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1 Introduction

In the United States, more than two-thirds of testate decedents with multichild families di-
vide their estates exactly equally among their children.! This finding challenges the validity
of existing theories regarding the determination of intergenerational transfers. If testators
select the bequest to each heir by balancing marginal benefits against marginal costs, then
it is natural to think of equal division as a knife-edge, “measure zero” event. If, for exam-
ple, bequests reflect altruism (as in Becker [8] or Barro {7]) or intrafamily exchange (as in
Bernheim, Shleifer, and Summers [15] or Kotlikoff and Spivak [27]), one would ordinarily
expect the optimal bequest to vary with the characteristics of the child, so that children with
different characteristics would receive different bequests. These observations give rise to the
“equal division puzzle.”

Though economiq theory has been almost completely silent on this subject,? two simple
possibilities merit consideration. The first is that most individuals are essentially indifferent
about the division of their estates. One might, for example, attempt to explain the prevalence
of equal division by appealing to the “accidental” theory of intergenerational transfers, in
which bequests occur only because individuals are uncertain about the timing of their deaths,
and are unable to purchase private annuities due to a failure of private insurance markets.?
The second possibility is that parents feel constrained by a notion of “fairness,” the origins of

which are unclear, but presumably external to the process governing the choice of bequests.*

1According to Wilhelm (35], 68.6 percent of all decedents with multichild families divide their estates
exactly equally between their children, and 76.6 percent divide their estates so that each child receives
within 2 percent of the average inheritance across all children. Two studies by Menchik [29], [30], place
the frequency of exact eqnal division at, respectively, 62.5 percent and 84.3 percent. Tomes (34] obtains a
significantly lower figure (21.1 percent), though he also finds that children received within $500 of the average
inheritance in 50.4 percent of all cases. Menchik [30] argues that the lower frequency of equal division in
Tomes’ sample reflects data problems.

?Bernheim, Shleifer, and Summers [15] argue that the strategic exchange motive has fewer difficulties
with the prevalence of equal division than other theories of bequests, but they do not provide a theoretical
framework that yields equal division as a robust prediction.

3There is considerable evidence against the accidental bequest hypothesis, including the fact that many
individuals appear to resist annuitization. See, for exampie, Bernheim Shieifer and Summers {15], Bernheim
[10], or Gale and Scholz [22]. See also Hurd [25], [26], for an opposing perspective.

4Readers and seminar participants have suggested several other possibilities, but in our view none survives




The “accidental bequest” theory has difficulty accounting for the prevalence of equal
division among testate decedents: if an individual is truly indifferent as to the division of his
or her bequest, why bother specifying this division in a will? Moreover, both the “accidental
bequest” theory and the “fair division” theory run afoul of ancther well-documented pattern:
though bequests are usually equal across children, intra vivos gifts are not (see e.g. McGarry
[28] and Dunn and Phillips [21]). It is hard to imagine why parents would be indifferent
about the division of their estates if they care about the distribution of gifts. It is also
difficult to understand why an external notion of equal division as a fair outcome would
apply to bequests but not to gifts. Thus, the unequal division of gifts deepens the equal
division puzzle.

The absence of a coherent theoretical explanation for the equal division puzzle represents
a serious gap in the literature. Bequest motives feature prominently in theoretical and emnpir-
ical discussions of capital accumulation, fiscal policy,-income distribution, and other issues.
Moreover, the altruistic model of bequests is often invoked as a justification for widespread
practice of studying models with infinite-lived agents ( “dynastic” families). As long as one of
the most notable empirical regularities concerning bequests remains unexplained, economists
must carefully qualify all conclusions that are linked to assumptions about the motivations
for bequests.

The primary objective of this paper is to propose a theory of intergenerational transfers
that accounts for the equal division puzzle, including the unequal .division of gifts. We
consider a model in which an altruistic, utility-maximizing parent divides his or her estate

between potentially heterogeneous children. To this relatively standard framework we add a

close scruitiny. For example, a few of our coileagues have suggested that equal division of bequests will always
be ex post optimal if parents correctly anticipate this division and compensate appropriately for differences
in affection and /or endowments through intre vives gifts. Notably, this theory is equally consistent with any
other division of bequests (e.g. 25%-75%) — the parent can always choose gifts that render any given rule
for bequest division er post optimal. More importantly, the available evidence indicates that gifts are oniy
partially compensatory. If the theory were correct, then, prior to death, the typical parent wonld constantly
adjust gifts on the margin in response ta changes in preferences, resources, and/or other conditions to
preserve the optimality of equal bequest division. In practice, neither the frequency nor the volume of gifts
seemns sufficient for this purpose.




new twist: each child’s perception of parental affection directly affects his or her subjective
well-being. This assumption is grounded in psychological evidence (see e.g. Coopersmith
(19], or Bednar and Peterson [9]). More particularly, patterns of sibling rivalry suggest that
children care about the extent to which they are loved and/or valued by a parent, relative
to brothers and sisters (see e.g. Baik and Kahn [4]).

By itself, this formulation of children’s preferences would not produce a norm of equal
division.> Qur theory requires one additional plausible assumption: children cannot directly
observe the parent’s preferences (in particular, the parameter governing the relative strength
of altruism for each child). Instead, children may attempt to infer the parent’s preferences
from his or her actions, including the division of an estate. Being altruistic, the parent must
then consider the possibility that certain actions might hurt a child’s feelings. In particular,
an unequal division of bequests suggests that the parent loves one child less than another.

In this setting, bequests serve as a signal of parental affection. Moreover, since the bequest
to each child is observable to all children, the signal is common to all affected audiences.
Under certain conditions identified in the text, no separating equilibrium exists, but there
is an equilibrium in which a positive fraction of the population adheres to a norm of edual
division. Depending on the parameters of the model, this fraction can be arbitrarily large.
Though other pooling equilibria may also exist, we justify the selection of the equal division
equilibrium formally.

The intuition for this result is straightforward. Under certain conditions, parents wish
children to believe that they love their children more equally than they actually do. Thus,
parents shade their choices away from their preferred child to differentiate themselves from
those who love their children even less equally. But those who actually love their children
equallj have nowhere to go: they cannot shade their choice to one child or to the other
without encouraging imitation by some types of parents who love their children unequally.

Consequently, the equilibrium tends to produce a pool at the center of the parental type

5If the parent’s preferences were public information, equal division would ocenr in our model only on a
set of measure zeroc.




space.

The discussion in the preceding paragraph suggests that there is a formal relation be-
tween the current paper and Bernheim’s [11] theory of conformity. We elaborate on this
relation in section 2.4. For the time being, we simply note that our results do not foliow
from Bernheim’s. Both models are examples of “multidirectional signaling” (Bernheim and
Severinov [14]), but neither is a special case of the other. The analysis in this paper is
considerably more complex, and there are some important substantive differences with re-
spect to the structure of equilibria. For example, the equilibria of the current model involve
pure communication (sometimes known as “cheap talk”), as well as the use of dissipative
signals. In particular, among those adhering to the norm of equal division, subgroups may
differentiate themselves through credible verbal statements.

Qur analysis also accounts for the unequal division of intra vivos gifts. Specifically, we
argue that the key difference between gifts and bequests relates to observability: the division
of bequests is perfectly observable by all concerned parties, whereas the division of gifts need
not be. A parent can give gifts to a favored child without revealing this to another child;
however, a parent cannot make bequests to any child without the knowledge of all children.
As long as “secret” gifts are feasible, gifts cannot serve as a common signal of the parent’s
preferences. When neither child is in a position to verify that the parent’s resources have
been divided equally, then the equilibrium inference function cannot systematically link the
children’s beliefs about the parent’s preferences to the equality of transfers. Without such a
link, an equal division norm cannot survive.

There are also conditions under which a parent wishes his or her children to believe
that the parent’s affection is less equal than it actually is. In such cases, parents shade
their choices toward their preferred child to differentiate themselves from those who love
their children more equally. But those who prefer to give everything to one child cannot
shade their choices in this direction, since they face binding non-negativity constraints on

bequests. This leads to pooling at the extreme outcomes where one child or the other receives




the parent’s entire estate. Thus, under appropriate parametric assumptions, our model can
also account for the pattern known as unigeniture. This is of interest, since unigeniture is a
comimon norm in many societies (see e.g. Chu [18], or Guinnane [23]).

Since our theory provides a possible explanation for the equal division puzzle, it is im-
portant to explore ancillary implications for public policy. In a companion piece (Bernheim
and Severinov [13]), we examine the effects of government fiscal policies under the hypoth-
esis that bequests signal parental affection. Under conditions normally thought to produce
Ricardian equivalence (see Barro [7]), we demonstrate that outcomes can be distinctly non-
Ricardian. Indeed, we provide an example in which, with even the tiniest degree of concern
about parental affection, an exogenous transfer between parents and children has exactly the
same effect as in a model without any intergenerational linkages, even though essentially all
families are internally linked by operative, altruistic, intergenerational transfers.

The paper is organized as follows. We describe the model in section 2. Section 3 identifies
‘the conditions under which a norm of equal division emerges. Section 4 investigates the

conditions that give rise to unigeniture. Section 5 concludes.

2 The Model
2.1 Participants and preferences

We consider interactions among three parties: a parent (P) and two children (¢ = 1,2). The
parent is endowed with wealth wp > 0, which it divides between the children by making non-
negative bequests, & > 0. Throughout this paper, we focus on the division of bequests and
abstract from the possibility that the parent might consume some portion of its resources.
Thus, the parent chooses bequests to satisfy the constraint b, + b, = wp. Each child ¢ is
endowed with wealth w; > 0, and consumes ¢; = w; + b;. For simplicity, we assume that
all parties can observe each others’ endowments; we examine the role of this assumption in
section 3.3.1.

It is perhaps most natural to interpret the model as follows. A parent nears the end of his




or her life with bequeathable resources wp, and must decide how to divide these resources
between two adult children. Rapid consumption is not an attractive option. Notably, the
model does not attempt to explain why so many individuals reach the end of life with positive
bequeathable assets; it simply takes this empirical pattern as given. This may appear to be
somewhat problematic, since (as we will see) the theory implies that there are incentives for
parents to make intergenerational transfers as gifts prior to death, instead of as bequests.
This conceptual difficulty is, however, easily resolved, as one can explain the retention of
bequeathable assets by appealing to factors outside of the model.® Qur theory presupposes
the existence of such factors, and attempts to explain the division of whatever bequeathable
assets are retained until death.

It will be convenient to think of the parent as dividing the family’s total resources,
W = wp + wy + w,. Specifically, the parent picks x € {z,1 — Z] where £ = w,/W and
T = wy/W, child 1 ¢onsumes zW, and child 2 consumes (1 — z)W. With this change of
variables, it is important to keep in mind that the phrase “equal division” is generally used
to refer to the parent’s endowment, rather than to the family’s resources. That is, equal

division occurs when by = b,, or equivalently when

r=1z"= [lJr%—%] /2,

and not when z = 1/2.
We use Up and U; to denote the ufilities of the parent and children, respectively. We
assume that the parent is an altruist. Since the parent does not consume anything directly,

its utility depends only on the outcomes for the children:
Up =t + (1 — t)Us,

where ¢ € [0,1]. Parents differ according to the relative weight ¢ that they attach to the first
child’s utility. We assume that t is known to the parent but not to the children. Children’s

5The retention of bequeathable assets until the end of life may result from uncertainty concerning the
length of life combined with imperfections in anpuity markets. Individuals may also derive feelings of security,
control, and/or satisfaction from asset ownership.




prior beliefs about ¢ are given hy some atomless cumulative distribution function F', and the
support of F is the interval [0,1]. We use f to denote the density function associated with
F. and we assume that f is symmetric around 1/2 (that is, f(t) = f(1 —1)).

Qur assumptions about F merit further discussion. Presumably, every adult has had
many opportunities to learn about his or her parent’s preference parameter, t. Nevertheless,
we believe it is reasonable to assume that some significant degree of uncertainty remains. It
is perhaps less reasonable to believe that, after numerous family experiences, the subjective
distribution of t is symmetric around % (indicating equal probability that the parent prefers
each child). We make the symmetry assumption because it allows us to simplify some of
the formal proofs. Conceptually, cases in which ¢ is distributed asymmetricaily are similar
to cases in which the children have unequal endowments. Were we to allow for asymmetric
distributions, our central conclusions would survive.”

We assume that each child cares about his or her own consumption, ¢;, as well as about
t. That is, each child’s sense of well-being is affected by the extent to which he or she feels
“loved” relative to a sibling. Though children cannot observe t directly, they may attempt to
infer it from aspects of the parent’s behavior, including the choice of x. When the children

believe that ¢ = %, their utilities are given by

Uy = ufc1) + Gu(t)

and

Uy = u(ez) + (1 — 1),

where u is defined over [0, +00), and v is defined over [0, 1]. The parent’s utility is therefore

Up = [tu(zW) + (1 — u((1 —2) W)] + B[tv () + 1 =9 v (1 - )] (1)

TFormally, one must make a different set of technical arguments to accomodate cases in which ¢ is
distributed asymmetrically. Analogously to theorem 4 in section 3.2.2, one can show that (genericaliy) an
equilibrium with a norm of equal division exists provided that neither the division of children's endowments
nor the distribution of ¢ is too asymmetric. Bernheim and Severinov [14] establish some general results along
these lines.




= U (z,t) + AV (£,t)
We will invoke the following assumption throughout.

Assumption 1: wu and v are strictly increasing, strictly concave, twice continuously
differentiable on (respectively) (0,W] and [0, 1], lim.oct’(¢) = 400, ¥'(0) is finite, and
(1) = 0.

Most of assumption 1 is reasonably standard. Weaker conditions would suffice for most
of ou;" results. The derivative restrictions are particularly expendable,® but relaxing them
complicates some of the proofs. Moreover, they strike us as plausible. Since it is possible to
live without parental affection but not without consumption, it seems reasonabie to assume
that the derivative of v is finite at £ = 0, while the derivative of « is infinite at ¢ = 0. It also
strikes us as natural to assume that a child is satiated when he or she has all of the parent’s
affection.

From assumption 1, it follows that U(z,t) is twice continuously differentiable on
[z,1—7] x [0,1], V(£,1) is twice continuously differentiable on [0, 1]2, U};(-) < 0, V11(+) < 0,
Usz(-) > 0, and Vip(+) > 0.

2.2 The timing of decisions

The structure of the game is simple. After observing ¢, the parent takes actions. In addition
to selecting z, the parent may also send a message, m € [0,1]. This message is intended
to represent “pure” communication about the parent’s type, in the sense that the value
of m does not directly enter the utility function of any party (in the pertinent literature,

this is usually referred to as “cheap talk”). We will elaborate further on the role of pure

8For example, since ¢; is bounded away from zero (c¢; > w; > (), the properties of u near zero are
inconsequential. We assume that the derivative of u becomes arbitrarily large as ¢ goes to zero only to
simplify a construction used in the proof of theorem 2. If u did not satisfy this property, one could simply
construct and work with another function # satisfying assumption 1 with % (c) = u{c) on [z, T].




communication later in this section. Children then observe z and m and draw inferences
about the parent’s preference parameter, ¢. The preceding expressions for U, Us, and Up
describe the resulting payoffs.’

In this setting, the parent’s choices of x and m can signal the parent’s type, t. Indeed,
the model is recognizable formally as a “signaling game,” in the sense of Banks and Sobel
6] or Cho and Kreps [16]. Specifically, the parent acts as the “sender,” the children act as
the “receivers,” (z,m) serves as the sender’s “message,” and t serves as both the receivers’
inference and the receivers’ “response.” While it is somewhat unconventional to identify the
receivers’ inference with the receivers’ response, this is easily reconciled with the standard
game-theoretic approach.?

Despite these observations, it is important to emphasize that our model does not give
rise to a standard signaling problem. In particular, the Spence-Mirrlees “single-crossing”
property is not satisfied. The non-standard aspécts of the model lead to atypical results,

which we describe in subsequent sections.

2.3 Parental bliss points

Ignoring for the moment the possibility that children may infer t from x, we can optimize Up
over x and t to find the parent’s “bliss point.” Obviously, the parent’s problem is separable
in z and t, so the bliss point for z (the “action bliss point”) does not depend upon ¢, and
the bliss point for ¢ (the “perception bliss point”) does not depend upon z.

To find the action bliss point for z, we maximize U(z,t) over « Er [0,1] (notice that,

for this purpose, we consider all possible distributions of the family’s resources and ignore

9Naturally, the children do not receive bequests and draw inferences about the parent’s preferences until
after the parent dies. In effect, we are assuming that the parent correctly anticipates the inferences that
children will make after the parent’s death, and that the children attempt to make the best inferences
possible. We do not explore the interesting possibility that children might have incentives to engage in
self-deception, intentionally forming incorrect inferences. The phenomenon of self-deception merits further
consideration in future research.
10fnstead of assuming that the parent cares directly about a child’s inference, assume that the parent cares
about the child’s reaction to his or her inference. One can then renormalize the set of possible reactions to
conform with the set of possible inferences. In other words, one can use % to denote a child’s reaction to the
inference that the value of the parent’s altriism parameter is £

10




the requirement that b; > 0). Let X {¢) denote the mapping from preferences to action bliss

points. Because u(xW) is strictly concave, X (¢) can be found as the solution of the following

first-order condition:!!
tu (X(W) =(1—-t) (1 - X&) W) @

From assumption 1, it follows that X({(t) is well-defined, single-valued, strictly increasing,

and continuous with X(0) =0, X(1) =1, and X (1/2) = 1/2.

Example 1: u(c) = ¢" /7, with v < 0 (so that lim.peu'(c) = too, as required in
assumption 1). Then X () = (1 —)"[t" + (1 — t)”]'i where n = 1/(y —1).

To find the perception bliss point for f, we maximize V (?, t) over ¢t € [0,1]. Let p(t)
denote the mapping from preferences to perception bliss points. By strict concavity of v(.),

p(t) can be found as the solution to the following first-order condition;!?

t (p(t)) = (1 - t)v' (1 — p(t)) (3)

From assumption 1, it follows that p(t) is well-defined, single-valued, strictly increasing, and

continuous with p{0) = 0, p(1) = 1, and p(1/2) = 1/2.
Example 2: v(t) = —(1 — ). Then p(t) = 1.

Note that U/ (z,t) > 0 when z < X(t), and Ui(z,t) < 0 when z > X (¢). In words, U(z,t)
is single-peaked in z, with a maximum at z = X (). Similarly, V4(%,t) > 0 when t < p(t),
and Vi(%,t) < 0 when > p{t). In words, V(£,¢) is single-peaked in %, with a maximum at
t = p(t).

In figure 1, we exhibit indifference contours for two types of parents, t and #. The

indifference contours for type t are ellipses centered at the point (p(¢), X(t)); similarly, the

Gince lim._,gu'{c) = +o0, we know that the solution to the first order condition is interior for ali
t € (0,1). Plainly, X{0) =0 and X(1) =1.

128ince /(0) is finite and u/(1) = 0, we know that the solution to the first order condition is interior for
all t € (0,1). Plainly, p{0) = 0 and p{1) = 1.

11




indifference contours for type ¢’ are ellipses centered at the point (p{t'), X(#')). Notice that
these contours generally cross twice or not at all. This illustrates the failure of the single-

crossing property noted at the end of the previous section.

2.4 The direction of imitation

The perception bliss point function, p(t), plays a critical role in our analysis. Its relation to
t is particularly important. In this paper, we will largely concern ourselves with two special

cases.

Condition 1 (imitation towards the center): p(t) > t for t € (0,%), p(t) < t for
te (%, 1), and p'(3) < 1.

We depict a perception bliss point function satisfying condition 1 in figure 2. Note that
all types wish to be perceived as loving their children more equally than they actually do.

Consequently, imitation tends to occur towards the center of the type space.

Condition 2 (imitation towards the extremes): p(t) < tfor t € (0, %), p(t) > t for
te (é, 1), and p/(3) > 1.

" We depict a perception bliss point function satisfying condition 2 in figure 3. Note that
all types wish to be perceived as loving their children less equally than they actually do.
Consequently, imitation tends to occur towards the extremes of the type space.

Naturally, it is possible to have configurations in which some types wish to be perceived
as loving their children more equally than they actually do, while other types with to be
perceived as loving their children less equally. We do not, however, consider these mixed

cases in the current paper; see Bernheim and Severinov [14] for further discussion.

2
Example 3: Suppose that v(t) = h (— (1 — f) ), and that v otherwise satisfies assump-
tion 1. Then condition 1 is satisfied if £ is concave, and condition 2 is satisfied if A is convex.
In example 2, we considered the special case where h is linear; p(t) = ¢ corresponds to the

boundary between conditions 1 and 2.

12




At this point, it is useful to place our model within the broader context of signaling
problems. Standard signaling models (e.g. Spence [33]) assume that all senders wish to be
perceived as the “highest” type, and imitation occurs in only one direction. In our framework,
this would correspond to the assumption that p(t) = 1 for all ¢.

Crawford and Sobel [20] consider cases where, as in our model, p(t) is strictly increasing,
but they also assume that, as in the standard setting, p(t) > ¢ for all £. Consequently,
imitation only occurs in one direction. They focus exclusively on signaling through pure
commuuication (cheap talk), and do not permit senders to take costly {and therefore poten-
tially discriminatory) actions. They demonstrate that a limited degree of separation through
cheap talk is usually possible: in some equilibria, senders willingly segment themselves into
a finite number of groups.

Austen-Smith and Banks [3] have extended the model of Crawford and Sobel by allowing
costly signalling (burning money). They assume that-the marginal cost of action is type-
independent. In their model, a set of types take costly action, while other types segment
into a number of pools through cheap talk.

Bernheim [11] and Banks [5] consider cases where p(t)} = 1/2 for all . Their models are
related to the problem that emerges here under condition 1, in that imitation occurs towards
the center of the type space (it is therefore multidirectional, as in the current setting).
However, these papers do not allow for the possibility that p{t) is increasing (as in Crawford
and Sobel), and neither examines .the potential role of cheap talk. Both Bernheim and Banks
exhibit signaling equilibria in which there is a central pool.

One can think of our model as combining features of the settings studied by Crawford-
Sobel on the one hand, and Bernheim-Banks on the other. In our model the non-monotonicity
of the payoff from action U(z,t) and the payoff from perception V(t,p) generate double-
crossings of indifference curves. Increasing perception bliss point implies that there is a
role for cheap talk. However, since imitation is multi-directional (the perception bliss point

function also crosses the 45 degree line), the model also yields central pooling with respect

13




to the costly action, as in Bernheim-Banks. In ongoing work, we are studying more general
cases of multidirectional signaling that subsume the current model (in particular, we allow

for arbitrary increasing perception bliss point functions).

2.5 The structure of equilibria

A signaling equilibrium involves a pair of choice functions, p(t) and (t), mapping the
parent’s type t to, respectively, decisions concerning the division of bequests, z, and a pure
message, m, as well as an inference function ¢(#,z,m) mapping choices of £ and m into
probability distributions over perceived type, t.13 The choice function must prescribe optimal
decisions for all types t given the inference function. Conversely, the inference function must
be consisﬁent with the choice function, in the sense that it is derived from the choice function
by-applying Bayes law for all choices (x,m) occurring with positive likelihood in equilibrium.

For equilibria with perfect separation of types, the inference function always prescribes a
degenerate probability distribution (in other words, it indicates that the children believe they
know the parent’s type with certainty) for each (z,m) in the image of the choice function.
The parent’s utility is then determined directly from equation (1). Unfortunately, equation
(1) does not allow us to evaluate the parent’s utility when the inference is given by a non-
degenerate probability distribution. Knowing how to evaluate the parent’s utility in such
circumstances is, of course, essential if one intends to study equilibria with pooling.

In standard signaling models, non-degenerate inferences do not pose any analytic prob-
lems. The receiver selects a response that maximizes expected utility given the inference,
and the sender’s utility is affected by this response. Non-degenerate inferences are some-
what more problematic in the context of the current model because we have not been explicit
about the process governing a child’s “reaction” to its beliefs about the parent’s type. In
particular, we have not explicitly assumed that this reaction is governed by maximization of

expected utility. Indeed, in some instances this assumption may be unnatural; for example,

13Naturally, 2(t) and #(%, z, m) also depend on the intial conditions (z,¥), which parameterize the problem.
We omit the dependence on initial conditions for notational brevity.
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the reaction may amount to “hurt feelings” that are not consciously chosen to maximize
anything.

We finesse this difficulty by making a stylized but relatively unrestrictive assumption
concerning the mapping from non-degenerate inferences to payoffs. In particular, we assume
that there is a mapping B from beliefs about types (probability distributions) into types, with
the following interpretation: if the children’s beliefs about the parent’s type are summarized
by the probability distribution ¢, they react the same as if they knew with certainty that
the parent’s type was B (¢). The parent’s utility is then given by equation (1), where B(¢)
replaces the term .

Naturally, it is difficult to proceed analytically unless we impose some restrictions on the
mapping B. A small number of minimal and relatively unobjectionable restrictions suffice
for our purposes. We impose some of these restrictions only for cumulative distribution

functions, ¢(t), of the following type:

(F(t) — F(r))/ (F(s) — F(r)) for t € [r,s)
Pty =4¢ lift > s
Dift<r

where 0 <1 < s < 1. In other words, these are the posterior probability distributions that
emerge when the children learn only that the parent’s type lies between some 7 and some s.
For such ¢, we can write B(¢) as B(r,s). We assume that the functions B and B have the

following properties:

Assumption 2: (i) If, for some #, ¢(#') = 1 and ¢(t) = 0 for t < t', then B(¢) = ¢
(ii) Consider two cumulative distribution function, ¢’ and ¢”, such that ¢'(t) < ¢"(¢) V¢,
with strict inequality for some ¢t. Then B(¢') > B(¢"). (iii) B(r,s) is twice continuously
differentiable and B(r,s) =1— B{1 —s,1 ~7r).

Part (i) is essentially a tautology: it states that, if the children are certain the parents
type is ¢/, then they react as if they know with certainty that the parent’s type is t'. Part
(ii) requires that, if the children’s beliefs shift towards higher types, then they react as if the
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parent is a higher type. Part (iii) includes a technical differentiability condition along with
the requirement that B is symmetric around 1/2. This is in the spirit of other smoothness
and symmetry assumptions that are built into our model. From these assumptions, one can
derive two additional properties: first, B(r,s) is increasing in r and s (this follows directly
from part (ii}); second, for r < s, B(r,s) € (r,s) (this follows from part (i), along with the
fact that B(r,s) is increasing and continuous in r and s).

One example of a function B satisfying assumption 2 is the mean value operator, i.e.

3
B(t,7) = | to(t)ds
b3
However, we do not limit our analysis to this particular function.

2.6 Equilibrium, pooling, and social norms

Qur objective in this paper is to provide a theory that accounts for the stability of and
‘widespread adherence to social norms governing the division of bequests. We take the view
that pooling provides a potential explanation for the existence of a norm. In particular, we
explain the prevalence of equal division in some societies by identifying conditions that give
rise to equilibria in which a non-trivial fraction of the population chooses = €. We account
for the emergence of this norm by demonstrating that the corresponding pooling equilibria
have attractive properties, and we attribute the stability of this norm to the robustness of the
equilibria. Similarly, we explain the prevalence of unigeniture in other societies by identifying
conditions that give rise to equilibria in which a non-trivial fraction of the population chooses
z € {0, 1}, and we account for the emergence and stability of this norm in a similar way. Qur
analysis reveals that a norm of equal division arises under condition 1 (imitation towards
the center), while a norm of unigeniture arises under condition 2 (imitation towards the

extremes). The next two sections examine these cases in order.

16




3 Imitation Toward the Center

We begin our investigation by studying the properties of equilibria when condition 1 (imita-
tion towards the center) is satisfied. Our analysis proceeds in two steps. First, we identify
circumstances under which complete separation is impossible. Under these circumstances,
equilibrium necessarily entails some pooling. Second, we investigate the existence, proper-
ties, and robustness of pooling equilibria for which z = z¥ is the unique social norm. The
section closes with a discussion of the distinction between gifts and bequests, in which we
account for the observation that the equal division norm applies to the latter but not to the

former.

3.1 The existence and non-existence of separating equilibria

As mentioned in section 2.4, when condition 1 is satisfied, our framework is related to
Bernheim’s [11] modei of social conformity. The central difference is that Bernheim restricted
attention to the case where p(t) = 1/2 for all £. As it turns out, this restriction simplifies
the analysis considerably. In particular, Bernheim proves at the outset of his investigation
that equilibrium action functions must be weakly monotonic, in the sense that higher types
(those with higher action bliss points) choose weakly higher actions. This result follows
directly from a few simple lines of algebra, and provides a useful starting point for much
of his analysis. Unfortunately, for the more general class of perception bliss point functions
considered here, monotonicity of the equilibrium action function is not generally guaranteed.

Figure 4 exhibits a potential failure of monotonicity. To keep things simple, we have
assumed for the purposes of this illustration that there are only two types, s and 1 — s
(s < 1/2), and that each child has endowment w. Consider the following set of actions and
inferences: ¢ chooses 1 —w/W and 1 — s chooses w/W; the children infer that the parent is
type s if they observe 1 —w/W, that the parent is of type 1— s if they observe w /W, and that
s and 1 — s are equally likely if they observe anything else. If the indifference curves of types

s and 1 — s are as depicted in the figure, then this is a separating equilibrium, even though
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it violates monotonicity (the lower type chooses a higher action). From an inspection of the
figure, it is readily apparent one cannot construct such an example if p(s) = p(1 —s) = 1 /2.

Fortunately, this does not mean that our analysis must allow for non-monotonic sepa-
rating equilibria. Qur first result demonstrates that the preceding example depends on the
discreteness-of the type space. When there is a continuum of types (as assumed in section
2), separating equilibria must have the property that z is strictly monotonic in the parent’s

tvpe, &.

Theorem 1 Suppose that condition 1 is sotisfied. Then, in any separating equilibrium with

endowments given by some pair (x,T), u(t) is strictly monotonically increasing and contin-

wous, p(t) > X(t) fort € (0,3), u(t) < X(¥) fort € (4,1), and p(}) = 4.

Proof: See Appendix A.
Although theorem 1 is considerably more subtle and difficult to prove than the corre-
sponding result in Bernheim [11], its implications are similar. For parents with ¢ < -;—, the

direction of imitation is upwards, while for parents with ¢ >

=T

, the direction of imitation
is downwards; in both cases, parents “lean” towards the center. One can therefore proceIed
by examining the nature of separating functions emanating from the two extreme points,
t € {0,1}.

Accordingly, let u(t) denote the separating function for ¢ € [0,1/2) emanating upward
from t = 0, 4#(0) = z, and let 7i(t) denote the separating function for ¢ € (1/2, 1] emanating
downward from ¢ = 1, 7i(f) = T. The indifference contours of each type ¢ € [0,3) must be
tangent to the equilibrium action function, x(t), at the equilibrium outcome assigned to that

type. Thus, p(t) corresponds to the solution of the differential equation

BV
&) =~ 5,9

on the interval ¢ € [0, ), with the initial condition p(0) = z (there are analogous expressions

(4)

that determines fi(t) for t € (3,1]). The existence and uniqueness of u(t) and of 7(t) follow
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from modifications of standard arguments (see the proof of theorem 2 in appendix A). We
know from the proof of theorem 1 that lim,1 g () > 1, and that lim,1 7 (t) < 2. We
also know from the theorem that there can be no separating equilibrium if either of these
expressions holds with strict inequality.** Consequently, full separation of types is impossible

unless

1

1&“;&(@ = Llf?ﬁ(t) -3 (5)

Equation (5) may or may not hold in any given instance. The equation is less likely to
hold — and separating equilibria are therefore less likely to exist — when types ¢ € (0, %) must
lean further to the right (or when types ¢ € (3, 1) must lean further to the left) to discourage
imitation. Generally, for larger values of 3 (the utility weight attached to perceptions) and/or
lar.ger child endowments (z and T), any given ¢ € (0, %) must shade its choice further to the
right to differentiate itself from lower types, and any given t € (%, 1) must shade its choice
further to the left to differentiate itself from higher types. These observations lead to thé

following result:

Theorem 2 Suppose that condition ! is satisfied. For any pair of endowments (z,T), there
exists 3*(z,T) such that o fully separating equilibrium ezists if and only if 3 < F*(z, 7).

B*(z. %) is decreasing in max{z, T}, and strictly positive iff max{z, T} < 1
2

Proof: See Appendix A.

From theorem 2, we know that full separation is impossible when children attach suffi-
cient importance to parental affection (3 > 3*(z,Z)). It follows that any equilibrium must
then involve some pooling. In the next subsection, we investigate the structure of pooling

equilibria.

14 A ssume that one or both of these conditions holds with strict inequality. It might appear that one
couid construct an equilibrium with complete separation using g and 7Z, relying on cheap talk signals, m, to
achieve separation in the region of overlap. Iowever, this is nat the case. Theorem 1 establishes that, with
a continuum of types, p(t) must be strictly monotonic even when we allow for cheap talk. Consequently,
there can be no region of overlap.
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3.2 Equilibria with pooling
3.2.1 Central pooling equilibria

As is usually the case with signaling models, our problem gives rise to a wide variety of
pooling equilibria. We will begin by studying a particular class of equilibria with a relatively
simple structure. The action functions for these equilibria are characterized by three param-
cters, te, th, and x,, satisfying 0 < te < 3 <th < 1, 2, € [2,7], and p(t) < 2, < 7E(ty).°
Specifically,
u(t) for t < t,
p(t) =< @) fort >ty

T, for t € [ty )

Henceforth, we will refer to these as “central pooling” equilibria. Separation occurs for low
types (t < t;) and for high types (t > tx). However, all intermediate types (t € [te,s],
including t = %) select the same action, z,. We refer to z, as the norm of this equilibrium.

To be clear, this does not necessarily mean that all t € [¢,, 5] find themselves in the same
pool. Even if the intermediate types all choose the same action, they may still choose to
differentiate themselves through cheap talk (pure communication, m). Indeed, conditional
upon -choosing the same action, these individuals effectively play a pure communication
game similar to the one studied by Crawford and Sobel [20].1* As it turns out, we cannot
guarantee the existence of central pooling equilibria unless we allow for cheap talk, Thus,
as a general matter, dissipative signaling and pure communication coexist in the equilibria
of our model. When, for example, a norm of equigeniture prevails, parents who divide their
bequests equally may nevertheless make informative statements about the extent to which
they favor one child or the other.

Our next result establishes that central pooling equilibria always exist when full separa-

tion is infeasible.

l5Here and below we omit the dependence of u(t) and Z(t) on the endowments (z, 7).

16This pure communication game differs from Crawford and Sobel's framework in two respects. First, it
is not the case that p(¢) > ¢ for all + within the group choosing z,. Second, the equilibrium of this pure
communication game must be consistent with the equilibrium conditions for the overall game.
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Theorem 3 Suppose that condition 1 is satisfied and that 3 > §*(z,T). Then there erists
a central pooling equilibrium with some norm x,, in which parent types choosing T, separate
themselves into a finite number (possibly just one) of subgroups through pure communication

{m), and in which each of these subgroups is a connected interval.

Proof: See Appendix A.

When a central pooling equilibrium prevails, we interpret T, as a social norm. Those
with sufficiently extreme preferences deviate from the norm, but those with intermediate
preferences adhere to it. Those adhering to the norm may further differentiate themselves
to a limited extent through credible verbal statements.

It is important to emphasize that one cannot guarantee the existence of central pooling
equilibria unless parents have the ability to send pure messages (cheap talk). To understand
this point, assume that p(t) is very close to ¢, so that for all ¢, V(2,t) ~ V(B(t, 3),t) > 0.
In that case, no type ¢ could serve the role of ¢, unless the central pool is further segmented
by cheap talk. From the point of view of any such type ¢, the action associated with
the central pool is worse than #'s separating action (since x, > u(t) > X(t)). Moreover,
from t’s perspective, the inference associated with the central pool, B(t,t;), is worse than
the inference B(t,%) (since ¢, > § and since, by assumption, B(%,3) > p(t)), which is in
turn worse than the inference associated with separation (¢). Thus, no type t could ever

be indifferent between separating and joining the central pool, which is a requirement for

equilibrium.
3.2.2 Central pooling equilibria with a norm of equal division

Of course, nothing so far guarantees that it is possible to sustain a norm of equal division
(the special case of z, = z¥). When the children have identical endowments, the model is
completely symmetric, so one would naturally expect to find a central pooling equilibrium
with a norm of equal division. This, however, would not account for the robustness of

the norm. Exact equality of endowments is 2 measure zero event, and in practice many
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parents are heavily predisposed to divide bequests equally even when children’s resources
are unequal.

In our next result, we demonstrate that there almost always (generically) exists a cen-
tral pooling equilibrium with an equal division norm provided that there is not too much
inequality between the children’s initial endowments. This establishes the robustness of the
equal division norm. VFormally, we proceed as follows. Let F be the set of functions B
satisfying assumption 2. We endow F with the topology of uniform C! convergence. In this
topology, two functions are close if their values and partial derivatives are close throughout

the relevant domain.

Theorem 4 Fiz W and z, = z + T. Suppose that condition ! is satisfied and that 3 >
3*(%k, k). In the set F there 15 an open-dense set subset F with the following property:
for all B € F there is some & > 0 such that if !Il - 52&| < 0, there exists a central pooling
equilibrium unth a n.orm of €€, in which parent types choosing z¥ separate themselves into
a finite number (possibly just one) of subgroups through pure communication (m), and in

which each of these subgroups is a connected interval.

Proof: See Appendix A.

Though theorem 4 does not tell us directly the fraction of the population that adheres to
the equal division norm, it nevertheless illuminates this issue. In practice, the population is
characterized by heterogeneity with respect to the division of resources within families (which
we have not formally included in our model), as well as by heterogeneity of preferences (which
is included). However, since our model describes equilibria conditional on endowments,
we could easily introduce a distribution of endowments. To determine the fraction of the
population adhering to the equal division norm, one would proceed as follows. First, identify
every profile of endowments giving rise to a central pooling equilibrium with equal division;
second, for each such profile, identify the types that divide their bequests equally. Under
fairly weak conditions, theorem 4 would imply that the resulting set of individuals with the

identified endowments and associated types has strictly positive measure.
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Knowing that some positive fraction of the population adheres to an equal division norm
does not, of course, imply that this fraction is large. In principle, the central pools might
be small, and the norm might be sustainable only for small differences in endowments. It is
easy to see, however, that the extent of adherence to the norm depends, among other things,
on 3 (which measures the extent to which children care about parental affection). As 3
increases, y shifts to the right and 7 shifts to the left, increasing the region of overlap. Since
the equilibria under consideration are monotonic, the fraction of the population choosing x,
must grow, and indeed one can make this fraction arbitrarily high by choosing 3 sufficiently
large. Likewise, for larger values of 3, it is natural to conjecture that one can sustain an
equal division norm with greater inequality between children’s endowments. If this is the
case, then, for large enough /3, one can generate environments in which high fractions of
parents divide their estates equally. .

We illustrate this point by solving for the ‘equilibria of our model computationally. Natu-
rally, this requires us to parameterize the model. We assume that u{¢) = ¢"/y withy < 1 (as
in example 1) and v(t) = —(1—%)* with A > 2 (a special case of example 3 wherein condition
1 is satisfied). For all of the calculations presented here, we assume that v = 0.5 and A = 3.
Under these assumptions, we can rewrite equation (1) - which defines the parent’s utilit}; -

as

U z? (1—az)7 3
Wz = t7+(1—.t)T] ~ (W) EO - +(1-0P],

where we have divided through by the constant W?. Note that, for this parameterization,
changes in total family resources, W, are essentially equivalent to changes in the preference
parameter 3. To compute equilibria, one need only know the ratio 3/W7.

Fixing values of z, T, v, A, 3/W?, and z€, we compute equilibria as follows. First, we
numerically approximate the solutions to the differential equations that define the separating
functions p and fZ. Second, for some candidate value of ¢;, we compute the implied segments
of the central pool. Specifically, we find the inference ¢ that makes ¢, indifferent between
(ui(te), te) and (z,7). We then calculate the highest type in the first segment of the central
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pool, to, using the expression B(t,,t3) = . Type t5 in turn must be indifferent between the
first and second segments of the central pool. We can therefore calculate the highest type
in the second segment, ¢,, using the indifference condition V(B(t,, to), to) = V(B(tg, t1), to).
We continue this process until it is no longer possible to extend the sequence, or until
we have obtained a candidate value for #,. Third, we check to see whether the requisite
indifference condition is satisfied for this ¢,. In particular, 4, must be indifferent between
(z%, B{ty_1,tx)) and (f(ts), tn) (where ty_; is the penultimate type in the sequence). If the
indifference condition is satisfied, the configuration is an equilibrium. To find all equilibria,
we need only search exhaustively over a single dimension (¢, € [0, 3)).

To illustrate these calculations, suppose that z = 0.2 (child 1 has 20 percent of the family’s
resources), T = 0.45 (child 2 has 45 percent of the family’s resources), and 3/X” = 11. For
these parameter values, our algorithm identifies two central pooling equilibrié. with equal
division (z% = 0.375). In the first, #; = 0.0893, and this type chooses u(t,) = 0.310 as a
separating action; £, = 0.9200, and this type chooses 7(t;) = 0.470 as a separating action; all
types between 0.0893 and 0.9200 choose equal division {z% = 0.375), and separate through
cheap talk into three segments, {0.0893, 0.1459], {0.1459, 0.7517], and [0.7517, 0.9200]. In the
second equilibrium, ¢, = 0.0838, and this type chooses u(t;) = 0.298 as a separating action;
tp = 0.9270, and this type chooses Z(t;) = 0.481 as a separating action; all types between
0.0838 and 0.9270 choose equal division (z¥ = 0.375), and separate through cheap talk into
two segments, [0.0838, 0.5806] and [0.5806, 0.9270].

Figures 5 and 6 provide a more comprehensive picture of the parameter values that are
consistent with an equal division norm. For figure 5, we set x; = 0.66 (so that the children
have roughly two-thirds of the family’s resources) and depict computational results for all
z € [0,0.66] and 3/W7™ € [0,25]. Equal division of children’s endowments corresponds to
cases in which z = 0.33; all other cases involve unequal endowments. The lightly shaded area
identifies parameter values for which z(3) < zf < p(%), and where one of the inequalities

is strict (a necessary condition for the existence of an equilibrium with an equal division
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norm). The dark area identifies parameter values for which a central pooling equilibrium
with equal division exists. Note that, as 3 increases, an equilibrium norm of equal division
is consistent with greater inequality of children’s endowments. In fact, for 3/W” > 20,
equigeniture emerges in equilibrium essentially irrespective of how children’s endowments
are divided.*” Therefore, if one selects the population distribution of 8 appropriately for
any given distribution of endowments, the model is capable of reproducing any frequency of
adherence to an equal division norm, including the actual frequency for US households. Note
also that an increase in the family’s resources (holding fixed proportional endowments) can
make equal division more or less feasible, depending on whether + is, respectively, negative
or positive.

Figure 6 consists of three panels. For each, we fix the value of 3/W”, and depict com-
putational results for all w/uy, € [0,1] (where wy = (w, + wy)/W, so w /wy = 0.5 signifies
equality of the children’s endowments) and wp/W € [0,1] (wp/W denotes the parent’s en-
dowed share of the family’s resources). In other words, for this figure we fix the family’s
total resources and preference parameters while varying the division of endowments between
the family members. The shaded areas (light and dark) are defined as before. In moving
through panels (a), (b), and (c), we consider successively smaller values of 3/W?.

As we reduce 3/W7, it becomes easier for any given type to discourage imitation by
more extreme types, so decisions are less distorted from p(¢). This in turn implies that the
lightly shaded area must contract. However, as illustrated in panel (b}, for any given value
of 3/W?, the boundaries of the lightly shaded set may be non-monotonic. The necessary
condition for an equilibrium with equal division is always satisfied for small enough values
of wp/W. This follows from the fact that x(3) must exceed z€ (z€ must exceed 7(3)) if

#(0) is close enough to z® (7(1) is close enough to zZ). For large values of wp/W, the

division of children’s endowments is essentially irrelevant (they own practically nothing), so

the necessary condition is either satisfied for all values of w/W (as in panels (a) and (b)) or

"We say “essentially” any division of children’s endowments because our computational approach encoun-
ters boundary problems as z approaches 0 or .
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for no values of w/W (as in panel (c)). For intermediate values of w, /W, sufficient inequality
of the children’s endowments may drive zZ outside of the interval [z(3}, s(3)]; this produces
the non-monotonicity noted in panel (b).

As before, the heavily shaded areas indicate the parameters for which equal division
equilibria exist. Note that, for small values wp /W, an equilibrium norm of equal division
is always consistent with substantial inequality of children’s endowments.’® This finding
is intuitive. When the parent holds a small fraction of the family’s resources, the costs
of giving offense to a less-loved child are potentially large, while the potential benefits of
compensation are quite limited. It does not follow, however, that an equal division norm
is necessarily less consistent with iﬁequality of children’s endowments for large values of
wp/W. On the contrary, as illustrated in panel (a), the boundaries of the heavily shaded
area may be non-monotonic. This occurs because, for high values of B/W7, an equilibrium
with an equal division norm exists for w;/wy = %, and the children are endowed with so
 few Tesources that the division between them doesn’t matter.!® In contrast, for intermediate
values of wp/W, r¥ varies substantially with w; /wy; consequently, ¥ may be inconsistent
with the equilibrium conditions for central pooling when the value of u Jwy is sufficiently
extreme. Nevertheless, for low values of 3/W?, the boundaries of the heavily shaded area
are monotonic, which implies that an equal division norm is less consistent with inequality of
children's endowments for large values of wp/W (see panel (c)). This occurs because, for low
* values of 3/W7, the necessary condition for the existence of an equal division equilibrium is
only satisfied for small values of wp/W.

We note that this analysis generates at least one potentially testable implication: the
likelihood of equal division rises as the parent’s endowed share of family resources falls, at

Jeast when this share is small. One must, however, interpret the pertinent empirical evidence

18We suspect (but have not proven) that, for sufficiently small values of wp/W, any value wy Jwg is
consistent with the existence of an equal division equilibrium. This is not apparent in panels (b) and (c)
because we do not use a sufficiently fine grid for wp/W.

19%or this reason, we suspect (but have not established) that, for sufficiently large values of wp/W, any
value w /awy is consistent with the existence of an equal division equilibrium in panel (b} as well. Panel (b)
may obscure this property because we have not used a sufficiently fine grid for wg/W.
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with caution. Plainly, the relationship between the frequency of equal division and wp/W
may be non-monotonic. Moreover, unless one holds W (total family resources) constant, the
model is in principle consistent with almost any relation between parental resources, wp,

and the frequency of equal division.
3.2.3 Equilibrium selection

Intuitively, theorem 4 holds because the set of central pooling equilibria is not locally nnique.

In general, it is possible to sustain central pooling equilibria for all z, in some nondegenerate

1

interval. When children have equal endowments, this interval is symmetric around 3,

and
therefore contains the point corresponding to equal division of bequests (for this case, z¥ =
%) Generally, changes in children’s endowments lead to continuous changes in the end points

of this interval, and in z¥. Thus, zZ

remains in the interval of sustainable pooling actions
provided that w, and wy stay within some neighborhood of each other,

The non-uniqueness of equilibria raises an important question: why do we choose to focus
on the particular equilibrium described in theorem 4?7 One possible answer avoids the issue of
equilibrium selection entirely. In particuiar, one can read our results as demonstrating simply
that a norm of equal division is consistent with optimization and economic equilibrium. This
is of interest because there is, to our knowledge, no other model with this implication; hence
equal division of bequests is widely regarded as a puzzle.

We do not, however, wish to suggest that all equilibria are equally compelling as a matter
of theory. Indeed, we believe that central pooling equilibria with equal division are especially
attractive. There are two separate issues to consider in this context: First, why should we
focus on central pooling equilibria? Second, why should we pay particular attention to
central pooling equilibria with equal division of bequests?

One can, of course, attempt to address these issues by using available techniques to
refine the equilibrium set (see e.g. Cho and Kreps [16]). Unfortunately, existing refinements

appear to have little power in settings where p(#) is increasing, unless one also imposes some

other criterion. Qur approach in this section is to focus on equilibria that have a natural
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monotonicity property.

Definition: We will say that an equilibrium is monotonic if (i) p(t) is weakly increasing
in t, and (ii) for all ' > 7", arbitrary messages m’ and m”, and t € [0,1], ¢(t,z',m') <
o(t,z", m").

In words, an equilibrium is monctonic the equilibrium action function, u(t), is weakly
increasing in ¢, and if higher actions weakly shift inferences towards higher types, in the sense
of first order stochastic dominance. We find these equilibria appealing because preferences
are monotonic: higher types prefer to take higher actions.

All central pooling equilibria have weakly increasing action functions, but are not nec-
essarily monotonic. If, however, a central pooling equilibrium is not monotonic, then there
is an equivalent central pooling equilibrium that is monotonic (one uses the same action
function but adjusts out-of-equilibrium beliefs a,ppropriately). Thus, the set of monotonic
central pooling equilibria is essentially equivdlent to the set of central pooling equilibria. A
similar statement holds for separating equilibria.

We will further refine the set of monotonic equilibria through a device known as the
D1 criterion (see Cho and Kreps [16]). In effect, this criterion insists that, on observing a
deviation (defined as an action not taken with positive probability by any type of agent in
the candidate equilibrium), an individual will infer that the deviating party belongs to the
class of agents who had an incentive to make the observed deviation for the largest set of
beliefs.

As our next result demonstrates, these criteria exactly characterize the set of outcomes

associated with separating equilibria and central pooling equilibria (when each exists):

Theorem 5 All separating equilibria satisfy the DI criterion, and for any central pooling
equilibrium there erists an equivalent monotonic central pooling equilibrium (same action
function and message function, possibly different out-of-equilibrium beliefs) that satisfies the
D1 ecriterion. Moreover, all monotonic equilibria that satisfy the D1 criterion are either

separating equilibria or central pooling equilibrio.
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Proof: See Appendix A.

Having provided a formal justification for preferring central pooling equilibria, we now
turn our attention to the second selection issue: why focus attention on the equilibrium with
equal division of bequests? Here, our answer is less formal, and is predicated on the focalness
of z¥. When many outcomes are consistent with equilibria, “meeting in the middle” is often
the most natural rule for coordinating activity (Schelling [32]). Moreover, any equilibrium
not involving some form of equal division would require the parties to share a common
understanding of the “ordering” of the children (i.e., which child has received z and which
has received 1 — z). If, for example, the norm is a 60-40 split, there may be confusion as
to wﬁethgr a 40-60 split constitutes a deviation from the norm. Families could base the
ordering on some objective criterion such as age, but there are many competing criteria
(gender, income, and so forth). With a norm of unequal division, the ordering aiways favors
one child over the other, so the children might even take the ordering itself as a signal of ¢.

Equal division of the family’s resources (as opposed to equal division of bequests) is
also appealing as a focal norm. However, unlike equal division of bequests, it is not always
feasible (one child may have more than half of the family’s resources), and it requires parents
to constantly adjust their wills through time when children accumulate resources at different
rates. We also doubt that it would be robust if one added some degree of asymmetric
information about w; and wy; unlike equal division of bequests, equal division of total family

resources is not easily verified.

3.3 The role of observability

In formulating our model, we have assumed that essentially everything is publicly observable,
with the exception of the parent’s preference parameter, ¢. In this section, we note that our
results depend only on the observability of transfers; an equal division norm would emerge
under analogous conditions even if the parties had private information concerning their
endowments and consumption, or if the children had private information about their own

preference parameters, or if the parent could send private “cheap talk” messages. The fact
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that we cannot dispense with the observability of transfers explains the empirical observation

that an equal division norm applies to bequests, but not to intra vives gifts.
3.3.1 The observability of endowments

In practice, parents and children have limited ability to observe each others’ resources and
expenditures. Though we assume the opposite, this is primarily a matter of analytic and
notational convenience. Imagine, for example, that each party has private information con-
cerning his or her own endowment (but not concerning the eﬁdowment of any other party),
and that expenditures are unobservable. Since bequests are observable, children can always
compute the parent’s resources at death after the fact, before they make their inferences
concerning the parent’s preferences. Consequently, we can continue to treat the parent’s
endowment as if it is publicly observable. Since children’s endowments may be uncertain
from the perspective of the parent, we must replace our original equation for the parent’s

utility with the following expression:

Up = [tEiluu(w + zwp) + (1L — ) B2 (w 4+ (1 —:v)wp)] + 73 [tv (f) +{1-t)v (1 — f)] :

where E}, is the expectations operator over endowment w for child i. Though it is no longer
convenient to think in terms of the parent dividing total family resources W (since this is
uncertain from the perspective of the parent), few other changes in our analysis are required.

The analysis of the previous paragraph is essentially unchanged when we assume that
expenditures are observable, but endowments are not. In the absence of .stochastic Teturns,
one can infer endowments from expenditures and transfers. However, the parent never has
the opportunity to observe expenditures that might shed light on children’s resources at the
time of the parent’s death. Though children can make these calculations, this does not affect
their inferences about the parent’s type, since they know that the parent did not observe
these expenditures prior to dividing his or her estate.

The preceding discussion presupposes that no party has private information concerning

the endowment of any other party. This is somewhat restrictive. A parent may know
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- something about the resources of one child that is not known to the other child. Indeed,
children could conceivably undertake activities designed to signal the level of their resources
to the parent, and only to the parent. The extension of our analysis to such cases is non-
trivial, since the parent’s bequests might then signal either the value of the parent’s preference
parameter, or the nature of the parent’s information concerning the resources of each child.

We have not yet studied models that allow for these possibilities.
3.3.2 The observability of the children’s preference parameters

In formulating our model, we assumed that parents know the utility weight & that children
attach to parental affection, but that children do not know the utility weight ¢ that the
parent aséigns to the first child. This sharp asymmetry may strike the reader as unnatural.
It is therefore important to emphasize that our results continue to hold when the children
have private information about the parameter 3. This is because the informativeness of the
parent’s choices depends upon the parent’s beliefs about the parameter 3, rather than on
the actual value of 3. Provided that the parent and the children share common priors about
the distribution of 3, and provided that the unconditional distribution of 3 is the same for
both children, we can simply replace our original equation for the parent’s utility with the

following expression:

Up = [tu(@W) + (1 - thu((1 — z) W)] + E(8) [tv (£) + 1 —t)v (1 - E)],

where F is the expectations operator over the parameter 3. This modification alters nothing
of substance. Naturally, the parent’s beliefs about the distribution of 3 may differ across
children. However, as a formal matter this case is equivalent to a situation in which each
child 7 has a different preference parameter 3;, and in which these parameters are known

with certainty to the parent (one simply replaces each 3; with E;(3)).
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3.3.3 The observability of cheap talk

Throughout, we have assumed that the “cheap talk” signal m is observed by both chil-
dren. Conceivably, it would be more natural to assume that, in addition to making public
pronouncements, the parent can speak privately to either child. With minor a minor modi-
fication, the model can accommodate this possibility. Formally, the parent selects triplet of
pure messages, (m,my, my), where both children receive the message m, and where child ¢
privately observes the message m;. It is easy to demonstrate that this modification changes
nothing of substance. In particular, the private signals m; are necessarily uninformative.
Assume on the contrary that, for a given (z,m), m; leads to a different inference than m;.
Changing m; only affects the utility of child ¢. Moreover, every parent type ¢ has the same
preference ranking over child #'s inference. Thus, if /] leads to a more favorable inference
than m/ for one parent type, it does so for all parent types. Consequently, there can be no

separation of types aiong the m,; dimension.

3.3.4 Gifts vs. bequests: the observability of transfers

Next, imagine that, contrary to our assumptions, a transfer to one child is not observable
by the other child. If everything else is observable (aside from t), each child can compute
the magnitude of the transfer to his or her sibling from endowments and expenditures,
so our results are unchanged. However, in more realistic cases where endowments and/or
expenditures are also imperfectly observable, the preceding analysis is inapplicable.

In our model, a norm of equal division emerges because transfers serve as a signal of
parent’s preferences that is common to both children. In other words, there is a single signal
and two audiences. When transfers are neither directly observable nor perfectly inferable
from other public information, they cannot serve as a common signal. Instead, each transfer
provides a private signal to each child. In effect, there are two separate signal-audience
pairs. The importance of this distinction is profound. If neither child is in a position to

verify that the parent’s resources have been divided equally, then the equilibrium inference
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function cannot systematically link the children’s beliefs about the parent’s preferences to
the equality of transfers. Without such a link, an equal division norm cannot survive.

To understand this point from a more formal perspective, assume that third parties
cannot observe endowments, expenditures, or transfers. Imagine a candidate equilibrium in
which a positive fraction of parent types divide their resources equally between their children
conditional on each realization of the parent’s resources. Provided that the parent transfers
to each child ¢ some amount b; (possibly different for each child) such that 2b; lies in the
support of the probability distribution for the parent’s endowment, the child must assume
that he or she is observing an equilibrium choice, rather than a deviation. Consequently, the
parent has the ability to deviate from an equilibrium by giving more to one child and less to
the other without encountering undesirable inferences based on out-of-equilibrium beliefs.

As we mentioned in section 1, the available evidence suggests that a norm of equal division
applies to bequests, but not to intra vives gifts. We also argued that this observation deepens
the equal division puzzle. In particular, one cannot simply attribute equal division to deeply
rooted notions of fairness, or to indifference about the division of resources, since these
considerations would presumably apply with equal force to both gifts and bequests.

In contrast, our analysis snggests that the key difference between gifts and bequesfs
relates to observability: the division of bequests is perfectly observable by all concerned
parties, whereas the division of gifts need not be. A parent can give gifts to a favored child
without revealing this to another éhild; however, a parent cannot make bequests to any child
without the knowledge of all children. If secret gifts are feasible, gifts cannot serve as a
common signal of the parent’s preferences, so the analysis of the previous section does not
apply. The ideal treatment of these issues requires a dynamic model in which the parent
makes unobservable gifts while alive, followed observable transfers at death. We conjecture
that our results will carry over under reasonably general conditions, but we leave this as a

topic for subsequent work.

33




4 Imitation Toward the Extremes

We now turn out attention to the properties of equilibria when condition 2 (imitation toward
the extremes) is satisfied. | To conserve space, we limit ourselves to an intuitive treatment of
this case. Formal statements of results and associated proofs are available upon request.
One can gain insight into the structure of signaling equilibria under condition 2 by noting
that the problem is similar to one that we’ve already considered. To appreciate this point,
consider once again figures 2 and 3. Note that, if one restricts attention to the interval [0, %]
in figure 2 and to the interval [%, 1] in figure 3, the parent’s perception bliss point functions,
p(t}, have the same shape. This implies that one analyzes the structure of equilibria in an

analogous way, except that type t = z, rather than ¢t = 0, is now regarded as the “lowest”

b
type, while ¢ = 1, rather than ¢ = %, is now regarded as the “highest” type. Naturaily,
one obtains analogs of theorems 1 and 2, which concern the monotonicity and existence of
a separating equilibrium.- Moreover, analogously to theorem 3, one obtains equilibria with
pools at the “top” end of the type space. The primary difference is that the “top” of the type
space refers to the extreme, rather than to the center. Thus, we obtain an extremal pool (as
in Cho and Sobel [17]), rather than a central pool. Indeed, the analysis of pooling equilibria
is much simpler than in the preceding section, since one must make sure that non-imitation
constraints are satisfied on both sides of a central pool, but on only one side of an extremal
pool. The relationship between the interval [%, 1] in figure 2 and the interval [O, %] in figure
3 is analogous. Consequently, the model generates separation from the center, with possible
pooling at both extreme points.

Despite the similarities noted in the previous paragraph, there are some important tech-
nical differences between the problems considered here and in the section 3. Equation (4)
still defines a dynamic system that governs the evolution of the separating action function
from any initial condition. However, in section 3, the natural initial condition was p (0) = .

The dynamic system generated a separating function when initialized in this way only be-

cause x > 0 was not the action bliss point of type 0. Since t = % is now, in effect, the lowest
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type for both halves of the type space, p (%) = % is the natural initial condition. But this
means that, in a separating equilibrium, the lowest type receives both its action bliss point
and its perception bliss point. It follows that the initial condition is a stationary point of
the dynamic system described by (4). The system does not generate a separating function
when initialized in this way; it simply stays put.

To resolve this issue, one must study the stability properties of the dynamic system
around the stationary point (%%) In appendix B, we demonstrate that the system is
saddle-point stable. This implies that the differential equation has two solutions satisfying
7 (%) = %, one corresponding to the stable arm, and one corresponding to the unstable arm.
The unstable arm has the property that p(t) is increasing, less than X(t) for all ¢ € (O, %) )
and greater than X(t) for all t € (%, l). In contrast, the stable arm has the property that
u(t) is decreasing in t, greater than 3 for all ¢ € (0, %), and less than ; for all ¢ € (%, 1) (see
figure 7). Tt is straightforward to verify that the first order condition suffices to guarantee
mutual non-imitation on the unstable arm, but we have not resolved this issue for the stable
arm. Thus, there is a possibility that there might exist non-monotonic separating equilibria.
The possibility did not arise in section 3 because 0 was the lowest type, and because it was
impossible to choose z < X{0) = 0. It arises here because, while 1 is the “lowest” type,
X(3) = 1 is not a “lower bound” on .

[rrespective of whether one selects the separating function corresponding to the unstable
arm or the one corresponding to the stable arm, one obtains equilibria with extremal pools,
at least for sufficiently large 3. In fact, for the unstable arm (the most natural equilibrium),
one always obtains extremal pools, even for very small 3.2° Equilibria with pools at the
extremes are of interest because we can interpret them as supporting social norms in which

one child receives the parent’s entire estate. This practice is commonly known as unigeniture,

20To see this, note that the separating function corresponding to the stable arm must have u(t) < X (t) for
t € (0, 1) {the argument is essentially identical to cne given in the proof of theorm 1). But then, with = > 0,
separation would require p{t) < z for sufficiently small £, which is impossible. Of course, since X(t) < z
for sufficiently small ¢, one also obtains strictly positve mass at the extreme points even in the absence of
signaling {i.e. if each type simply chose its action bliss point). The effect of signaling is to increase the sizes
of the extremal pools.
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and is found in many societies outside of the United States.

In contrast to equigeniture (equal division), there are a number of existing theories that
provide explanations for unigeniture (see e.g. Chu [18], or Guinnane [23]). We have opted
for a somewhat cursory discussion of condition 2 partly for this reason. It is important
to emphasize, however, that our model is completely complementary to other theories of
unigeniture. In essence, the factors described in these theories determine the population
distribution of the parental action bliss point, X (¢). The mechanism outlined in this section
then accentuates any preexisting tendency towards unigeniture.

Usually (but not always), unigeniture takes the form of primogeniture, which means that
the oldest child typically receives the parent’s estate. Our model cannot explain a preference
for older children. However, any other consideration that favors transfers to the oldest child
would skew the distribution of parental action bliss points to one side of the parent-type space
(the side that represents favoritism towards the oldest child). The mechanism considered

here would then accentuate the preexisting tendency towards primogeniture.

5 Conclusion

In this paper, we have studied environments in which parental choices affecting the level
and division of bequests provide children with information about the parent’s preferences,
and in which children are directly affected by their perceptions of parental affection. Under
conditions identified in the text, the model gives rise to equilibria that support norms of
equal division, and these equilibria have attractive properties that argue in favor of their
selection. Since these results depend critically on the assumption that transfers are neces-
sarily observable by all children, the theory applies to bequests, but not to intra vives gifts.
Consequently, our model not only provides an explanation for the equal division of bequests,
but also reconciles this pattern with the unequal division of gifts. Under an alternative set
of conditions, the model gives rise to equilibria that support norms of unigeniture. This is

of interest because unigeniture is a common pattern outside of the United States.
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Appendix A

Proof of theorem 1
Let p(t) be some equilibrium mapping from values of ¢ to values of £. Since parents also
choose a pure message m, 4 may map more than one value of ¢ to the same value of z.
However, since the equilibrium generates complete separation, children correctly identify
every type t. Thus, the outcome for type t is ((t),t) (signifying z = p(t) and t =t). Since
it is costless to imitate pure messages, the mutual non-imitation restrictions are satisfied iff
every type t weakly prefers (u(t),t) to (u(t'),t") for all £’ € (0, 1].

First we prove the following preliminary result.
Lemma 1: Vt € [0, 1), u(t) = X(¢).

Proof. Note that u(0) > z > 0. Thus, if the lemma is faise, there must exist some
t € (0,%) with p(t) = X(t). We argue that, for some small € > 0, type ¢t — ¢ would imitate
type t, which is a contradiction. Plainly, type t — ¢ weakly prefers (X{t —e),t —¢) to
(1u(t—¢€),t—¢) (where the first element in each pair refers to an action, and the second refers
to a perception). We complete the argument by showing that, for small €, type t - ¢ strictly
prefers (X (t),t) = (u(t),t) to (X(t —¢),t —¢). In particular, define

We) = [UX({E),t—e) + 8V (t,t—e)] - [UX(t—g),t—e)+ 8V (E-et—e).

Note that 9(0) = 0. Using the fact that U;(X(¢),t) = 0, it is easy to verify that ¥ (0) =
BV (t,t) > 0. So for small &€ we have ¥(g) > 0, as desired. Q.E.I>.

The remainder of the proof consists of four main steps.

Step 1. u(t) > X(t) ¥t € [0,1) (a mirror-image argument establishes that u(t) < X(t)
vt € (3, 1))

Definet = X~'(z). Sincez > 0,¢ > 0. For ¢ < t, X () < z, but u(t) > z, so u(t) > X(1).
Thus, the claim can only be false if 3t' € (¢, 5} s.t. u(t’) < X(#') (the strict inequality follows
from lemma 1). Define t* = sup{t € [t,#] | () > X(t}}; note that 1>t > 0. Bylemma
1, there are two possibilities: pu(t*) < X(t*), and uft*) > X ().
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(i) Assume first that p(t*) < X(¢*). Then there exists an increasing sequence f s.t.
limy_o fx = t* with p(ty) > X(t;). Without loss of generality, we can assume that wu(ts)
comnverges to some limit 7 (if necessary, select a convergent subsequence). Plainly, g > u{t°).

The following no-imitation conditions must hold in a separating equilibrium:

U(U(tk)a tk) + ,BV(tk, tk) = U(P‘(ts): tk) + ﬁv(tsa tk)

Up(t*),t) + 6V (&, 1) = Ulp(te), ) + BV (8, t°) (6)

Adding up the inequalities and rearranging, we obtain:
f ’ f Via(r, s)drds > ] f ’:)) Usa(r, s)drds (7)
Since U(.,.) and V(.,.) are twice continuously differentiable on, respectively, [z,1—7T] % [0,1]
and [0,1)%, and since Uia(.,.) > 0 and Via(.,.) > 0,.it follows that there exists u, v with
Na(r;8) > u > 0and v > Via(r,s) >0 on t.he respéctive domains of integration. Thus (7)
implies that
B —te)’n > (8 — i) (plte) — p(t*)z, (8)

or equivalently that 8(t* — te)v > (p(te) — p(t*))u. Since ¢* — t, converges to zero and
limg oo (u(te) — p(t°)) = T — p(t*) > 0, this inequality fails for large k - a contradiction.
(ii) Now consider the case p(t*) > X(t°). Then there exists a decreasing sequence f; s.t.
limy_.otx = t° With p(tx) < X(tx). Without loss of generality, we can assume that (te)
converges to some limit 7 (if necessary, select a convergent subsequence). Plainly, i < p(£°).
Formulate non-imitation constraints as in (6) and rearrange them as in (7). Following
the same steps as in the previous case, we conclude that for v > 0 and u > 0, the following

inequality must be true for all &:

Bty — t) 2 > (e — t°)(1(t*) — p(te)),

or equivalently that B(t — t*)u > (u(t*) — p(te))u. Since limz_.o (ty —t*} =0 and limg__
(u(t*) — p(te)) = u(t*) —E > 0, this inequality fails for large k — a contradiction.
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Step 2. u(t) is continuous on [0, %) (a mirror-image argument establishes continuity on
1.

Suppose that u(t) is discontinuous at some t¢ € [0,1/2). Then there is some sequence
tr st limg_ooty = t%, p(ty) converges to some limit 7 (if necessary, select a convergent
subsequence), and either: (i) & < u(t?), or (i) & > p(t?).

Consider (i). By step 1, X(t:) < u(t), so X(t%) < i < u(t?). Therefore 3¢ > 0 and N,
s.t. for all k > Ny, U(p(te), t%) — U(u(t®),1?) > €. Since V{ty, t*) — V(t4,t4) converges to
zero, t¢ would imitate some ¢ — a contradiction.

In case (ii) & > p(t?) > X(t4) (the second inequality follows from step 1). Consequently,
J >0 s.t. for large &, U(p(t®), t) — U(p(ts), te) > €, while V(tg, te) — V(¢4 t;) converges
to zero. Thus, some t* would imitate £¢ — a contradiction.

"Step 3. u(t) is increasing on [0,3) (a mirror-image argument establishes that p(t) is
increasing on (3, 1).

Suppose that this claim is false. Then 3t € (0,1) s.t. for some t; & (t,p(t)) we have
p(t1) < p(t). Since X(¢) < X(t1) < p(t1) < p(t) (where the middle inequality follows from
step 1), Ulu(t:), ) > U(u(t),t). Also, V(t,t) < V(t,t). Therefore, t would imitate tl.— a
contradiction.

Step 4. lim,y p(t) = limy) 1 p(t) = u(s) = 3.

" First we argue that lim,, 1 p(t) = limg, 1 1(t) = 3. From the previous steps we know that

Suppose that one of these inequalities is strict; without loss of generality, assume that it is
the first one. Then for some & > 0, there exists a sequence t; converging to % from the left
and a sequence t, converging to 3 from the right s.t. p(f) > 3+ 26 and p(£) < £+ 4 for all
k large enough. Using the non-imitation conditions for ¢ and ¢ as in (6) and rearranging
them as in (7), we obtain:

£ pulte)
* f T Ualr, 8)drds

x ult])

£t
>
ﬁ/tk /fk Via(r, s)drds > A
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Since p(ty) — p(t,) > & for large k, we can invoke the same argument as in step 1 to show
that the inequality must fail — a contradiction.

Finally, we establish that u(}) = 1. Assume on the contrary that p(%) = 1. By
continuity of U7, V, and u, U (,u(tk), %) + 3V (tk, %) converges to 7 (é,%) + BV (%, %) >
U (,u (%) ,%) + 8V (% %) Thus, type 3 would imitate type ¢ for large & — a contradiction.

QED.

Proof of theorem 2

The proof consists of 4 steps.

Step 1: Fix the action for type ¢t = 0 at u(0) = z. We claim that there exists a unique
separating function u(t) on t € [0,3). (A similar statement holds for the upper half of the
type space).

From theorem 1, we know that, in our search for separating functions, we can confine
attention to u(t) that are strictly increasing and continuous, and that satisfy u(t) > X(¢)
for ¢t € [0, %) We argue that any p(¢) with these properties is a separating function if and

only if it satisfies the following condition:

; BVi(t,t)
w(t) = RATOR) (9)

at all points of differentiability. Necessity follows from the first-order condition governing
type t’s optimal decision:

Uh(p(), t)u'(t) + BVA(t,t) = 0. (10)

To establish sufficiency, consider ¢ < t. Since p(t) is continuous and increasing, it is also

almost everywhere differentiable. We therefore have:
U(E(t)a t) + ﬁV(t,t) - U(E(t’)a t) - ﬂV(t’, t) (11)
£ . t d
- fﬁ Ur(u(s), ) (s)derﬁfﬂ Vi(s, t)ds

> [ Uu(uls), )t s)ds + 8 [ Vils, 9)ds = 0

tf
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where the inequality follows from I7i5(.,.) > 0, Via(.,.) > 0, and g/(t) > O (since u(t) is
increasing), and the second equality follows from (9). Thus, type t does not imitate #. The
proof for the case of £ > ¢ is similar.

Note that (9) is a first-order differential equation for u(t). Unfortunately, since U7 (X (t), t)
= 0 for all ¢, the right-hand side of (9) is not Lipschitz on (¢,z) € [0, ) x [z, 1]. Consequently,
standard results on the existence and uniqueness of a solution do not apply directly. Instead,
we proceed as follows.

Consider the following dynamical system with parameter s:

(400 - (et 12
(5) BVi(H(s), ¢(5))

Choose some small € > 0, and define D = [0,3) x [z,1 —¢]. Consider the behavior of the

dynamical system (12) on D given the initial condition (¢(0), z(0)) = (0,z). Assumption

1, z > 0, and ¢ > 0 guarantee that both U/;(z,t) and Vi(¢,t) are Lipschitz functions on

the pertinent domains, so the existence and uniqueness of the solution to (9) follows from

standard results in the theory of differential equations.

We need to show that the solution generates a separating function with the required
properties. The functions t(s) and z(s) are clearly continuous. Define D = {(t,z) € D |
t < z}. As long as (t(s),z(s)) € D, both #(s) and x(s) are strictly increasing. Since

(¢(0),z(0)) = (0,z) € E, t(s) and z(s) are both increasing for small s. The pair can never
| reach the lower boundary of D (defined by the line z = t) since ‘:,;{(:)l approaches infinity as
(s} approaches t(s) for ¢t(s) < 3. Similarly, provided we take ¢ sufficiently small, (t(s), z(s))
can never reach the upper boundary of D. To see this, note that for sufficiently small &, if
1 — z(s) < 2¢ and t(s) € [0, 1), then ij,—{(’s%(l — x(s)) > 1 (this follows from the assumption
that lim._q ct’(c) = +00). But then z(s) can never reach 1 — € while ¢(s) < 3.

Consequently, there exists s* € R, U{+00} such that t(s) and z(s) are strictly increasing
in s with t(s) < z(s) on [0,s"), and lim,—- t(s) = 3. This implies that the inverse function

t71{t} exists, is strictly increasing and continuous, and maps [0,3) to [0,5). Let u(t) =
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z (t7{t)). This function is well-defined, strictly increasing, continuous, and satisfies u(t) > t
for t € [0,3). Condition (9) is therefore sufficient to guarantee that u(t) is a separating
function, and p(t) satisfies this condition by construction.

Finally, we argue that there is no other separating equilibrium for types ¢ € [0, %) in which
type t = 0 chooses z = 2. Note that the right-hand side of (9) is Lipschitz in a neighborhood
of every point along the trajectory of the solution to (12), including the initial condition
(0,z). Consequently, the solution to (9) is locally unique when the process is initialized at
every such point, and coincides locally with the solution to (12). But then, fixing the initial
condition at (0, z), the unique solution of (12) in D must be the unique solution of (9) in D.

Step 2: For any arbitrary initial condition (endowment) x > 0, we establish the existence
of §*(z) st. for 8 < 3*(z), limy g (8) = %, and for 8 > 3*(2), lim,, 3 2 (2) > 2. Moreover,
we show that 8%*(z) > 0 iff z < % Since the problem is completely symmetric (apart
from endowments), it also follows that, for 3 < §*(7), lim,, L E(t) = 3, and for § > §* (%),
limtléﬂ(t) < 3.

There are two cases to consider: (i) z € (0, 1), and (ii} z € [5,1).

Case (i): Suppose z € (0,3). First we show that there exists some B(z) > 0 such that if
3 =3, then limﬁég(t) = 1. Define R(t,8) = £(1 — 6) + 6t and

Vi(t,t)
- Ul (R(t: 9) t)

Since X'(1) > 0 (this follows from implicit differentiation of (2)) and £ < 3, we can choose
some small 8 > 0 such that V¢ € [0,3), R(t,6") > X(t), and R(0,6") > z. Consequently
H(t,6%) > 0Vt € [0,1). We will show that 3K > 0 st. Vt € [0,3), H(t,6") < K.

H(t,0) = (13)

Suppose not. Then there exists a convergent sequence t, € [0,1), with lim, o te = t

such that limp .o H(tn, %) = co. Since H(t,8*) is continuous in ¢ and finite for ¢ € [0,3),

we must have ¢ = 7. Since U(.,.) and V{(.,.) are twice continuously differentiable on the

pertinent domains, we can compute the limit of H(t,,§*) as t, — 3 by applying L’Hospital’s




rule:

. Vrll( ’ )+Lf12( )
1 H tn?g* — 22 212
A, H(t,07) =~ 1 167 1 0 (1, 1)

(X (t),t) = 0 V4, it follows that Upi (X (), £)X'(¢) + Ug(t,t) = 0. Since 6* < X'(3)
and Uy1(L, 1) < 0, we know that Uy1(3,5)8" + Uia(3,5) > 0, so the denominator is strictly

(14)

Because U/

positive. Since Vi1(1,1) and Via(3,3) are finite, the numerator is finite. Hence the ratio is
finite — a contradiction.

Now choose 3(z) > 0 such that B(z)K < 6. Assuming that 3 = B(z), we claim that
pit) < R(t,6%) ¥t € [0,3). By construction, R(0,6%) > z = p(0), so this is obviously true
for small enough ¢. Suppose now that 3t” € [0,1) s.t. p{t") > R(t",6"). Then 3t' < ¢*
st p(t) = R(¥,6%) and g/ (t') > Ra(¥,07). But /(') < B(z)K < ¢ = Ry(t,8"). This
contradiction establishes the claim. We therefore know that u(t) € (X(t), B(¢,0")) and
R(t,0") < § for t € [0,3). It follows that limy1 p(t) = %, as desired.

Next, we establish that Vt € [0, 3), u(t) is ilrlcreasiﬁg in 3. Choose any 3, < (3, and denote
the corresponding separating action functions by g, (t) and p,(¢). From (9) it follows that
4 (0) = p,(0) = 0. But with p, (0) = p,(0) = z > 0, it is easy to verify (by differentiating
(9)) that g7(0) > w(0) > 0. Thus, for ¢ sufficiently small, (¢} > p,(¢). If for some
t € (0,3), g, (t) > p,(t), then 3s < £ s.t. p,(8) = pi(s) and g (s) > p,(s). But from (9) it

follows that if j (s) = (s}, then g (s) < (s), which is a contradiction.

i,

From the monotonicity of u(t) in the value of § it follows that, for 3, < By, if limy; s, (¢) =
%, then lim,, Ly (t) = 3, and if lim,, 1Hy (t) > 3, then limy, 1ty (t) > 1. Thus, there exists
B*(z) > B(z) such that limgz g (t) = 3 for 8 < §*(z) and lim, p(2) > 1 for 8 > G*(z).
Moreover, if 4 (t) is continuous in 3, then it follows that lim,1 4 (t) =3 for 3= 3" (x).

To establish the continuity of u (t) in 3, again select 3; < [5,. We can use (i) the
monotonicity of u(t) in 8 (proven above), (i) ps(t) > X (t), and (iii) Uy (z,t) < 0 to establish
that U (&2 (t) ,t) < Uh (E1 (t) ,t) < 0. Combining this observation with equation (9) and
using the fact that p(t) = z + i i#'(s)ds, it is easy to check that p, t) < p,(t) <z+

%? (El (t) — g) Thus, when 3, — 3, converges to zero, g, (£) — 4, (t) also does so.
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Case (ii): z € [§,1). Since u(t) is strictly increasing and since p(0) = z > 3, limy,
; for all 3> 0. Thus, 3*(z) = 0, as desired.
Step 3. Define 3*(z,%) = min{#*(z), 8*(Z)}. 5°(z,T) is decreasing in max{z,T}.

ul(t) >

bl

First we argue that 3*(z) is decreasing in the initial condition z. Select two endowments
levels ; < Z, and consider the associated trajectories g (¢) and p,(t) that solve (9). Since
the right-hand side of (9) is Lipschitz in a neighborhood of every point along each trajectory,
these trajectories cannot cross for £ € (0,%). Since g (0) = z; < zq = p,(0), it follows
that g, (t) < g,(t) ¥t € (0,3). Thus, if m,z p, (t) = 3 (equivalently, 3 < 3*(z,)), then
limys (t) =} (equivalently, 8 < 3*(z;)). This implies 3*(z;) > 8°(z,), as desired.

Since 3*(x) is decreasing in =, it follows that 3*(z,T) = min{3"(z), B8(z)} = 8*(max{z,
T}), from which is follows that 3*(z, ) is a decreasing function of max{z,z}.

* Step 4. A separating equilibrium exists iff 3 < 3*(z, T).

First suppose that 3 > 3*(z,T). Any separating equilibrium must satisfy u(0) > z
and (1) < 1 — 7. Since, as argued in step 3, the value of the separating function is
strictly increasing in the initial condition (decreasing for the top half of the type space),
limyy 1 #(t) = limyys p(t) (where p(t) is the separating function for the lower half of the fype
space emanating upward from z), and lim, 1 p(t) < limy, 1 E(t) (where Zi(t) is the separating
function for the upper half of the type space emanating downward from 1 — ). Moreover,
by step 2, limﬂé p(t) > % and lim, 1 Et) < %, and since 3 > (3%(z,T), at least one of these
inequalities is strict. But this implies that lim,, 1 p(t) > Timy; 1 u(t), which in turn implies
that the separating function is non-monotonic, contrary to theorem 1.

Now suppose that 3 < §%(z,T). Let

w(t) for t € [0,3)

for t =

b2
LT

u(t) =
E(t) for t € (3,1]
We argue that this is a separating equilibrium. Note first that typet = % receives its bliss

point, and therefore has no incentive to imitate any other type. Now consider some type
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¢ € [0,%). From the construction of p(t), ¢ has no incentive to imitate any other ¢ € [0, ).

Since lim,1 4t} = 3, ' has no incentive to imitate t = % (if it did, it would also have an
incentive to imitate t = 3 — ¢ for some small ¢ > 0, contrary to the construction of p(t)).
For any ¢ € (3,1], p(t) > 1 > X(¥) and t > § > p(¥), so type t' prefers (3, 3) to (¢, u(t))
(where the first element in each pair denotes a perceived type and the second denotes an
action). Since t' has no incentive to imitate t = %, it therefore has no incentive to imitate
type t € (,1]. A symmetric argument establishes that no type t' € (3, 1] has an incentive

to imitate any other type. QED.

Proof of theorem 3:

Fix a pair of endowments z and T. Let u(f) and 7i(#) be the separating functions cor-
responding to these endowment constructed as in the proof of theorem 2, extended con-
tinuously to the domains [0,3] and (3,1} respectively (that is, p(3) = limyy p(t), and
E(3) = lim, | 7(t)). Since 3 > §*(z,T) by assumption, we must have Z(3) < u(3).

Consider the expression p(t) — (1 —t). We know that it is continuous, strictly increasing
in t, strictly negative for ¢ = 0, and strictly positive for ¢t = % Consequently, there exists
a unique ¢* € (0, 3) such that u(t*) = 7(1 —t*). We will look for central pooling equilibria
with t, < t* and ¢, > 1 —¢t*,

Since pu(t) < (1l —t) vt € [0,*], we can define z,(t) € [u(t), (1 — £)] to be the value of

z that solves:

U(u(t),8) — Uz, t) = U(a(L — £), L —t) = U(z, 1 1) (15)

The existence and uniqueness of z,(¢) follows from the fact that the left-hand side of (15) is
zero for = = u(t) and, since p(t) > X(t), is strictly increasing in z on [u(t), Z(1 —t)], while
the right-hand side is strictly positive for z = p(t) (since 7#(1 —t) < X(1 —t)) and strictly
decreasing on this interval, reaching zero at z = f(1—t}. Note that z,(t*) = p(t*) = E@(1—t*),
and that p(t) < z,(t) < (1 —1t) for ¢ < t*. From (15) it follows that the z,(t) is continuous

in t. We will look for central pooling equilibria with z, = z,(t;) and tp, =1 — ;.




Now consider the expression

[(e) = U(plt),t) + BV (t,1) — Ulzp(t), 1) — BV (p(t), 1) (16)

Since t* > 0, p(0) < z,(0), and T'(0) > 0. Moreover, since I'(¢*) < 0 and T" is continuous,
there exists some £ € (0,t*) with I'(f) = 0. It is easy to check that ¢ is unique. We will look
for central pooling equilibria with ¢, > ¢.

A central pooling equilibrium may also involve informative messages m among those
choosing z,. In particular, these messages will partition those types selecting z, into a finite
number of segments. The following discussion facilitates the construction of these segments.

To begin with, type t; must be ind‘ifferent between separating, and being a member of the
lowest differentiated segment selecting z,. This indifference conditrion places a restriction on

the identify of the highest type in this segment. We formulate this restriction as follows.

For t € [t,t*], let £2(t) € (p(t), 1 —t) be defined implicitly by the equation B(t,#*(t))

p(t). The existence and uniqueness of 7 (t) is assured because B(t,t} =t < p(t), B(t,1—1)
5 > p(t), and by assumption B(t, s) is strictly increasing and continuous in 5.

Now consider the function

w(t,s) = U(p(t), t) + BV (t,t) — Ulz,(t), £) — BV (B, 5),1)

By the definition of £, for ¢t € [£,#*], ¢(t,t?(t)) < 0. Furthermore, ¥(t,t) > 0. Since
" the pertinent functions are continuous, it follows that, for ¢ € [£,¢*], there exists sI'(t) €
[t, 7(t)] such that ¥(t, sF{t)) = 0. Moreover, this solution is unique because 3(, s) is strictly
decreasing in s on this interval. Note that sk(t) = t?(f), st (t*) =t*, and s]{¢) is continuous.

Similarly, for t € [£,t*], define the function s¥(t) as follows. If ¥(t,1} > 0, s{(t) is the
solution to the equation (¢, s¥ (£)) = 0 on [tP(t), 1] (existence and uniqueness follow because
¥(t, s) is continuous and strictly increasing in s on this interval). If ¢(t,1) <0, let F(t) =1.
Note that s¥(£) = tP(f). Also note that s{/(t) is continuous.

L

Intuitively, the interpretation of the functions s (t) and Y (t) is as follows: for type £, to

be indifferent between separating and being a member of the lowest differentiated segment
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selecting ,, the highest type in this segment must be either sZ(t,) or s¥(t,).

Next, any type on the boundary between two differentiated segments within the central
pool must be indifferent between belonging to either segment. This indifference condition
places a restriction on the identity of the highest type in the next segment. In particular,

for t < s, define the following function:

Lif V(B(t,s),s) — V(B(s,r),s) <0 Vr € (s,1)
Qt,s) = sif V(B(t,s),s) —V(B(s,1),5) >0 Vr e (s,1) (17)
€ (s,1) such that V(B(t,s), s) = V(B(s, ), s) otherwise

Note-that Q(t,s) > p(s) > s when s < 3. In particular, one subtlety of this definition is that
Qs, s) > s for s < §, but (s,s) = s for s > L. One can check that Qt,s) is continuous
(continuity of interior. solutions is trivial; one must check that the function cannot jump from
one extreme solution to the other).

For @ > 2, we define the following two sequences of functions over the domain [£,#*]:
st (t) = Q(sf4(t), sk, (1)), and sY(t) = Q(s¥ 4(t), s (t)) (where sE(t) and sV (¢) are defined
above, and where s§(t) = s§ (t) = t). Continuity of s¥(t) and s¥(t) follows by induction on
i. Note that s&(F) = sY (D).

Intuitively, the interpretation of the functions s’(t) is as follows: for type s&,(ts) to
choose z, and be indifferent between the two contiguous segments [sF ,(t¢), s%,(t,)] and
[sf) (te), 5], it must be the case the s (the highest type in the next segment) equals sZ(t,).
A similar statement holds for s | (t;), except that the first segment in the series is defined
differently.

We now prove a result that allows us to focus on equilibria with a finite number of

differentiated segments within the central pool.

Lemma 2: Suppose that assumption 2 is satisfied. Then there exists N > 1 such that

sk_1(t*) < 3 and s{(t*) > 3.
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Proof: For notational simplicity, define t,, = s¥(¢*). The proofis by contradiction. Thus,
suppose that ¥n, ¢, < % The sequence t,, is strictly increasing and, since t,,_; < Ptn1) < tp,
the limit point £ must have the property that p(f) =1, so £ = 1.

Step 1. Since B(z,y) = 1~ B(1 —y,1 —z), we know that B(z,1 - z) = 1, from which
it. follows that Bi(3,3) = Ba(3,3). From B(z,z) = z, we have B(3,1) + By(:, 1) = 1.
Combining these observations yields 31(2, 5) B3, 2) Clearly, Blt,_1,t) =1, +

fie ~  Ba(ta_1,2)dz. Since B(:,-) is continuously differentiable and since ¢, converges to L

V¢ > 0 3N, (() s.t. for n > N:((),

PR

tn-l + t’n
2

i1+ 1

- C(tn - tn—l) < B(tn—latn) < 2

+((tn —ta1) (18)

Step 2. Consider the equation V(a,s) = V(b,s) for a < s < p(s) < b. We can rewrite
this as V(p(s), s) — JP* Vi(z, s)dz = V(p(s), s) + f;(s)-Vl(z, s)dz, from which it follows that

p(s} P(S z
/ / (r, 8)drdz = f / Via(r, s)drdz
p(s) Vp(s)

Since V' (-) is twice continuously differentiable, this implies that, ¥8 > 0, 3¢ > 0 such that
if b—a <e¢, then (1 —8}(p(s) —a) < (b~ p(s)). From this it follows that IN,(4) s.t. .if
n > Nz(0)

(1 = 8) (p(tn).— Bltn-1,tn)) < (Bltn, tns1) — p(ta)) (19)

Step 3. Combining (18) and (19) we obtain that ¥{ > 0 and ¥§ > 0, if n > N((,d) =
IDBX{NI(C), N2(§)}s then

tn--l + tn + tn-}—l

(1=8) (p(ta) = =550 Clta = t00)) < (2572 4l — 1)~ pl0)) 20)

Since condition 1 is assumed to hold, p/(}} < L. Therefore 3k < 1 s.t. p/(t) < k for all ¢
in some neighborhood of % It follows that M s.t. for n > M,

p(tn-f-l) _p(tﬂ) < k(tn-H - tn)
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Since tn41 < Ptnt1) < %, the previous inequality can hold only if:
p(tﬂ)_ = (l - k)(trH—l - tn) +tn (21)

Using (20) in (21) we obtain that ¥n > max(M, N((,d)) the following inequality is satisfied:

tn—l +fm.
(1 —4) (tn + (L= k)t — ta) — 5 C(tn — tn—l))
(25 s =) = (1= D) — ) — ta) (22)
which after simplification becomes:
(1 =0)(5 = O)tn = tcs) < (5 + ¢ = (1 = K2~ 6))(trs — 1) (23)

When & < %, for small ¢ and & the right-hand side of (23) is nega.tive' while the left-hand
side is positive-. Thus, the inequality cannot hold. This contradicts the assumption that
tns1 < P(tas1) < 3 (which we used to construct (21)). When 1> k > 2, the right-hand side
is strictly positive. One can then choose § and ¢ sufficiently small so that (1 —8)(3 —¢) >
(3 +¢— (1—k)(2 — 4)). Then for n > max(M, N(¢,d)) we must have

tn - tn—l < tﬂ-}-l - tn

contradicting ¢, < § Vn. QED.
Next we prove a result that identifies ¢, for the central pooling equilibrium that we

subsequently construct.

Lemma 3: 3t € [£,#*] and N > 1 such that either sk(t;) = % or s{(t:) = 3.

Proof: We begin by noting that, since z,(¢*) = u(t*) and sinee s{(t*) = s{ (t*) = ¢,
we must also have s%(t*) = s¥(¢*). Then it follows inductively that sZ(#*) = sV, (t*) for all
i > 1, including ¢ = N. Consequently, s§(t*) < 3 < s%(t").

We now introduce a family of N + 1 mappings, ao(7) : [0,1] — [t,¢*] and, for ¢ >

1, oi(1) : [0,1] — [0,1], with the following characteristics. oo(r) is continuous, strictly
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decreasing on [0,%], strictly increasing on (%, 1], and takes the following values: ao(0) =
o0(1) = t* and a¢(3) = £. Thus oo(r) maps twice into all ¢ € (£,£*]. Next, define oy(7) as
follows: if 7 & [0, 3], then o3(r) = sE(oo(7)); if 7 € [5,1], then oy(r) = s¥(ao(7)). In other
words, if 7 € [0, 3], then o;(7) parameterizes the sequence (t, {sE()}E ) where t = og(T),
while if 7 € [1, 1], then 0,(7) parameterizes the sequence (t, {sY(£)}XL,) where t = (7). Note
that 0;(0) = s£(t*), and a,(1) = sY (¢*). Since ¥4, oo(*), sk(-), and s¥(-) are continuous, and
since sF(00(3)) = s¥(00(3)) (which follows from oo(3) = t), 0:(7) is continuous, and thus
the collection {o;(7)}Y, defines a continuous transformation (homotopy) between sequences
(¢, {sE(E*)},) and (27, {s¥(+*)}L,). Since on(0) = sk(t") < 7 and on(1) = % (") = 3,
there exists some 7 € [0, 1] such that ox(7*) = 3 (non-uniqueness is unimportant, since any
such T will suffice). Q.E.D.

Now we construct the central pooling equilibrium. Choose t} = o;(7*) for ¢ = 0,..., N,
and let ¢, = t5(= oo(7*)). Consider ¢ € [0, 3]. If t € [0,t,], then ¢ separates by taking the
action p(t). If t € (t},t3,,) for any i € {0,1,..N - 1}, then ¢ takes the action z,(t;) and
sends a ‘cheap talk’ message m! € [t},t],,]. The strategies for ¢t € [3,1] are constructed
symmetrically. If ¢ € {L — 4, 1] then t separates by taking actions 7i(t), while if ¢ € [1—
tf.,,1=17], then t takes the action z,(to) and sends a message 1 —m; € 1 -, 11t
For off-equilibrium actions in (g(te), Zo(te)), we set the inferences equal to . Similarly, for
off-equilibrium actions (z,(t¢), E(1 — t¢)), we set inferences equal to 1 —¢,.

It is easy to verify that types t < t, and ¢ > 1 — ¢, have no incentive to imitate any

other type. Now consider ¢ € (t;,1 — t;). Since the ‘cheap talk’ segments are syminetric

around %, type % is indifferent between the two segments of the central pool for which it
forms the boundary, and strictly prefers these to all other segments, as well as to separating
alternatives. Also, by construction, all other ‘boundary’ types ¢; within the central pool are
indifferent between contiguous segments (on the lower half of the type space, [ti—1,%:] and
[ti, tiz1]), and strictly prefer these to all other segments, as well as to separating alternatives.

Any type that is interior to a segment within the central pool strictly prefers that segment




to all others, as well as to separating alternatives. Q.E.D.

Proof of theorem 4: Since we will be considering equilibria for ranges of endowments,
it is important to alter our notation so as to reflect dependence on endowments. Accordingly,
let u(t,z) denote the separating function on ¢ € [0, 1/2] initialized by the child’s endowed
share of family resources, z {(0,2) = 2).

We will be concerned with equilibria that involve equal division of the parent’s resources.
Throughout, total family resources are fixed at some level W, and the children’s total share of

1

the resources is fixed at zy. The equal division choice can be rewritten as £#{z) = ++(2—32&).

For £8(z) € [z, p(3, 2)], t*(z) solves p(t*, z) = 2”(z). Note that if 3 > 3*(%, %), then t*(2)

exists and is less than 1 for all z in some neighborhood of %:. Also define t (z) as the unique
solution in [0,t*(2)] to U(u(f, 2),) + BV (E,£) = U(zZ(2), 1) + BV (p(2),1).

As in the proof of theorem 3, we will parameterize potential partitions of the central
pool. However, this requires some preliminaries.

For t € [t{z),t*(z)], there are two solutions for the equation v¥(%,s,z) = U(u(t, 2}, t) +
BV{(t,t) — U(x8(z),t) — BV(B(t,s),t) = 0. Let s¥(t,2) be the solution on [t,p(t)], and let
s¥(t, 2) be the solution on [p(t}), 1] (if ¥(t, 1,2) < 0, let sY(¢t,z) = 1). Forintegersi > 1, define
the following two sequences of functions (indexed m = L, U) over the domain [£(z),t*(z)]:
s (t,z) = Q (52_2(t, z), 87, (8, z)) where si*(¢,2) = t, s7*(t, z) is as defined above, and Q is
as defined in the proof of theorem 3.

Note that

zE(z 3l (t,z
dB (t,55(t,2))  ~ [f#(t;; Usa(a, t)dt + f7OT 0D vy (y, )dy
dt B BV (B(t, s¥ (8, 2)), 1)

We know that Uz > 0 and Vi, > 0; also, for t € (£(z),t*(2)), B(t,sf(t,2)) < pft), so
Vi(B(t,sE(t, 2)),t) > 0. Thus, for t € ((2),t*(2)), dB(t,sT(t,2))/dt < 0; over this do-
main, B(t, s¥(t,z)) decreases (strictly) monotonically from p(¥(2)) to t*(z). It also follows
that dB(t"(2), st (t*(2),2))/dt = 0 and lim, 3, dB(t, s{ (¢, 2))/dt = —oc (where the second
statement follows from V; (B (t(z), st (H(2), z)),f(z)) = 0). We conclude that B(t, s{(t,z)) is
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invertible on [t*(z), p(£(2))]. Define T(b, z) on this interval as the inverse function; it maps b €
[t*(2), p(E(2))] to [t(2),*(2)], it is (strictly) monotonically decreasing with T (t*(2),2) = t*(z)
and T'(p(t(2)),z) = t(z), and it is continuously differentiable on (t*(z),p(f(z))). Moreover,
limyse(zy T1 (6, 2) = —co and limy; g, Ti(b,z) =0.

Through similar arguments, one can show that B(t,s% (¢, z)) increases (strictly) mono-
tonically from p(f(z)) to B(z) = B(#*(z),sY(t*(z), 2)) as t increases from t(z) to t*{z). So
Bit,s¥(t, z)) is invertible on [p(f(z)), B(z)]. Define T'(,z) on this interval as the inverse
function; it maps b € [p(#(2)), B(2)] to [£(2),t*(2)], it is (strictly) monotonically increas-
ing with T(p(#(2)), 2) = #(2) and T(B(z), z) = t*(2), and is continuously differentiable on
(p(f(,_z)),g(z)). Moreover, one can verify that limy .\ Ti(b, z) =0 and limy,5,, T1(b, 2) is
finite. |

Now we parameterize the appropriate partitions. For € [0,1], let o{7,2) = T(¢"(2) +
7[B(z) — t*(2)],2). Also, let 7%(2) be the unique solution of o(7°(2),2) = t(z). For any
strictly positive integer K, if 7 € [K, K + 7°(2)], let o(r,2) = si(o(1 — K, 2),2), and if
e (K +7(z),K+1], let o(r,z) = s%(o(r — K, 2),2). 1t is easy to check that o(-) is
continuous. Let N(z) denote the smallest integer such that o(N(2),2) < § < o(N(2) + 1, 2)
(lemma 2 assures the existence of N(z), and we know that N(z) > 1). o(-) is continuously
differentiable on 7 € (K, K + 1) for any integer X < N(z} (since o(1,2) > o(r — 1, 2) for
such 7).

To simplify notation, we will make use of some additional definitions. Let g.(r) =
o(r, %), N, = N(%), 7. = min{r | 0(7) = 11 (note 7, € [N, No+1)), To = max <, —10.(7)
(note T, < 1), G(r,2) = B(a(r — 1,2),0(7, 2)), and G.(7) = G(7,%).

At various points in the proof, we require a measure of the distance between two function
B',B" € F. We use the following distance metric, which generates the topology of uniform
C* convergence: d(B', B") = suDg, s,ycppap | B (t1it2) — B”(t1,t2) | + SUD; ¢y p)efor? | Bi(ty,
ta) — B (t1, t2) |-

With these preliminaries out of the way, the proof proceeds in four steps.
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Step 1: Let B € F' iff 7, is not an integer and o%(7.) > 0. F' is open-dense in F.

First, we establish denseness. Consider B ¢ F'. By the definition of 7., there exists
T < 7. such that [r,T,) contains no integer and o’,(7) > 0 for 7 € [z, 7.). For any € > 0, we
can select some B € F with d(é, B) < £ and the following properties:

(i) B(t,t2) = Blty, ty) for t; < 7. (and, symmetrically, for t; > 1 —%).

(ii) There exists some 7° € [r, 7,) such that (a) B(o.(7' ~ 1),3) = B(o.(r' — 1),0.(7)),
and (b) B(o.(r' — 1),3) = Bilo{t' = 1),0.(7")), & = 1,2 (with, of course, a symmetric
perturbation at the point (3,1 — o.(7' — 1))).

By property (i), 7.(r}) = o.(r) for 7 < 7. — 1. Thus, from the indifference con-
ditions for type &.(7' — 1} = o.(r' — 1) that define &.(7') and o.(7'), it follows that
V(B (0.(r = 1),8(7)),0(7" = 1)) = V(B (0(r' = 1),0.(r")) ,0(' = 1)). But from (ii)
(2), this implies that 3.(7’) = ; (equivalently, 7 = 7.). Moreover, if one implicitly differen-
tiates the indifference conditions defining .(7') and o (7') with respect to 7, (ii) (b) implies
that 7.(7') = ¢’,(7'), which is strictly positive by construction. Thus, BeF.

Now, we establish openness. Choose some B € F’. Choose an interval [y, 73] such that
N.—1< 7 <7, < To < N, Given that B and V are continuously differentiable, one
can show that, as B — B, &.(7) — o.(r) uniformly on [0, 72}, 5,(7) — ¢.(7) uniformly o|n
[T1,72), and, consequently, 7. — 7. and &,(7.) — o,(1e) > 0. Thus, for B sufficiently close
to B, Be F'. _

Step 2. Let Be F"ft B € j-" and G.(r.) = 0. F” is open-dense in F.

We will show that F" is open-dense in F'; the conclusion then follows from step 1.

First we establish denseness. Consider B € F'—F". Recall that 7. > 1. By construction,
G.(1) = t*(2) + (r — 1)(B(2) — t*(2)), so G',(7) > 0 for 7 € [1,2]. Thus, G¢(7.) = 0 implies
Te > 2.

Notice that, given g.(1 — 2) and g.(T — 1), G¢(7) is determined (in a neighborhood of

T.) as the solution on jo.(T — 1), 1] of the equation
V (B(o (T —2),0.(1 — 1)),0.(1 — 1)) = V(G(1),0.(7 — 1))
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and o.(7) is then determined as the solution to
Ge(r) = B (0e(r — 1), 0¢(7))

Differentiating these expressions at 7 = 7., we obtain

Vi(Be-1, te-1)Ge(Tc — 1)
Vi(Be, te)

%(Bc 1) ) %(Beate 1)

Gelre) = ViBot)

+ ol (1. — 1)

and
G,e('re - 1) + Bl(te-2: tf‘-—l)a’c(Te — 2)
B2 (tc—‘Za te—l)

where we have used the following shorthand notation: t.., = o.(r. — n), and B._, =
B(tc—n—-la te—n)-
Since B € F' — F”, o(r.) > 0 and G,(r.) = 0, which can only be true if a;(7, — 1) <0.

og{r.—1) =

Thus, we know that the numerator in the expression for o/(T. — 1) is non-zero. We also
claim that the final bracketed term in the expression for G(7.) is non-zero. This follows

from the fact that V;(B.,t.) > 0 and
Be
%(B —late—l) - 1[/rZ(JBe:"tﬁ--].) = - L “’r12(t:tc—1)d’t < 0
e—1

For any € > 0, we can find a B with d(B, B) < ¢ that differs from B only in some small
neighborhood of (te—z, t.—1) {one that excludes all other points (fc—n_1,te-n) for n = 1), and
that satisfies B( ety tect) = B(te—a,t.—1) and Bl(te_g, te—1) = Bi(te—2,te—1), but for which
Bo(te_g,te1) = Bafte—a,te—1). This perturbation alters the value of B; (tew2,te—1) but leaves
all of the other terms in the equations for G%(7.) and o%(7. — 1) unaffected. Based on the
observations in the preceding paragraph, for such a perturbation, Gl(r.) = GL(T.) = 0, s0
BeF"

The argument for openness parallels that given in step 1.

Step 3. There exists an open-dense set F C F such that if B € F, then 3 71,72 such
that N, — 1 < 7, < 7. < T2 < N, satisfying (i) o’,(7) > 0 for 7 € [y, T3], (ii) Ge{r} = 0 for
T € [r1,Ta), (iil) oe(r1) = 1 — 0e(72), and (iv) V(G.(r1),0.(T1)) = V(Ge(12),0{(T2)).
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For B € F", properties (i) and (ii) are plainly satisfied in a neighborhood of 7, (since the
relevant functions are continuously differentiable). Moreover, since o.(7.) = 3, it is plainly
possible to pick 7; and Ty to satisfy (iii). Thus, we need only demonstrate that property (iv)
holds on an open-dense subset of F”.

First, we establish denseness. Consider B € F" for which property (iv) does not hold
for any T, T, satisfying properties (i)-(ili). Choose some interval [ry,Ts] over which (i)-
(iii) hold, such that 1 — o.(Te) > max,<r,-10.(7) (since T. < %, one can always do this
by taking 7, sufficiently close to 7.). By step 1, we know that there is some 4 > 0 such
that, for any B with d(B, B) < 4, &,(r) > 0 for all 7 € [ry,7]. For any £ > 0, choose B
with d(B, B) < max{z, &} to have the following properties: (a) B(t,,t;) = B(t,, t;) outside
of 7-neighborhoods of the points (o.(T3 — 1),d.(72)} and (1 — o.(r2),1 — o(T2 — 1)), and
(b) B(oo(t2 — 1),0.(m3)) < Bloa(rs — 1), 0.(3)) (which of course implies a symmetric
perturbation at (1 —o.(73), 1 — g.{T2 — 1))). |

Property (a) implies that, provided we take 7 sufficiently small, G (1) = Ge(7) for 7 < 75
and #,(1) = o.(7) for 7 < max{7;, 72 — 1} (note that we can choose this # independently
.of ¢). Combined with the indifference conditions for type o.(r2 — 1), this implies that
B(o.(t3 — 1),8.(13)) = B(o.(2 — 1),0.(72)). From property (b}, it then follows that
7.(T2) > 0.(73). Consequently, there is some F5 € (71, T3) such that &.(73) = o.(72).

Now consider the interval [r1,7,]. For small ¢, we have N,—1<7 <%, <% <N,. By
construction, &.(7) > 0 and G,(7) = G.(r) for 7 € [r1, 73] D [r1, 2], s0 properties (i) and
(ii) are satisfied. Note that &.(7;) = 0.(1) = 1 — 0.(72) = 1 — &.(F2)}, so property (iii) is

satisfied. Finally,
V(éc(fl)aae(Tl)) = V(Ge(Tl)yae(Tl)) = V(GE(T2):JB(T2))
= V(G.(f2),0(73)) = V(Ge(72),5e(T2))
(where the inequality follows from the fact that G,(7) is strictly monotonic for 7 € [11,72]),

so property (iv) is satisfied.

The argument for openness parallels that given in step 1.
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Step 4. For any B € F, there exists ¢ > 0 such that if | £ — % | < ¢, there exists a
central pooling equilibrium with a norm of equal division.

Let [r1, 72) be the interval satisfying properties (i)-(iv) of step 3. Then for sufficiently
small €, o(7, z) and o(r, T — z) are both strictly monotonic ~ and therefore invertible — on
[r1,7a]. Let t, = max{o(r1,z), 1 — o (72,2 — )} and tp = min{o(ry, 2),1 — o7, 2 —2)}.
Let 7 (t) denote the inverse of o(7, z) and let m5(t) denote the inverse of 1 —o (7, Tx —z); both
are well-defined and monotonic on [t;,tg]. Ase — 0, t; — g.(11) and tg — o.(72). Thus,
for small e, given property (iv), either V (G(m1(t1),2),tr) > V (G(ma(tL), zx — z),1 — tr}
and V (G(my(tr),z),tr) < V (G(m2(tr),zx — z),1 — tg), or both inequalities are reversed.
In either case, by continuity, there (;,xists some t € [tr,tg] such that V (G(vrl(ﬂ,g:_),f) =
V (G(ﬂg(f), Tp—x),1— f). But this implies the existence of an equilibrium with cheap talk
partitions at a(m (£)— K, z) for non-negative integers K < m,(f), and at 1—o(my(t) =K, zp—)
for non-negative integers K < m3(f). QED

Proof of theorem 5: In the proof of this theorem, we use to phrase ‘action pool’ to
indicate a set of types that take the same action z, and we use the term ‘segment’ to indicate
a set of types that select the same action x and message m.

Step 1: Any monotonic equilibrium with an action pool that does not include type t = 2
does not satisfy the D1 criterion.

Consider a monotonic equilibrium {u(t), v(t), ¢(¢, £, m)). Since u(t) is weakly increasing,
any action pool must consist of a non-degenerate interval {t;, ts]. Moreover, since Vi2(-) > 0,
every segment within [t;, ] must also consist of an interval (if ¢’ and t” both weakly prefer
some segment to all other segments, then ¢ € {t',#') must strictly prefer this segrnent ).
Suppose that the equilibrium contains an action pool such that 3 & [t ta]. Without loss
of generality, assume that , < % Let p1, denote the associated pooling action. Let [t;, ]
denote the segment containing t,. We know that t; < tj {otherwise some t € [t;, £4] s.b.
ty € (t,p(t)) would imitate t3).

Let b(z,m) = B(é(-,z,m)), and for the equilibrium action and message functions w(t)
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and ~(t), let b(t) = b(u(t),~(t)). The function b(t) represents the type-equivalent of the
inference associated with the equilibrium action and message chosen by type t (note in a
separating equilibrium one always has b{t) = t). Monotonicity along with assumption 2
(part (ii)) imply that for ' > 2" and any messages m’ and m”, Bz, m') > b(z",m"), and
that b(t) is weakly increasing in ¢. Since t; < t, it follows that b, = b(ts) < ta.

Let g = limyyy, p(¢) and let & = ltimyy, b(t). Since u(t) and b(t) are weakly increasing,
both limits are well-defined. Note that y' > p, and & > t, > b, (where b' > ¢, follows from
the fact that pu(t') < u(t) when ¢ <t < t, which implies inf{supp{¢(:, (2}, ¥(t)))} > ts for
all £ > t;, and from the fact that B(r,s) > r). Define W as follows:

W = U(py,tn) + BV (b tn) — Ui, ta) — BV (Y, 24) (24)

Then in equilibrium W = 0. Clearly, W > 0, because y, is an equilibrium action for t5.
Moreover, if W > 0, then for some small £ > 0, type {5 + € would prefer to imitate type t.

Next, we claim that u' > g, There are two cases to consider: &' > #;, and &' = #;. First
suppose ¥ > t;. Since b(t) > & Vt > ty, all t € (¢4, ] lie in the same segment. This implies
u(t) = p(¥), from which it follows that p' = u(b). We cannot have u(¥') = p, since ¢, is
defined as the highest type in the action pool at p,. Therefore, p' = u(t') > pu,, as desired.
Next suppose & = t5. Suppose contrary to our claim that ' = .. Since b, < %3, type tp
strictly prefers (i, ') to (s, b,). But then type ¢, would imitate some type slightly greater
than f,,.

Thus, there exists a non-empty interval of off-equilibrium actions (y,, 1'). Fix any off-
equilibrium action py; € (g, 1) and let by = (14, m) for some m. Monotonicity requires
that & > by > b,.

We claim that, if the D1 criterion is satisfied, then b3 = t.. Once we have shown this,
step 1 follows immediately: since ¢ strictly prefers (p,,tx) to (t,,b,), t, would have an
incentive to choose an action y,, + ¢ for some sufficiently small ¢ > 0, which contradicts the
assumption that (u(t),¥(t), ¢(¢,z,m)) is an equilibrium.

To show that the D1 criterion implies b; = t;, we need to demonstrate that, for all
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b€ [b,,b], t = th,

U(pg, t) + BV (b,1) > U(u(t), t) + BV (b(2), 1) (25)
implies
Upg, tn) + 8V (b tn) > Uy, tn) + BV (bp, tr) (26)

In words, this condition is satisfied if ¢ is willing to deviate to u, for a strictly larger set of
allowable inferences than any other ¢. There are two cases to consider: t < t5, and £ > f3.

First consider t < t;,. Notice that

U(u(t),t) + BV (b(t), 1} = Ulpy, t) + BV (b, t) (27)
Therefore, (25) implies:
Ulpa,t) + BV (b, t) U (#p, t) + BV (b, 1) (28)
Thus (26) follows from (25) if:
Ulptastn) — Ul ta) + BV (b, th) — BV (bp, 1)
> Ulpgst) = Ul t) + BV (1) — 8V (b, 1) (29)
We can rewrite the preceding inequality as:
j f Ussl rsdsdr+ﬂ/f Via(r, s)dsdr > 0 (30)

This inequality holds because Viz(.,.) > 0 and Upz(.,.) > 0.

Next consider t > #;. Earlier in this proof, we established that

Uty tn) + BV (bp, tr) = Up',tn) + BV (Y, 1) (31)

We also know that
U(p(t),t) + BV (b(t),t) > Uy, t) + BV (¥, 1) (32)

Therefore to establish that (26) follows from (25), it suffices to show that

Ul t) + BV (5,8) > U, 1) + SV (Y, 1)
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implies
U(pg tn) + BV (b tn) > U ta) + BV (Y, ta)

The above statement holds if the following inequality is satisfied:
U(“d: th) + ﬁV(b, th) - U(ﬂ'!: th) - Bv(bra th)

> Ulpgyt) + BV (5,8) — UG, ) — BV (8, 1) (33)

This inequality ean be rewritten as:

.F-" t o £
-/;‘d /tn Uia(r, s)dsdr + ﬁfb ‘/t-h Via(r, s)drds > 0 (34)

This inequality holds because [/15(.,.) > 0 and Vi3(.,.) > 0.

'Step 2. Separating equilibria are obviously monotonic and trivially satisfy -the D1 cri-
terion, because there are no out—-of-equilibrium actions. We complete the proof by demon-
strating that, for any central pooling equilibrium there exists a equivalent monotonic central
pooling equilibrium (same action function and message function, possibly different out-of-
equilibrium beliefs) that satisfies the D1 criterion.

Consider any central pooling equilibrium characterized by the parameters tg, t5, and z,.
The set of out-of-equilibrium actions is (i(te), zp) U (zp, 7i(tn)). Construct out-of-equilibrium
beliefs as follows: for z € ((te), z,) let d(ts, z,m} = 1 and @(t,z,m) = 0 for £ < ¢, and for
x € (z,, E(ts)) let ¢(th,z,m) = 1 and ¢(t,z,m) = 0 for £ < ty. It is easy to check that this
is an equilibrium.

To show that it satisfies the D1 criterion, we argue as follows. For all z € (z,, T(ts)),

define t'(z) € (b, ts) (where b, = B(t¢, ts)) as the solution to the following equation:
Uz, ts) + BV (t, 83) = Ulzp, ta) + BV (b, t) (35)

Existence is guaranteed because, for ¢/ = b,, the left-hand side exceeds the right-hand side,

while for ¢/ = t5,, the opposite is true {this follows from the fact that type t5 is indifferent




between (z,,b,) and (f(ts),ts), aud from the fact that z < 7(ty) < X(f4)). From an

argument analogous to one used in the proof of step 1, it follows that, for all t = ¢,
Uz, t) + BV (' (2),1) < U(u(t),t) + BV(8(t), 1) (36)

But then, for all such z, D1 never rules out beliefs that place positive probability on type iz,
and in particular it cannot rule out beliefs that place all probability on type f5. In words,
expressions (35) and (36) imply that there is no type ¢ that would be willing to deviate
to the action z for a strictly larger set of allowable inference than type t3; in particular,
only ¢, would be willing to deviate to z for the inference t/(x). Naturally, one can prove a
symmetric property for the lower half of the type space, from which it follows that for ali
x € (u(te), zp), D1 never rules out beliefs that place positive probability on type t,, and in
particular it cannot rule out beliefs that place all probability on type ;. Thus, the proposed
equilibrium satisfies the D1 criterion. QED. | ‘
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Appendix B

Recall that we can represent equation {9) as the dynamical system (12). The initial

condition (%%) is a fixed point of this system. To study its behavior near (%,%), we

linearize the system at (2, 2) to obtain:

( 1£(s) ) _ ( 0 B(Vi+Vaer (4)) ) ( u(s) )

t'(s) -Uy —Uiy

where the functions U11(-, -), Une(-, ), Vi1(,+), Via(+, ) are evaluated at (%,%) Solving the

characteristic equation, we can compute the eigenvalues Aj»:

1 1 1
Az = —§U12 + 5\/U122 — 443U, [Vn + Viop/ (5)]

We know that Vi (t,t) = 0 for all ¢, so Vii(t,t) + Viz(2,t) = 0. Since Vig (t,f) > O and
since p' (1) > 1 (condition 2 holds), V1, (2, 2) + V2 (2, 2) P (%) > Vi1 (%, %) + Vi, (%, %) =
0. Therefore, A, > 0 > JAg, and it follows that (2, 2) is a saddle point of the linearized
system. Then the behavior of the linearized system around (2 , 2)13 described by the following

differential equation:
u(s) —
t(s) -

where ¢; and ¢y are arbitrary constants, and 77 and Z3 are eigenvectors associated with

L LTI

) = o 7€M + codne™®

eigenvalues A; and A, respectively.

The trajectory aloﬁg the unstable arm of the linearized dynamical system is determined
by the eigenvector £; = (x1,27) (c2 = 0). By Hartman-Grobman theorem (theorem 5.3.5,
p.153, Robinson (1995)), the original non-linearized system also has a unique trajectory
emanating from (%, %) with the slope equal to %%, and a unique trajectory converging to
(%, %) with slope ;% The eigenvector T; satisfies:

( 0o AaG) Y ()r() ) (w )_;\ ( 3)
—Un (%, %) =Uiz (21 %) z oH

Since V¢ Uy(t,t) = 0, we have Uy () = —Us1 (£,4) > 0. But this implies that

b o
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which in turn implies that

4,
fﬂ% bt U12 (%,2) ,

where the inequality follows from the fact that A; > 0 and U (3, ) > 0. This implies that,
locally along the unstable arm, j(t) is increasing in ¢, p(t) <t for ¢ < %, and u(t) > ¢ for
t > 3. An argument similar to that provided in the proof of theorem 1 allows us to extend
this conclusion to the entire interval [0, 1].

Since Ay < 0 and since 3 (Vn (%, %) + Via (%, %) v (%)) > 0, z3 and 72 have opposite
signs. This implies that, locally along the stable arm, u(t) is decreasing in t, p(t) > 3 for
t < 3, and u(t) < % for t > £. Once again, it is possible to extend this conclusion to the

entire interval [0, 1].
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Figure 5: Existence of Equilibria with an Equal Division Norm: The Effects of 3 and W,
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Figure 6: Existence of Equilibria with an Equal Division Norm: The Effects of wy, /W
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