2

1
T

1t
tt0 plnplnplnEln     (4) 

    
where,  )U,z(h tt

τττ =α ,  t=0,1,…,T.      (5) 

 
Without loss of generality we can suppose that γst = γts in (4).  The functions )U,z(h t

ττ in (5) are 

left unspecified, except for the requirement that the translog function is linearly homogeneous in 

prices, which is satisfied if,  

    .0and1
T

1t
ts

T

1t
st

T

1t
t =γ=γ=α ∑∑∑

===

τ     (6) 

 
The first condition implies that the functions )U,z(h t

ττ  must sum to unity over t = 1,…,T, for   

τ = 0,1.  Additional properties on these functions can be imposed to ensure that the expenditure 

function is increasing in utility, and to obtain any desired properties with respect to the 

exogenous variables zτ.    

The formulation in (4)-(6) is quite general, and it is well-known that the translog function 

provides a second-order approximation to an arbitrary function around a point (Diewert, 1976). 

The form in which we have written the expenditure function emphasizes that changes in the 

exogenous variables zτ and Uτ in (5) act as shift parameters to the function in (4).   For example, 

changes in the value of the function )U,z(h00
τττ =α  have a neutral impact on the expenditure 
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function in (4).  More importantly, changes in value of τα t , for t=1,…,T, have a non-neutral 

impact on the expenditure function in (4).  The importance of this can be seen by differentiating 

the log of expenditure with respect to the log of prices pτ, obtaining the share of annual 

expenditures spent on tuna in each week: 

 

   τ

=

τ

=
ττ

ττ
τ

∑
∑

γ+α=≡ s

T

1s
sttT

1t tt

tt
t pln

qp

qp
s   .    (7) 

 
Thus, changes in annual utility or in the exogenous variables zτ, which affect τα t , clearly have an 

impact on the share of expenditure spent on tuna each period.  For example, the consumption of 

more beef might shift demand away from tuna in some periods.  Seasonal effects on demand are 

incorporated too, because τα t  can change exogenously over time.5  In summary, the expenditure 

function in (4)-(6) encompasses a very wide range of demand behaviour, across both products 

and time within the planning horizon.   

 We next need to specify how to measure the cost-of-living (COL).  Normally, the cost-of-

living index is measured as the ratio of expenditure needed to obtain a fixed level of utility at two 

different prices.  In our application, we have the utility levels U0 and U1 in the two years, so 

which should be choose?  We follow Caves, Christensen and Diewert (1982a,b) in considering a 

geometric mean of the ratio of expenditure levels needed to obtain each level of utility: 

 

   
2/1

000

001

110

111

)U,z,p(E
)U,z,p(E

)U,z,p(E
)U,z,p(ECOL












≡  .   (8) 

 

                                                 
5   Seasonal effects in tuna purchases are found by Chevalier, Kashyap and Rossi (2000). 
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The first term on the right of (8) gives the ratio of annual expenditures need to obtain utility U1, 

holding fixed the exogenous variable z1 but with prices changing.   Of course, the consumer does 

not actually face the prices p0 with exogenous variables z1,  so the expenditure level E(p0, z1, U1) 

is not observed.  Similarly, the second term on the right of (8) gives the ratio of annual 

expenditures needed to obtain utility U0, holding fixed the exogenous variable z0 and with prices 

changing.  Again, the expenditure E(p1, z0, U0) is not observed. 

 Despite the fact that (8) consists partially of unobserved information, this geometric mean 

can indeed be measured with data on purchases and prices:   

 
Theorem (Caves, Christensen and Diewert) 

If the annual expenditure function takes the form in (4)-(6), and purchases are optimally chosen 

so that (7) holds, then the cost-of-living in (8) can be computed as a Törnqvist index: 

 

   







+= ∑

=
)p/pln()ss(expCOL 0

t
1
t

1
t

0
t

T

1t
2
1 .    (9) 

 

We provide a brief proof in the Appendix.  This result of Caves, Christensen and Diewert 

(1982a,b) demonstrates the generality of the Törnqvist index, in that it accurately measures the 

cost-of-living even when the “first order” parameters τα t  of the translog function are changing.  

In a producer context, such changes capture non-neutral technical change, while in our consumer 

context these changes can capture change in prices of exogenous commodities, seasonal effects, 

and even the effects of advertising if it shifts τα t . 

 While our results so far were obtained for a single variety of tuna, purchased over time, 

they readily extend to multiple varieties.  Thus, suppose that the price vector p0 and p1 in (8) 
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include the prices of i = 1,…,N varieties over t = 1,…,T periods.  Then the cost-of-living is still 

measured with a Törnqvist index, defined over varieties and time: 

 

   







+= ∑∑

= =

T

1t

N

1i

0
it

1
it

1
it

0
it2

1 )p/pln()ss(expCOL ,    (10) 

 
where the expenditure shares are ∑ ∑=

ττ
=

τττ ≡ T
1t itit

N
1iititit qpqps .   

 We shall refer to (10) as the “true” cost-of-living index, and contrast it with various other 

formulas traditionally used by the BLS.  In order to implement any of these formulas, we need to 

decide what to use as the base period, when τ=0.  We will be interested in focusing on the effects 

of sales on consumer purchases, so we will choose the base period prices as the mode prices for 

each item in an initial year (i.e. the typical non-sale prices).  Correspondingly, the expenditure 

share in the base period will be constructed using the average quantity at the modal price.  It 

follows that our base period prices and expenditure shares will not differ over weeks, so we 

rewrite these as pi0 and si0.  Then we can also drop the superscript “1” for the current year, and 

rewrite (10) simply as: 

 

   







+= ∑∑

= =

T

1t

N

1i
0iitit0i2

1 )p/pln()ss(expCOL .    (10’) 

 
 In the next section, we use summary statistics to begin to investigate the frequency of 

sales and advertising in the data for canned tuna, and the extent to which these affect demand.  

Price indexes are constructed in section 4, where we contrast (10’) with alternative formulas.  

Finally, in section 5 we directly test for the influence of inventory behavior on demand. 
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3.    Tuna Data 

 The data we shall use is taken from the ACNielsen academic database.  It includes two 

years (1992-93) of weekly data, for 316 Universal Product Codes (UPC’s) of canned tuna.  There 

are 10 market areas, with a total of 690 stores; the smallest market area is Southwest (54 stores) 

and the largest is Northeast (86 stores). The data are drawn from a random sample of the large-

scale ACNielsen SCANTRACK database.  For each store, UPC product, and week, the database 

includes: the value of sales; quantity sold; and a host of marketing indicators.  These indicators 

can be broken into two groups: advertising indicators, about whether there was a sale and what 

type of ads were used; and display indicators, about whether the product appeared in a special 

location within the store. 

 An example of the data for two actual products sold in one store, over the first six months 

of 1993, is shown in Table 1.  We define the “typical” price for a product as the mode price in 

each year, which was 66¢ for product A and $1.29 for product B  in 1993, as indicated at the 

bottom of Table 1.  Both of these mode prices had fallen from the year before.  We further define 

a “sale” as a week where the (average) price that week is at least 5% less than the annual mode 

price.  The occurrences of sales are indicated in bold in Table 1.  In some cases, a sale coincides 

with an advertisement for the product,6 and these cases are shown in italics.  Notice that for both 

products, there are several instances where the product first goes on sale without an advertise-

ment, in which case the quantity does not increase by much, if at all.  Following this, an ad 

occurs at the end of the sale, and this leads to a very marked increase in the quantity purchased.  

This particular pattern of purchases – which has a large increase at the end of the sale – is 

                                                 
6   There are five different kinds of advertisements indicated in the database, such as featured ads, ads with coupons, 
etc., but we do not distinguish them.  Similarly, there are a number of different kinds of displays, but we do not 
distinguish these in our analysis.  
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consistent with inventory behavior.  When it occurs simultaneously with an ad, however, we will 

need to try and distinguish whether the behavior arises due to advance purchase and storage, or 

due to the information that consumers receive from the ad. 

 In Table 2 we report summary statistics of the data for three market areas:  the Northeast 

(with 86 stores), Midwest (with 57 stores) and Southwest (with 54 stores), for 1992 and 1993.  

All values reported are averaged across the product and stores in each region.  First, we report 

the modal prices for each year, ranging from $1.30 (in the Midwest, 1992) to $1.73 (in the 

Northeast, 1993).  For each product, we then measure its price each week relative to the mode for 

the year.  Sales are defined as a week with this “relative price” less than 0.95.  The average value 

of this relative price, and unit-value (constructed as the sales-weighted average of the relative 

prices) are reported in the second the third rows.  Naturally, the unit-values are below the 

average relative prices, indicating that consumers purchase more when prices are low.  

Following this, we report average prices (relative to the mode) and quantities (relative to the 

mean quantity at the mode price), during weeks with and without sales. Three cases are 

distinguished: (i) no display nor ad; (ii) a display but no ad; (iii) an advertisement (with or 

without a special display). 

 In weeks without sales, having either a display or an advertisement is seen to increase the 

quantity purchased by 1.5 – 2 times.  Surprisingly, about the same impact is obtained from 

having a sale in the absence of both displays and ads.  Larger impacts are obtained when either 

of these features accompanies a sales, and the combination of a sale and advertisement increases 

the quantity purchased by 6 – 13 times.  Generally, sales occur in 15 – 23% of the weeks, and of 

these, somewhere between one-quarter and one-half of the sales last only one week, or last more 

than four weeks.  Less than 1% of weeks without sales have ads, but 8 – 18% of the weeks with 
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sales also have ads.  At the bottom of Table 2 we report the frequency of such ads during sales:  

for sales lasting only one week, 57 – 67% have ads; for sales lasting longer, 6-27% have an ad in 

the first week, and 14-24% have an ad in the last week.  In the Midwest, it is much more likely to 

see an ad at the end of a sale than the beginning, but the reverse holds in the Northeast, and there 

is no consistent pattern in the Southwest. 

 
4.   Formulas for Price Indexes 

The individual tuna varieties (i.e. UPC codes) are denoted by the subscript i within each 

store.  We will be using the modal price in 1992 as a “base period” price pi0, and let qi0 denote 

the mean quantity purchased at that price in 1992. Then the Laspeyres index from the base 

period to the week t in 1993 is, 

 

∑
∑

∑ =≡
i

0iit0i
i 0i0i

i it0iL
t ),p/p(w

pq
pq

 P       (11) 

 
where the equality in (11) follows by defining the base period expenditure shares, 

∑≡
i

0i0i0i0i0i qp/qpw . 

We will refer to (11) as a fixed-base Laspeyres index.   It can be distinguished from the 

chained Laspeyres which is constructed by first taking the week-to-week index, 

 

∑ −≡
i

1itit0i
L

t1,-t ),p/p(w P        (12) 

 
using the same base period weights.  The chained Laspeyres is then constructed by simply 

cumulating these week-to-week indexes: 
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  .1CPwith,PCPCP L

0
L

t,1t
L

1t
L
t ≡⋅≡ −−      (13) 

 
It is well known that the chained Laspeyres has an upward bias, because it does not satisfy the  

“time reversal” test.7   For this reason BLS generally uses fixed-base formulas, constructed over  

the “long term relatives” pit/pi0.  We will be constructing the chained Laspeyres for comparison 

purposes.8 

An alternative to using the arithmetic mean in (11) is to use a weighted geometric mean 

of the prices for individual products.  This results in the fixed-base Geometric index, 

 

  







= ∑

i
0iit0i

G
t )p/pln(wexpP .     (14) 

 
Note that a the fixed-base Geometric formula in (14) would be identical to a chained version 

(constructed by defining and week-to-week geometric index G
t,1tP −  and then cumulating).  For 

this reason, we do not construct the chained Geometric. 

The Laspeyres and Geometric indexes presume, respectively, zero and unit elasticity of 

substitution among varieties.  To provide a better approximation to changes in the cost-of-living 

under more general assumption, we consider the superlative Törnqvist functional form.  The 

fixed-based Törnqvist index is defined as, 

 

                                                 
7   Denoting any price index by P(pt-1, pt ), the “time reversal” test is satisfied if  P(pt-1, pt )P(pt, pt-1 ) = 1.  That is, 
when prices change from pt-1 to pt and then back to pt-1, we want the two-period chained index to be unity.  
However, this test is not satisfied for the Laspeyres formula in (12): it can be shown that PL(pt-1, pt )PL(pt, pt-1 ) > 1, 
so the index is upward biased. 
8   An alternative formula for the chained Laspeyres would be to use the period t-1 weights in (12), so it becomes     
Σi wit-1 (pit/pit-1), which would then be cumulated as in (13).  Results for this index are reported in note 12. 
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where ∑ ∈≡

kIi ititititit qp/qpw is the expenditure share of product i in week t.9  It is important to 

compare this formula to the true cost-of-living index in (10’), which is also a Törnqvist formula:  

the only difference is that (10’) is aggregated over varieties and time, whereas (15) is aggregated 

only over varieties, for a single week.  If we average (15) over all the weeks in a year, then we 

would expect the result to be quite close to that calculated from (10’).10  Thus, an average of the 

Törnqvist indexes in (15) appears to be quite close to the true cost-of-living index in (10’). 

An alternative formulation of the Törnqvist is to first construct it on a week-to-week 

basis: 
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The chained Törnqvist is then obtained by cumulating (16): 

 
  .1CPwith,PCPCP T

0
T

t,1t
T

1t
T
t ≡⋅≡ −−      (17) 

 
The chained Törnqvist in (17) will generally not equal the fixed-base Törnqvist  in (15), and 

therefore, we expect that the average values of the chained Törnqvist over a year might differ 

                                                 
9Note that the fixed-base formula does include current data in the expenditure weight.  
10   There is not an exact equality between taking a weighted average of (15) over all weeks in the year, versus 
computing (10’) directly, because calculating a Törnqvist index in two stages is not the same as calculating it 
directly in one stage.  This is shown by Diewert (1978), who nevertheless argues that “approximate” consistency 
between one-stage and two-stage Törnqvist indexes will obtain. 
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substantially from the exact index in (10’).  Thus, we do not have the same justification for (17) 

as for the fixed-base index in (15), which we expect to be close to (10’).11   

 

5.   Calculation of Price Indexes 

We calculated the Laspeyres-ratio, Geometric, and Törnqvist indexes for 1993, using as 

the base period the mode price in 1992 and the average sales at that price.  As an initial example, 

we show this calculation for the sample data over January – June 1993 in Table 1, with results in 

Table 3.  Any of the fixed-base indexes have nearly the same values in the first week of January, 

and last week of June, because the prices for the two products were identical in those weeks (66¢ 

for product A and $1.29 for product B , respectively).  The chained indexes, however, do not 

satisfy this property.  The chained Laspeyres ends up with a value of 1.28, rising some 37% from 

its value in the first week of January.  This is entirely due to the fact that the Laspeyres index 

does not satisfy “time reversal”, so that when one product goes on sale and its price falls 

temporarily, the index does not return to its former value when the sale ends. 

More surprisingly, the chained Törnqvist index shows an even greater upward bias, 

ending with a value of 1.45, which is nearly twice the value of the chained Laspeyres!  The 

chained Törnqvist index does satisfy “time reversal” provided that the weekly expenditures are 

consistent with the maximization of a  static (i.e. weekly) utility function.  But this assumption is 

violated in the data for these two sample products:  in periods when the prices are low, but there 

are no advertisements, the quantities are not high (see Table 1).  Because the ads occur in the 

final period of the sales, the price increases following the sales receive much greater weight than 

the price decreases at the beginning of each sale.  This leads to the dramatic upward bias of the 

                                                 
11   Alterman, Diewert and Feenstra (2000, chap. 4, Propositions 1,2) have identified some conditions under which a 
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chained Törnqvist.  When averaged over all the weeks, the chained Törnqvist gives a value of 

1.015 relative to the 1992 modal prices, and 1.144 relative to the 1993 model prices; both of 

these art substantially higher than the fixed-base Törnqvist and the other indexes. 

The question arises as to whether this is a general feature of the data on canned tuna.  To 

determine this, we report in Table 4 the values of prices indexes in 1993 computed for each 

store, and then averaged over the weeks in 1993 and over the ten regions of the U.S. The prices 

indexes are computed using either the modal prices in 1992 as the base, or the modal prices in 

1993.  In the first column of Table 4, we report the true COL index from (10’), constructed 

relative to each base, and averaged over all stores in each region.  The values for this index show 

the drop in the cost-of-living (or conversely, the welfare gains) from having items periodically 

on sale during 1993.  We are interested in comparing this true index to the others, so as to 

determine their bias.  

From Table 4, we see that the fixed-base Laspeyres is always higher than the true index, 

and that the chained Laspeyres is considerably higher still.12  Both of these are above the chained 

and fixed-base Törnqvist, respectively.  In addition, the chained Törnqvist exceeds its fixed-base 

counterpart in many regions of the country:  the upward bias of the chained Törnqvist is most 

apparent in the Northwest and Southwest, and occurs in seven out of the ten regions (all except 

the Midwest, South Southwest and Southeast).  On the other hand, the average of the fixed-base 

                                                                                                                                                             
fixed-base Törnqvist index between two dates, and the chained index between the same dates, will be similar in 
magnitude.  Since these indexes do not coincide in our data, the conditions they identify are not satisfied. 
12   When instead we use the alternative formula for the chained Laspeyres, described in note 8, then the upward bias 
of the index is much worse.  This is because the weight wt-1 is much higher as the end of the sale than at the 
beginning, so  the price increase at the end of the sale is given a much greater weight than the price decrease at the 
beginning.  (This problem is ameliorated in the chained Törnqvist, because the weights are averaged over two 
periods.)  For example, this alternative formula for the chained Laspeyres, then averaged over all weeks in 1993 and 
stores in a region, equals 20.6 for the Northeast , 2.1 for the Midwest, , and 3.1 for the Southwest.  In one extreme 
case (a store in the East Northeast), the week-to-week Laspeyres calculated as in note 8 typically exceeds 1.2, so that 
the chained Laspeyres rises from unity to 1.2

52
 > 10,000 during the 1993 year!  
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Törnqvist over the stores and weeks is quite close to the average of the true COL index over 

stores in each region.  This result was expected, because the COL index itself was a Törnqvist 

index computed over product varieties and time, as in (10’), whereas our fixed-base Törnqvist 

has been computed over product varieties, and then averaged across weeks.  Thus, they differ 

only in their respective weights.   

The difficulty with using the true COL index (10’) in practice is that it compares one 

planning horizon (e.g. a year) to another whereas the BLS may very well need to report price 

indexes at higher frequency (i.e. monthly).  The fixed-base Törnqvist more than meets this 

requirement, since it constructed at weekly intervals.  Furthermore, as we have shown, the 

average of the fixed-base Törnqvist is empirically quite close to the COL index.  These results 

therefore lend support to fixed-base Törnqvist, even when applied to high frequency scanner 

data.  Conversely, the upward bias of the chained Törnqvist makes it highly inappropriate to use 

at high frequency, and it appears that this bias is due to inventory behavior.  To confirm this, it 

would be desirable to have some independent evidence on such behavior, as we explore 

econometrically in the next section. 

 
6.   Estimation of Inventory Behavior 

To determine how demand for tuna responds to prices, we need to adopt a specific 

functional form.  The static CES specification of the utility function leads to a demand curve for 

a variety of tuna as follows: 

    ρ−= )P/p(x titit      (18) 
 

where xit is consumption (relative to some base), pit is the price of a variety i and tP  is the price 

index for tuna at time t. 
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We have experimented with developing a full-blown model of inventory behavior for 

consumers, but it quickly gets very complicated.  Simple models have the following 

implications: 

•  Consumers buy for future consumption when goods are on sale. 

•  Consumers will buy more when the next sale is more distant. 

•  If there is a cost of storage, consumers will defer purchases for storage until the last 

period of the sale. 

•  Sales are asymmetric: Consumers might want to sell back some of their inventory when 

prices are unusually high (a negative sale), but they cannot. 

To make this concrete, consider the following formulation.  Suppose that there is a per-

period storage cost of  s units of tuna.  This would include depreciation or loss in storage, the 

shadow price of shelf space in the pantry, and interest.13  Suppose that there is a sale – defined as 

a substantially lower-than-normal price, perhaps accompanied by an advertisement.  The 

consumer expects the next sale to be H periods in the future.  Then a consumer will purchase 

now to fulfill future demand.  The shadow price of consumption h periods ahead for a variety i 

put into storage at the time of the sale t is )s+(1p h
it .  Assuming that the cost of storage (s) and 

that the time to the next sale (H) are not too high, the consumer will purchase sufficient quantity 

for all future needs until the next sale.  Hence, quantity sold at the time of the sale will be 
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13There is a problem with units of measurement:  depreciation and loss is in units of tuna, whereas interest and 
storage costs are in units of the numeraire. 
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If the shadow price )s+(1p h
it  exceeds some future price pi,t+H’ prior to the next sale, then the 

process is truncated at H’.  If s is small, then the term in the power of H simplifies to be simply 

(H+1) itself, since by L’Hospital’s rule:  
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 In order to estimate (19), we take natural logs and make use of (20).  We include both 

current prices, as well as leads and lags up to length L, obtaining the estimating equation: 

 

ln qit = β0 + ��

�
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−=

β∑ it1
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pln  + ��
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−=

β∑ t2

L

L
Pln + β3 ln(1+Hown,it) + β4 ln(1+Hany,t) + εit (21) 

 

where qit are weekly sales measured relative to the quantity at the mode price; pit is the price in 

that week relative to its mode for the year; Pt in the fixed-base Törnqvist index for that store; 

Hown,it is the number of weeks to the next sale of this product i; and Hany,t is the number of 

weeks to the next sale of any variety of canned tuna, in that store.   The inclusion of leads and 

lags for pit and Pt (up to length L) allows for intertemporal substitution in consumption, as 

potentially distinct from inventory behavior.   Note that the variables ln(1+Hown,it) and 

ln(1+Hany,t) are nonzero only when it is the last week of a sale; otherwise, they are not relevant to 

the inventory problem. 

Estimates of (21) for each region of the U.S., over all weeks in 1993, are reported in 

Table 5.  In the first set of estimates for each region we report the coefficients of (21), along with 
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their standard errors.  In the second set of estimates, we extend (21) to allow for indicator 

variables indicated whether that variety of tuna had a special display, whether it was advertised, 

and also an interaction term between advertising and the price of that variety relative to its mode.  

There are nearly 50,000 observations or more for each region, which pools over varieties of tuna, 

weeks and stores.14   

Estimation is by ordinary least squares, including fixed-effects for each store, as 

recommended by Betancourt and Malanoski (1999).15  We do not report the coefficients on the 

store fixed-effects, and we also do not report the coefficients on the lead and lag values of pit and 

Pt.  The inclusion of these leads and lag often increased the (absolute) values of the concurrent 

price elasticities, and the leads and lags themselves were sometimes significant though not 

always of positive sign.16  Most importantly, the inclusion of the leads and lag of prices has little 

impact on the coefficients on the inventory terms ln(1+Hown,it) and ln(1+Hany,t):  the estimates 

reported in Table 5 are for a single lead and lag, L=1, but similar results are obtained for L=0 or 

L=2.   Coefficients on ln(1+Hown,it) and ln(1+Hany,t) that are significantly different from zero at 

the 5% level are indicated in bold. 

 Strong evidence of inventory behavior is found for the Northeast  regions, at the top of 

Table 5:  the East Northeast has a coefficient of 0.35 on ln(1+Hown,it) while the Northeast has a 

                                                 
14   In some cases the value of Hown,it could not be measured, because the next sale of that variety was after the end 
of the sample, so these observations were omitted.  Less frequently, the value of Hany,t could not be measured 
because the next sale of any variety was after the end of the sample; these values of Hany,t were set equal to zero. 
15 We considered using an instrumental variables estimator to take into account less than perfect foresight for H, but 
we obtained inadequate first-stage fits. 
16   Betancourt and Gautschi (1992) show generally that for retail purchases (as contrasted with consumption) there 
is a tendency to obtain complementarity rather than substitution in demand.  This might explain the cross-price 
elasticities that were sometimes significantly negative. 
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coefficient of 0.33 on ln(1+Hany,t).  To interpret these, we can measure the total “inventory 

effect” on demand during the last week of a sale as: 

 

  Inventory Effect = 3β̂  )H1ln( it,own+  + 4β̂ )H1ln( it,any+  .  (22)  

 

Note that the sample average value of ln(1+Hown,it) when this variable is positive is 2.4 (so the 

next sale of each product is 10 weeks away), and the average value of ln(1+Hany,t) when this 

variable is positive is 1.2 (so the next sales of any product is 2.3 weeks away).   

Using the coefficients in Table 5, for the East Northeast the “inventory effect” is 

exp(0.35*2.4-0.08*1.2)=2.2, indicating that the quantity demanded during the last week of a sale 

is more than twice as high as average.  For the Northeast region, the “inventory effect” equals 

exp(0.03*2.4+0.22*1.2)=1.4, so demand is 40% higher at the end of sale.  Other regions that 

show particularly strong inventory behavior are the Upper Midwest, for both inventory variables, 

and most regions of the South, for the variable reflecting sales in other varieties.   

However, when we add the indicator variables for displays and advertising, along with 

the interaction between advertising and price, then the magnitude of inventory behavior is 

substantially reduced in all regions.  In the cases where there is still some evidence of inventory 

behavior – such at the East Northeast and Southeast – a positive coefficient on one of the 

inventory variables is offset by a negative coefficient on the other.  Indeed, when advertising is 

included then the only region that retains significant evidence of inventory behavior (without an 

offsetting negative effect) is the Northeast.  As an example, in one store in that region a certain 

tuna product fell in price from $1.59 to 88¢ in one week and sales went from about 100 cans 

average to 20,000 in that week!  This is the largest demand response in our dataset, and almost 
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surely indicates that the purchases were for inventory.  At the same time, we cannot rule out that 

some portion of the increased demand was in response to the advertised price of 88¢.  Generally, 

when we take into account displays and advertising in Table 5, the extent of inventory behavior 

is reduced markedly.17 

While these inventory regressions provide some direct evidence of inventory behavior, 

we also wish to know whether this can explain the upward bias in the chained Törnqvist index.  

To this end, in Figure 1 we graph the “inventory effect” against the index bias, measured as the 

difference between the chained Törnqvist and the true COL index (where both of these are 

averaged over all weeks in 1993, and using the modal price in 1993 as the base).  The “inventory 

effect” in (22) is measured using the coefficients on the first row for each region in Table 5; that 

is, ignoring the advertising and display variables.  The means for ln(1+Hown,it) and ln(1+Hany,t) 

in (22) are now computed over the entire sample, i.e. for both positive and zero observations.  

This will capture not only the average value of these variables when positive, but also the 

number of times that sales occur.  We graph the average “inventory effects” against the index 

bias for the ten regions in Figure 1, for the 580 individual stores over which (22) could be 

estimated in Figure 2. 

In Figure 1, there is only a weak positive relation between the “inventory effect” and the 

index bias; the correlation between these variables is 0.05.  The Southwest and Northwest have 

the highest bias of the chained Törnqvist index, and these both have coefficients of about 0.15 on 

ln(1+Hany,t) in Table 5:  while these effects are significant, they are not the largest coefficients  

                                                 
17   We have also re-estimated (15) while excluding all one-week sales.  This allows us to determine what inventory 
behavior is associated with multi-week sales.  Generally, the coefficients we obtain on ln(1+Hown,it) and 
ln(1+Hany,t) are lower than those reported in Table 5, which combines the one-week and multi-week sales. 
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that we find on inventory behavior.  Conversely, the East Northeast region is shown as having 

the highest “inventory effect” in Figure 1, and while it has a non-negligible bias of the chained 

Törnqvist index in Table 4, this bias is not the largest across regions.   

However, when we look across individual stores in Figure 2, the evidence for a positive 

relationship between inventory behavior and index bias is more apparent.  The correlation 

between these two variables is 0.12, which is significantly different from zero at the 1% level 

(with N=580).  Thus, there are some stores that display both strong inventory behavior and a 

pronounced upward bias of the chained Törnqvist index.   The three stores shown in Figure 2 

whose index bias exceeds unity are all in the Northeast and East Northeast regions; and in 

addition, 20 out of the top 25 stores with highest “inventory effects” are also in these two 

regions.  Generally, the shopping patterns of the Northeast regions show marked inventory 

behavior and an upward bias of the chained Törnqvist, supporting the idea that such behavior 

causes the upward bias. 

 
7.   Conclusions 

 The data on tuna shows substantial high-frequency variation in price and substantial 

response of consumer demand to this variation in price, suggesting inventory behavior.  A true 

cost-of-living index in this context, as derived in section 2, must compare all prices over one 

planning horizon to all prices in another, e.g. compare one year to the next.  This differs from the 

conventional approach taken at the BLS, which is to compute price indexes in each month.  

Averaging over a month, as the BLS does, is a step toward aligning price measurement with the 

consumption rather than the shopping period.  Yet, the month might not be the correct planning 

horizon.  Moreover, even if it were, the results of section 2 show that the arithmetic average of 

prices is not the correct summary statistic to input into a cost-of-living index. 
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We find that the fixed-base Törnqvist, computed weekly and then averaged over a year, 

can adequately measure the true COL index (which is itself a Törnqvist formula).  That is, the 

fixed-base Törnqvist captures the reduction in the cost-of-living that arises when consumers 

economize by substituting toward goods whose price is low.  Conversely, the chained Törnqvist 

gives too much weight to price increases that follow the end of sales, and is upward biased. 

 The upward bias of the chained Törnqvist can be explained by purchases for storage 

rather than consumption.  During sales, some of the increase in demand corresponds to purchases 

for storage, as supported by our regression results.  In particular, we find that purchases are 

increasing in time to the next sale.  This finding is consistent with a forward-looking consumer 

engaging in storage.   This evidence of forward-looking behavior is somewhat undermined by 

accounting for advertisements.  Nevertheless, we find a link between inventory behavior – 

especially in the Northeast – and the upward bias of the chained Törnqvist.  It follow that the 

chained approach is to be avoided when using high frequency scanner data, and a fixed-base 

Törnqvist (or the true COL index) should be used instead.
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Appendix 

 
Proof of Theorem: 

Taking the log of (8), we obtain, 
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where the second line follows by using the translog formula in (4) and (5), the third line using 

simple algebra, and the final line follows from the share formula in (7). 
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Figure 1:  Index Bias and Inventory Effect - Regions
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Figure 2:  Index Bias and Inventory Effect - Stores 
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Table 1:  Data for two sample products, January – June, 1993 

 
 

 Product A Product B 
Week 

Ending: Quantity Price Ad Quantity Price Ad 
       

1/09/93 25 0.66 N 15 1.39 N 
1/16/93 17 0.66 N 20 1.29 N 
1/23/93 150 0.59 Y 14 1.29 N 
1/30/93 109 0.59 Y 24 1.29 N 
2/06/93 58 0.66 N 31 1.29 N 
2/13/93 38 0.66 N 16 1.29 N 
2/20/93 7 0.33 N 8 1.29 N 
2/27/93 5 0.33 N 15 1.19 N 
3/06/93 213 0.49 Y 21 1.19 N 
3/13/93 43 0.66 N 92 1.19 Y 
3/20/93 12 0.66 N 19 1.29 N 
3/27/93 5 0.33 N 27 1.29 N 
4/03/93 50 0.66 N 23 1.29 N 
4/10/93 231 0.49 Y 22 1.29 N 
4/17/93 15 0.66 N 15 1.29 N 
4/24/93 18 0.66 N 28 1.39 N 
5/01/93 3 0.33 N 12 1.39 N 
5/08/93 18 0.33 N 8 1.39 N 
5/15/93 210 0.50 Y 11 1.39 N 
5/22/93 6 0.66 N 19 1.39 N 
5/29/93 21 0.66 N 18 1.19 N 
6/05/93 15 0.66 N 43 1.19 N 
6/12/93 29 0.66 N 81 1.19 Y 
6/19/93 6 0.66 N 13 1.39 N 
6/26/93 4 0.66 N 15 1.39 N 

       
Mode 92 20.6 0.79  17.7 1.39  
Mode 93 23.8 0.66  19.9 1.29  

 
Notes: 
Data in bold are on sale, with price more than 5% below the yearly mode.  Data in italics  
also have an advertisement, as tends to occur in the final week of each sale.  Demand is 
exceptionally high in these final weeks when the product is advertised. 
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  Table 2:  Summary of data for Three Regions 
 

 Northeast Midwest Southwest 
 1992 1993 1992 1993 1992 1993 
       

Mode Price ($) 1.69 1.73 1.30 1.32 1.56 1.59 
Relative to mode:       
                   Price 0.988 0.986 1.005 1.000 1.000 0.989 

       
During weeks without sales:       
No displays or ads:   Price 1.02 1.01 1.03 1.02 1.03 1.02 
                                 Quantity 0.98 0.99 0.98 0.98 0.98 0.99 
With display, no ad:  Price 1.02 1.02 1.02 1.03 1.04 1.04 
                                 Quantity 1.84 1.72 1.50 1.66 1.69 1.67 
With advertisement: Price 1.01 1.01 1.02 1.04 1.03 1.04 
                                Quantity 2.22 1.46 2.20 2.02 1.68 1.88 
During weeks with sales:       
No displays or ads:   Price 0.85 0.87 0.88 0.89 0.87 0.87 
                                 Quantity 1.94 1.79 1.97 1.40 1.87 2.09 
With display, no ad:  Price 0.74 0.76 0.84 0.81 0.82 0.78 
                                 Quantity 7.20 7.94 5.93 6.41 6.77 5.64 
With advertisement: Price 0.66 0.68 0.76 0.75 0.73 0.70 
                                Quantity 12.64 11.70 7.01 6.25 8.81 9.14 

       
Frequency of no sale (%) 82.6 80.8 84.7 81.1 80.0 77.5 
Frequency of sales (%) 17.4 19.2 15.3 18.9 20.1 22.5 
Lasting one week 44.9 45.2 40.1 26.0 34.4 24.9 
Lasting two weeks 19.1 15.1 16.5 15.2 22.1 15.6 
Lasting three weeks 6.1 9.3 6.1 6.7 7.9 11.0 
Lasting four weeks 5.6 9.6 7.0 9.2 7.5 15.6 
More than four weeks 24.4 21.0 30.4 43.0 28.2 33.0 
       
During weeks without sales:       
Freq. of no displays or ads (%) 98.4 98.7 96.9 97.2 97.6 98.7 
Freq. of displays, not ads (%) 1.0 0.8 2.2 2.1 1.3 0.9 
Freq. of advertisements (%) 0.6 0.5 0.9 0.7 1.2 0.4 
During weeks with sales:       
Freq. of no displays or ads (%) 78.2 80.7 81.6 86.9 81.0 85.2 
Freq. of displays, not ads (%) 3.4 2.9 7.0 5.3 2.6 1.9 
Freq. of advertisements (%) 18.4 16.4 11.3 7.8 16.4 12.9 
Freq. of ads during sales (%):       
For sales of one week only 71.7 65.1 56.9 62.1 59.7 67.4 
At start (for sales > one week) 26.4 16.1 10.6 5.9 27.2 11.2 
At end (for sales > one week) 19.2 14.4 20.4 18.1 24.1 18.1 
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Table 3:  Price Indexes constructed over two sample products, 
       January – June, 1993 

 

Week 
Ending 

Fixed- Base 
Laspeyres

 
Chained 

Laspeyres 
Fixed- Base 
Geometric

Fixed- 
Base 

Tornqvist
Chained 

Tornqvist 
      

1/09/93 0.934 0.934 0.931 0.927 0.927 
1/16/93 0.891 0.894 0.890 0.894 0.885 
1/23/93 0.856 0.856 0.851 0.812 0.830 
1/30/93 0.856 0.856 0.851 0.826 0.830 
2/06/93 0.891 0.897 0.890 0.886 0.886 
2/13/93 0.891 0.897 0.890 0.883 0.886 
2/20/93 0.724 0.718 0.675 0.736 0.688 
2/27/93 0.681 0.684 0.643 0.720 0.641 
3/06/93 0.764 0.821 0.756 0.709 0.769 
3/13/93 0.848 0.930 0.848 0.850 0.889 
3/20/93 0.891 0.977 0.890 0.897 0.947 
3/27/93 0.724 0.782 0.675 0.777 0.856 
4/03/93 0.891 1.094 0.890 0.884 1.044 
4/10/93 0.805 0.982 0.790 0.729 0.857 
4/17/93 0.891 1.118 0.890 0.893 1.015 
4/24/93 0.934 1.170 0.931 0.945 1.071 
5/01/93 0.768 0.936 0.706 0.820 0.968 
5/08/93 0.768 0.936 0.706 0.722 0.968 
5/15/93 0.851 1.123 0.830 0.743 1.240 
5/22/93 0.934 1.272 0.931 0.954 1.433 
5/29/93 0.848 1.163 0.848 0.848 1.277 
6/05/93 0.848 1.163 0.848 0.850 1.277 
6/12/93 0.848 1.163 0.848 0.850 1.277 
6/19/93 0.934 1.280 0.931 0.949 1.452 
6/26/93 0.934 1.280 0.931 0.955 1.452 

Averages:     
Base 92 0.848 0.997 0.835 0.842 1.015 
Base 93 0.951 1.116 0.941 0.946 1.144 

 
Notes: 
Data are for the two products in Table 1.  Data in bold had one product on sale, with price more 
than 5% below the yearly mode.  Data in italics also have an advertisement for that produce, as 
tends to occur in the final week of each sale.  Demand is high in these final weeks when the 
product is advertised, so the largest increases in the indexes – especially the chained indexes – 
follow these weeks. 
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Table 4:  Price Indexes constructed over Complete Sample 
  (Average values over 1993) 

 
 True COL 

Index 
Fixed-base 
Laspeyres 

Chained 
Laspeyres 

Fixed-base 
Geometric 

Fixed-base 
Tornqvist 

Chained 
Tornqvist 

 East Northeast 
1992 base 0.950 1.009 1.144 1.002 0.967 0.980 

1993 base 0.940 0.991 1.127 0.987 0.959 0.986 

 Northeast 
1992 base 0.937 0.987 1.204 0.976 0.941 1.006 

1993 base 0.930 0.972 1.193 0.966 0.932 0.991 

 Northwest 
1992 base 0.921 0.995 1.184 0.978 0.940 1.075 

1993 base 0.954 1.007 1.224 0.996 0.971 1.097 

 West Northwest 
1992 base 0.977 1.013 1.118 1.002 0.978 0.998 

1993 base 0.954 0.985 1.095 0.975 0.956 0.974 

 Midwest 
1992 base 0.970 1.004 1.145 0.998 0.972 0.956 

1993 base 0.958 0.983 1.108 0.978 0.960 0.956 

 Upper Midwest 
1992 base 0.937 0.958 1.033 0.949 0.951 0.995 

1993 base 0.985 0.999 1.081 0.997 1.000 1.037 

 South Southeast 
1992 base 0.949 0.972 1.036 0.965 0.955 0.993 

1993 base 0.988 1.006 1.072 1.001 0.994 1.034 

 South Southwest 
1992 base 0.970 1.006 1.104 0.997 0.978 0.976 

1993 base 0.971 0.994 1.093 0.989 0.980 0.979 

 Southeast 
1992 base 0.985 0.989 1.017 0.985 0.978 0.972 

1993 base 1.000 1.007 1.043 1.005 0.998 0.994 

 Southwest 
1992 base 0.964 1.029 1.204 1.017 0.983 1.138 

1993 base 0.945 0.998 1.192 0.991 0.961 1.123 

 Total U.S. 
1992 base 0.956 0.996 1.119 0.987 0.964 1.007 

1993 base 0.962 0.994 1.122 0.989 0.971 1.014 
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Table 5:  Regression Results over 1993 Sample 
Dependent variable: Log of Quantity (relative to mode) 

 
 

Log 
Relative 

Price 

Log Price 
Index 

Log(Weeks 
to Own 

Next Sale) 

Log(Weeks 
to Any 

Next Sale) 

Display Ad Log Rel. 
Price*Ad R2, 

      N 

East Northeast 
 

-3.82 
(0.04) 

0.85 
(0.03) 

0.34 
(0.01) 

-0.08 
 (0.04) 

 

   0.23 
115,434 

-2.25 
(0.04) 

0.84 
(0.03) 

0.11 
(0.01) 

-0.11 
 (0.04) 

 

1.08 
(0.02) 

0.66 
(0.02) 

-1.15 
(0.06) 

0.29 
115,434 

Northeast 
 

-3.37 
(0.03) 

0.76 
(0.03) 

0.03 
(0.01) 

0.33 
 (0.03) 

 

   0.22 
120,554 

-2.31 
(0.04) 

0.81 
(0.03) 

-0.01 
(0.01) 

0.22 
 (0.03) 

 

0.71 
(0.01) 

0.46 
(0.02) 

-0.71 
(0.06) 

0.26 
120,554 

Northwest 
 

-2.85 
 (0.04) 

0.66 
(0.04) 

0.01 
(0.02) 

0.14 
 (0.04) 

 

   0.26 
57,168 

-2.42 
 (0.05) 

0.67 
(0.04) 

0.01 
(0.02) 

0.07 
 (0.04) 

 

0.58 
(0.03) 

0.33 
(0.02) 

-0.20 
(0.06) 

0.28 
57,168 

West Northwest 
 

-2.57 
(0.04) 

0.79 
(0.06) 

0.01 
(0.02) 

0.05 
 (0.04) 

 

   0.15 
79,488 

-2.32 
(0.05) 

0.85 
(0.06) 

0.01 
(0.02) 

0.04 
 (0.04) 

 

0.57 
(0.01) 

0.41 
(0.02) 

0.34 
(0.07) 

0.18 
79,488 

 
Midwest 

 
-2.26 
(0.06) 

0.56 
(0.06) 

-0.01 
(0.03) 

0.10 
 (0.05) 

 

   0.09 
48,537 

-1.74 
(0.07) 

0.57 
(0.06) 

-0.01 
(0.03) 

0.02 
 (0.05) 

 

0.70 
(0.02) 

0.40 
(0.03) 

-0.10 
(0.10) 

0.13 
48,537 

 
Notes:  Coefficients on weeks to next sale that are significantly different from zero at the 5% 
level are indicated in bold.  Standard errors are shown in parentheses.  Regressions also included 
fixed effects by store, and lag and lead prices. 
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Table 5 (cont’d):  Regression Results over 1993 Sample 
Dependent variable: Log of Quantity (relative to mode) 

 
Log 

Relative 
Price 

Log Price  
Index 

Log(Week
s to Own 

Next Sale) 

Log(Week
s to Any 

Next Sale)

Display Ad Log Rel. 
Price*Ad R2, 

      N 

Upper Midwest  
 

-2.21 
(0.06) 

0.38 
(0.06) 

0.15 
(0.03) 

0.19 
 (0.05) 

 

   0.08 
46,906 

-1.34 
(0.07) 

0.48 
(0.06) 

-0.01 
(0.03) 

0.12 
 (0.05) 

 

0.50 
(0.02) 

0.59 
(0.03) 

-1.03 
(0.11) 

0.12 
46,906 

South South-East 
 

-2.04 
(0.06) 

0.40 
(0.06) 

-0.02 
(0.03) 

0.18 
 (0.05) 

 

   0.10 
59,340 

-1.68 
(0.07) 

0.44 
(0.06) 

0.01 
(0.03) 

-0.003 
 (0.05) 

 

0.51 
(0.02) 

0.20 
(0.02) 

-0.71 
(0.09) 

0.11 
59,340 

South South-West 
 

-2.35 
(0.06) 

0.56 
(0.04) 

-0.07 
(0.02) 

0.30 
 (0.04) 

 

   0.10 
76,876 

-1.72 
(0.06) 

0.62 
(0.04) 

-0.03 
(0.02) 

0.14 
 (0.04) 

 

0.55 
(0.02) 

0.55 
(0.03) 

-0.86 
(0.10) 

0.13 
76,876 

South East 
 

-2.06 
(0.07) 

0.27 
(0.09) 

0.09 
(0.02) 

-0.09 
 (0.04) 

 

   0.06 
66,689 

-1.43 
(0.08) 

0.29 
(0.09) 

0.07 
(0.02) 

-0.12 
 (0.04) 

 

0.46 
(0.02) 

0.46 
(0.02) 

-0.27 
(0.11) 

0.08 
66,689 

South West  
 

-3.26 
 (0.05) 

0.62 
(0.05) 

-0.03 
(0.02) 

0.15 
 (0.05) 

 

   0.24 
57,121 

-2.48 
 (0.05) 

0.70 
(0.05) 

-0.05 
(0.02) 

0.06 
 (0.05) 

 

0.52 
(0.03) 

0.51 
(0.03) 

-0.62 
(0.09) 

0.26 
57,121 

Total U.S.  
 

-3.08 
 (0.01) 

0.73 
(0.01) 

0.13 
(0.006) 

0.00 
 (0.01) 

 

   0.17 
728,122 

-2.19 
 (0.02) 

0.78 
(0.01) 

0.08 
(0.006) 

-0.06 
 (0.01) 

 

0.67 
(0.006) 

0.45 
(0.007) 

-0.78 
(0.02) 

0.20 
728,122 

 


