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Health economists and other empirical researchers often debate the advantages and disad-

vantages of various functional forms used in regression analyses. Researchers frequently use, for

example, logarithmic transformations of the dependent variable when the variable exhibits signif-

icant skewness. Often it is the level of the dependent variable that is of interest in the analysis

and retransformation of the estimated predictions is necessary. Many health outcomes are also

characterized by a signi�cant point mass at zero. It has become common among health economists

to use a two-part model even though the outcome of interest is typically the unconditional outcome

that includes the zero values. Examples of health outcomes exhibiting skewness and point mass

at zero include health care expenditures, number of doctor visits, and duration of hospital stay.

Several recent papers have addressed these modeling issues from a variety of points of view (e.g.,

Mullahy, 1998; Manning, 1998; Angrist, 2000; Manning and Mullahy, 2000).

Retransformation and two-part modeling require that the researcher make distributional as-

sumptions. For example, in order to obtain predicted values of the unconditional level outcomes

from a logarithmic transformed dependent variable, a researcher must retransform the predicted

logged dependent variable. This retransformation requires assumptions about the dependence of

the error term distribution on observable covariates. One also must specify assumptions about the

relationship between the errors of the marginal and conditional outcomes represented in two-part

models. To our knowledge there is no general empirical approach that simultaneously \makes irrel-

evant" the decision to transform or not and the choice of two-part versus one-part modeling while

also allowing for possibly complex interactions of explanatory variables on the outcome of interest.

Our goal in this paper is to provide such an approach.

In this paper we describe a relatively simple estimation approach that \solves" the transfor-

mation problem while incorporating explicitly the potential confounding e�ects of two-part models.

Our estimation strategy uses sequences of conditional probability functions, similar to those used in

discrete time hazard rate analyses, to construct a discrete approximation to the density function of

the outcome of interest conditional on exogenous explanatory variables. Once we have constructed

the conditional density function, it is straightforward to examine expectations of arbitrary functions

of the outcome of interest and to evaluate how these expectations vary with observed exogenous

covariates. Our implementations of the approach use 
exible functional forms when de�ning the
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sequences of conditional probabilities. This means that we have 
exible representations of the con-

ditional density functions, and consequently 
exible representations for regression functions such

as the expected value of the outcome conditional on exogenous covariates.

In our formulation we construct the sequences of conditional probabilities using standard

binary outcome models. In our Monte Carlo experiments and health economics application we

use a logit probability model because of its simplicity, but any binary outcome model could be

used. We allow the arguments of these conditional probability functions to be loosely-speci�ed

polynomial functions of covariates. These models can then be estimated using standard computer

packages such as SAS and Stata. In fact, we used Stata for all of the Monte Carlo experiments

and real application estimates reported in this paper. It is simple for researchers to implement this

approach in practice.

The approach we use naturally admits variations in covariate e�ects over particular ranges

of the variables. It might be the case, for example, that particular variables have no impacts on

an outcome of interest until the outcome exceeds some pre-speci�ed cuto� level. Characteristics

of one's health insurance contract (e.g., the deductible, the coinsurance rate after exceeding the

deductible, and the maximum out-of-pocket expenditure) are obvious examples in the health insur-

ance literature where the economic impacts of these covariates vary over the range of the dependent

variable. One could, in principal, model directly how such features e�ect the budget constraint and

then solve for the correct demand function to use in a least squares estimation. The resulting

functional form for the regression model would almost always be quite nonlinear, and it would

depend crucially upon arbitrary distributional and functional form assumptions. The approach we

examine here incorporates such e�ects with almost no modi�cation.

While the presence of unobserved individual heterogeneity could limit a researcher's ability

to translate such economic restrictions directly to restrictions in a statistical model, these types

of functional restrictions can provide key information to help identify nonparametrically both the

behavioral relationship and the heterogeneity distribution (Mroz and Weir, 1990; Hahn, Todd,

and Van der Klaauw, 2000); this is a clear case where a well-speci�ed economic theory can help
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provide identi�cation without the imposition of arbitrary functional forms.1 The discrete condi-

tional density estimation approach we use can be applied directly to a wide range of situations

where researchers have relied upon restrictive functional forms and distributional assumptions. It

is straightforward to apply the approaches we describe to: discrete time hazard rate models (Alli-

son, 1984); ordered data models, where researchers almost always assume either an ordered logit or

an ordered probit model with covariate-invariant cuto� points (Maddala, 1983); count data mod-

els, where most researchers use a Poisson model or simple, parametrically restrictive modi�cations

of the Poisson such as the negative binomial model or the zero-in
ated Poisson model (Cameron

and Trivedi, 1998); and multinomial models with mutually exclusive outcomes, where researchers

have relied almost exclusively on multivariate probit or logit models (Maddala, 1983). In addition

to this wide application of the conditional density estimation technique, the use of a maximum

likelihood framework provides the foundation for more complex modeling of selection, endogeneity,

and unobserved heterogeneity.

Using Monte Carlo experiments and our health economics application, we examine the per-

formance of these discrete, conditional density approximations when the outcome of interest is a

positively-skewed continuous variable with mass at zero. We �nd that the discrete approxima-

tion works quite well with these outcomes. This suggests that the approach may be useful when

a researcher is interested in estimating the expected impact of exogenous covariates on particu-

lar functions of the outcome variable, regardless of whether the outcomes of interest are discrete,

continuous, or mixed.

1The approach we use yields estimates of how the entire distribution of health expenditures would change
in response to variations in exogenous characteristics. Conceptually it is straightforward to add unobserved
heterogeneity to the speci�cations we use along the lines suggested by Heckman and Singer (1984),Mroz
(1999), and Mroz and Guilkey (1992). This would, in principal, allow one to examine how covariate e�ects
vary within ranges of the outcome variable. For example, one might be interested in how increasing coin-
surance rates would e�ect health care expenses for those spending more than $500 per year. To do this well,
however, the researcher would need to hold constant the distribution of the \heterogeneity" applicable for
this range of the outcome and must specify precisely how the heterogeneity distribution would be identi�ed.
This would require strong assumptions or additional information. In general one would need multiple ob-
servations per agent in order to identify the heterogeneity distribution separately from the distribution of
the outcome conditional on exogenous covariates and the heterogeneity (Heckman and Honore, 1990). Such
extensions are beyond the scope of this paper. Hence, the approach we detail in this paper does not address
the question of how one can obtain interesting and consistent estimates of how covariates in
uence outcomes
over intervals of the support of the dependent variable conditional on the random variable falling within the
interval.

3



1 Description of Estimation Procedure

We begin by describing in detail the estimation technique. The approach requires determination of

intervals within the support of the dependent variable, approximation of the conditional expected

value, and implementation of the empirical approximation in practice. We conclude this section by

explaining how to calculate statistical derivations of interest.

The conditional density estimation approach we propose in this paper closely resembles the

approaches used by Efron (1988) and Donald, Green, and Paarsch (2000). The Efron model, like

that proposed here, approximates the distribution of a continuous outcome by a discrete distribution

function. He proposes that one estimate the statistical approximation to the distribution function

by a sequence of logit hazard rates, which is precisely the modeling approach we adopt. The

main di�erence between our approach and Efron's is that we examine distributions conditional on

observed covariates, while Efron models only the unconditional distribution. An important result

from Efron's analysis concerns the fact that the e�ciency loss due to discretization can be quite

small. For a true underlying continous Poisson process, for example, he �nds that information loss

quickly goes to zero as the number of discrete intervals gets large.

Donald, Green, and Paarsch (2000) propose an estimator quite similar to the one we describe

below. The primary di�erence between their estimator and ours is that they use a continuous

distribution with discrete structural shifts to approximate the underlying distribution, as in Meyer's

(1990) approach to estimating hazard models. To allow for e�ects of covariates that vary over

the support of the outcome, they rely on separate, discontinous \proportional hazard" e�ects for

various ranges of the the outcome variable. Our approach, on the other hand, allows the impacts of

covariates to vary smoothly over the entire range of the support of the outcome of interest, except

possibly at particular points or regions where the researcher has an a priori notion that behavior

might be discontinuous. The complexity of the estimated distribution and its dependence upon

covariates is pre-speci�ed in the Donald, Green, and Paarsch approach, while the estimator we

propose allows the data to determine the number of terms and breakpoints used to approximate

the conditional distribution function. Eastwood and Gallant (1991), for example, �nd that data

dependent rules for choosing the number of terms in an expansion often yields less bias than using

�xed rules. A �nal advantage of our approach is that estimating the smoothed conditional density
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function only requires one to use simple logit models. Donald, Green, and Paarsch's estimator can

be di�cult to use because it requires that the reseacher provide reasonable starting values for the

parameter estimates. All of the di�erences we mention are quite minor, and the choice of which of

these two apporaches would be better depends upon whether one believes that the distribution of

the outcome of interest has many interesting and important, discontinuous segments.

1.1 Discretizing the Support of the Dependent Variable

Figure 1 displays an arbitrary distribution function for a random variable Y conditional on a set

of covariates x with density f(yjx).2 Suppose we break the range of the dependent variable into K

intervals, where the kth interval is de�ned by [yk�1; yk); for yk�1 � yk; y0 = �1 and yK =1.
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Figure 1: Arbitrary Distribution of Y

The probability that the random variable Y falls in the �rst interval is given by:

p [y0 � Y < y1jx; Y � y0] =

Z y1

y0

f(yjx)dy = �(1; x) (1)

2If the random variable Y is discrete, then each partition may include one or more points in the support
of Y. For most of the following discussion, we use notation for a continuous distribution for the outcome,
but little would need to be changed to accommodate discrete or mixed outcomes.
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where �(1; x) is that function of x that gives this probability. Note that �(1; x) is implicitly a

function of the choice of partition for the support of Y , but this dependence on the partition is

captured entirely though the values y0 and y1. The probability that the random variable Y falls in

the kth interval is given by

p [yk�1 � Y < ykjx] =

Z yk

yk�1

f(yjx)dy (2)

and the conditional probability that the random variable falls in the kth interval given that it did

not fall in one of the �rst (k � 1) intervals is

�(k; x) = p [yk�1 � Y < ykjx; Y � yk�1]

=

R yk
yk�1

f(yjx)dy

1�
R yk�1

y0
f(yjx)dy

(3)

The functions �(�; �) de�ne the \discrete time hazard" function representation for the chosen

partition of the support of Y . By the properties of hazard functions, the probability that the

random variable Y falls in the kth interval is given by

p [yk�1 � Y < ykjx] = �(k; x)
k�1Y
j=1

[1� �(j; x)] : (4)

The hazard rate decomposition implies, by de�nition, a conditional independence between the

events fyk�1 � Y < ykjx; Y � yk�1g and fyj�1 � Y < yjjx; Y � yj�1g 8j 6= k. If a researcher

imposes a functional form for f(yjx) or �(k; x), however, the potential for unobserved heterogeneity

exists and the conditional independence can break down (Heckman and Singer, 1984). This happens

because the same unobservable, say �, in
uences all of the events represented in Equation (4).

This, however, is only an issue for the hazard function that is constructed by conditioning on the

unobserved heterogeneity. Suppose �g(k; xj�) is the discrete hazard rate under density g(yjx; �)

that is conditional on the unobserved heterogeneity and that Q(�) is the cumulative distribution of

the unobserved heterogeneity. Conditional on the heterogeneity the independence properties hold.

The conditional distribution function is given by

p [yk�1 � Y < ykjx; �] = �g(k; xj�)
k�1Y
j=1

[1� �g(j; xj�)] (5)

and the unconditional distribution function is

p [yk�1 � Y < ykjx] =

Z
�g(k; xj�)

k�1Y
j=1

[1� �g(j; xj�)] dQ(�) : (6)
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This distribution in Equation (6) must, by de�nition, have an \independent" hazard rate decom-

position like that described above in Equation (4).

The primary implication of unobserved individual heterogeneity is that one cannot interpret

the distribution function f(yjx) and the \hazard" function �(k; x) as holding the heterogeneity

�xed, as would be the case if one were able to estimate the \hazard" functions �g(k; xj�). Thus one

cannot give a clear structural interpretation to e�ects of variations in x on the outcome y in sub-

intervals of its support; to do this would require knowledge of the distribution of the heterogeneity

conditional on being in the speci�ed sub-intervals. The point here is similar to the interpretation

of estimates of \duration dependence" of the hazard rate in waiting time models with unobserved

heterogeneity. Unless one holds constant the unobserved heterogeneity in a waiting time model,

the time shape of the hazard function does not have a structural interpretation; the time shape

depends upon changes in the distribution of the unobserved heterogeneity over the support of the

dependent variable. The decomposition we use, however, does permit one to make precise structural

statements about the impact of the covariates x on the expectation of any function of y that does

not condition on particular ranges for the random variable. It is straightforward, for example, to

calculate how the mean and the variance of the random variable Y , or the mean and variance of

functions of the random variable Y , vary with changes in the exogeneous covariates x.

1.2 Approximating Moments of the Distribution

In this discussion we focus on �rst conditional moments, but the discussion could easily be modi�ed

for any conditional moments. The true expecation of a function h(�) of a random variable Y , given

x, is

E(h(Y )jx) =

Z 1

�1
h(y)f(yjx)dy (7)

where h(�) is any smooth and continuous function of Y . For a partition of the support of Y with

K intervals, we approximate the expectation of a function h(Y ) conditional on covariates x by

~E(h(Y )jx) =
KX
k=1

h�(kjK)�(k; x)
k�1Y
j=1

[1� �(j; x)] (8)

where each h�(kjK) is an approximation to h(y) in the kth interval (corresponding to interval

[yk�1; yk)). The approximation we use treats the h�(kjK)'s as �xed for all values of x within the
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kth interval. For smooth and continuous functions h(Y ), this approximation to the expectation will

converge to the true expectation as the widths of the intervals shrink towards zero. The empirical

question, then, is how well this approximation can work in practice.

1.3 Implementing the Approximation Empirically

Before one can apply this approximation in practice, several decisions need to be made regarding

implementation. The �ve decisions at the discretion of the researcher are to:

1. choose the number of intervals to use (K),

2. specify boundaries of the intervals (i.e., the values of y1; y2; : : : ; yK�1 ),

3. pick a set of constants h�(1jK); h�(2jK); : : : ; h�(KjK) to use in the approximation to the

integral,

4. decide how to approximate the conditional density functions, and

5. calculate derivatives of the expectation of the function of the outcome of interest.

For each of the �ve decisions we use empirical analogues to guide our choices.

Choosing Widths of the Intervals

First, consider the choice of the boundaries of the intervals. Suppose that one has already chosen

to have K intervals. For the most part, in our Monte Carlo experiments and empirical example

we choose as boundary points values that place an equal number of observations in each interval

(i.e., 1=Kth of the sample of Y falls within each interval). If we chose 10 intervals, for example,

then y1 is the tenth percentile of the observed outcome Y , y2 is the twentieth percentile of the

observed outcome Y , and yK�1 is the ninetieth percentile of Y . Boundaries chosen in this fashion

are equivalent for monotonic transformations of the random variable Y . In those instances where

there are signi�cant point masses in the observed distribution of Y , one can allow each mass point

to de�ne a single interval. In the work we report here we examine annual health care expenses. We

allow zero expenditures to be a single interval and choose boundary points such that there are an

equal number of observed positive expenditures in each of the remaining intervals.3

3When there are minor point masses, say heaping at $100 in health expenditures for example, we typically
do not allow for additional intervals that contain only one point of the distribution unless the number of
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Selecting the Number of Intervals

Next, consider the question of how many intervals to use for the discrete distribution. In practice we

address this question empirically. We choose as the number of points of support that number which

maximizes the goodness of �t of the model given the four additional decisions being discussed. To do

this, consider having already chosen K 0 intervals with each interval containing N=K 0 observations.

Estimate the discrete distribution function and construct the value of the log likelihood of this

choice of K 0 intervals as

L(Y jK 0) =
NX
i=1

ln

2
64

K0Y
k=1

8<
:�(k; x(i))

k�1Y
j=1

[1� �(j; x(i))]

9=
;

1fy(i)2[yk�1;yk)g
3
75 (9)

Next, consider taking each of the K 0 intervals (each with an equal number of observed Y 's

per interval) and breaking each one into R sub-intervals with an equal number of observed values

of Y in each interval. Each of the new intervals contains N=(K 0R) observations. Let the estimated

probability of an observation being in the kth of the original K 0 intervals be �(k; x(i);K 0). Now,

allocate this probability equally among each of the R sub-intervals that comprise this kth inter-

val. Under this allocation rule for distributing the estimated probability, the probability that an

observation falls in one of these R sub-intervals is given by

��(r;K 0; x(i); R �K 0) =
�(k; x(i);K 0)

R
(10)

This is the adjusted probability that an observation falls in the rth sub-interval of the original kth

interval. All we have done is distributed these probabilities equally over the �ner partition.

Since (1=R) of the observations that originally fell in the kth interval fall in each of these R

new, smaller intervals, it is straightforward to calculate the sample log likelihood when one uses

these equal allocation probabilities. This adjusted log likelihood is given by

L�(Y jK 0; R�K 0) = L(Y jK 0)�N ln(R) (11)

where N is the number of observations not at places of signi�cant point mass. For each observation,

the log-likelihood value is reduced by ln(R). This re
ects the fact that it is \harder" to predict

observations at that one value is large relative to the number of intervals. These heaped values, however,
can make it impossible to distribute the mass equally among the remaining intervals. Do note that if such
minor mass points are substantively interesting and important, for example at 26 weeks duration in an
unemployment spell or 2000 hours in an annual hours worked distribution, one can and should allow these
mass points to be separate intervals.
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which interval an observation falls into when one allows for more intervals. This adjusted likelihood

function value re
ects changes in the log likelihood value associated with expanding the number of

intervals and not re-estimating the model.

Now, consider estimating a model containing R � K 0 intervals. A reasonable criterion to

use to decide whether one should use the estimates from the model with K 0 intervals or those

from the model with R�K 0 intervals in whether or not the the new log likelihood function value,

L(Y jR � K 0), exceeds the original log likelihood function value for K 0 intervals adjusted for the

�ner partition, L�(Y jK 0; R�K 0). If by choosing a �ner partition we �t the data worse than we did

by using a model with fewer intervals (and an equal allocation of probability within each interval),

then we would choose the model with a fewer number of intervals. The usefulness of this criterion

comes from the fact that our estimators of �(k; x) are smooth over regions of the support of y. If

one were more nonparametric and allowed for completely separate functions �(k; x) across intervals,

then following this criterion would always select the model with the most partitions.

To implement this in practice, consider comparing each choice of R to a model with only one

partition.4 The adjusted log likelihood function value with one partition is

L��(Y jR; 1) = L(Y jR) +N ln(R) (12)

This tells us how much better a model with R intervals �ts the data than a model with only one

interval and an equal allocation of probabilities across the R intervals. We choose as the number

of intervals, K, that value of R which maximizes the above adjusted log likelihood function value.

In our Monte Carlo experiments and real example, we examine sample sizes from 1,000 to 5,000.

We found that one did not need to examine more than 50 partitions; typically 10 to 20 intervals

were su�cient.

Evaluating Expectations of the Outcome

Next, consider how one should choose the evaluation point within each interval for the desired

function of the outcome variable (i.e., the h�(kjK)'s). For most applications, each interval will

4One partition, from �1 to +1, broken into R sub-intervals with equal probability is just a simple
multinomial density with all intervals having the same probability. So, the approach we use chooses the
number of intervals with the maximum gain in the likelihood function resulting from including covariates
as determinants of the interval probabilities (after adjusting the likelihood function value for the number of
intervals).
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contain many observed values of the outcomes. In the Monte Carlo experiments and example

reported here, we evaluate the function h(�) at each observed value within the interval and take a

simple arithmetic average:

h�(kjK) =

P
y2[yk�1;yk)

h(y)P
y2[yk�1;yk)

1
(13)

It is important to note that this might be an extremely important assumption in small samples

for the approach that we use. In particular, consider the derivative of the expected value of the

function h(Y )

@ ~E(h(Y )jx)

@x
=

KX
k=1

h�(kjK)
@f�(k; x)

Qk�1
j=1 [1� �(j; x)]g

@x
(14)

given our assumption that h�(kjK) does not vary with x.

A better approximation might be to recognize that the average of the function h(Y ) within the

kth interval would vary with changes in the covariates; this would happen because the distribution

of y within the interval would vary with changes in x. The actual derivative of the conditional

expected value would be

@E(h(Y )jx)

@x
=

KX
k=1

h��(kjK;x)
@f�(k; x)

Qk�1
j=1 [1� �(j; x)]g

@x

+
KX
k=1

@h��(kjK;x)

@x
�(k; x)

k�1Y
j=1

[1� �(j; x)] (15)

where h��(kjK;x) is the average value of Y in the kth interval as a function of the explanatory

variables.

A comparison of Equations (14) and (15) reveals that the approach we use ignores the second

term in the formulation of the derivative. Note that one could run a regression of the outcomes

in each interval on the covariates and use that regression to calculate the average of the derivative

within each interval. For smooth and continuous functions h(�) with �nite expected value, the

second term in the above derivative expression could be asymptotically negligible compared to the

�rst term in the sum (i.e., as the number of partitions grows large, the limit of the ratio of the �rst

term in the sum to the total sum is one), but we have not yet shown this for general cases. This

is clearly a topic that deserves additional attention. But note that the Monte Carlo experiments

presented here do indicate that ignoring the second term in this sum appears to introduce little

bias in the estimated derivatives.
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Estimating the Conditional Multinomial Probabilities

Our �nal speci�cation of the approximation to the expected conditional value concerns the approx-

imation to the density function p[yk�1 � Y < ykjx]. We approximate this density using the hazard

rate decomposition discussed above. In particular, we specify a logit function for the probability of

an outcome falling in the kth interval given that it was not in one of the lower (k� 1) intervals. In

practice, one could estimate a separate logit model for each \hazard" of falling within each interval.5

This, however, would introduce a large number of parameters in most realistic-sized problems. In-

stead, we estimate one logit probability using polynomials in functions of the covariates and the

interval number.

Suppose one chooses to use K partitions. By using partitions containing an equal number

of observations, the unconditional probability (not conditional on the x's) of an observation being

in the kth interval given that it was not in one of the lower (k � 1) intervals is 1
K�(k�1) . Let

�k = �ln(K � k) for k < K. Then,

logit(�k) =
e�k

1 + e�k
=

1

K � (k � 1)
: (16)

If one estimated a single logit function for all of the (K � 1) hazard rates with �k as the only

covariate in the logit function, then the �t of the unconditional discrete distribution function would

be \perfect;" the predicted probabilities of the outcome falling in each of the intervals is identical to

what one would obtain by estimating a logit hazard model with dummy variables for each interval,

or a separate logit model for each event of an observation falling into each of the intervals. By

using �k as the only covariate in a logit formulation of the hazard function, we are guaranteed to

�t exactly the discretized marginal distribution of y given the choice of K intervals.

In our estimation of the \hazard" functions that condition on covariates we follow a similar

strategy and estimate a single logit model for all hazard rates. We include polynomials in �k in

addition to polynomials in the observed covariates as linear arguments to the logit function. We

also include interactions among the covariate polynomials and the �k's. This provides a 
exible

5The fact that each outcome can contribute an \observation" to more than one \logit" and that outcomes
vary in the number of \observations" they contribute is a non-issue. One can always apply a \hazard"
decomposition to any conditional or unconditional distribution function and end up with exactly this type of
formulation. Every maximum likelihood estimation problem with continuous outcomes, then, can be thought
of as one where each observed outcome can contribute an \observation" to more than one interval.
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way to smooth the hazard rate decomposition of the conditional density function. When we have

an outcome with substantively and quantitatively interesting point masses, as we do at zero expen-

ditures in our analysis of health care expenses, we estimate a separate logit model with polynomials

in the covariates and without the �k polynomials.6

We use downwards testing to guide the selection of the degree of the polynomial to use in the

logit model of the hazard functions. In particular, the most complex model we consider includes a

fourth degree polynomial in �k and all fourth order terms in the covariates, their interactions, and

the covariate polynomials (including their interactions) interacted with the �k polynomial. We then

reduce the order by one for the covariate polynomials, their interactions, and their interactions with

the shape parameter �k, but retain fourth order polynomials in �k. We test whether the additional

coe�cients as a group are signi�cant with a Wald test at the �ve percent level.7 If the higher order

terms are signi�cant, then we keep the unrestricted speci�cation. If not signi�cant, we reduce

the polynomials and interactions by an additional order. We then use another Wald test at the

�ve percent level to test whether the more detailed speci�cation provides a better �t than the

restricted model. If we do not �nd a signi�cant improvement with the higher order terms, we

reduce the speci�cation further by eliminating all third order polynomials, third order interactions

of the covariates with themselves and with �k, and fourth order polynomials in �k. Again, we test

at the �ve percent level whether the additional terms improve the goodness of �t. The simplest

model we consider includes �k, the square of �k, and �rst order terms in the covariates. In our

Monte Carlo work we �nd that this procedure almost always selected the most complex set of

interactions in the logit hazard function.8

6We found that polynomials in the logarithms of the covariates seemed to provide somewhat more stable
estimates than polynomials in the levels of the variables. Except for the dummy variables we use as explana-
tory variables, we add a constant to each covariate to ensure that the minimum value is positive and then
construct polynomials in the logarithms of the normalized covariates.

7While the hazard formulation implies theoretically that there is independence between the events de�ned
by the hazard rates, we recognize that the approximation we use may not be perfect. We use standard error
estimators (Eicher-Huber-White) that allow for correlation among the conditional events for each observed
outcome in the Wald tests.

8Our estimation programs automatically drop linearly dependent variables and we take this into account
when testing. See Appendix Tables A3, A4, and A8 for a precise description of the polynomial terms we
include in the conditional density estimation for the Monte Carlo experiments and the Rand Health Insurance
Experiment data.
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1.4 Calculating Derivatives

When calculating derivatives of the expectation of the function of the outcome of interest, we

hold constant the approximation to the function within each interval (the h�(kjK)'s) as mentioned

above, di�erentiate the approximating density function for each interval with respect to a set of

covariates, and then sum the products of the h�(kjK)'s and the derivatives of the density function,

as described in Equation (14). To do this in practice we evaluate the conditional expected value

at various values of the explanatory variables and calculate the \arc" derivatives. Suppose we are

interested in calculating the derivatives of the expectation of health care expenses with respect

to the level of deductible in the health insurance plan, which we report in Table 1. One way of

calculating the average derivative (Average in the tables), is �rst to calculate the expected value

of expenditures using the estimated distribution function for all observations. Next, deviate each

observation's deductible level and recalculate the expected values for all observations. Given the

polynomial approximations we use, it is advisable to ensure that the deductible levels are set to

values that are actually observed in the data; each observation could have a di�erent deviation.

Then, take the di�erence between these two expectations observation by observation and divide

the di�erence by the �nite di�erence chosen for the covariate for each observation to obtain the

\derivative" for each observation. The population derivative is the average of these derivatives

across observations. This most closely corresponds to the average impact in the population of a

one unit change in a covariate9 In other instances, we evaluate the expected value of the function of

the outcome of interest for each observation with one particular covariate set to the same value for

all observations. We then deviate the covariate for each observation, recalculate the expectation,

take di�erences, divide through by the change in the covariate, and average across observations.

This corresponds to the average derivative at a particular value of the chosen covariate, when all

of the other characteristics of individuals follow the joint (marginal) distribution observed in the

data. We also experimented with aggregating these values to construct di�erent measures of the

overall \average" derivative of a covariate. These are reported as Min Variance, Equal Weights,

Weight 1, and Weight 2 in Table 1; these are de�ned in detail in Appendix Table A2. Clearly, one

9In our Monte Carlo experiments we randomly draw sets of explanatory variables from sets of covariates
for 1219 observations observed in the NMES data set. Rather than calculating derivatives for the estimation
sample, we calculate the derivatives for these 1219 sets of explanatory variables.
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could chose a wide variety of ways to calculate derivatives of the expected value with respect to

particular covariates and how these derivatives vary with values of the other covariates.

1.5 Summary of the Estimation Procedure

First, split the sample intoK intervals. Estimate the approximation to the conditional density func-

tion using all of the possible polynomial speci�cations, and test downwards from the most complex

model to simpler models. Select that model that �rst indicates that the additional coe�cients

are statistically signi�cant. Repeat this procedure for a wide range of K values for the number

of intervals. Next select the value of K that maximizes the likelihood function value adjusted to

re
ect the di�erences in the number of intervals. This procedure yields the estimator of the density

function. We then calculate the derivatives using the �nite di�erence procedure described above.

When we examine the data from the Rand Health Insurance Experiment, we bootstrap this entire

procedure to obtain estimators of the standard errors. This means that the standard errors we

report control for all of the pre-testing we do with respect to the degree of the polynomial and the

selection of the number of intervals.

2 Speci�cation of the Monte Carlo Experiments

In the Monte Carlo experiments we focus on �ve speci�cations of the data generating process. For

each model we use data from the National Medical Expenditure Survey (NMES) from 1987 to set

coe�cients and to de�ne the joint distribution of the explanatory variables. For the most part,

we ran simple regressions of health care expenditures on age, household income, coinsurance rate,

deductible amount, and demographic controls to de�ne the parameters determining the continuous

outcome in each data generating process (DGP). We used probit models, in which the dependent

variable is whether an individual had any medical expenditures in the NMES data, to calibrate

those DGPs that use a \two-part" approach. We used the same explanatory variables in the

probit equation as in the conditional expenditures equation along with an indicator of whether

an individual had a regular health care provider. For each replication within each DGP we draw

samples of the explanatory variables, with replacement, from a set of 1219 individuals in the NMES
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data set. We examined sample sizes of 1000, 3000, and 5000, but we focus on sample size 5000 in

our discussion.

The �rst DGP we examine is a single equation OLS model where the outcome is a simple

linear function of the covariates. This model has normal disturbances, and OLS is the best unbiased

estimator (e�cient). We use this DGP to examine whether the complex estimation model we use

can replicate well a simple process and to uncover how much e�ciency might be lost because we

allow for extremely 
exible functional forms and distributions.

The second DGP we examine is a two-part model. In the �rst part a probit model with

normal errors, calibrated with the NMES data, determines whether or not an individual has positive

expenditures. If the outcome generated by the DGP indicates that the individual had positive

expenditures, then a simple linear regression function with an independent normal error determines

the natural logarithm of the expenditure for the individual. With this DGP and the following three

DGPs, we use a \two-part" version of the conditional density estimation approach where we specify

a simple, separate logit for the �rst stage (any expenditures) and a sequence of related logits to

de�ne the conditional density function for positive expenditures.

The third DGP is quite similar to the second DGP. It only di�ers by allowing the error vari-

ance in the second part to be proportional to the expected value of the logarithm of the dependent

variable. The fourth DGP adds additional heterogeneity and heteroscedasticity. In particular, it

speci�es a random parameter model in the second stage regression function for the logarithmic

expenditures. The �nal DGP we consider is a mixture model. Here, there is a distribution of

individuals, and each type has a di�erent propensity to have positive expenditures and a di�erent

expected level of logged expenditures given that they have some positive expenditures. The error

terms in the two parts are related, so a standard two-part model would su�er from selection bias.

We compare the conditional density approximation estimators (CDE) of the derivatives of

expected expenditures to a variety of OLS estimators. Each OLS estimator regresses observed

expenditures (including the zero values) on a set of covariates; we do not use two-part models.10

Because we use level expenditures as the dependent variable in the OLS regressions, we need not

10Since E(Y jx) = p(Y = 0jx) � 0+ p(Y > 0jx) �E(Y jY > 0; x) = R(x), E(Y jx) is a function of x only. The
one-part models that we estimate are approximations to the expected value function R(x).

16



consider issues related to how one can translate from regressions of the outcome estimated in

logarithms to levels.11

The OLS estimators we consider are: 1) a simple OLS model with only linear covariates

[labeled OLS (levels, 1st order) in the tables];12 2) an OLS model that uses (up to) fourth order

polynomials in the levels of the explanatory variables where the forms of the polynomial interactions

are the same as those used in the conditional density estimation procedure except there is no need to

specify the �k's as this linear form is the conditional expectation [labeled OLS (levels, 4th order)];13

and 3) an OLS estimator identical to the second one, except that it uses polynomials in the logs

of the transformed explanatory variables rather than polynomials in the levels of the explanatory

variables [labeled OLS (logs, 4th order)]. A list of the full set of expansion terms used in estimation

are provided in Appendix Table A3. The frequency of selection of order of the polynomial expansion

is provided for each model for each data generating process in Appendix Table A4.

In Tables 1a through 1e we report the derivative of expected expenditures with respect to

the insurance deductible amount from several estimation models for each DGP in the Monte Carlo

experiments. The deductible is that amount of health expenditure dollars that a consumer pays

before the insurance company begins sharing the costs. Table 1a contains Monte Carlo evidence

when the DGP is a simple OLS model, and the DGPs for Tables 1b through 1e are described

in the table titles. We calculate the derivative by numerically di�erentiating with respect to the

explanatory variable. When calculating this derivative, we hold constant the values of the error

terms for each observation and rely upon the averaging across observations to integrate out the

heterogeneity. Note that the simplest OLS model is the e�cient estimator for the �rst DGP. For

all other DGPs, all the empirical models are approximations to the true conditional expectations

11We considered two-part models with logged expenditures conditional on any expenditures and the smear-
ing retransformation in our comparisons of di�erent models. We found that these models, when estimated
with higher levels of polynomials whose coe�cients could not be deemed insigni�cant, produced unreliable
estimates and extremely large standard errors. Given this �nding, we did not explore modi�cations of the
smearing/retransformation approach in our Monte Carlo experiments. Examples of this type of result are
found in our application to real data in the next section.

12For the �rst DGP this OLS estimator is the e�cient estimator. In all others, the true DGP is considerably
more complex than a simple linear model.

13We select the degree of the polynomial by a downwards testing approach using a similar Wald test at
the �ve percent level for each Monte Carlo replication. We also calculate the derivatives of the expected
values in a fashion similar to that used with the conditional density estimator. We take �nite di�erences of
expectations by deviating one explanatory variable from the value it took on in the data set exactly as we
do for the conditional density estimator.
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function. The tables report the numerical derivative at each chosen evaluation point and the average

derivative calculated by numerically di�erentiating at every observed value in the data. The tables

report the \true" derivative, where we similarly numerically di�erentiate the known DGP with

respect to each explanatory variable, and the derivatives from the OLS and CDE models. We

begin by demonstrating the ability of our quite non-linear conditional density estimation (CDE)

technique to uncover the true derivative according to the Monte Carlo experiment.

In Table 1a, using OLS to estimate derivatives provides the most e�cient estimator. We

recover the true mean of -0.399 almost exactly and fairly accurately with a standard deviation is

0.057. Higher orders of level X's and OLS also reproduce the true e�ects becasue the �rst order

model is always chosen by the Wald tests. However, higher orders of logged X's do a relatively poor

job of �tting the truth. The mean value of the average derivative is almost two (OLS 1st order)

standard derviations from the truth. The CDE technique with polynomials and interactions in the

logged X's produces estimates with little bias (from the truth) but with somewhat larger standard

deviations. This larger variance is expected since OLS is e�cient. However, the CDE procedure

does very well when the data are generated from a simple model. It has the ability, generally, to

capture the true constant derivative at di�erent evaluation points.

The di�erent DGPs examined in Tables 1b through 1e are intended to generate increasingly

more heterogeneity in the data generating process. Immediately we see that the simple �rst order

OLS model does not do a good job of �tting the data as the DGP becomes more complicated.

Allowing for higher order level polynomials in the OLS model provides a better �t, but at a

loss of e�ciency. The best OLS model is one with polynomials and interactions in the logged

values of the transformed explanatory variables. The CDE technique produces little bias and has

standard deviations that are close to those provided by the one-part OLS models with fourth order

interactions of all the explanatory variables.

We also examined the impacts of age, income, and coinsurance rate in these Monte Carlo

experiments. The assessments of the various estimators for these alternative e�ects are similar

to those for the deductible level examined in Table 1. The simple OLS model yields derivative

estimates that are quite far from the true average derivatives in models with any complexity. The

OLS estimators with fourth order terms and the CDE estimators all perform quite well in recovering

the average derivative as well as the non-constant derivative at speci�c evaluation points. They
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Table 1a: Average Deductible Derivatives
DGP: Yi = �0Xi + �i, iid normal errors, OLS

OLS OLS OLS
Derivative Truth Levels Levels Logs CDE
Evaluation point 1st order 4th order 4th order

0 -0.399 -0.396 -0.396 -0.014 -0.190
( 0.000) ( 0.057) ( 0.057) ( 0.883) ( 1.050)

50 -0.399 -0.396 -0.396 -0.807 -0.488
( 0.000) ( 0.057) ( 0.057) ( 0.261) ( 0.567)

100 -0.399 -0.396 -0.396 -0.591 -0.404
( 0.000) ( 0.057) ( 0.057) ( 0.200) ( 0.183)

150 -0.399 -0.396 -0.396 -0.473 -0.396
( 0.000) ( 0.057) ( 0.057) ( 0.165) ( 0.123)

200 -0.399 -0.396 -0.396 -0.398 -0.398
( 0.000) ( 0.057) ( 0.057) ( 0.142) ( 0.106)

250 -0.399 -0.396 -0.396 -0.346 -0.400
( 0.000) ( 0.057) ( 0.057) ( 0.126) ( 0.097)

300 -0.399 -0.396 -0.396 -0.267 -0.397
( 0.000) ( 0.057) ( 0.057) ( 0.101) ( 0.095)

Average� -0.399 -0.396 -0.396 -0.493 -0.409
( 0.000) ( 0.057) ( 0.057) ( 0.113) ( 0.172)

Min Variance� -0.372
( 0.061)

Equal Weights� -0.382
( 0.130)

Weight 1� -0.382
( 0.121)

Weight 2� -0.391
( 0.110)

Standard deviations from the Monte Carlo experiments are in parentheses.
See Appendix Table A2 for measures of the average derivatives.
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Table 1b: Average Deductible Derivatives
DGP: ln(Yi) = �0Xi + �i, iid normal errors, 2-part

OLS OLS OLS
Derivative Truth Levels Levels Logs CDE
Evaluation point 1st order 4th order 4th order

0 -2.632 -0.279 -1.173 -2.752 -2.543
( 0.000) ( 0.064) ( 0.532) ( 0.947) ( 1.288)

50 -0.412 -0.279 -0.823 -0.435 -0.368
( 0.000) ( 0.064) ( 0.290) ( 0.296) ( 0.584)

100 -0.219 -0.279 -0.536 -0.262 -0.227
( 0.000) ( 0.064) ( 0.164) ( 0.146) ( 0.243)

150 -0.166 -0.279 -0.307 -0.188 -0.152
( 0.000) ( 0.064) ( 0.158) ( 0.112) ( 0.180)

200 -0.131 -0.279 -0.133 -0.146 -0.112
( 0.000) ( 0.064) ( 0.193) ( 0.098) ( 0.144)

250 -0.094 -0.279 -0.008 -0.119 -0.088
( 0.000) ( 0.064) ( 0.223) ( 0.090) ( 0.123)

300 -0.070 -0.279 0.102 -0.081 -0.060
( 0.000) ( 0.064) ( 0.311) ( 0.076) ( 0.118)

Average� -0.513 -0.279 -0.518 -0.531 -0.533
( 0.000) ( 0.064) ( 0.141) ( 0.117) ( 0.184)

Min Variance� -0.472
( 0.128)

Equal Weights� -0.507
( 0.163)

Weight 1� -0.429
( 0.164)

Weight 2� -0.394
( 0.145)

Standard deviations from the Monte Carlo experiments are in parentheses.
See Appendix Table A2 for measures of the average derivatives.
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Table 1c: Average Deductible Derivatives
DGP: ln(Yi) = �0Xi + �i; var(�) � E[ln(Y )], 2-part

OLS OLS OLS
Derivative Truth Levels Levels Logs CDE
Evaluation point 1st order 4th order 4th order

0 -2.577 -0.292 -1.257 -3.033 -2.965
( 0.000) ( 0.077) ( 0.695) ( 1.394) ( 1.490)

50 -0.491 -0.292 -0.863 -0.360 -0.396
( 0.000) ( 0.077) ( 0.360) ( 0.411) ( 0.725)

100 -0.241 -0.292 -0.547 -0.237 -0.229
( 0.000) ( 0.077) ( 0.207) ( 0.188) ( 0.274)

150 -0.193 -0.292 -0.304 -0.183 -0.147
( 0.000) ( 0.077) ( 0.212) ( 0.118) ( 0.181)

200 -0.121 -0.292 -0.126 -0.152 -0.106
( 0.000) ( 0.077) ( 0.239) ( 0.096) ( 0.148)

250 -0.098 -0.292 -0.005 -0.130 -0.082
( 0.000) ( 0.077) ( 0.250) ( 0.089) ( 0.130)

300 -0.082 -0.292 0.073 -0.100 -0.055
( 0.000) ( 0.077) ( 0.393) ( 0.089) ( 0.120)

Average� -0.583 -0.292 -0.537 -0.531 -0.527
( 0.000) ( 0.077) ( 0.170) ( 0.134) ( 0.219)

Min Variance� -0.522
( 0.141)

Equal Weights� -0.568
( 0.169)

Weight 1� -0.473
( 0.152)

Weight 2� -0.432
( 0.145)

Standard deviations from the Monte Carlo experiments are in parentheses.
See Appendix Table A2 for measures of the average derivatives.
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Table 1d: Average Deductible Derivatives
DGP: ln(Yi) = �0iXi + �i = ��Xi + (�i � ��)Xi + �i; random coe�cients model

OLS OLS OLS
Derivative Truth Levels Levels Logs CDE
Evaluation point 1st order 4th order 4th order

0 -2.477 -0.267 -1.004 -2.670 -2.695
( 0.000) ( 0.100) ( 0.959) ( 1.591) ( 1.836)

50 -0.415 -0.267 -0.701 -0.458 -0.288
( 0.000) ( 0.100) ( 0.503) ( 0.397) ( 0.842)

100 -0.211 -0.267 -0.466 -0.259 -0.193
( 0.000) ( 0.100) ( 0.258) ( 0.228) ( 0.281)

150 -0.158 -0.267 -0.292 -0.184 -0.147
( 0.000) ( 0.100) ( 0.263) ( 0.171) ( 0.236)

200 -0.125 -0.267 -0.172 -0.145 -0.124
( 0.000) ( 0.100) ( 0.327) ( 0.140) ( 0.203)

250 -0.121 -0.267 -0.100 -0.121 -0.112
( 0.000) ( 0.100) ( 0.348) ( 0.119) ( 0.171)

300 -0.060 -0.267 -0.098 -0.091 -0.101
( 0.000) ( 0.100) ( 0.384) ( 0.090) ( 0.134)

Average� -0.481 -0.267 -0.464 -0.531 -0.509
( 0.000) ( 0.100) ( 0.235) ( 0.184) ( 0.213)

Min Variance� -0.458
( 0.173)

Equal Weights� -0.523
( 0.256)

Weight 1� -0.433
( 0.256)

Weight 2� -0.394
( 0.214)

Standard deviations from the Monte Carlo experiments are in parentheses.
See Appendix Table A2 for measures of the average derivatives.
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Table 1e: Average Deductible Derivatives
DGP: Mixture model where type depends on unobserved health state, 2-part

OLS OLS OLS
Derivative Truth Levels Levels Logs CDE
Evaluation point 1st order 4th order 4th order

0 -5.814 -0.551 -2.982 -5.487 -4.149
( 0.000) ( 0.090) ( 1.058) ( 1.865) ( 1.581)

50 -1.117 -0.551 -1.805 -0.908 -1.272
( 0.000) ( 0.090) ( 0.518) ( 0.809) ( 0.845)

100 -0.714 -0.551 -0.977 -0.604 -0.618
( 0.000) ( 0.090) ( 0.260) ( 0.264) ( 0.275)

150 -0.407 -0.551 -0.454 -0.461 -0.398
( 0.000) ( 0.090) ( 0.260) ( 0.142) ( 0.201)

200 -0.538 -0.551 -0.188 -0.374 -0.304
( 0.000) ( 0.090) ( 0.274) ( 0.112) ( 0.167)

250 -0.388 -0.551 -0.135 -0.315 -0.251
( 0.000) ( 0.090) ( 0.239) ( 0.109) ( 0.153)

300 -0.221 -0.551 -0.665 -0.230 -0.176
( 0.000) ( 0.090) ( 0.483) ( 0.125) ( 0.167)

Average� -1.155 -0.551 -1.016 -0.848 -0.990
( 0.000) ( 0.090) ( 0.233) ( 0.233) ( 0.236)

Min Variance� -0.985
( 0.182)

Equal Weights� -1.024
( 0.220)

Weight 1� -0.884
( 0.219)

Weight 2� -0.851
( 0.192)

Standard deviations from the Monte Carlo experiments are in parentheses.
See Appendix Table A2 for measures of the average derivatives.
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exhibit little bias and have roughly comparable standard errors. Comparisons of these estimated

e�ects across the various estimation approaches for the other variables are provided in Appendix

Tables A5 through A7.

3 An Application: Annual Medical Expenses

To demonstrate the 
exibility and comparative advantages of the conditional density estimation

procedure we use data from the Rand Health Insurance Experiment (RHIE) to explain annual

medical expenses. The RHIE randomly assigned health insurance to participating individuals with

the hope of overcoming adverse selection issues associated with the purchase of health insurance

when examining the impacts of health insurance on medical care expenditures. While the data were

collected some time ago (between 1974 and 1981), this data set is useful for our purposes because

1) these data have recently become available for public use, 2) results from the Experiment are

widely known among health economists, and 3) the data exhibit features that presumably require

special econometric treatment in estimation or prediction.

Individuals from six sites in di�erent regions of the country participated in the RHIE which

randomly assigned households to one of 19 di�erent health insurance plans. Because dental and

mental health expenses were compensated di�erently by many plans we restrict our attention to

physician and hospital expenses. Similarly, we analyze expenses of individuals randomized to

plans with free care or a coinsurance rate and a maximum deductible amount only. We do not

consider Health Maintenance Organization (HMO) plans or plans with a deductible. We restrict

our attention to individuals between the ages of 14 and 62. We drop individuals in Dayton, Ohio

because it was a site that was atypical with regard to the Experiment. We consider the expenses

of each individual in every full year of participation (for a total of 1 to 5 years) unless attrition was

the result of death. In this case, we retain the part year observation because expenditures prior to

death are likely to be in
uenced by health insurance. In order to keep the sample size as large as

possible we impute values of missing variables such as income, general health index, and number

of diseases using data on individuals with complete records. All dollar values are in 1999 dollars.
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Table 2 lists summary statistics and de�nitions for variables used in our analysis.14 A list of the

full set of expansion terms used in estimation are provided in Appendix Table A8.

Table 2: Summary Statistics from Rand HIE | All person years (8039)

Continuous Variables Mean Std.Dev. Min Max

Annual medical expenses ($1999) 947.25 3052.48 0 79455.11
Annual family income in thousands ($1999) 31.75 13.13 0 98.93
Annual participation incentive ($1999) 994.04 866.28 0 2955.65
Index of general health at enrollment 70.34 14.15 5.7 100.00
Number of disease conditions at enrollment 10.33 8.04 0 58.60
Maximum deductible amount ($1999) 876.02 943.09 0 2437.95
Coinsurance rate (%) 30.14 37.13 0 95
Age in years 32.76 13.13 14 61
Annual family size 3.53 1.85 1 14

Dummy Variables Percent

Seattle (omitted category) 27.37
Fitchburg 16.15
Franklin County 18.97
Charleston 16.73
Georgetown County 20.79
Female 53.14
Non-white 18.36

Distribution of person-year observations by year Percent

1976 5.22
1977 20.32
1978 20.35
1979 24.54
1980 15.66
1981 13.89

The conditional density estimation procedure, as the Monte Carlo experiments demonstrate,

produces reliable estimates of the e�ects of covariates regardless of the functional form of the

dependent variable or the true, underlying regression framework. Thus, there is no need to concern

oneself with appropriate treatment of the error term when retransforming the predictions to levels.

14A considerable amount of work went into preparation of the data set used in estimation in order to obtain
consistent observations on each eligible person-year within a family and to produce a set of explanatory
variables that most closely resembles that used in the published literature (Manning et al., 1987). SAS code
to replicate our research data �le is available upon request.
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Additionally, the procedure explores high order polynomials and interactions of the explanatory

variables and chooses the speci�cation with the best �t. Finally, the estimation technique allows

for variation in covariate e�ects over particular ranges of the dependent variable. For example, the

e�ect of a one thousand dollar increase in income might have very di�erent e�ects on expenditures

at low income levels than at high income levels. These di�erential e�ects are not simply a trivial

implication of a dependent variable transformation.

Table 3 reveals the varying derivatives for di�erent values of selected explanatory variables.

We begin by discussing the derivative of expenditures with respect to income. Standard errors

for all estimation procedures come from the standard deviation of 50 bootstrap replications. All

derivatives are calculated by taking �nite di�erences as discussed above. For all estimation models,

upwards testing for the appropriate level of expansion overwhelmingly selected the fourth order

with these real data. In general, the CDE procedure reveals that $23 of an additional $1000 dollars

at low income levels ($10,000) will be spent on medical care. As income initially rises, individuals

spend more on medical care, but at a decreasing rate. As income continues to rise to higher levels,

there is little signi�cant change in the amount spent on medical care. The second column of Table 3

reports results using the traditional two-part estimation technique and smearing to account for the

predicted errors in retransformation of the predicted log expenditures to produce level outcomes.

Here we use fourth order polynomials in the explanatory variables as we rejected the restrictions

implied by a third order polynomial model at the 5% level. The two-part model with smearing

yields qualitatively similar point estimates for the income e�ects, but the bootstrapped standard

errors for this commonly used procedure are two to forty times larger than those of the CDE

model.15

The last two columns of Table 3 contain estimates from one-part models where those in-

dividuals with zero expenditures are included in the same OLS regression as those with positive

expenditures. Expenditures are measured in level real dollars, so there is no need to make ad hoc

15Much of the original Rand work analyzing the HIE data attempted to account for potential heteroscedas-
ticity by using plan-speci�c smearing retransformations, while we have used a single retransformation
correction using all observations with positive outcomes. Neither approach, however, can account for the full
range of variation in the x's that might be the source of heteroscedasticity. When we tried to estimate more
complex forms of heteroscedasticity, the excessively large standard errors often became even more absurd.
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assumptions to transform the estimated e�ects to level expenditures. The third column uses poly-

nomials in the levels of the explanatory variables, while the last column uses polynomials in the

logarithms of the adjusted explantory variables. As in the Monte Carlo experiments, these one-part

models perform almost as well as the CDE model. They yield point estimates quite similar to those

of the CDE model, but their bootstrapped standard errors are almost always larger than those from

the CDE approach.

Similar comparisons are found when we examine derivatives with respect to other variables.

Consider the e�ects of the coinsurance rate, or the percent paid out-of-pocket by the individual,

on health expenditures. In the RHIE data this variable is not continuous, as it takes on only the

values 0, 25, 50, and 95%. The free plan (0% coinsurance rate) also has associated with it a $0

maximum deductible amount (MDE); the MDE is that level of out-of-pocket expenditures after

which additional medical care is free. In calculation of the impact on expenditures of changes in

the coinsurance rate, we have to move individuals from the free plan to a plan with some out-of-

pocket responsibility. Such a move requires that we assign an MDE at the evaluation of a non-zero

coinsurance rate. We set the new MDE to 10% of family income or $2200 (1999 dollars), whichever

is less.16 This reassignment of originally free plans to paying plans is considerably di�erent from

simply increasing the percentage paid by the individual who faced some out-of-pocket responsibility

originally. The CDE technique signi�cantly predicts that movement from a free plan to a 25% plan

results in a $10 reduction in total health care expenditures per coinsurance percentage point increase

(i.e., a $250 decrease in expenditures with movement from a free plan to the 25% plan). Changes

in behavior associated with movement from a 25% plan to a 50% plan are less precise (across all

models) because few individuals in the RHIE were randomized to the 50% plan (about 5% of our

sample). On average, across all coinsurance rates, a one percentage point increase in out-of-pocket

responsibility results in a $6 decrease in expenditures.

The estimates of the coinsurance e�ects from the two-part smearing model are disturbing. In

several of the bootstrap replications, a small fraction of the sample had absurdly large predicted

medical expenditures. This appears to happen because, for some combinations of the explanatory

variables, changing the coinsurance rate to evaluate the e�ect yields a set of explanatory variables

16The RHIE assigned MDE's as 5, 10 and 15% of income or $1000 (current year dollars), whichever was
less. Note that this way of setting the MDE in the RHIE is inconsistent with the true experimental design.
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that is not well represented in the estimation sample. While the predictions of log expenditures

in these instances are not too extreme, once one antilogs the predicted level expenditures become

huge. This sensitivity to slightly out of sample predictions only seems to a�ect substantially the

two-part smearing model. Both of the one-part level outcome models, also with fourth degree

polynomials in the explanatory variables, yield estimates of the coinsurance e�ects close to those

from the CDE model. As for the income e�ects discussed above, these two OLS models do have

larger bootstrapped standard errors than the CDE approach.

The e�ect on health expenditures, as measured by the derivative with respect to the general

health index, reveals that better health leads to lower medical expenditures. In terms of this

health index, a one unit increase in health has a larger reduction in expenditures at low levels of

health than at levels at or above the mean level of the health index. Again, the two-part smearing

model provides imprecise estimates. The two OLS models predict somewhat larger responses than

the CDE model, and, as above, they uniformly have larger bootstrapped standard errors. The

di�erences in mean expenditures between men and women and between whites and non-whites are

quite similar across estimation procedures. As above, the CDE model has the smallest bootstrapped

standard errors of all procedures.

We next explore how some of the average e�ects described in Table 3 vary across subsets of

individuals. To do this, we take each person-year in the RHIE dataset, change two or three char-

acteristics of the explanatory variables at a time, and examine how predicted health expenditures

vary for each characteristic. The changes correspond directly to some of those in Table 3, except

that the impacts can vary by health and demographic characteristics. Because all the evidence from

the Monte Carlo experiments and from Table 3 indicate that the CDE model provides accruate

estimates, we only present these multidimensional derivatives as calculated from the CDE model.

Bootstrapped standard errors are after the derivatives at each point and are in parentheses.

The �rst panel in Table 4 displays how age e�ects vary by gender. At age 20, for example,

men appear to increase health expenditures by $4.37 for each year they age. By age 30, health

expenditures of men increase by $12.06 for every year they get older, and at age 45 and later ex-

penditures are increasing, on average, by more than $16.00 per year. Expenditures of women follow

a much di�erent pattern. During their teens and twenties, young womens' health expenditures, on

average, rise rapidly. This is due to pregnany and childbirth costs. Linear interpolation of the age
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e�ects implies that womens' average health expenditures do not return to their average age 20 level

until they are 45 years old.

The second panel of Table 4 explores how the income e�ects vary by race and gender. For

each of the four groups, additional income has the largest impact on health expenditures at the

lowest income levels. At income level $10,000, for example, an additional thousand dollars in in-

come increases health expenditures by $11.45 for non-white males and by $29.91 for white females.

For non-whites, the point estimates indicate that additional income always increases health ex-

penditures at higher income levels. But these point estimates for both whites and non-whites are

relatively small and not signi�cantly di�erent from zero.

The second panel in Table 4 also contains how the e�ects of changing the coinsurance rate

vary by race and gender. Except for non-white males, the largest reduction in health expenditures

occurs when the coinsurance rate is raised from zero. Presumably, even a small copayment can

reduce substantively average health expenditures.

The third panel of Table 4 examines the coinsurance and health e�ects on expenditures as a

function on income level. Somewhat surprisingly, a rise in the coinsurance rate from zero reduces

health expenditures more for those with average incomes ($30K) than for those with quite low

incomes ($10K). Given the low levels of expenditures at very low incomes, this might simply re
ect

the fact that the poor have very little in the way of \discretionary" health expenditures.

The �nal three sets of results indicate that the CDE models can easily estimate constant

e�ects across levels of characteristics. The bottom of the third panel in Table 4 indicates that

the impact of health status, as measured by the general health index, does not vary by income

level. Likewise, the fourth panel in Table 4 indicates that the e�ect of the coinsurance rate on

expenditures does not vary across health levels. The �nal panel of this table shows that there is

almost no di�erence by race in the male-female expenditure di�erential.

4 Conclusion

This paper explores the performance of a new approach for estimating how expected derivatives

of an outcome vary with covariate values when the distribution of the outcome is characterized

by a point mass at zero and large positive skews. Such types of outcomes are often encountered
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in health economics, where a signi�cant fraction of people have no health expenditures and a few

have extremely high expenditures. In Monte Carlo work we calibrated our experimental design

to National Medical Expenditure Survey data and compared the performance of the approximate

conditional density estimator to a simple ordinary least squares model and to more complex ordinary

least squares models that use as explanatory variables polynomials in the explanatory variables used

in the simple OLS models. Overall, we found that the approximate conditional density estimator

that we propose provided accurate and precise estimates of derivatives of expected outcomes for

a wide range of types of explanatory variables. The simple OLS models performed quite poorly,

while the OLSmodels including the higher order polynomials in the explanatory variables performed

nearly as well as the conditional density estimation approach.

Using the CDE model we reexamine the Rand Health Insurance Experiment data and uncover

several new empirical results. We �nd that the largest increases in health expenditures due to

increases in income happen at the lowest levels of the income distribution. We also �nd that

increases in the coinsurance rate from free health care to low levels of copayment reduce health

care expenditures more for those with average incomes than for those with well-below average

incomes. It might be the case that those with very low incomes have few discretionary health

expenditures. The third most important result from our examination of the Rand Health Insurance

Experiment data is that increases in health expenditures due to declines in health do not vary by

income level. On average, the poor increase their health expenditures by the same amount as those

with average incomes when their health, as measured by Rand's general health index, declines. We

also recon�rm other researchers' results that the largest impacts of increases in coinsurace rates on

health expenditures take place when one raises the coinsurance rate from zero (Newhouse, 1993).

It is important to note that these e�ects are based on estimates from the Rand Health Insurance

Experiment where even the poorest individuals in the analysis sample do have health insurance.

We also examined brie
y the performance of the commonly used two-part model, where one

estimates whether or not there are positive outcomes with a logit model in the �rst part and a

simple OLS model relating the logarithm of the positive outcomes to explanatory variables in a

second part of the statistical model. In order to calculate how the expected outcome changes with

covariates in this framework, it is necessary to exponentiate the predicted log-outcome and adjust

multiplicatively for the expectation of the antilog of the disturbance term. In our preliminaryMonte
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Carlo work we found that this approach yielded imprecise and often absurd estimates. The worst

performances happened in those models where the true data generating process di�ered from the

exact statistical speci�cation used to de�ne the two-part model with logarithmic outcomes. When

we tested for whether one could use a simple speci�cation of the explanatory variables in the linear-

in-logarithm part of the model instead of including higher order polynomial terms, we often rejected

the simpler model because it did not �t the data well. Once higher order terms were introduced into

this continuous, logarithmic part of the model, the estimation and approximation errors interacted

with the exponentiation of the expected outcome to yield quite inaccurate predictions of the level

outcomes. The corrections for the expectation of the antilog of the disturbance did not introduce

anywhere near as much noise into the estimates, unless we attempted to model and estimate the

heteroscedasticy of the error terms when applying a \smearing" type correction. We ended up not

using the two-part models with predicted logarithmic expenditures in our Monte Carlo experiments,

as the preliminary evidence suggested that this approach was dominated by the other estimators

we examined. Such extreme inaccuracies were not important for the conditional density estimators

or for the OLS models with level dependent variables and polynomials in the explanatory variables.

Our examination of the Rand Health Insurance Experiment data does provide an illustration of

the poor performance of the two-part model approach used with logarithmic positive expenditures

and smearing.

The implications from our analysis, however, are quite encouraging. They indicate that

researchers who wish to estimate the impact of exogenous changes in covariates such as income,

coinsurance rate, insurance deductible, and health status on expected health expenditures need

only estimate standard ordinary least squares models that combine zero expenditures along with

the level of positive expenditures. The Monte Carlo work also indicates that it is imperative to use

generously speci�ed functions of and interactions among the explanatory variables in these OLS

models. The simplest OLS models we explore in the Monte Carlo experiments, i.e., those with level

outcomes and regressors and no higher order terms or interactions, almost always fail to measure

anything resembling a population average derivative in even moderately complex models.

The only drawback to using the OLS and CDE models with polynomials and interactions of

the explanatory variables is the seemingly low precision of the estimates. The standard deviation

for the CDE estimator of the deductible derivative in Table 1a, for example, is three times larger
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than the standard deviation of the OLS estimator (0.172 vs. 0.057); these standard deviations

indicate the magnitude of the standard errors of the estimates from these estimators. By using

the 
exible CDE model with the simple linear model DGP in Table 1a (and also Tables A5a, A6a,

and A7a, all of which have the same DGP), calculated t-statistics will be about three times smaller

for the CDE than for the simple OLS estimator. This \lack of precision," however, is due to the

fact that the CDE model allows for the possibility that the e�ect of insurance deductible can vary

with the level of the deductible and with the levels of the other covariates. The OLS model imposes

the true restriction, for this DGP, that the deductible e�ect is constant across all dimensions.

To put the CDE model onto a more level playing �eld with the OLS estimator for this DGP,

consider imposing the restriction that the CDE estimated deductible derivatives are estimating the

same quantity at each level of the deductible that we examined in Table 1a. We do not impose

the restriction that these derivative levels are also constant across all values of all of the other

covariates, as is imposed by the simple OLS estimator. We impose these restrictions ex post by

calculating the covariance matrix for the CDE estimators of the derivative at the seven deductible

levels displayed in this table and solving for that weighted average of the seven point derivatives

that yields the smallest variance. This result is the evaluation point labeled \Min Variance" in

Table 1a and the other tables of Monte Carlo results. We �nd that by imposing this restriction

ex post, the standard error of the CDE estimator of the deductible e�ect is only 7% higher than

that of the OLS estimator. If one is willing to impose this additional information on the empirical

model, the CDE approach can do nearly as well as the e�cient OLS estimator.

Looking across the tables for all of the other DGPs, i.e., those where the classical regression

model is not a true representation of the DGP (Tables 1b-1e, A5b-A5e, A6b-A6e, A7b-A7e), it is

clear that in almost all cases that the simple OLS estimator has the largest bias of all of the four

approaches we examine. It rarely has an average e�ect that is closer to the true e�ect than any of

the other approaches, and often the bias exceeds 50% of the true average derivative. Simple OLS

still retains the feature that it has the smallest standard deviation of all of the estimators, but for

these DGPs this \precision gain" is more than o�set by the misleading information conveyed by

the OLS point estimate of the derivative. This result highlights the fact that relying upon simple

regression speci�cations can lead to quite misleading implications. These Monte Carlo experiments

demonstrate that is not the case that a mis-speci�ed model is correct on average. Simple and
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mis-speci�ed models can exhibit signi�cant biases, and tests based upon estimates from these

approaches will provide misleading information. The 
exible approaches that we use in the Monte

Carlo experiments and in the examination of the RHIE data do not have this drawback. They do

exhibit larger standard errors than the simple OLS models, but these larger standard errors merely

re
ect the fact that the researcher is, truthfully, often unsure about the precise form of the true

regression speci�cation. The apparent precision for the simple OLS estimator is �ctional and only

comes from the fact that one estimates many fewer parameters than are needed to �t the data well.

These CDE models allow one to model more directly the impact of covariates on outcomes.

One could, for example, model exactly how the budget constraint and structure of coinsurance

rates and deductible levels impact health expenditures at various points in the health expenditure

distribution. To do this well would require that one address issues of unobserved endogeneity, and

the CDE approach allows one to use the economic structure of the budget constraint to provide

important restrictions to help achieve identi�cation. A �nal advantage of the CDE approach is that

in most real world situations researchers will not have experimental data with random assignment

of the features of the health insurance programs that individuals face. Examination of such data

requires that one model endogeneity and address sample selection issues. Accurate estimation will

often entail the use of maximum likelihood models that �t the data well, and that is precisely what

the conditional density estimation models can do.

37



References

Allison, P. (1984). Event History Analysis : Regression for Longitudinal Event Data. Beverly Hills,

Calif. : Sage Publications.

Angrist, J. (2000). \Estimation of Limited-Dependent Variable Models with Binary Endogenous

Regressors: Simple Strategies for Empirical Practice," Journal of Business and Economic Statistics,

forthcoming.

Cameron, A. and P. Trivedi (1998). Regression Analysis of Count Data, Cambridge: Cambridge

University Press.

Donald, S., D. Green, and H. Paarsch (2000). \Di�erences in Wage Distributions between Canada

and the United States: An Application of a Flexible Estimator of Distribution Functions in the

Presence of Covariates," Review of Economic Studies, forthcoming.

Eastwood, B. and R. Gallant (1991). \Adaptive Rules for Seminonparametric Estimators that

Achieve Asymptotic Normality," Econometric Theory 3, 307-340.

Efron, B. (1988). \Logistic Regression, Survival Analysis, and the Kaplan-Meier Curve," Journal

of the American Statistical Association 83, 414-425.

Hahn, J., P. Todd, and W. Van der Klaauw (2000). \Identi�cation and Estimation of Treatment

E�ects with a Regression-Discontinuity Design," Econometrica, forthcoming.

Heckman, J. and B. Honore (1990). \The Empirical Content of the Roy Model," Econometrica 58,

1121-49.

Heckman, J. and B. Singer (1984). \A Method for Minimizing the Impact of Distributional As-

sumptions in Econometric Models for Duration Data," Econometrica 52, 271-320.

Manning, W. (1998). \The Logged Dependent Variable, Heteroscedasticity, and the Retransforma-

tion Problem," Journal of Health Economics 17, 283-295.

Manning, W. and J. Mullahy. (2000). \Estimating Log Models: To Transform or Not to Trans-

form," working paper.

38



Manning, W., J. Newhouse, N. Duan, E. Keeler, A. Leibowitz, and M. Marquis (1987). \Health

Insurance and the Demand for Medical Care: Evidence from a Randomized Experiment," American

Economic Review 77, 251-277.

Maddala, G. (1983). \A Survey of the literature on Selectivity Bias as it Pertains to Health Care

Markets," in Sche�er, R. and L. Rossiter (eds.) Advances in Health Economics and Health Services

Research 6, London: JAI Press.

Meyer, B. (1990). \Unemployment Insurance and Unemployment Spells," Econometrica 58, 757-

782.

Mullahy, J. (1998). \Much Ado About Two: Reconsidering the Retransformation and the Two-part

Model in Health Economics," Journal of Health Economics 17, 247-281.

Mroz, T. (1999). \Discrete Factor Approximation in Simultaneous Equation Models: Estimating

the Impact of a Dummy Endogenous Variable on a Continuous Outcome," Journal of Econometrics

92, 233-274.

Mroz, T. and D. Guilkey (1992). \Discrete Factor Approximations for Use in Simultaneous Equa-

tion Models with Both Continuous and Discrete Endogenous Variables," manuscript, University of

North Carolina at Chapel Hill.

Mroz, T. and D. Weir (1990). \Structural Change in Life Cycle Fertitly during the Fertility

Transition: France before and after the Revolution of 1789," Population Studies 44, 61-87.

Newhouse, J. (1993). Free for All? Lessons from the RAND Health Insurance Experiment, Cam-

bridge: Harvard University Press.

39



Table A1: Summary Statistics from Rand HIE | First year of each person (2479)

Continuous Variables Mean Std.Dev. Min Max

Annual medical expenses ($1999) 783.52 2592.95 0 79455.11
Annual family income in thousands ($1999) 31.79 13.56 0 98.93
Annual participation incentive ($1999) 995.46 864.89 0 2955.65
Index of general health at enrollment 70.34 13.93 5.7 100.00
Number of disease conditions at enrollment 10.31 7.97 0 58.60
Maximum deductible amount ($1999) 876.84 937.53 0 2437.95
Coinsurance rate (%) 30.87 37.50 0 95
Age in years 31.10 13.56 14 61
Annual family size 3.71 1.91 1 13

Dummy Variables Percent

Seattle (omitted category) 27.43
Fitchburg 15.69
Franklin County 19.00
Charleston 16.54
Georgetown County 21.34
Female 52.84
Non-white 18.96

Distribution of First Year Observed Percent

1976 16.94
1977 49.70
1978 1.98
1979 27.71
1980 2.38
1981 1.29
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Table A2: Average Derivative De�nitions

Derivative De�nition

Let the evaluation points for calculation of the numerical derivative with respect to variable k
be denoted ejk; j = 1; : : : ; J(k). We approximate the derivative by �nite di�erences.

Let the sample size at each evaluation point for variable k be denoted njk and the cuto� points
be denoted ckj where njk is the number of observations observed to have the value of
variable k fall in the interval [cjk ; cj+1;k).

Average For each observed value of Xk, evaluate the function at Xk �
�
2

where � is either the exact distance between adjacent evaluation points
(i.e., � = ej+1;k � ejk) or the average of the distances between the
evaluation points (i.e., � = (

P
j ejk)=J(k)). The choice of � depends on the

nature of the observed data (continuous or discrete). Calculate the di�erence
between values of the function at each deviated point.

Min Variance In the calculations of the derivatives for variable k, �nd the covariance matrix
of the J(k) derivatives. Find the weighted sum that minimizes the sum of the
squared errors.

Equal Weights Calculate a simple average of the J(k) derivatives at each evaluation point.
This measure accounts for neither the sample size at di�erent evaluation points
nor the variances or covariances of the J(k) derivatives.

Weight 1 Calculate the weighted average of the derivatives where the weight is de�ned
as the sample size about the evaluation point (njk). This measure accounts for
the sample size at di�erent evaluation points but not the variances or covariances
of the J(k) derivatives.

Weight 2 Calculate the weighted average of the derivatives where the weight is de�ned as
wjk = 1=((1=njk) + (1=nj+1;k)) for each derivative evaluated at a speci�c evaluation
point. This measure accounts for sample size at di�erent evaluation points.
In part, it accounts for the variances because it accounts for the sample sizes
about the points at where the derivatives are calculated.
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Table A3: List of Explanatory Variables used in Monte Carlo Experiments

Order of
Polynomial List of Variables
Expansion

First ded � insurance deductible level
Order age � age

inc � income
coi � coinsurance rate (%)
fem � female indicator
nwh � non-white indicator
hsg � good health status indicator
hsf � fair/poor health status indicator
�k � function of cell indicator used only in CDE model
�2k � squared � used only in CDE model

Second ded*ded ded*coi ded*inc ded*age ded*fem ded*nwh ded*hsg ded*hsf
Order coi*coi coi*inc coi*age coi*fem coi*nwh coi*hsg coi*hsf

inc*inc inc*age inc*fem inc*nwh inc*hsg inc*hsf
age*age age*fem age*nwh age*hsg age*hsf

fem*nwh fem*hsg fem*hsf
nwh*hsg nwh*hsf

�k*(all 1st order variables)
�3k

Third ded2*ded ded2*coi ded2*inc ded2*age ded2*fem ded2*nwh ded2*hsg ded2*hsf
Order coi2*ded coi2*coi coi2*inc coi2*age coi2*fem coi2*nwh coi2*hsg coi2*hsf

inc2*ded inc2*coi inc2*inc inc2*age inc2*fem inc2*nwh inc2*hsg inc2*hsf
age2*ded age2*coi age2*inc age2*age age2*fem age2*nwh age2*hsg age2*hsf

�k*(all 2nd order variables)
�2k*(all 1st order variables)
�4k

Fourth ded3*ded ded3*coi ded3*inc ded3*age ded3*fem ded3*nwh ded3*hsg ded3*hsf
Order coi3*ded coi3*coi coi3*inc coi3*age coi3*fem coi3*nwh coi3*hsg coi3*hsf

age3*ded age3*coi age3*inc age3*age age3*fem age3*nwh age3*hsg age3*hsf
inc3*ded inc3*coi inc3*inc inc3*age inc3*fem inc3*nwh inc3*hsg inc3*hsf
ded2*coi2 ded2*inc2 ded2*age2 coi2*inc2 coi2*age2 inc2*age2

�k*(all 3rd order variables)
�3k*(all 1st order variables)

The �rst part of all two-part speci�cations allows for di�erent e�ects of the explantory variables
and does not include the shape parameters or its interactions in the CDE model.
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Table A4: Frequency of Selection of Order of Polynomial Expansion
for each Data Generating Process

Model Order of Polynomial Expansion

First Second Third Fourth Total

DGP: Yi = �0Xi + �i, iid normal errors, OLS

OLS levels 50 0 0 0 50
OLS logs 7 42 1 0 50
CDE 0 0 0 50 50

DGP: ln(Yi) = �0Xi + �i, iid normal errors, 2-part

OLS levels 0 8 31 11 50
OLS logs 0 44 4 2 50
CDE 0 0 0 50 50

DGP: ln(Yi) = �0Xi + �i; var(�) � E[ln(Y )], 2-part

OLS levels 0 11 31 8 50
OLS logs 0 41 8 1 50
CDE 0 0 0 50 50

DGP : ln(Yi) = �0iXi + �i = ��Xi + (�i � ��)Xi + �i;
random coe�cients model

OLS levels 0 30 10 10 50
OLS logs 0 41 7 2 50
CDE 0 0 0 50 50

DGP : Mixture model where type depends on
unobserved health state, 2-part

OLS levels 0 0 4 46 50
OLS logs 0 10 23 17 50
CDE 0 0 0 50 50
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Table A5a: Average Age Derivatives
DGP: Yi = �0Xi + �i, iid normal errors, OLS

OLS OLS OLS
Derivative Truth Levels Levels Logs CDE
Evaluation point 1st order 4th order 4th order

30 7.504 7.356 7.356 7.841 7.369
( 0.000) ( 0.597) ( 0.597) ( 1.733) ( 2.272)

35 7.504 7.356 7.356 7.549 7.149
( 0.000) ( 0.597) ( 0.597) ( 0.748) ( 1.720)

40 7.504 7.356 7.356 7.253 7.230
( 0.000) ( 0.597) ( 0.597) ( 0.752) ( 1.733)

45 7.504 7.356 7.356 6.967 7.323
( 0.000) ( 0.597) ( 0.597) ( 1.172) ( 1.613)

50 7.504 7.356 7.356 6.697 7.375
( 0.000) ( 0.597) ( 0.597) ( 1.539) ( 1.763)

55 7.504 7.356 7.356 6.446 7.423
( 0.000) ( 0.597) ( 0.597) ( 1.822) ( 2.904)

Average� 7.504 7.356 7.356 7.400 7.586
( 0.000) ( 0.597) ( 0.597) ( 0.949) ( 1.481)

Min Variance� 7.371
( 0.672)

Equal Weights� 7.311
( 0.780)

Weight 1� 7.314
( 0.899)

Weight 2� 7.313
( 0.749)

Standard deviations from the Monte Carlo experiments are in parentheses.
See Appendix Table A2 for measures of the average derivatives.
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Table A5b: Average Age Derivatives
DGP: ln(Yi) = �0Xi + �i, iid normal errors, 2-part

OLS OLS OLS
Derivative Truth Levels Levels Logs CDE
Evaluation point 1st order 4th order 4th order

30 11.274 15.324 13.010 12.809 11.472
( 0.000) ( 1.031) ( 2.152) ( 1.742) ( 2.267)

35 11.650 15.324 13.537 14.528 12.265
( 0.000) ( 1.031) ( 2.209) ( 1.411) ( 2.067)

40 13.939 15.324 14.148 15.496 13.588
( 0.000) ( 1.031) ( 2.354) ( 1.408) ( 2.356)

45 13.594 15.324 15.144 16.051 15.006
( 0.000) ( 1.031) ( 2.489) ( 1.603) ( 2.301)

50 15.749 15.324 16.821 16.364 16.179
( 0.000) ( 1.031) ( 2.859) ( 1.917) ( 2.522)

55 15.782 15.324 19.480 16.534 16.654
( 0.000) ( 1.031) ( 5.542) ( 2.350) ( 4.044)

Average� 12.759 15.324 15.042 13.504 13.477
( 0.000) ( 1.031) ( 1.908) ( 1.165) ( 1.713)

Min Variance� 13.871
( 1.047)

Equal Weights� 14.194
( 1.195)

Weight 1� 13.160
( 1.024)

Weight 2� 13.591
( 0.998)

Standard deviations from the Monte Carlo experiments are in parentheses.
See Appendix Table A2 for measures of the average derivatives.
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Table A5c: Average Age Derivatives
DGP: ln(Yi) = �0Xi + �i; var(�) � E[ln(Y )], 2-part

OLS OLS OLS
Derivative Truth Levels Levels Logs CDE
Evaluation point 1st order 4th order 4th order

30 13.339 16.165 14.457 14.165 12.912
( 0.000) ( 0.956) ( 2.595) ( 2.238) ( 2.634)

35 12.580 16.165 13.978 15.070 13.333
( 0.000) ( 0.956) ( 2.641) ( 1.817) ( 2.502)

40 13.872 16.165 14.449 15.833 14.000
( 0.000) ( 0.956) ( 2.443) ( 1.785) ( 2.383)

45 15.288 16.165 15.686 16.372 14.904
( 0.000) ( 0.956) ( 2.756) ( 1.860) ( 2.164)

50 16.130 16.165 17.504 16.696 15.738
( 0.000) ( 0.956) ( 3.063) ( 2.087) ( 2.565)

55 16.573 16.165 19.717 16.837 15.986
( 0.000) ( 0.956) ( 5.237) ( 2.733) ( 4.537)

Average� 14.389 16.165 16.182 14.732 13.823
( 0.000) ( 0.956) ( 1.815) ( 1.466) ( 1.819)

Min Variance� 14.354
( 1.056)

Equal Weights� 14.479
( 1.190)

Weight 1� 13.876
( 1.239)

Weight 2� 14.128
( 1.107)

Standard deviations from the Monte Carlo experiments are in parentheses.
See Appendix Table A2 for measures of the average derivatives.

46



Table A5d: Average Age Derivatives
DGP: ln(Yi) = �0iXi + �i = ��Xi + (�i � ��)Xi + �i; random coe�cients model

OLS OLS OLS
Derivative Truth Levels Levels Logs CDE
Evaluation point 1st order 4th order 4th order

30 12.963 18.157 13.669 13.881 14.528
( 0.000) ( 1.646) ( 3.171) ( 2.519) ( 2.537)

35 13.464 18.157 14.794 16.352 16.231
( 0.000) ( 1.646) ( 2.871) ( 2.446) ( 2.389)

40 16.153 18.157 16.733 17.996 17.347
( 0.000) ( 1.646) ( 2.832) ( 2.542) ( 2.860)

45 18.340 18.157 19.103 19.217 17.795
( 0.000) ( 1.646) ( 3.947) ( 2.589) ( 2.947)

50 20.627 18.157 21.526 20.199 17.318
( 0.000) ( 1.646) ( 4.730) ( 3.540) ( 3.932)

55 22.756 18.157 23.618 21.036 15.277
( 0.000) ( 1.646) ( 8.008) ( 5.866) ( 7.665)

Average� 16.067 18.157 17.162 15.524 14.422
( 0.000) ( 1.646) ( 2.031) ( 1.730) ( 1.905)

Min Variance� 16.196
( 1.547)

Equal Weights� 16.416
( 2.081)

Weight 1� 15.837
( 1.602)

Weight 2� 16.042
( 1.739)

Standard deviations from the Monte Carlo experiments are in parentheses.
See Appendix Table A2 for measures of the average derivatives.
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Table A5e: Average Age Derivatives
DGP: Mixture model where type depends on unobserved health state, 2-part

OLS OLS OLS
Derivative Truth Levels Levels Logs CDE
Evaluation point 1st order 4th order 4th order

30 12.291 16.489 15.396 14.635 13.706
( 0.000) ( 1.257) ( 3.626) ( 3.469) ( 3.367)

35 13.134 16.489 15.691 15.140 14.108
( 0.000) ( 1.257) ( 3.797) ( 2.836) ( 2.539)

40 13.041 16.489 14.968 15.570 14.933
( 0.000) ( 1.257) ( 2.566) ( 2.409) ( 2.759)

45 15.615 16.489 14.868 16.229 15.790
( 0.000) ( 1.257) ( 3.314) ( 2.430) ( 2.423)

50 16.841 16.489 17.035 17.149 16.585
( 0.000) ( 1.257) ( 3.786) ( 2.724) ( 2.406)

55 17.258 16.489 23.110 18.295 17.389
( 0.000) ( 1.257) ( 5.742) ( 5.061) ( 4.410)

Average� 14.135 16.489 15.801 14.644 14.169
( 0.000) ( 1.257) ( 2.249) ( 2.145) ( 2.332)

Min Variance� 15.357
( 1.249)

Equal Weights� 15.419
( 1.281)

Weight 1� 14.757
( 1.532)

Weight 2� 15.040
( 1.323)

Standard deviations from the Monte Carlo experiments are in parentheses.
See Appendix Table A2 for measures of the average derivatives.
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Table A6a: Average Income Derivatives
DGP: Yi = �0Xi + �i, iid normal errors, OLS

OLS OLS OLS
Derivative Truth Levels Levels Logs CDE
Evaluation point 1st order 4th order 4th order

5 4.391 4.408 4.408 5.400 4.964
( 0.000) ( 0.453) ( 0.453) ( 2.908) ( 3.562)

10 4.391 4.408 4.408 5.596 4.356
( 0.000) ( 0.453) ( 0.453) ( 0.915) ( 1.539)

15 4.391 4.408 4.408 5.156 4.292
( 0.000) ( 0.453) ( 0.453) ( 0.649) ( 1.239)

20 4.391 4.408 4.408 4.701 4.286
( 0.000) ( 0.453) ( 0.453) ( 0.714) ( 1.079)

25 4.391 4.408 4.408 4.305 4.266
( 0.000) ( 0.453) ( 0.453) ( 0.770) ( 0.931)

30 4.391 4.408 4.408 3.969 4.226
( 0.000) ( 0.453) ( 0.453) ( 0.798) ( 0.887)

35 4.391 4.408 4.408 3.684 4.169
( 0.000) ( 0.453) ( 0.453) ( 0.806) ( 0.974)

40 4.391 4.408 4.408 3.441 4.099
( 0.000) ( 0.453) ( 0.453) ( 0.804) ( 1.143)

45 4.391 4.408 4.408 3.230 4.018
( 0.000) ( 0.453) ( 0.453) ( 0.795) ( 1.341)

Average� 4.391 4.408 4.408 4.310 4.411
( 0.000) ( 0.453) ( 0.453) ( 1.592) ( 1.849)

Min Variance� 4.217
( 0.623)

Equal Weights� 4.297
( 0.708)

Weight 1� 4.388
( 0.877)

Weight 2� 4.420
( 0.984)

Standard deviations from the Monte Carlo experiments are in parentheses.
See Appendix Table A2 for measures of the average derivatives.
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Table A6b: Average Income Derivatives
DGP: ln(Yi) = �0Xi + �i, iid normal errors, 2-part

OLS OLS OLS
Derivative Truth Levels Levels Logs CDE
Evaluation point 1st order 4th order 4th order

5 32.353 13.406 32.388 36.985 33.601
( 0.000) ( 0.857) ( 5.360) ( 3.233) ( 4.648)

10 22.130 13.406 26.066 23.892 23.326
( 0.000) ( 0.857) ( 2.241) ( 1.485) ( 1.881)

15 16.872 13.406 20.709 17.770 17.802
( 0.000) ( 0.857) ( 1.717) ( 1.252) ( 2.023)

20 14.227 13.406 16.229 14.205 14.252
( 0.000) ( 0.857) ( 2.580) ( 1.288) ( 2.078)

25 11.406 13.406 12.537 11.868 11.710
( 0.000) ( 0.857) ( 3.087) ( 1.319) ( 1.938)

30 11.673 13.406 9.545 10.215 9.763
( 0.000) ( 0.857) ( 3.271) ( 1.326) ( 1.825)

35 8.512 13.406 7.166 8.984 8.210
( 0.000) ( 0.857) ( 3.497) ( 1.322) ( 1.867)

40 8.840 13.406 5.310 8.030 6.933
( 0.000) ( 0.857) ( 4.118) ( 1.312) ( 2.084)

45 7.353 13.406 3.889 7.270 5.854
( 0.000) ( 0.857) ( 5.198) ( 1.302) ( 2.426)

Average� 20.164 13.406 22.683 25.220 22.529
( 0.000) ( 0.857) ( 1.609) ( 1.322) ( 1.811)

Min Variance� 14.653
( 0.785)

Equal Weights� 14.606
( 0.904)

Weight 1� 18.861
( 0.871)

Weight 2� 20.004
( 0.892)

Standard deviations from the Monte Carlo experiments are in parentheses.
See Appendix Table A2 for measures of the average derivatives.
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Table A6c: Average Income Derivatives
DGP: ln(Yi) = �0Xi + �i; var(�) � E[ln(Y )], 2-part

OLS OLS OLS
Derivative Truth Levels Levels Logs CDE
Evaluation point 1st order 4th order 4th order

5 30.522 13.862 31.142 36.797 34.075
( 0.000) ( 0.912) ( 4.823) ( 2.315) ( 3.872)

10 24.562 13.862 25.751 24.294 23.400
( 0.000) ( 0.912) ( 2.258) ( 1.294) ( 2.046)

15 17.096 13.862 21.095 18.359 17.883
( 0.000) ( 0.912) ( 1.635) ( 1.213) ( 1.889)

20 14.553 13.862 17.121 14.860 14.445
( 0.000) ( 0.912) ( 2.189) ( 1.184) ( 1.696)

25 12.383 13.862 13.774 12.540 12.059
( 0.000) ( 0.912) ( 2.577) ( 1.190) ( 1.459)

30 10.243 13.862 11.002 10.885 10.290
( 0.000) ( 0.912) ( 2.773) ( 1.230) ( 1.472)

35 10.686 13.862 8.750 9.642 8.921
( 0.000) ( 0.912) ( 3.164) ( 1.293) ( 1.811)

40 8.625 13.862 6.965 8.672 7.827
( 0.000) ( 0.912) ( 4.121) ( 1.367) ( 2.318)

45 7.520 13.862 5.592 7.894 6.929
( 0.000) ( 0.912) ( 5.688) ( 1.444) ( 2.868)

Average� 23.489 13.862 22.700 25.628 22.871
( 0.000) ( 0.912) ( 1.833) ( 1.536) ( 2.205)

Min Variance� 15.102
( 0.990)

Equal Weights� 15.092
( 1.209)

Weight 1� 19.135
( 1.177)

Weight 2� 20.283
( 1.244)

Standard deviations from the Monte Carlo experiments are in parentheses.
See Appendix Table A2 for measures of the average derivatives.
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Table A6d: Average Income Derivatives
DGP: ln(Yi) = �0iXi + �i = ��Xi + (�i � ��)Xi + �i; random coe�cients model

OLS OLS OLS
Derivative Truth Levels Levels Logs CDE
Evaluation point 1st order 4th order 4th order

5 28.395 11.573 22.747 28.427 27.908
( 0.000) ( 1.236) ( 5.416) ( 3.934) ( 4.824)

10 19.444 11.573 19.666 19.763 18.553
( 0.000) ( 1.236) ( 2.767) ( 1.494) ( 2.142)

15 14.883 11.573 17.002 15.392 14.285
( 0.000) ( 1.236) ( 1.693) ( 1.424) ( 1.888)

20 12.681 11.573 14.725 12.729 11.942
( 0.000) ( 1.236) ( 2.045) ( 1.558) ( 2.003)

25 11.092 11.573 12.803 10.925 10.456
( 0.000) ( 1.236) ( 2.539) ( 1.760) ( 1.898)

30 10.219 11.573 11.208 9.616 9.382
( 0.000) ( 1.236) ( 2.893) ( 2.026) ( 1.783)

35 8.816 11.573 9.908 8.619 8.518
( 0.000) ( 1.236) ( 3.329) ( 2.324) ( 1.845)

40 9.702 11.573 8.873 7.833 7.765
( 0.000) ( 1.236) ( 4.144) ( 2.621) ( 2.122)

45 7.666 11.573 8.074 7.196 7.076
( 0.000) ( 1.236) ( 5.477) ( 2.904) ( 2.538)

Average� 21.139 11.573 17.709 20.200 18.865
( 0.000) ( 1.236) ( 2.211) ( 1.881) ( 2.244)

Min Variance� 12.914
( 1.171)

Equal Weights� 12.876
( 1.254)

Weight 1� 15.703
( 1.323)

Weight 2� 16.605
( 1.423)

Standard deviations from the Monte Carlo experiments are in parentheses.
See Appendix Table A2 for measures of the average derivatives.
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Table A6e: Average Income Derivatives
DGP: Mixture model where type depends on unobserved health state, 2-part

OLS OLS OLS
Derivative Truth Levels Levels Logs CDE
Evaluation point 1st order 4th order 4th order

5 37.375 15.628 39.450 39.784 40.267
( 0.000) ( 0.984) ( 4.452) ( 4.527) ( 4.931)

10 27.317 15.628 30.468 27.726 28.573
( 0.000) ( 0.984) ( 1.975) ( 2.024) ( 2.656)

15 21.204 15.628 23.459 22.122 22.068
( 0.000) ( 0.984) ( 2.082) ( 1.624) ( 1.832)

20 19.742 15.628 18.292 18.894 17.901
( 0.000) ( 0.984) ( 2.755) ( 2.004) ( 1.903)

25 16.285 15.628 14.834 16.784 15.048
( 0.000) ( 0.984) ( 2.967) ( 2.491) ( 2.214)

30 13.597 15.628 12.954 15.289 13.000
( 0.000) ( 0.984) ( 3.225) ( 2.960) ( 2.530)

35 12.681 15.628 12.521 14.166 11.474
( 0.000) ( 0.984) ( 4.598) ( 3.388) ( 2.843)

40 12.177 15.628 13.401 13.286 10.310
( 0.000) ( 0.984) ( 7.461) ( 3.771) ( 3.155)

45 10.595 15.628 15.465 12.572 9.409
( 0.000) ( 0.984) ( 11.597) ( 4.111) ( 3.491)

Average� 29.559 15.628 28.424 29.753 27.355
( 0.000) ( 0.984) ( 2.083) ( 2.292) ( 2.595)

Min Variance� 18.736
( 1.180)

Equal Weights� 18.672
( 1.477)

Weight 1� 23.371
( 1.313)

Weight 2� 24.694
( 1.450)

Standard deviations from the Monte Carlo experiments are in parentheses.
See Appendix Table A2 for measures of the average derivatives.
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Table A7a: Average Coinsurance Derivatives
DGP: Yi = �0Xi + �i, iid normal errors, OLS

OLS OLS OLS
Derivative Truth Levels Levels Logs CDE
Evaluation point 1st order 4th order 4th order

0 -5.000 -4.985 -4.985 -4.801 -4.644
( 0.000) ( 0.955) ( 0.955) ( 4.017) ( 5.101)

10 -5.000 -4.985 -4.985 -4.585 -4.621
( 0.000) ( 0.955) ( 0.955) ( 2.881) ( 3.247)

20 -5.000 -4.985 -4.985 -3.590 -4.695
( 0.000) ( 0.955) ( 0.955) ( 2.350) ( 6.294)

Average� -5.000 -4.985 -4.985 -4.184 -4.621
( 0.000) ( 0.955) ( 0.955) ( 1.871) ( 3.054)

Min Variance� -4.633
( 1.484)

Equal Weights� -4.653
( 2.390)

Weight 1� -4.683
( 5.119)

Weight 2� -4.634
( 1.500)

Standard deviations from the Monte Carlo experiments are in parentheses.
See Appendix Table A2 for measures of the average derivatives.

54



Table A7b: Average Coinsurance Derivatives
DGP: ln(Yi) = �0Xi + �i, iid normal errors, 2-part

OLS OLS OLS
Derivative Truth Levels Levels Logs CDE
Evaluation point 1st order 4th order 4th order

0 -5.565 -9.393 -5.977 -4.528 -5.206
( 0.000) ( 1.530) ( 4.899) ( 4.566) ( 5.429)

10 -7.270 -9.393 -7.810 -8.155 -7.082
( 0.000) ( 1.530) ( 3.228) ( 3.316) ( 3.386)

20 -6.637 -9.393 -8.103 -7.027 -8.057
( 0.000) ( 1.530) ( 10.263) ( 4.088) ( 9.418)

Average� -6.212 -9.393 -7.668 -7.235 -7.395
( 0.000) ( 1.530) ( 4.501) ( 2.338) ( 4.043)

Min Variance� -6.626
( 2.120)

Equal Weights� -6.781
( 3.663)

Weight 1� -7.708
( 7.696)

Weight 2� -6.558
( 2.136)

Standard deviations from the Monte Carlo experiments are in parentheses.
See Appendix Table A2 for measures of the average derivatives.
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Table A7c: Average Coinsurance Derivatives
DGP: ln(Yi) = �0Xi + �i; var(�) � E[ln(Y )], 2-part

OLS OLS OLS
Derivative Truth Levels Levels Logs CDE
Evaluation point 1st order 4th order 4th order

0 -7.450 -9.791 -6.754 -4.172 -5.698
( 0.000) ( 1.592) ( 6.809) ( 6.586) ( 6.733)

10 -7.468 -9.791 -8.145 -8.984 -7.472
( 0.000) ( 1.592) ( 3.789) ( 3.500) ( 3.826)

20 -7.101 -9.791 -8.547 -7.496 -8.243
( 0.000) ( 1.592) ( 8.204) ( 3.792) ( 7.828)

Average� -7.122 -9.791 -8.198 -7.755 -7.645
( 0.000) ( 1.592) ( 3.756) ( 2.473) ( 3.349)

Min Variance� -7.064
( 1.892)

Equal Weights� -7.138
( 2.912)

Weight 1� -7.942
( 6.298)

Weight 2� -6.965
( 1.934)

Standard deviations from the Monte Carlo experiments are in parentheses.
See Appendix Table A2 for measures of the average derivatives.
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Table A7d: Average Coinsurance Derivatives
DGP: ln(Yi) = �0iXi + �i = ��Xi + (�i � ��)Xi + �i; random coe�cients model

OLS OLS OLS
Derivative Truth Levels Levels Logs CDE
Evaluation point 1st order 4th order 4th order

0 -5.791 -9.430 -8.905 -3.995 -3.988
( 0.000) ( 1.961) ( 5.742) ( 8.117) ( 7.898)

10 -7.656 -9.430 -7.420 -9.230 -8.573
( 0.000) ( 1.961) ( 4.146) ( 4.465) ( 4.046)

20 -8.829 -9.430 -8.459 -7.374 -9.017
( 0.000) ( 1.961) ( 12.778) ( 5.252) ( 11.922)

Average� -8.092 -9.430 -8.012 -7.771 -8.048
( 0.000) ( 1.961) ( 5.527) ( 3.423) ( 5.444)

Min Variance� -7.186
( 2.088)

Equal Weights� -7.192
( 4.190)

Weight 1� -8.527
( 9.641)

Weight 2� -7.140
( 2.157)

Standard deviations from the Monte Carlo experiments are in parentheses.
See Appendix Table A2 for measures of the average derivatives.
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Table A7e: Average Coinsurance Derivatives
DGP: Mixture model where type depends on unobserved health state, 2-part

OLS OLS OLS
Derivative Truth Levels Levels Logs CDE
Evaluation point 1st order 4th order 4th order

0 -16.186 -16.352 -13.445 -12.729 -10.509
( 0.000) ( 1.904) ( 8.236) ( 7.427) ( 8.116)

10 -12.461 -16.352 -12.808 -11.821 -16.380
( 0.000) ( 1.904) ( 5.133) ( 4.542) ( 4.764)

20 -8.644 -16.352 -12.567 -12.757 -14.362
( 0.000) ( 1.904) ( 21.886) ( 8.804) ( 9.012)

Average� -11.443 -16.352 -13.514 -13.011 -15.211
( 0.000) ( 1.904) ( 8.118) ( 4.436) ( 4.403)

Min Variance� -14.250
( 2.704)

Equal Weights� -13.750
( 3.701)

Weight 1� -14.217
( 7.336)

Weight 2� -14.341
( 2.695)

Standard deviations from the Monte Carlo experiments are in parentheses.
See Appendix Table A2 for measures of the average derivatives.
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