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ABSTRACT

This paper examines the specification errors of several asset pricing models using the methodology

of Hansen and Jagannathan (1997) and a common data set.  The models are the CAPM, the Consumption

CAPM, the Jagannathan and Wang (1996) conditional CAPM, the Campbell (1996) dynamic asset pricing

model, the Cochrane (1996) production-based model, and the Fama-French (1993) three-factor and

five-factor models.  We use returns on the Fama-French twenty-five portfolios sorted by size and

book-to-market ratio and the risk-free rate as our test assets.  The sample is 1952 to 1997.  We allow the

parameters of the models' pricing kernels to fluctuate with the business cycle which we measure in two

ways.  One uses the Hodrick-Prescott (1997) filter applied to either industrial production for monthly

models or real GNP for quarterly models.  The second approach for quarterly models uses the

consumption-wealth measure developed by Lettau and Ludvigson (1999).  While we cannot reject correct

pricing for Campbell's model, a stability test indicates that the parameters may not be stable.  None of the

models correctly prices returns that are scaled by the term premium.
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1 Introduction

Throughout the 1970’s and 1980’s, financial economists investigated the pricing implications of the

capital asset pricing model (CAPM) developed by Sharpe (1964) and Lintner (1965). The well-

known prediction of the CAPM is that the expected excess return on an asset equals the covariance

of the return on the asset with the return on the market portfolio times the market price of risk,

which is the ratio of the expected excess return on the market portfolio to the variance of the return

on the market portfolio. The expected return prediction of the CAPM can equivalently be stated

as the beta of the asset times the expected excess return on the market portfolio, where the beta is

the covariance of the asset’s return with the return on the market portfolio divided by the variance

of the market return.

As empirical research began to uncover a number of expected-return anomalies that the CAPM

could not explain, Roll (1977) argued that the model was not testable. Because investors and

firms assessing their costs of capital want to know the determinants of expected returns, empirical

research continued, but it was necessarily conducted under the recognition that the tests involve a

joint hypothesis on the model and the choice of the market portfolio. Even before the anomalies

began to accumulate, theorists such as Merton (1973) noted that the CAPM is a static model, and

they developed intertemporal models that demonstrated how covariances of returns with variables

other than the market return could influence expected returns if the consumption and investment

opportunity sets of investors vary over time. By examining the solution to dynamic portfolio

optimization problems, Hansen and Singleton (1982) developed an empirical consumption-based

capital asset pricing model (CCAPM) in which an expected return depends on the covariance of

the return with the marginal utility of consumption.

The empirical failure of the CCAPM and the theoretical appeal of the Merton logic led Campbell

(1993, 1996) to develop a dynamic asset pricing model in which an expected return depends on the

covariances of the return with the market portfolio and with the innovation in the present discounted

value of future expected market returns. In the Campbell model, anything that forecasts market

returns becomes a risk factor for asset returns.

Jagannathan and Wang (1996) noted that it is possible for the CAPM to hold as a conditional

model of expected returns with conditional betas, but the unconditional model would be more

complicated since betas could vary over time. They developed an empirical model of this beta-
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premium sensitivity by taking a stand on the nature of the predictability of market returns.

Cochrane (1996) responded to the failure of the CCAPM by noting that the production side

of the economy also must satisfy dynamic Euler equations. This logic led him to develop the

implications of a production-based asset pricing model in which covariances of asset returns with

macroeconomic measures of investment are important risk factors.

Finally, the empirical failure of the CAPM and the theoretical appeal of multi-factor models

led Fama and French (1992, 1993, 1995, 1996) to develop a three-factor model. It is fair to say

that this new model, or some extended variant of it, is now the workhorse for risk adjustment in

academic circles.

The variety of the above models and the alternative data sets on which they have been tested

pose a severe difficulty for someone who is trying to understand if any of these models is a reasonable

replacement for the CAPM. The purpose of this paper is to compare these models on a common data

set. We do this using the methodology proposed by Hansen and Jagannathan (1997), who develop

a distance metric we call the HJ-distance. The Hansen-Jagannathan (1997) methodology begins

with the recognition that the absence of arbitrage opportunities implies the existence of a common

pricing kernel or stochastic discount factor that prices all assets. The HJ-distance measures the

distance between the implied pricing proxy of each model and the true pricing kernel. It can also

be interpreted as the normalized maximum pricing error of the model for portfolios formed from

that set of assets. If the model is correct, the HJ-distance is zero, and there are no pricing errors.2

We test whether HJ-distance equals zero using the statistical test developed in Jagannathan and

Wang (1996). Although the measurement of HJ-distance solves a Generalized Method of Moments

(GMM) problem, it is not the optimal GMM of Hansen (1982). We also report results from optimal

GMM tests of the models.

Because there is considerable evidence that expected returns fluctuate over time, we want to

allow for time-varying prices of risks. We do this by allowing the parameters of the models to

fluctuate with the business cycle. We measure the business cycle in two ways. One uses the

Hodrick-Prescott (1997) filter applied to either industrial production for monthly models or real

GNP for quarterly models. The second approach for quarterly models uses the consumption-wealth

measure developed by Lettau and Ludvigson (1999). Also, because Loughran (1997) and Daniel and

2Glasserman and Jin (1998) provide an alternative way of comparing models of stochastic discount factors (SDF)

by examining the physical probability measures of asset prices and the implied measures of the SDF’s.
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Titman (1997) argue that return characteristics are different in January than outside of January,

we use a January dummy variable to allow the parameters of the models to differ across this month

and the other months.

Both HJ-distance and optimal GMM assume that the parameters of the model are stable over

time. If a model is misspecified because its parameters are not stable, it may nevertheless pass

the test of HJ-distance equal zero, but it would not predict well out of sample. This situation can

characterize both conditional and unconditional models. Ghysels (1998) finds that using condition-

ing variables to improve asset pricing models may actually worsen their performance out-of-sample

because of parameter instability. We therefore follow Ghysels (1998) who uses the supLM test

developed by Andrews(1993) to investigate instability in parameters.

The common returns that we require each of the models to price are the returns on the twenty-

five portfolios constructed by Fama and French (1993) in which firms are sorted by the market

value of their equity (size) and the ratio of the book values of their equities to the market values of

their equities (the book-to-market ratio). We use returns in excess of the Treasury bill return, and

we also require the models to price the Treasury bill return. The sample period is 1952 to 1997

with either monthly or quarterly data.

Because asset pricing involves conditional expectations, any variable that is in the investors’

information set can be used to condition returns. We use this insight to provide a robustness check

on the models. The one variable that we use to condition returns is the term spread between the

yields on long-term and short-term government bonds.

The paper is organized as follows. The next section provides a discussion of the econometric

aspects of the paper including the derivations of HJ-distance, and the test that HJ-distance equals

zero. Section 3 discusses the data and the parameterization of the different models. Section 4

contains the empirical results. Section 5 provides concluding remarks.

2 HJ-distance and Conditional Asset Pricing Models

2.1 Model Setup

Assume we have n assets to be priced. It is well-known that in the absence of arbitrage opportunities

there exists a set M of stochastic pricing kernels m which price every asset correctly. That is,
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Et(mt+1Rj,t+1) = pj ,∀ j, t > 0, ∀ mt+1 ∈Mt+1, (1)

where mt+1 is the stochastic pricing kernel at time t+1, Mt+1 is the set of correct pricing kernels,

Rj,t+1 is the return for portfolio j at time t + 1, and the price for return Rj,t+1 at time t is pj . If

Rj,t+1 is a gross return for a portfolio, then pj = 1; if Rj,t+1 is an excess return for a portfolio, then

pj = 0. Because equation (1) holds conditioned on the information set at t, denoted Φt, by the law

of iterated expectations the unconditional version of equation (1) is

E(mt+1Rj,t+1) = pj ,∀ j, t > 0, ∀ mt+1 ∈Mt+1. (2)

We use equation (2) to estimate and test the various asset-pricing models.

As Hansen and Jagannathan (1997) note, an asset pricing model provides a pricing proxy, yt+1.

If the model is true, then yt+1 ∈Mt+1. We will examine models in which the pricing proxy yt+1 is

a linear function of a constant and a vector of variable factors, ft+1. Define F 0t+1 =
£
1, f 0t+1

¤
, and

define the vector of parameters b0 = [b0, b01] . Then the pricing proxy is

yt+1 = b
0
Ft+1 = b0 + b

0
1ft+1, (3)

where Ft+1 is the k × 1 factor vector, and b is the k × 1 coefficient vector. The parameter vector
b provides the information of whether one factor is an important determinant of the pricing ker-

nel. For ease of presentation, we drop the time subscript when it is not necessary for clarity of

presentation.

Cochrane (1996) notes that if the model is true, equation (2) holds for all n assets with yt+1

substituted for mt+1. Then, if p is the n × 1 vector of pj ’s, the pricing model has an equivalent
representation in terms of multivariate betas and prices of risks:

E(R) = R0p+ β0Λ, (4)

where

R0 =
1

E(y)
=

1

E(b0F )
, (5)

β = cov(f, f 0)−1cov(f,R0), (6)
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and

Λ = −R0cov(f, f 0)b1. (7)

In equation (4), R0 is the unconditional riskfree rate or the zero-beta rate, the β’s are the projec-

tions of the returns onto the factors, and the Λ’s are the prices of beta risks. All of the parameters

can be calculated once we know b. To answer whether the jth factor significantly influences the

expected returns on a particular set of portfolios, we must assess whether the corresponding Λj

is significantly different from zero. Notice Λj = 0 does not mean b1,j = 0, and vice versa. Only

when cov(f, f 0) is diagonal are the two statements equivalent. The derivations and proofs of these

statements can be found in Cochrane (1996).

In discussing prices of factor risks, one must be clear about whether it is beta risk or covariance

risk. Campbell (1996), for example, uses covariance decomposition of equation (2) to write

E(R) = R0p−R0cov(m,R). (8)

By substituting yt+1 for mt+1 in equation (2), we have

E(R) = R0 −R0cov(R, f 0)b1

= R0 +
kX
j=1

qjcov(fj, R). (9)

Thus, the price of the jth covariance risk is

qj = −R0b1,j . (10)

Since R0 is not very different from 1, we do not report statistics for qj .

2.2 HJ-distance

Hansen and Jagannathan (1997) note that when the asset pricing model is true, y ∈M , but if the
model is false, y /∈ M . Thus, for false models there is a strictly positive distance between y and

M . Hansen and Jagannathan (1997) define the distance, which we call HJ-distance, as

δ =min
m∈L2

ky −mk ,where E(mR) = p, (11)
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and kxk = p
E(x2).3 The problem defined in equation (11) can be rewritten as the following

Lagrangian minimization problem:

δ2 =min
m∈L2

sup
λ∈Rn

n
E (y −m)2 + 2λ0 [E (mR)− p]

o
. (12)

The value of δ is the minimum distance from the pricing proxy y to the set of true pricing

kernels M . Let em and eλ be the solution to equation (12). One can think of y − em as the minimal

adjustment to y to make it a true pricing kernel. Hansen and Jagannathan (1997) solve equation

(12) to find

y − em = eλ0R, (13)

where

eλ = E ¡RR0¢−1E(yR− p). (14)

Thus, the HJ-distance is

δ = ky − emk = °°°eλ0R°°° = heλ0E(RR0)eλi1/2 .
Substituting for the value of eλ from equation (14) gives

δ =
h
E(yR− p)0E ¡RR0¢−1E(yR− p)i1/2 . (15)

By solving the conjugate problem to equation (11), Hansen and Jagannathan (1997) also provide

an important alternative interpretation to δ. It is the maximum pricing error for the set of asset

payoffs with norm equal to one. With n basic assets, R, the maximum pricing error δ is achieved

by a portfolio of those assets with weights θ, where
°°θ0R°° = 1. After simplification, θ is given by

θ =
1

δ
E
¡
RR0

¢−1
E(yR− p) = 1

δ
eλ. (16)

Hansen and Jagannathan (1997) note that bb, the estimate of b, can be chosen to minimize δ.
To see the relation of this problem to a standard Generalized Method of Moment(GMM) problem,

define the pricing error vector g = E(yR− p), and its sample counterpart

gT =
1

T

TX
t=1

Rtyt − p, (17)

3Hansen and Jagannathan (1997) also consider a distance measure in which m is required to be strictly positive.

If the problem is solved without the constraint and yt+1 > 0 for all t, the two solutions coincide. In their empirical

analysis, Hansen and Jagannathan (1997) find this additional restriction does not make a big difference.
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and let W = E(RR0)−1. Then, by squaring equation (15), bb can be chosen as
bb = argmin δ2 = argmin g0TWgT . (18)

While equation (18) is a standard GMM problem, it is not the optimal GMM of Hansen (1982)

which uses as the weighting matrix a consistent estimator of

W ∗ ≡ [T · var(gT )]−1 . (19)

Hansen (1982) demonstrates that W ∗ is optimal in the sense that the estimates bb have the smallest
asymptotic covariance. In general, the optimal weighting matrix assigns big weights to assets with

small variances in their pricing errors, and it assigns small weights to assets with large variances of

their pricing errors. It is obvious that W ∗ changes with different models. This makes it unsuitable

for the task of making comparisons among competing models. The alternative weighting matrix

of Hansen and Jagannathan (1997), W = E(RR0)−1, is invariant across competing asset-pricing

models. Using a common weighting matrix allows us to have a uniform measure of performance

across models for a common set of portfolios. The only assumption needed is that W is non-

singular. Cochrane (1996) argues that E(RR0) may be nearly singular in which case the inversion

is problematic, but as we discuss later, we did not encounter inversion problems.

A big advantage of linear factor models is that they can be solved analytically. To demonstrate

the solution, we first introduce some notation. Let the sample moment of the pricing errors, as in

equation (17), be

gT (b) =
1

T

TX
t=1

Rt
¡
b0Ft

¢− p, (20)

let the gradient with respect to the parameters be

DT =
∂gT
∂b

=
1

T

TX
t=1

RtF
0
t , (21)

and let the inverse of the estimated second moment matrix of the returns be

WT = (
1

T

TX
t=1

RtR
0
t)
−1. (22)

Also, define

W ∗
T = S

−1
T , (23)
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where ST is a consistent estimate of var [T · gT (b)]. The analytical solution for bb from the first

order condition of equation (18) is given by

bb = (D0TWTDT )
−1(D0TWTp). (24)

From Hansen (1982), the asymptotic variance of bb is
var(bb) = 1

T
(D0TWTDT )

−1D0TWTSTWTDT (D
0
TWTDT )

−1. (25)

For optimal GMM, equation (25) reduces to

var(bb) = 1

T
(D0TS

−1
T DT )

−1. (26)

One purpose of this paper is to determine whether any of our candidate models of the stochastic

discount factor has an HJ-distance equal zero. We construct our test statistics following Theorem

3 in Jagannathan and Wang (1996). The distribution of δ is not standard under the assumption

that the true δ equals zero. Jagannathan and Wang (1996) demonstrate that the distribution of

T δ2 involves a weighted sum of n− k χ2(1) statistics, where n is the number of assets and k is the
number of estimated parameters. The weights are the n− k non-zero eigenvalues of

A = S
1
2
TW

1
2
0

T [In −W
1
2
T DT (D

0
TWTDT )

−1D0TW
1
2

0

T ]W
1
2
T S

1
2
0

T . (27)

In equation (27), S
1
2
T and W

1
2
T are the upper-triangular matrices from the Cholesky decompositions

of ST and WT , and In is the n-dimensional identity matrix. It can be demonstrated that A has

exactly n − k nonzero eigenvalues, which are positive and are denoted by θ1, ..., θn−k. Then, the

asymptotic sampling distribution of the HJ-distance is

T δ2
d→
n−kX
j=1

θjυj as T →∞, (28)

where υ1, ..., υn−k are independent χ2(1) random variables. We simulate the statistics 10,000 times

to determine the p-value for the estimated HJ-distance.

We also consider additional model diagnostics. The covariance matrix of the pricing errors for

the model is
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var
h
gT
³bb´i

=
1

T

h
In −DT (D0TWTDT )

−1D0TWT

i
ST
h
In −DT (D0TWTDT )

−1D0TWT

i0
.

(29)

Thus, we can construct a Wald test statistic for the null hypothesis that gT = 0 as

g0T
³bb´ var hgT ³bb´i−1 gT ³bb´ d→ χ2(n− k). (30)

Since var
h
gT
³bb´i only has rank n − k, we use the pseudo inverse, following Cochrane (1996)

footnote 6. When we do optimal GMM, this Wald test reduces to the well-known J-test, with

J = g0T
³bb´ var hgT ³bb´i−1 gT ³bb´ = Tg0T ³bb´W ∗

T gT
³bb´

d→ χ2(n− k). (31)

From equation (14) the covariance matrix of the Lagrange multipliers is

var(eλ) =WT var
h
gT
³bb´iWT . (32)

Since the maximum pricing error δ is achieved by θ0R with θ = eλ/δ, we can examine the importance
of individual assets to the pricing error by examining the null hypothesis eλj = 0.

Finally, it is important to distinguish which pricing errors are under discussion. We defined the

pricing errors of the models in equation (20). It is the sample average for the differences in prices

when we use y to price R minus the correct prices which should be zero for an excess return and

one for a gross return. As in other research, we can also define average return errors as

π = R−E(R) = 1

T

TX
t=1

Rt −R0[pn − cov(y,R)]

= R0gT (bb). (33)

To avoid confusion, we refer to gT (bb) as model errors, and π as the pricing errors of the basic

assets. Since R0 differs across models, the two do not provide the same information. We look at

gT (bb) mainly for details associated directly with δ. We examine π to compare pricing errors for the
basic assets across models.
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2.3 Conditional Models and Stability Tests

Examining the unconditional implications of linear factor models has two inherent problems. One

is that only unconditional risk premiums are estimated. The second is that the models force

prices of fundamental risks to be constant across business cycles. Cochrane (1996), Ferson and

Harvey (1999), and others try to solve these two problems by using macroeconomic variables as

conditioning variables. In equation (3), all parameters in b are constant. To allow them to vary

with some element zt in Φt, we write

yt+1 = b0(zt)Ft+1

= (b0,1 + b0,2zt) +
h
b01,1 + (b1,2zt)

0iFt+1
= b0,1 + b0,2zt + b

0
1,1Ft+1 + b

0
1,2(Ft+1zt). (34)

The last equal sign demonstrates Cochrane’s (1996) point, scaling the prices of factors is equivalent

to scaling the factors.

If prices of risks fluctuate over the business cycle, we can capture this effect by using variables

that are associated with business cycles. There are three requirements for macroeconomic variables

to be legitimate instruments. First, they must be included in the time t information set. Second,

they should summarize the status of the business cycle. Third, since the number of the parameters

increases geometrically with the number of conditioning variables, which can make the estimates

unreliable, we can only allow one conditioning variable each time. Because the previous literature

has focused on both monthly and quarterly horizons, we would like a similar conditioning variable

for each horizon.

Daniel and Torous (1995) find that the cyclical element in industrial production (IP ) is pre-

dictive for common stock returns. We adopt their use of IP as one instrument for the monthly

models. For quarterly models, we use the cyclical component of real GNP . Because the cyclical

components are not observable, we derive both series by using the Hodrick-Prescott (1997) filter

applied recursively. We will elaborate on the construction of our data in the next section.

Lettau and Ludvigson (1999a) provide an alternative to these output-based measures of the

business cycle. Lettau and Ludvigson (1999a) demonstrate that the cyclical element in the log

consumption-aggregate wealth ratio (CAY ) is strongly predictive for excess stock returns. This

argument is consistent with the CCAPM. Lettau and Ludvigson (1999b) test the CCAPM and the

CAPM using CAY as a conditioning variable. In their cross-sectional test conditioning with CAY
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substantially improves the performance of the models. We also include CAY as a conditioning

variable for the quarterly models.

Loughran (1997) and Daniel and Titman (1997) argue that the B/M effect in stock returns

is largely driven by a January effect, that is, the B/M effect is not present at other times of the

year. The basic assets we use are the Fama and French twenty-five portfolios which are constructed

precisely to incorporate the B/M and size effects. We use a January dummy variable (JAN) to

allow prices of risks to differ between January and other months of the year.

Another important issue is the stability of the model’s parameters. Conditional models are

attractive because unconditional models may not adequately capture time-varying risk premiums.

But, this approach is not costless. If the conditional version is correctly specified and captures

the dynamics in risk premiums, it will outperform the unconditional models. However, if the

model’s implied time-varying risk premiums are inherently misspecified because we choose the

wrong conditioning variable, this false model may still appear to work well in small samples since

it uses additional degrees of freedom. Ghysels (1998) finds that conditional models are fragile and

may have bigger pricing errors than unconditional models.

If the model is correctly specified, parameter stability is not a problem. We use the supLM test

of Andrews (1993) to see whether there are structural shifts in the parameters. The null hypothesis

is there are no structural shifts. Andrews (1993) argues that the supLM test is powerful against

the alternative of a single structural break at an unknown time. He also argues that even if this is

not the most interesting alternative hypothesis, it provides a reasonable test of parameter stability.

The LM statistics are evaluated at 5% increments between 20% and 80% of the sample, and the

largest is the supLM statistics. The distribution for the supLM statistic is presented in Table 1 of

Andrews (1993).

To keep the estimation tractable, we use the twenty-six portfolios as the basic assets to be

priced. We also investigate whether the model is robust to a different set of assets by adopting

Cochrane’s approach of scaling returns. Cochrane (1996) notes that conditioning information can

be used to scale returns as implied by equation (1). These scaled returns can be interpreted as

the returns to managed portfolios. The portfolio manager changes the weight of each portfolio

according to the signal he observes from the conditioning variable. To illustrate, we multiply both

sides of equation (1) by any variable xt ∈ Φt to get

Et(mt+1Rj,t+1)xt = xtpj, ∀ j, t > 0, ∀ xt ∈ Φt. (35)
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By the law of iterated expectation, we have

E(mt+1Rj,t+1xt) = E(xtpj), ∀ j, t > 0,∀ xt ∈ Φt. (36)

Equation (40) provides the orthogonality conditions for scaled returns. If the model is robust to

changes in the underlying assets, it should be able to price the new assets correctly. That is, if

the model can price non-scaled returns R, under the null hypothesis that the parameters are not

asset-sensitive, the model should be able to price scaled returns Rx as well.

We first calculate parameter estimates from optimal GMM using the twenty-six returns as

bb = argmin gT (R)0W ∗gT (R). (37)

Then, under the null that bb is the true parameter, the set of scaled returns Rx should be correctly
priced with bb. We calculate the new J statistics as

J = gT (Rx,bb)0var[gT (Rx,bb)]−1gT (Rx,bb), (38)

where

gT (Rx,bb) = 1

T

T−1X
t=1

(Rt+1xt)
³bb0Ft+1´− pxt, (39)

The J-statistic is distributed as a χ2(n) under the null. The degrees of freedom are n because we

have n orthogonality conditions, and we do not estimate any additional parameters. The same

argument applies to HJ-distance. With the new orthogonality conditions for scaled returns, we

need to calculate the new δ and the distribution of T δ2. Since the first stage estimates by optimal

GMM are not very different from those obtained from HJ-distance estimation, we choose to use

the estimates from optimal GMM to calculate new HJ-distance for the new scaled assets.

3 Data

Unless otherwise indicated, all data are from CRSP. For the monthly models, the sample period is

1952:01 to 1997:12, for 552 total observations. For the quarterly models, the sample is from 1953:01

to 1997:04, for 180 total observations. We begin in 1953:01 because CAY is only available after

1953:01.
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3.1 The Portfolio Returns

Our basic assets are the twenty-five excess returns on the portfolios sorted by size and book-to-

market ratio that are calculated as in Fama and French (1993).4 Excess returns are constructed

by subtracting the T-bill rate, and our twenty-sixth asset is the gross return on the T-bill. The

previous literature finds that the twenty-five B/M and size portfolios are very hard to price correctly

because they incorporate both size premiums and value premiums. We require the models to price

these excess equity returns and the riskfree rate, as well.

Portfolios are numbered 11 to 55, where the first number refers to the size quintile and the

second number refers to the B/M quintile. For example, 11 is the portfolio of the smallest firms

with the lowest B/M, while 55 is the portfolio with the largest firms and highest B/M. Table 1

provides summary statistics for the twenty-five portfolios for the sample period 1952:01 to 1997:12.

It is similar to Table 2 of Fama and French (1993), which involves a shorter sample period from

1963:01 to 1991:12. For our longer sample, most average returns are larger, except for the low B/M

firms. Since the standard errors are smaller, the t-statistics are larger except for the low B/M firms.

As demonstrated in section 2, the weighting matrix for the calculation of HJ-distance depends

only on the assets and is the same for different models. The weighting matrix is not the same

when we use conditioning information to scale returns. Hence, we have four weighting matrices:

monthly non-scaled returns, monthly scaled returns, quarterly non-scaled returns, and quarterly

scaled returns. Because our main results are derived from monthly and quarterly non-scaled returns,

we focus primarily on these two cases. Since

W = E(R0R)−1,

we first want to demonstrate that E(R0R) is non-singular. The condition numbers of the two matri-

ces of sample second moments are 13548 and 7851 for monthly and quarterly returns, respectively5.

This indicates that inversion of the matrices should be well behaved.

Cochrane (1996) argues that one can transform the weighting matrix using eigenvalue decom-

position such that W = ΓQΓ0 where Γ is an orthonormal matrix with the eigenvectors of W on its

columns, and Q is a diagonal matrix of eigenvalues. Then, the HJ-distance problem in equation

(15) can be rewritten as
4We thank Ken French for providing the data.
5For monthly scaled returns, the condition number is 10264; for quarterly scaled returns, the condition number is

5238.
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δ =
£
E(yR− pn)0ΓQΓ0E(yR− pn)

¤1/2
.

The elements of the jth column in Γ can be interpreted as weights that are assigned to individual

portfolios for the jth eigenvalue in Q. If there are a few large eigenvalues of W with eigenvectors

that place large weights on only a few portfolios, the GMM problem may be choosing parameters

that are associated only with a few portfolios. Because W does not change across models, it is not

unfair to ask the competing models to price the same portfolios. But, we do want the structure of

the weighting matrix to be reasonable. Figure 1 demonstrates which particular portfolios receive

the largest weights for the largest two eigenvalues of the weighting matrices. The weights are

standardized to sum to one. Figure 1 demonstrates that no particular portfolio receives an unusually

large weight.

3.2 Conditioning Variables

3.2.1 Conditioning Variables to Scale Factors

We use five variables to capture movements in the prices of risks over the business cycle. For the

monthly models, the cyclical part of the natural logarithm of the industrial production index is one

conditioning variable. The industrial production index is from the Citibase monthly dataset. The

series is available from January 1947 to April 1999 . We use the Hodrick-Prescott (1997) filter on

the first five years to initialize the cyclical series. The smoothing parameter is set to be 6400. Thus

the first element of our cycle is 1951:12. We then use the procedure recursively on all available data

to find the subsequent elements for the cyclical series. This method guarantees that each element

is in the time t information set. Panel A of Figure 2 gives the log industrial production index and

the cyclical element IP we use.

As mentioned above, in monthly models we also scale the factors with a January dummy, JAN ,

that takes the value 1 for each January and is 0 otherwise. For quarterly models, JAN takes the

value 1 for the first quarter and is 0 otherwise.

For the quarterly models, we also scale the factors with the cyclical component of real GNP .

The data are also from the Citibase quarterly dataset (beginning in 1946:01). We use the recursive

Hodrick-Prescott (1997) filter with the smoothing parameter equal to 1600. Because GNP is not

announced until the following quarter, we lag GNP twice to make sure it is in the time t information
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set. Alternatively, Lettau and Ludvigson (1999) develop another conditioning variable, the change

in the consumption-wealth ratio, CAY .6 The CAY series is lagged one period to be a legitimate

instrumental variable. Panels B and C of Figure 2 present the dynamics of GNP and CAY .

The cyclical components of the GNP and CAY series are not particularly highly correlated. The

contemporaneous correlation is -0.0441, and the cross correlations indicate that CAY leads GNP

by 3 to 4 quarters, as theory predicts consumption should lead income.

Table 2 provides some information on the predictive power of the three conditioning variables

except JAN . We use the conditioning variables to estimate the next period return on the value-

weighted market return. All of the three conditioning variables have significant predictive power.

The explained part of returns is small, as anticipated. With monthly data the R2 for IP is 1%,

and with quarterly data it is 3% for GNP , and 11% for CAY .

3.2.2 Conditioning Variable to Scale Returns

We only use one series as the conditioning variable for scaled returns. It is the term premium,

calculated as the difference between the 30-year government bond yield and the 1-year government

bond yield. The data are from CRSP, which provides a monthly index. We construct the quarterly

series by using the end-of-quarter observations.

3.3 The Asset Pricing Models

We evaluate eight asset-pricing models. The simplest model incorporates only a constant in the

SDF, and it is called the Null model. The Null model is used as a benchmark. With only a constant

factor present, the distance between y and em is δ = minm∈M std(m). Thus, we can interpret the

HJ-distance as the standard deviation for the least volatile element in M. In the conditional case,

the Null model has two factors, the constant and the conditional cycle. Thus, the conditional Null

model determines whether the movement in the cycle is an important pricing factor.

6The data are obtained from Ludvigson’s website: http://www.ny.frb.org/rmaghome/economist/ludvigson.html.

CAY is calculated as CAYt = ct − wat − (1 − w)yt, where ct is consumption, at is asset wealth, yt is labor income,
and w is the weight of asset wealth in total wealth. w is estimated by OLS using all observations. Because of the

cointegration relationship between ct, at and yt, the sample estimate (bw) for w is said to be superconsistent. Lettau
and Ludvigson (1999) argue that bw can therefore be treated as if it is the true parameter. Thus dCAY t, as a function

of bw, can be treated as if it is in time t information even though bw is estimated using all observations, and when

using dCAY t in estimation there is no need to adjust the standard errors for the sampling variability in bw.
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The second model is the CAPM. The model SDF has two factors, a constant, and the excess

return on the market portfolio. We use the excess return on the value-weighted CRSP index over

the one month risk free rate RVW , as a proxy for the market excess return. For the quarterly

model, we compound the monthly market returns to produce quarterly returns and subtract the

three month interest rate. In the conditional model of the SDF, there are 4 factors: the constant,

the cycle, RVW and RVW · cycle.
The third model is a linearized CCAPM. The original CCAPM is non-linear and requires a

particular form for the utility function. Rather than develop nonlinear models of marginal utility,

we simply use consumption growth, ∆c, as the factor. We use the growth rate in real nondurables

consumption from Citibase. The unconditional model of the SDF has two factors, the constant and

∆c. The conditional model has four factors: the constant, the cycle, ∆c, and ∆c · cycle.
The fourth model is the conditional CAPM developed by Jagannathan and Wang (1996)(here-

after the JW model). This model is derived from the assumption that the CAPM holds as a

conditional model and that the return on the market is predictable with the default premium,

RPREM , which is the difference between the yield on baa and aaa corporate bonds from the Board

of Governors of the Federal Reserve. The JW model’s unconditional form involves two betas. One

is the original market-beta. The other beta incorporates variation in the market beta, which Ja-

gannathan and Wang (1996) call beta-premium sensitivity. Beta premium sensitivity is captured

by variation in the default premium. RPREM measures the instability of the market beta over

the business cycle. Jagannathan and Wang (1996) also argue that the value-weighted index is an

inadequate proxy for the market return. They include labor income growth, RLBR, as an additional

factor reflecting a return to human capital.7 There are four factors in the JW model, a constant,

RVW , RLBR and RPREM .We construct the data as described in Jagannathan and Wang (1996) for

monthly models. For the quarterly model, RLBR is calculated as the quarterly growth rate in labor

income, and RPREM is constructed by selecting the third observation in each quarter. Although

the JW model is already an unconditional version of a conditional model, we also estimate our

conditional version which implies a total of eight factors in the model SDF.

The fifth model is a linear version of Campbell’s (1996) log-linear asset pricing model. Camp-

7Jagannathan and Wang (1996) measure labor income growth as RLBR,t =
Lt−1+Lt−2
Lt−2+Lt−3 , where L is labor income per

capita calculated as the difference between personal income and dividend income per capita. The data are obtained

from Citibase. Jagannathan and Wang(1996) use a two-month average to “minimize the influence of measurement

errors”.
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bell (1996) develops an intertemporal asset pricing model that allows for changes in investment

opportunities. Factors are determined by their ability to predict the return on the market. As

in Jagannathan and Wang (1996), Campbell (1996) argues that labor income is an important

additional factor to fully reflect investor’s wealth. However, the labor income factor, LBR, is con-

structed as the monthly growth rate in real labor income (from Citibase). The other three factors

are the following: the dividend yield on RVW , DIV ; the relative bill rate, RTB, calculated as

the difference between the 1-month T-bill rate and its 1-year backward moving average; and the

yield spread between long and short-term government bonds TRM , which we constructed as the

difference in yields between 30-year government bond and 1-year government bond. In total, there

are six factors in the SDF for this model: the constant, RVW , LBR, DIV, RTB and TRM . In

Campbell (1996), the pricing proxy is actually defined as y = exp(−F 0b) and there are constraints
across the parameters. Here we simply put the six factors into a linear SDF model, y = F 0b. For

the conditional models, we have twelve factors in total.

The sixth model is a linearized version of Cochrane’s (1996) production based asset pricing

model. Cochrane (1996) argues that returns should be well priced by the investment return, which

is a complicated function of the investment-capital ratio and several parameters. But, Cochrane

(1996) finds that the investment growth rate performs equally well, and we adopt the investment

growth rate model instead of the investment return model. The factors are the growth rate on

real non-residential investment, GNR, and the growth rate on real residential investment, GR.

Both original series are from Citibase. The model has three factors in the unconditional model,

a constant, GNR, and GR. The conditional Cochrane model has six factors. The data are from

Citibase. Since we only have quarterly data for real investment, we do not compute a monthly

model in this case.

The above six models are all based on explicit economic theories. We also consider two empirical

asset pricing models. They are called “empirical” because their key pricing factors are derived from

the data. The seventh model is the Fama-French (1993) three factor model (hereafter the FF3

model). The first factor is the excess return on the market portfolio, RVW , as calculated above.

To mimic the risk factors in returns related to size and B/M ratio, Fama and French (1993) first

sort all stocks into two size portfolios, small and big, they also sort all stocks into three B/M

portfolios, high, medium and low. Factor SMB (small minus big) is constructed as the difference

in returns on small and big, thus it captures risk related to size. Factor HML (high minus low)
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is constructed as the difference in returns on high and low, thus it captures risk related to B/M

ratio. The unconditional model of the SDF has four factors: constant, RVW , SMB, and HML.

We construct quarterly factors by compounding the monthly factors. There are eight factors in the

conditional model.

The eighth model is the Fama-French (1993) five-factor model in which they add a term-

structure factor and a default-premium factor to their three factor model (hereafter the FF5 model).

Fama and French (1993) use the difference between the yield on a thirty-year bond and the yield on

the one-month bill as a term structure factor, that is, TERM . Default risk, RPREM , is proxied by

the difference between the yields on baa and aaa corporate bonds (as in JW). We construct quar-

terly data by compounding the monthly RVW , SMB and HML, and we use the third observation

of each quarter for TERM and RPREM . The conditional model has twelve factors.

4 Empirical Results

4.1 Basic Model Diagnostics

The basic model diagnostics are presented in the seven panels of Table 3. The first row of each panel

reports the HJ-distance (δ) estimates. The second row provides the p-values of the test δ = 0 as in

equation (28). The third row contains the standard errors for the HJ-distance estimates calculated

under the null hypothesis that the true distance is not equal to zero as in equation (45) of Hansen

and Jagannathan (1997). These allow an assessment of the precision with which δ is estimated.

The fourth row reports the p-values of the Wald tests that the pricing errors are all zero as in

equation (30). The fifth row reports the p-values of the J-statistics from optimal GMM estimates

of the models. The sixth row presents the values of the supLM test, and the seventh row provides

the p-values for these tests from Table 1 of Andrews (1993). The eighth row reports the number of

parameters.

Recall that the HJ-distance has two interpretations. It is the distance between the true SDF

and the model’s implied SDF, and it is the maximum pricing error for any portfolio formed from

the basic assets with norm of the payoff on the portfolio equal to one. Since the second moment of

the payoff equals one, and because the mean of the payoff must be less than the second moment,

the true price of the payoff must be less than one if the expected return is to be greater than one.

Thus, the maximum pricing error understates what the percentage pricing error would be.
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Interpretation of the HJ-distance estimates in finite samples is hampered by the fact that zero

is on the boundary of the parameter space. Even if the null hypothesis is true, we expect in finite

samples that the estimated HJ-distance will be positive. Of course, if the p-values of the test

statistics are well behaved, false rejections of the null hypothesis only occur the correct percentage

of the time.

The Monte Carlo experiments conducted by Ahn and Gadarowski (1999) indicate that the

expected value of the HJ-distance for a three factor model can be quite large and depends on

the number of assets and the number of time periods. From Table 1 of Ahn and Gadarowski

(1999) with 25 returns, we find average HJ-distances of 0.393 for 160 observations, 0.260 for 330

observations and 0.174 for 700 observations. Hence, by extrapolating to our monthly sample of 552

observations, we should not be surprised to see an HJ-distance equal to 0.21, even though a model

is true. Similarly, for a quarterly sample of 180 observations, we should not be surprised to see an

HJ-distance equal to 0.38, even though the model is true.

Ahn and Gadarowski (1999) also investigate the empirical size of the test that HJ-distance

equals zero. For 25 assets they find that 5.5% of their experiments exceed the 1% critical value

with 160 observations, 2.5% are greater with 330 observations, and 1.5% are greater with 700

observations. Thus, for our sample sizes, the monthly model appears to be close to having the

correct size of the test if a three-factor model is true, while the rejection rates for the quarterly

model appear to be too high.

Monthly Models. The first two rows of Panel A in Table 3 indicate that the Null model,

the CAPM, the CCAPM, the JW model, and the FF3 model all have HJ-distances that are larger

than 0.32. The p-values for the tests that these distances are zero are all less than 0.0001. The

standard errors of the HJ-distances, calculated under the hypothesis that a model is false, are

all about 0.05. The fourth and fifth rows report the Wald tests of whether the pricing errors on

the twenty-six original portfolios are jointly zero when evaluated at either the parameters that

minimize the HJ-distance or the parameters from optimal GMM, respectively. Generally, we find

little disagreement between these tests, and in panel A of Table 3 we find five out of the six models

are all rejected at the 0.001 level of significance or smaller. Campbell’s model achieves the smallest

HJ-distance, and the p-value of the test δ = 0 indicates we cannot reject correct pricing. Thus

the model captures the size and B/M effects and also prices the riskfree rate. It is noticeable that

the same model also passes the J-test of optimal GMM. Unfortunately, Campbell’s model does not
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have stable parameters. It fails the supLM test severely.

The HJ-distance of the FF5 model is smaller than that of the FF3 model. As one might suspect,

this difference comes from the fact that the T-bill rate is hard for the FF3 model to price because

the FF3 model only includes equity pricing factors. To evaluate this conjecture, we did a test which

only used the twenty-five size and B/M portfolios. There were only small differences between the

FF3 model and the FF5 model in that test. Even for the FF5 model, the point estimate of HJ-

distance is still around 0.30. If we subtract the bias in the statistic of 0.21, we can conclude that

the maximum pricing error is around 0.11.

Panel B of Table 3 reports the results when the factors are scaled by cycle(IP ). We find

the magnitudes of HJ-distances all shrink significantly by approximately 10% except for the Null

model. The p-value’s for the test of HJ-distance equal zero are now near 5%. We test whether the

conditioning information is statistically significant with a Wald test on the joint hypothesis that the

parameters for all scaled factors equal zero. For the CAPM, the CCAPM and the JW model, the

p-value’s are smaller than 0.02, which means the scaling variable IP significantly captures time-

varying behavior of risks. Using cycle(IP ) reduces HJ-distance for all models, and Campbell’s

model achieves the smallest distance. Scaled factors also improve the supLM statistics, though

none of the models pass both the test of HJ-distance equal zero and the supLM test. It is notable

that the CAPM with scaled factors marginally passes both the test of HJ-distance equal zero and

the optimal GMM test. Again, all results from minimizing HJ-distance are similar to what we find

from the optimal GMM approach.

The fact that scaled factor models have smaller HJ-distances than non-scaled factors models

comes from two sources. First, the conditioning information reduces the pricing errors by allowing

the prices of risks to vary with the business cycle. Second, by doubling the number of parameters,

a scaled factor model uses additional degrees of freedom in the minimization problem and is better

able to fit the data. This better fit may be spurious, though, as small-sample biases may worsen.

In the next section, we will examine the details of individual models.

According to Loughran (1997), the January effect explains a substantial part of the B/M effect.

When we allow only for a January dummy variable in addition to the constant term of the SDF’s,

there are very few changes compared to the results in Panel A of Table 3. These results are

not reported to save space. Panel C of Table 3 reports results with all factors scaled by JAN .

This effectively separates the January observations from the non-January observations by allowing
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different factor prices in January. For the Null model, the Wald statistic for the test that the

conditional parameter equals zero in the Null model is 0.0001, which demonstrates the importance

of a January effect. Allowing for a January conditioning variable improves the point estimates of

HJ-distance for all the models. Nevertheless, p-values of the J statistics indicated that the CAPM,

the CCAPM, and the FF3 models are still rejected at the 0.05 level of significance. The most

dramatic improvement is in the JW model which now passes all of the tests except the stability

test. The Wald test on the importance of the scaled factors indicates their joint significance.

There is a slight improvement in the performance of the FF3 model although the joint test of the

significance of the scaled factors has a p-value of 0.15. The FF5 model and Campbell’s model

already do reasonably well with non-scaled factors. Scaling all the factors in these models with a

January dummy does not appear to add any important factors since the p-values of the Wald tests

are both quite large.

Quarterly Models. The previous literature typically reports either monthly or quarterly

models. Some models, such as Cochrane’s (1996) model, can only be applied to quarterly data

because of data constraints. In this section we investigate the performance of the models with

quarterly data. Several issues arise. First, time aggregation may worsen the fit between the

factors and the models by smoothing the factors8. Second, market imperfections that cause short-

term deviations from the models may be lessened because the returns are cumulated. Third, as

noted above, the small-sample performance of any model deteriorates with a smaller number of

observations. The first and third effects suggest the performance of the models with quarterly data

deteriorates, while the second factor allows for improvement.

Panel D provides the summary results for the eight quarterly models, the seven previously

investigated plus Cochrane’s (1996) model. Although the point estimates of the HJ-distances are

much larger for the quarterly models than the monthly models, recall from our discussion of Ahn

and Gadarowski (1999) that values like 0.38 are to be expected in these sample sizes even if the

model is true. Nevertheless, the quarterly HJ-distances generally exceed the average of the Ahn and

Gadarowski (1999) figures by more than the monthly estimates exceed the corresponding average

from the Monte Carlo experiments. For example, the monthly FF3 model has an HJ-distance of

8This logic leads Cochrane (1996) to time average monthly returns in constructing quarterly returns. While we

construct the quarterly returns from the compound monthly returns as Rt+1 + Rt+2 + Rt+3, Cochrane (1996) uses

1
3
Rt+1 +

2
3
Rt+2 +Rt+3 +

2
3
Rt+4 +

1
3
Rt+5.
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0.323 and the Monte Carlo average is approximately 0.21 for a difference of 0.113. At the quarterly

sampling interval we find a difference of 0.537-0.38=0.157.

While the p-values of the tests that HJ-distance equals zero are all less that 0.0370, recall also

that in this sample size the asymptotic p-values probably understate the probability of a type I

error as Ahn and Gadarowski (1999) find that 15.7% of their empirical experiments exceed the 0.05

asymptotic critical value in samples of 160 observations. Hence, it seems reasonable to conclude

that the evidence against the JW model, the FF5 model, and Campbell’s model is not particularly

strong. Unfortunately these three models all fail the parameter stability test.

In Panel E, we scale all factors by the lagged cyclical component of GNP . Including the

conditioning information reduces the magnitude of HJ-distance by 5-10%. Two models, the FF3

model and Cochrane’s, now pass the test of HJ-distance equal zero and the supLM test. Once again

the HJ-distance tests are consistent with the results from optimal GMM. The test that all bb’s for
scaled factors equal zero indicates scaling with GNP does not significantly improve the performance

of the models. One should keep in mind, though, this is a joint test which may overshadow the

significance of individual parameters.

An alternative quarterly scaling variable is CAY from Lettau and Ludvigson (1999). They

find that scaling with CAY greatly improves the performance of the CCAPM in pricing the excess

returns on the twenty-five FF portfolios over a sample period 1963 to 1997. However, for our sample

of 1953 to 1998, CAY does not produce a noticeable improvement for the CCAPM. The scaled

model fails both the test of HJ-distance equal zero and the optimal GMM test. None of the models

scaled by CAY passes both the test of HJ-distance equal zero and the supLM test.

Panel G provides results when all the factors are scaled by JAN . For the quarterly models,

JAN takes the value 1 for the first quarter of each year, and 0 otherwise. The first thing to note

is scaling all factors with JAN reduces the magnitude of the HJ-distance for all models. The JW

model, the FF5 model and Campbell’s model all have p-values for the test of HJ-distance equal

zero above 80%. Surprisingly, the FF3 model does not pass the HJ-distance test and the J test.

This is because the scaled factor model is still unable to price the small growth firms. Cochrane’s

model passes both the test of HJ-distance equal zero and the supLM test. More details for this

model are provided in the section on successful models.

Correlations of Adjustment to Pricing Proxies. If the adjustments to two models as

calculated in equation (13) are highly correlated, we know the pricing element lacking in one model
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is also left out of the other model.

Panel A of Table 4 reports the correlations of the adjustments between the monthly models.

The Null model is the benchmark in the first grid. Those models that have a high correlation

with it would be less likely to pass the HJ-distance test and the optimal GMM test. The CAPM,

CCAPM and the JW model all have high correlation (over 0.90) with the Null model, and from

Table 3, we know they all fail the two tests. The FF3 model, the FF5 model and Campbell’s model

have relatively low correlations with the Null model, and as we already know, the last one passes

both tests. Still there are differences between the three models. Since the FF3 model is nested in

the FF5 model, they have a correlation coefficient of 0.91. The difference comes from the macro

variables in the FF5 model. Both the FF5 model and Campbell’s model include the term premium,

and they have a correlation of 0.82.

By adding conditioning information, the correlations between the necessary adjustments to the

models to make them equal the true SDF are reduced. From the first column of Table 3, we find the

adjustments to the CAPM, CCAPM, and the JW model are now correlated with the Null model at

0.75-0.85 level, and the adjustments to the FF3 model, the FF5 model and Campbell’s model are

correlated with the Null model at 0.6-0.7 level. Thus, conditioning information aids in explaining

time-varying risks and changes the pattern of the adjustments.

Panel B of Table 4 reports the information for quarterly models, which is similar to what we

have for monthly models. One should notice that although the correlations between models are

different, the numbers are big(above 0.50). This means either those models share the same problem

or the statistics suffer from small sample biases. Once again, since HJ-distance will be positive in

any model in a finite sample, correlations of pricing errors will be positive and possibly quite large

even if a model is true.

4.2 Model Errors and Pricing Errors for Non-scaled Factor Models

Additional information on the performance of the models is available by examining the model

errors and the Lagrange multipliers which are the components of δ. To check whether conditioning

information improves the performance of a model, we first need to understand the performance

of the original non-scaled factor model. The average model errors with their standard errors are

presented in Figure 3. Since monthly unconditional model errors share very similar patterns with

the quarterly model errors, we only present monthly model errors gT as defined in equation (20).
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For Cochrane’s model, we report quarterly model errors.

The model errors for the Null model range from 1.15% per month for portfolio 25 to -0.01%

for the T-bill rate. The B/M effect is very evident in the Figure as in each quintile, higher B/M

portfolios have larger pricing errors. There is less dispersion in the pricing errors across the five

B/M portfolios as size increases. The model under-estimates the returns on all portfolios except

the T-bill rate.

From Panel B, the CAPM correctly prices the largest size portfolios, but it tends to under-

estimate returns on high B/M portfolios and to over-estimate returns on low B/M portfolios. The

model error is between -0.50% per month and 0.45% per month.

The CCAPM is presented in Panel C. It has a pattern very similar to the Null model, which is

consistent with the high correlation between the adjustments y − em = eλ0R of the Null model and
CCAPM.

The JW model is presented in Panel D of Figure 3. It has a very similar pattern to the CAPM

except the over-estimation for low B/M portfolios is slightly smaller.

Panel E reports the pattern for Campbell’s pricing errors. The model considerably attenuates

the B/M effect. The average errors range from -0.28% to 0.30%. Part of the ability of the model

to pass the test of HJ-distance equal zero arises from its increased standard errors relative to the

CAPM. Although δ can be compared across models, the p-values of the tests are not comparable

because they are based on the eigenvalues of A in equation (27) which depends on the pricing

factors, the variance of pricing errors and the number of parameters.

Panel F presents the pricing errors in Cochrane’s model which share the same magnitude and

pattern as the quarterly CAPM. There is a distinct B/M effect as in the monthly CAPM.

The FF3 model is presented in Panel G. The additional two factors SMB and HML dampen

the size effect and the B/M effect. Now there is no particular pattern for the model errors. They

are scattered around the zero axis. The FF3 model over-predicts the average returns for both the

smallest firms and the largest firms, but especially the small growth stocks (low B/M ratio).

The FF5 model has a similar pattern to the FF3 model, except it reduces the pricing errors

slightly.

All models share one common characteristic, they do not misprice the T-bill rate. Model errors

for the T-bill rate are always around zero.
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4.3 Interesting Models

Since we have 21 monthly models and 32 quarterly models, we are unable to display parameter esti-

mates for all of them, but we report results for “interesting models”. Our definition of “interesting”

is the model at least marginally passes the test of HJ-distance equal zero at the 1% marginal level

of significance and the scaling parameters for scaled factor models are jointly significant at the 5%

level. As we observed in the previous section, the test of HJ-distance equal zero always produces

similar results to those of the J test from optimal GMM. Hence, that is implicitly a criterion. In

total we have 12 models satisfying both conditions. In addition we provide information on the

monthly FF3 model with non-scaled factors for comparison. This section first discusses monthly

models, then quarterly models.

Table 5 reports parameter estimates from minimizing the HJ-distance measure for all interesting

models. Each panel has two parts. The first part presents estimates for b as in equation (3). If

b1 for one factor is significantly different from zero, then the factor is an important determinant of

the pricing kernel. The second part of each panel presents estimates for Λ as in equation (7). It

provides information on whether the factors significantly influence the expected returns.

Monthly Models. The first model is the monthly CAPM with factors scaled by IP . The

model marginally passes the test of HJ-distance equal zero with a p-value of 0.0255. Both RVW

and IP are important for the correct pricing kernel. Thus the business cycle incorporated in IP

cannot be omitted from the pricing kernel. The same two factors are significantly priced for the

basic twenty-six portfolios with the positive signs. Thus IP helps to explain the size effect and the

B/M effect. In the framework of Jagannathan and Wang (1996), IP could be a proxy for beta-

sensitivity. Panel A of Figure 4 reports the model’s pricing errors, with its non-scaled counterpart.

With two more factors, IP and RVW · IP , most of the improvements are for low B/M portfolios,

and the biggest one happens for the smallest growth firms. With size increasing, the improvement

becomes smaller. However, the scaled factors model cannot eliminate either the size effect or B/M

effect. The monthly CAPM with factors scaled by IP also does not pass the supLM test at the 5%

level, so the estimates may be unstable.

The second monthly model is the CCAPM with factors scaled by IP . Parameter estimates

are reported in Panel B of Table 5. The test of HJ-distance equal zero is passed with a p-value

of 0.0408. From the estimates for b, we find ∆c, IP and ∆c · IP are all significantly priced for

the SDF. The estimates for Λ indicate that both ∆c and IP are priced for the underlying twenty-
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six portfolios with the correct signs. As in the monthly CAPM with factors scaled by IP , the

business cycle element IP is important for both the pricing kernel and the pricing of individual

portfolios. The monthly CCAPM with factors scaled by JAN also satisfies both conditions for

being “interesting”. For comparison, its parameter estimates are provided in Panel C of Table 5.

Now only the interaction between ∆c and JAN is significant for both the pricing kernel and prices

of risk. While this result literally implies that the consumption growth rate is important only in

January, an alternative interpretation is that the return characteristics of the underlying twenty-six

portfolios are most evident in January. The pricing errors for the two scaled factor versions of the

CCAPM together with the non-scaled factor benchmark are given in Panel B of Figure 4. One

finds that when the factors are scaled by IP, the improvements mostly happen for the high B/M

portfolios by 0.1% to 0.2% per month, thus the pricing errors when factors are scaled by IP are

flatter than the original non-scaled CCAPM. When the factors are scaled by JAN , both the size

effect and the B/M effect are much smaller. As a result, the line connecting the pricing errors is

somewhat flatter.

Panel D of Table 5 reports the parameter estimates for the monthly JW model with factors

scaled by IP . The p-value for the test of HJ-distance equal zero is 0.0574. First, both RVW

and RPREM · IP are important factors for the correct pricing kernel. The same two factors with

RLBR · IP significantly affect risk premiums. Panel E of Table 5 presents the parameter estimates
for the monthly JW model with factors scaled by JAN . From the estimation of b, both RPREM

and RPREM · JAN are significant determinants of the model’s pricing kernel. It is interesting to

find the default premium is priced differently in January(-0.28+0.13=-0.15) and outside January(-

0.28). Jagannathan and Wang (1996) find a positive price of risk for RPREM which appears to be

driven primarily by a January effect. The pricing errors of the above two models together with

their non-scaled factors benchmark are presented in Panel C of Figure 4. When the factors are

scaled by IP , the pricing errors are smaller for both the small firms and high B/M firms. Thus IP

helps dampen both the size effect and the B/M effect. When the factors are scaled by JAN , the

pricing errors are even smaller, as in the CCAPM above. The p-value of the test of HJ-distance

equal zero is 0.6497. However, neither of the models passes the supLM test.

Campbell’s model with non-scaled factors is reported in Panel F of Table 5. The model passes

the test of HJ-distance equal zero with a p-value 0.3471. Both DIV and TRM are important for

the correct pricing kernel from the estimates of b. In the lower part of the panel, we present the
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estimate for the prices of risks Λ. RVW , DIV and TRM are all significantly priced. Neither labor

income nor the relative bill rate is important. Panel D of Figure 4 reports the model’s pricing

errors along with the errors from the FF3 model as the benchmark. No size effect is apparent and

Campbell’s model prices the small growth firms better than FF3. While a B/M effect is present, its

magnitude is not large. Overall, the pricing errors for Campbell’s model are not bigger than those

of FF3’s, while the latter model is constructed to price the size effect and B/M effect. However,

Campbell’s model fails the supLM test. Thus the parameter estimates are not stable and should

be used cautiously.

The last monthly models we report are FF3 with non-scaled factors and FF3 with factors

scaled by JAN . FF3 is reported because we want to examine whether it can price the size and

B/M effects which it is constructed to do. It does not pass the test of HJ-distance equal zero.

Parameter estimates for FF3 are presented in Panel G of Table 5. It is somewhat surprising to

find that only RVW and HML are important for the pricing kernel, and they are also significantly

priced risk factors. Panel E of Figure 4 provides the pricing errors for FF3. The problem portfolios

are the lowest B/M with smallest and second smallest sizes, which are overpriced by the model.

Thus, the factor SMB cannot adequately capture the size effect in the portfolios, and SMB is not

significantly priced in the unconditional version when risk prices are held constant.

The monthly FF3 with factors scaled by JAN is reported in Panel H of Table 5. It passes the

test of HJ-distance equal zero with a p-value of 0.1012. From the estimates of b, RVW , SMB and

SMB · JAN are important factors for the pricing kernel. For the prices of risks, RVW , HML and

SMB · JAN are significant. This is consistent with the view that the size effect is primarily a

January effect.

As mentioned in the previous section, if the B/M effect mainly occurs in January, and HML

explains the B/M effect, HML will not be priced outside January. Thus, the results tell us either

there is still a significant B/M effect outside of January or there are some other risks which can

be priced by HML. We also examine the pricing errors to see whether scaling by JAN really

improves on the performance of the FF3 model in an interesting way. In the Panel E of Figure 4,

we find that adding JAN actually reduces the pricing errors by 0.2% for the smallest growth stocks.

Since the FF3 model already captures the B/M effect reasonably well, JAN does not improve this

dimension. Both models pass the supLM test.

Quarterly Models. The first quarterly model is the JW model. It marginally passes the test
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of HJ-distance equal zero with a p-value 0.0370. The parameter estimates are presented in Panel I

of Table 5. Only RPREM is important in the pricing kernel. For the prices of risks, RPREM is also

significant, but with a negative sign in contrast to Jagannathan and Wang (1996). In addition, the

price of market risk is marginally significant. The pricing errors of the JW model are reported in

Panel F of Figure 4 together with the quarterly FF3 with non-scaled factors as benchmark. Both

the size effect and the B/M effect are evident in the Figure, and most of the errors range from

0.5% per quarter to 2% per quarter. These pricing errors are quite large compared to those of

FF3. Thus the quarterly JW model passes the HJ-distance test not because it has small pricing

errors but because it has larger standard errors. Hence, the JW model with non-scaled factors is

not an economically interesting model. It also fails the supLM test indicating that the parameter

estimates are not stable.

The second quarterly model is Campbell’s model with non-scaled factors. The test of HJ-

distance equal zero has a p-value 0.0159. Panel J of Table 5 provides the parameter estimates. As

in the monthly models, the term premium is important in the pricing kernel. Both market risk

and term premium risk are priced factors for the risk premiums. The pricing errors are reported

in Panel G of Figure 4 together with the benchmark FF3. The pattern of the errors is very similar

to the monthly models we provide in Panel D. Campbell’s model improves on the smallest growth

portfolio, but it has an evident B/M effect. It also fails the supLM test.

The third quarterly model is Cochrane’s model with factors scaled by the cyclical element in

lag GNP . The parameter estimates are given in Panel K of Table 5. For the pricing kernel, both

RINV and RINV ·GNP are important. This is consistent with Cochrane (1996) who demonstrates
the importance of residential investment. For the twenty-six portfolios we are considering, only

the latter factor is significantly priced with a correct sign. The HJ-distance measure drops from

0.6255 for Cochrane’s non-scaled factors model to 0.5585 for its scaled factors model. In all of

the above models, scaled-factor models perform better than non-scaled models, and we confirm the

scaling factors are economically interesting by looking at the pricing errors and parameter estimates.

However, for Cochrane’s model, the improvement in HJ-distance does not actually come from the

improvements on pricing errors. This can be seen in Panel H of Figure 4. The pricing errors of the

non-scaled model show a distinct pattern of size and B/M effects. The scaled factors model shifts

most of the pricing error upward by 0.5-1%. There is improvement only for the first portfolio. The

smaller HJ-distance for the scaled factor model arises because the additional free parameters make
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it easier for Cochrane’s model to solve the minimization problem with the particular weighting

matrix. This is significant statistically, but it is not interesting economically. Panel L of Table 5

reports the quarterly Cochrane model with factors scaled by JAN . Both JAN and NRINV ·JAN
are important for the pricing kernel. Thus the January effect itself as a constant is important for

the pricing kernel. The same two factors are also priced significantly for the size effect, the B/M

effect and the riskfree rate. By looking at Panel H of Figure 4, we find after controlling for the

January effect, the pricing errors are shifted downward by 1-1.5%, which is a big improvement for

value firms. The B/M effect is mitigated but still present. Thus we conclude that the improvement

on HJ-distance measure is from the improvement of pricing errors. Both Cochrane’s scaled factors

models are stable, and they both pass the supLM test.

The quarterly FF5 model with non-scaled factors is provided in Panel M of Table 5. It passes

the test of HJ-distance equal zero with p-value 0.0180. From the estimates of b, we find that

RVW and HML are priced, as in FF3, and the two macro factors, TERM and RPREM are both

important for the correct pricing kernel. However, the latter two factors are not significantly priced

risk factors for the twenty-six portfolios. The pricing errors from FF5 in Panel H of Figure 4 are

almost the same as those in FF3. There are only small improvements on the smallest growth

portfolios. Unfortunately, the two additional macro factors bring instability into the model as it

fails the supLM test.

There is one last issue to note. All of the models do well in pricing the gross return of the T-bill.

This implies that although the minimization problem does not put a particularly large weight on

the T-bill return, it does not ignore it either. Others, such as Lettau and Ludvigson (1999) and

Jagannathan and Wang (1996), only include stock portfolios and have big estimates for the zero-

beta rate. We estimate the zero-beta rate for each model. For monthly models, the rate is around

0.4% per month; for quarterly models, it is around 1.8% per quarter. We believe these estimates

are more reasonable.

4.4 Robustness

In the above results, we obtain parameter estimates and conduct tests using non-scaled returns.

To examine whether these models are robust, we change the underlying assets from non-scaled

returns to scaled returns, and we investigate whether the parameter estimates obtained from non-

scaled return models (the first stage estimates) can price the scaled returns. We scale returns with
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the term premium, the difference in yields between a thirty-year government bond and a one-year

government bond. If a model is able to price the basic assets (non scaled-returns), and it is specified

correctly, it should be able to price the managed portfolios (scaled-returns).

Table 6 provides the information on these experiments. We use the estimates obtained from

the first stage by optimal GMM, to calculate test of the HJ-distance equal zero and the J-statistic

for optimal GMM for the new orthogonality conditions, as in equations (41), (42) and (43). These

p-values are denoted p1 and p2. We also use the first-stage estimates of HJ-distance to calcu-

late second-stage HJ-distance tests, and the p-value is denoted p3. None of the monthly models

successfully prices the new assets.

5 Conclusion

The purpose of this paper is to evaluate a number of asset pricing models that have been advanced

in light of the anomalies that have been uncovered in testing the CAPM. The models are compared

on a common set of returns: twenty-five size and book-to-market portfolios constructed as proposed

in Fama and French (1993) for a sample period from 1952 to 1997. Average excess returns across

these portfolios are as low as 0.36 percent per month and as high as 1.13 percent per month. Within

a size quintile, higher book-to-market portfolios have higher average returns. Within all but the

lowest book-to-market quintiles, average returns are generally decreasing in size. The unconditional

CAPM cannot explain these returns.

We consider only linearized versions of the models, and we evaluate the models with both non-

scaled factors and scaled factors, where the scaling reflects either business-cycle movements or a

January dummy. The models are compared using the methodology of Hansen and Jagannathan

(1997) who recognize that the estimated distance between a model’s pricing kernel and the true

pricing kernel also is an estimate of the maximal mis-pricing of a portfolio of the assets with norm

of the portfolio return equal to one. We also evaluate the models using the optimal GMM test of

Hansen (1982). In general, we find little disagreement between the two tests. Finally, we evaluate

the temporal stability of the parameters using the supLM test of Andrews (1993).

For monthly models with non-scaled factors, Campbell’s (1996) model is the only model that

passes the test of HJ-distance equals zero, and its estimated HJ-distance is also smaller than that

of the Fama-French (1993) three-factor model. Only three of the five factors in the model appear
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to be important: the return on the market portfolio, the dividend yield, and the term premium.

Unfortunately, the Campbell model fails to pass the stability test. While the simulation study of

Ahn and Gadarowski (1999) provides some support that the small-sample distributions of the HJ-

distance test are reliable for our sample size, no comparable study of the small-sample distributions

of the stability test has been conducted. Thus, additional study of the Campbell model appears to

be desirable. In particular, we evaluate only the linearized version of the model.

Scaling the risk factors of the models with the cyclical element in industrial production as

measured by the Hodrick-Prescott (1997) filter improves the performance of several of the models.

The CAPM, CCAPM, and Jagannathan and Wang (1996) models all have significant coefficients

on the scaled factors. There is also evidence that pricing in January is significantly different than

pricing outside of January. For example, when the three factors of the Fama-French (1993) model

are entered without scaling, only the market return and the HML portfolio are significant risk

factors. When the factors are also scaled with a January dummy, the market return and the HML

portfolio retain their significance and the SMB portfolio is significant in January. This latter model

also passes the stability test.

With quarterly data, none of the models with non-scaled factors passes the test of HJ-distance

equal to zero. Nevertheless, the simulation results of Ahn and Gadarowski (1999) suggest that these

results should be interpreted with care as the sizes of the tests appear to deteriorate in this sample

size. Neither scaling with the cyclical component of GNP as measured by the Hodrick-Prescott

(1997) filter nor scaling with the consumption-wealth series of Lettau and Ludvigson (1999) has

much of an influence on the results.

Additionally, none of the models, either monthly or quarterly appears to be robust in the

following sense. When we estimate the parameters of the models using the basic returns and ask

the models to price the set of assets constructed by scaling returns with the term premium, all of

the models fail.

There are several directions in which this study could be extended. First, we construct our

estimates as if there are no transactions costs in asset markets. Hanna and Ready (1999) find

that transaction costs reduce but do not eliminate the CAPM anomalies.. Luttmer (1996) notes

that a small transaction costs can have large implications for the variability of implied stochastic

discount factors. Future research should be directed to determine how transaction costs affect the

estimates of HJ-distance. Liquidity and market impact of trading individual assets may also be
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important. The study by Brennan, Chordia, and Subrahmanyam (1998) suggests that average

returns on individual equities are affected by trading volume, which is consistent with differences

in liquidity premiums across assets. Understanding how liquidity is priced and the role it plays in

portfolio returns is an open issue. The presence of these market frictions implies that it may be

difficult if not impossible to realize the returns that certain trading strategies imply. It is only truly

available returns that require adjustment for risk.
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Table 1: summary statistics for Fama-French 25 portfolios 
 
Panel A: means 
 
portfolios BM1 BM2 BM3 BM4 BM5 

SIZE1 0.36 0.77 0.83 1.03 1.13 
SIZE2 0.49 0.78 0.96 1.00 1.15 
SIZE3 0.59 0.76 0.80 0.97 1.04 
SIZE4 0.60 0.60 0.82 0.87 1.02 
SIZE5 0.57 0.63 0.68 0.67 0.85 

 
Panel B: standard errors 
 
portfolios BM1 BM2 BM3 BM4 BM5 

SIZE1 7.17 6.25 5.56 5.26 5.53 
SIZE2 6.49 5.62 5.11 4.85 5.39 
SIZE3 5.94 5.04 4.66 4.50 5.14 
SIZE4 5.32 4.80 4.61 4.52 5.22 
SIZE5 4.54 4.39 4.09 4.24 4.91 

 
Panel C: t-statistics 
 
portfolios BM1 BM2 BM3 BM4 BM5 

SIZE1 1.18 2.91 3.52 4.58 4.82 
SIZE2 1.76 3.25 4.41 4.85 5.03 
SIZE3 2.33 3.55 4.05 5.04 4.76 
SIZE4 2.64 2.93 4.17 4.50 4.60 
SIZE5 2.97 3.36 3.89 3.74 4.07 

 
 
 
 
 
The data are monthly returns on Fama-French 25 portfolios from 1952:01 to 1997:12 in excess of 1-month T-bill rate. 
Increasing portfolio numbers indicate increases in either size or book-to-market ratio. 



Table 2: Predictive power of conditioning variables used to scale factors 
 
Panel A: monthly cycle = IP 
 

 constant cycle R2 
b 0.01 -0.13 0.01 

s.e.(b) 0.00 0.06  
 
Panel B: quarterly cycle = GNP 
 

 constant cycle R2 
b 0.01 -0.77 0.03 

s.e.(b) 0.01 0.34  
 
Panel C: quarterly cycle = CAY 
 

 constant cycle R2 
b 0.00 2.52 0.11 

s.e.(b) 0.01 0.56  
 
 
 
 
 
The estimated OLS regression is Rvw(t) = b0*constant + b1*cycle(t-1)+ε(t). Rvw is the value-weighted return from 
CRSP. For the monthly regression, the sample period is 1952:01 to 1997:12. For the quarterly regression, the sample 
period is 1953:01 to 1997:04. The series IP and GNP are the Hodrick-Prescott (1997) filtered industrial production and 
real income respectively. The series CAY is the consumption-wealth ratio calculated by Lettau and Ludivigson (1999). 



Table 3: summary of models using excess returns with T-bill (26 portfolios) 
 
Panel A: monthly non-scaled returns with non-scaled factors 
 

MODEL NULL CAPM CCAPM JW CAMP FF(3) FF(5) 
HJ-dist(δ) 0.4198 0.3900 0.4293 0.3861 0.2961 0.3230 0.3164 

p(δ=0) 0.0000 0.0000 0.0000 0.0000 0.3471 0.0000 0.0007 
se(δ) 0.0510 0.0503 0.0633 0.0519 0.0648 0.0524 0.0547 

p-Wald(err) 0.0000 0.0000 0.0000 0.0000 0.3059 0.0010 0.0053 
p(J) 0.0000 0.0000 0.0000 0.0000 0.1944 0.0011 0.0045 

supLM stat 216.5006 3.5479 4.2343 38.2902 193.9762 9.9709 58.8892 
supLM test Fail pass pass fail fail pass fail 
No. of para 1 2 2 4 6 4 6 

 
Panel B: monthly non-scaled returns with scaled factors by cycle(IP) 
 

MODEL NULL CAPM CCAPM JW CAMP FF(3) FF(5) 
HJ-dist(δ) 0.4101 0.3515 0.3890 0.3138 0.2556 0.3021 0.2728 

p(δ=0) 0.0000 0.0255 0.0408 0.0574 0.5804 0.0096 0.1431 
se(δ) 0.0543 0.0639 0.0838 0.0502 0.0789 0.0616 0.0620 

p-Wald(err) 0.0000 0.0640 0.0072 0.0491 0.6149 0.0239 0.2039 
p-Wald(b) 0.0639 0.0123 0.0233 0.0136 0.6157 0.3502 0.3717 

p(J) 0.0004 0.2694 0.0015 0.0624 0.5336 0.0265 0.2180 
p-Wald(b*) 0.0063 0.0028 0.0205 0.0156 0.4859 0.3287 0.3981 
supLM stat 10.0277 15.9634 9.8311 28.2542 73.9089 16.6455 40.2039 
supLM test Pass fail pass fail fail pass fail 
No. of para 2 4 4 8 12 8 12 

 
Panel C: monthly non-scaled returns with scaled factors by JAN 
 

MODEL NULL CAPM CCAPM JW CAMP FF(3) FF(5) 
HJ-dist(δ) 0.3963 0.3657 0.3665 0.2738 0.2842 0.2866 0.2682 

p(δ=0) 0.0000 0.0000 0.0574 0.6497 0.1260 0.1012 0.3351 
se(δ) 0.0598 0.0668 0.0892 0.0863 0.0640 0.0493 0.0667 

p-Wald(err) 0.0000 0.0003 0.0427 0.7780 0.1023 0.0167 0.2576 
p-Wald(b) 0.0001 0.0419 0.0479 0.0213 0.9521 0.1535 0.5431 

p(J) 0.0000 0.0002 0.0223 0.8086 0.0652 0.0253 0.0976 
p-Wald(b*) 0.0000 0.1651 0.0257 0.0180 0.9616 0.2378 0.5935 
supLM stat 5.6920 6.2444 10.3446 52.6631 180.9788 13.4695 39.2249 
supLM test pass pass pass fail fail pass fail 
No. of para 2 4 4 8 12 8 12 

 
Panel D: quarterly non-scaled returns with non-scaled factors 
 

MODEL NULL CAPM CCAPM JW CAMP COCH FF(3) FF(5) 
HJ-dist(δ) 0.6490 0.6206 0.6186 0.5784 0.5501 0.6255 0.5368 0.5156 

p(δ=0) 0.0000 0.0000 0.0007 0.0370 0.0159 0.0000 0.0010 0.0180 
se(δ) 0.1034 0.0973 0.1076 0.1246 0.1074 0.1126 0.1157 0.1046 

p-Wald(err) 0.0005 0.0005 0.0026 0.0545 0.0187 0.0003 0.0087 0.0684 
p(J) 0.0005 0.0005 0.0048 0.0832 0.0499 0.0002 0.0102 0.1250 

SupLM stat 55.0231 3.6710 10.0706 31.0784 55.9571 10.0257 8.7462 52.1701 
SupLM test fail pass pass fail fail pass pass fail 
No. of para 1 2 2 4 6 3 4 6 

 



 
Panel E: quarterly non-scaled returns with scaled factors by cycle(lag GNP) 
 

MODEL NULL CAPM CCAPM JW CAMP COCH FF(3) FF(5) 
HJ-dist(δ) 0.6418 0.6004 0.6129 0.5432 0.5038 0.5585 0.4522 0.4291 

p(δ=0) 0.0000 0.0013 0.0000 0.0878 0.1473 0.1080 0.4881 0.3624 
se(δ) 0.0990 0.0820 0.1061 0.1106 0.1039 0.1285 0.1078 0.0990 

p-Wald(err) 0.0002 0.0043 0.0004 0.1414 0.1162 0.1084 0.2346 0.1949 
p-Wald(b) 0.1501 0.2030 0.5238 0.4105 0.7939 0.1426 0.2384 0.3347 

p(J) 0.0002 0.0105 0.0014 0.0558 0.1007 0.0859 0.4233 0.2537 
p-Wald(b*) 0.2194 0.0507 0.7989 0.0129 0.5747 0.0084 0.1108 0.2422 
SupLM stat 10.8365 11.0756 11.5782 37.0059 44.6401 9.8478 11.2852 34.0714 
SupLM test pass pass pass fail fail pass Pass fail 
No. of para 2 4 4 8 12 6 8 12 

 
Panel F: quarterly non-scaled returns with scaled factors by CAY 
 

MODEL NULL CAPM CCAPM JW CAMP COCH FF(3) FF(5) 
HJ-dist(δ) 0.6342 0.6134 0.6080 0.5443 0.5152 0.6234 0.5278 0.4975 

p(δ=0) 0.0000 0.0000 0.0001 0.2691 0.0985 0.0000 0.0010 0.0105 
se(δ) 0.0993 0.1102 0.1049 0.1543 0.1246 0.1143 0.1054 0.0895 

p-Wald(err) 0.0007 0.0003 0.0015 0.0778 0.0198 0.0001 0.0046 0.0383 
p-Wald(b) 0.0767 0.4116 0.3338 0.8286 0.7796 0.9450 0.8092 0.8587 

p(J) 0.0011 0.0002 0.0010 0.4282 0.0967 0.0005 0.0030 0.0324 
p-Wald(b*) 0.0122 0.5416 0.2529 0.4044 0.8340 0.6092 0.9312 0.9304 
SupLM stat 14.0275 14.3103 7.1698 39.1712 40.3727 16.7572 20.1487 30.9369 
SupLM test fail pass pass fail fail pass pass fail 
No. of para 2 4 4 8 12 6 8 12 

 
Panel G: quarterly non-scaled returns with scaled factors by JAN 
 

MODEL NULL CAPM CCAPM JW CAMP COCH FF(3) FF(5) 
HJ-dist(δ) 0.5903 0.5638 0.5818 0.3908 0.3791 0.5099 0.5085 0.3941 

p(δ=0) 0.0006 0.0014 0.0003 0.9970 0.9745 0.4290 0.0053 0.8703 
se(δ) 0.1349 0.1274 0.1312 0.2389 0.1952 0.1329 0.1294 0.1488 

p-Wald(err) 0.0091 0.0038 0.0078 0.9939 0.9708 0.4013 0.0038 0.3941 
p-Wald(b) 0.0000 0.0001 0.0101 0.1530 0.4625 0.0175 0.3532 0.4322 

p(J) 0.0106 0.0032 0.0096 0.9973 0.9844 0.5999 0.0037 0.9097 
p-Wald(b*) 0.0000 0.0001 0.0055 0.2059 0.4346 0.0011 0.6764 0.4995 
SupLM stat 8.5860 9.1810 9.1330 32.2225 28.3110 11.7944 20.1440 52.1233 
SupLM test pass pass pass fail pass pass pass fail 
No. of para 2 4 4 8 12 6 8 12 

 
The data are returns on Fama-French 25 portfolios in excess of the T-bill rate and the return on T-bill. Monthly data are 
from 1952:01 to 1997:12; quarterly data are from 1953:01 to 1997:04. Cycle (IP) is the cyclical element in industrial 
production index; cycle (GNP) is the cyclical element in real GNP; CAY is from Lettau and Ludvigson (1999). All 
conditioning variables are lagged at least one period; JAN is a dummy variable which has value 1 for January (monthly 
models) or first quarter (quarterly models). 
HJ-dist(δ) is Hansen-Jagannathan distance. p(δ =0) is the p-value for the test δ =0 under the null δ =0. se(δ ) is standard 
error for HJ-distance under the hypothesis that δ ≠0. p-Wald(err) is a Wald test for all model errors=0 using estimates 
of b from minimizing HJ-distance.  p-wald(b) is a Wald test on that all conditional elements of b are 0. The p-value of 
the optimal GMM test is p(J). p-Wald(b*) is a Wald test on that all conditional elements of b* are 0. supLM stat is the 
value for the supLM test statistics. The supLM test is based on a 5% significance level. No. of para is the number of 
parameters. 
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Table 5: Parameters estimates of interesting models from HJ-distance 
 
Panel A: CAPM monthly non-scaled returns with scaled factors by IP 
 

 Constant RVW IP RVW*IP 
Parameters of the pricing kernel 

b̂  1.03 -0.04 -0.34 0.02 
s.e. 0.05 0.02 0.12 0.03 

Factor risk prices 
Λ  0.66 2.16 0.58 

s.e.  0.27 0.74 2.75 
 
Panel B: CCAPM monthly non-scaled returns with scaled factors by IP 
 

 Constant ∆c IP ∆c *IP 
Parameters of the pricing kernel 

b̂  1.14 -0.75 -0.28 0.22 
s.e. 0.10 0.36 0.11 0.12 

Factor risk prices 
Λ  0.43 1.38 -0.49 

s.e.  0.21 0.65 0.55 
 
Panel C: CCAPM monthly non-scaled returns with scaled factors by JAN 
 

 Constant ∆c JAN ∆c *JAN 
Parameters of the pricing kernel 

b̂  1.05 -0.12 0.58 -3.93 
s.e. 0.06 0.37 0.90 1.62 

Factor risk prices 
Λ  0.26 0.02 0.20 

s.e.  0.22 0.06 0.08 
 
Panel D: JW monthly non-scaled returns with scaled factors by IP 
 

 Constant RVW RLBR RPREM IP RVW*IP RLBR*IP RPREM*IP 
Parameters of the pricing kernel 

b̂  1.38 -0.04 -0.66 0.68 0.38 0.00 -0.40 -0.40 
s.e. 0.68 0.02 0.64 0.71 0.38 0.03 0.31 0.22 

Factor risk prices 
Λ  0.65 0.05 -0.05 1.01 0.80 1.72 1.09 

s.e.  0.28 0.12 0.13 0.98 2.68 1.02 0.41 
 
Panel E: JW monthly non-scaled returns with scaled factors by JAN 

 Constant RVW RLBR RPREM JAN RVW*JAN RLBR*JAN RPREM*JAN 
Parameters of the pricing kernel 

b̂  -0.68 0.02 0.53 2.54 4.33 -0.45 0.35 -8.36 
s.e. 0.90 0.05 0.78 1.13 3.34 0.40 3.65 3.26 

Factor risk prices 
Λ  0.59 -0.14 -0.28 0.07 0.70 0.07 0.13 

s.e.  0.34 0.15 0.18 0.05 0.62 0.07 0.06 



 
Panel F: Campbell monthly non-scaled returns with non-scaled factors 
 

 constant RVW LBR DIV RTB TRM 
Parameters of the pricing kernel 

b̂  -1.07 0.01 0.10 0.67 0.90 -0.72 
s.e. 1.30 0.03 0.41 0.34 4.33 0.28 

Factor risk prices 
Λ  0.66 0.02 -0.69 -0.05 1.11 

s.e.  0.31 0.27 0.33 0.04 0.35 
 
Panel G: FF3 monthly non-scaled returns with non-scaled factors 
 

 Constant RVW SMB HML 
Parameters of the pricing kernel 

b̂  1.07 -0.05 -0.01 -0.10 
s.e. 0.02 0.01 0.02 0.02 

Factor risk prices 
Λ  0.65 0.14 0.39 

s.e.  0.21 0.12 0.10 
 
Panel H: FF3 monthly non-scaled returns with scaled factors by JAN 
 

 Constant RVW SMB HML JAN RVW*JAN SMB*JAN HML*JAN 
Parameters of the pricing kernel 

b̂  1.07 -0.08 0.12 -0.06 1.38 0.21 -0.98 0.15 
s.e. 0.05 0.03 0.06 0.05 1.22 0.26 0.43 0.42 

Factor risk prices 
Λ  0.63 0.16 0.39 0.01 -0.07 0.74 0.19 

s.e.  0.27 0.21 0.16 0.06 0.47 0.32 0.23 
 
Panel I: JW quarterly non-scaled returns with non-scaled factors 
 

 Constant RVW RLBR RPREM 
Parameters of the pricing kernel 

b̂  -0.35 0.00 -0.20 1.01 
s.e. 0.85 0.02 0.64 0.48 

Factor risk prices 
Λ  1.29 -0.02 -0.74 

s.e.  0.84 0.12 0.33 
 
Panel J: Campbell quarterly non-scaled returns with non-scaled factors 
 

 constant RVW LBR DIV RTB TRM 
Parameters of the pricing kernel 

b̂  0.22 0.00 0.10 0.28 -0.20 -0.56 
s.e. 1.00 0.02 0.16 0.27 2.64 0.22 

Factor risk prices 
Λ  1.52 -0.13 -0.28 -0.03 0.85 

s.e.  0.79 0.37 0.24 0.02 0.34 



 
 
Panel K: Cochrane quarterly non-scaled returns with scaled factors by lag GNP 
 

 constant NRINV RINV GNP NRINV*GNP RINV*GNP 
Parameters of the pricing kernel 

b̂  0.92 -0.01 -0.16 0.12 -0.04 -0.09 
s.e. 0.27 0.16 0.07 0.22 0.07 0.04 

Factor risk prices 
Λ  0.33 1.76 0.03 0.86 5.33 

s.e.  0.85 1.31 0.58 1.21 3.24 
 
Panel L: Cochrane quarterly non-scaled returns with scaled factors by JAN 

 
 constant NRINV RINV JAN NRINV*JAN RINV*JAN 

Parameters of the pricing kernel 
b̂  1.41 -0.24 0.09 -1.44 0.90 -0.19 

s.e. 0.21 0.17 0.07 0.53 0.37 0.15 
Factor risk prices 

Λ  -0.63 -1.38 0.15 -1.25 -0.03 
s.e.  0.75 1.44 0.08 0.59 0.61 

 
Panel M: FF5 quarterly non-scaled returns with non-scaled factors 
 

 constant RVW SMB HML TERM RPREM 
Parameters of the pricing kernel 

b̂  1.23 -0.05 0.00 -0.06 -0.21 1.25 
s.e. 0.52 0.02 0.02 0.02 0.11 0.78 

Factor risk prices 
Λ  1.51 0.58 1.12 0.23 -0.06 

s.e.  0.79 0.42 0.41 0.51 0.10 
 
All parameters are calculated by both optimal GMM and minimizing HJ-dist. The risk prices for factors, Λ, 
are defined in equation (7). The data are returns on Fama-French 25 portfolios in 
excess of T-bill rate and the return on T-bill rate. Monthly data are 
from 1952:01 to 1997:12; quarterly data are from 1953:01 to 1997:04. 



Table 6: Robustness test for non-scaled returns models 
 
Panel A: monthly scaled returns by TERM with non-scaled factors 

 NULL CAPM CCAPM JW CAMPBELL FF3 FF5  
p1 0 0 0 0 0 0 0  
p2 0 0 0.0001 0.0001 0 0.0005 0.0033  
p3 0 0 0 0 0 0 0  

 
Panel B: monthly scaled returns by TERM with scaled factors by IP 

 NULL CAPM CCAPM JW CAMPBELL FF3 FF5  
p1 0 0 0 0.0022 0 0 0  
p2 0 0.0035 0 0.0044 0 0.0173 0.0004  
p3 0 0 0.0001 0 0 0.0001 0  

 
Panel C: monthly scaled returns by TERM with scaled factors by JAN 

 NULL CAPM CCAPM JW CAMPBELL FF3 FF5  
p1 0 0.0001 0.0013 0 0 0 0  
p2 0 0.0006 0.0361 0.0023 0 0.0074 0.0855  
p3 0 0 0.0751 0.0038 0 0.0006 0.0008  

 
Panel D: quarterly scaled returns by TERM with non-scaled factors 

 NULL CAPM CCAPM JW CAMPBELL COCH FF3 FF5 
p1 0.0001 0.0001 0.0135 0.002 0 0 0.0015 0.0028 
p2 0.0028 0.0054 0.0122 0.0063 0 0.0003 0.0403 0.0494 
p3 0 0.0001 0.0064 0.0005 0 0 0.0012 0.0017 

 
Panel E: quarterly scaled returns by TERM with scaled factors by lag GNP 

 NULL CAPM CCAPM JW CAMPBELL COCH FF3 FF5 
p1 0 0.0021 0.0096 0.001 0 0 0.0387 0.0176 
p2 0.0011 0.0173 0.0149 0.0077 0.0004 0.0005 0.3613 0.4949 
p3 0 0.0016 0.0035 0 0 0 0.0690 0.0156 

 
Panel F: quarterly scaled returns by TERM with scaled factors by CAY 

 NULL CAPM CCAPM JW CAMPBELL COCH FF3 FF5 
p1 0 0.0014 0.0001 0.0052 0 0 0.0005 0.0012 
p2 0.0005 0.0058 0.0022 0.012 0 0.0009 0.0528 0.1095 
p3 0 0.0002 0.0004 0.0025 0 0 0.0022 0.0061 

 
Panel G: quarterly scaled returns by TERM with scaled factors by JAN 

 NULL CAPM CCAPM JW CAMPBELL COCH FF3 FF5 
p1 0.0003 0.0022 0.0009 0.0204 0 0.0641 0.0004 0.0060 
p2 0.0154 0.0199 0.0111 0.103 0.0166 0.2361 0.0315 0.2157 
p3 0.0007 0.0017 0.0003 0.0159 0 0.0385 0.0007 0.0035 

 
The p-values are: 
p1: test of HJ-distance =0 using parameter estimates from optimal GMM for corresponding non-scaled 
return models; p2: test of optimal GMM over-identification using parameter estimates from optimal GMM 
for corresponding non-scaled return models; p3: test of HJ-distance =0 using parameter estimates from 
minimizing HJ-distance for corresponding non-scaled return models.  
The tests are based on returns on the FF25 portfolios in excess of T-bill rate and the return of T-bill, 
conditioned on the term premium, the difference in yields between a thirty-year government bond and a 
one-year bond. Monthly data are from 1952:01 to 1997:12; quarterly data are from 1953:01 to 1997:04. 



Figure 1. Diagnostic of Weighting matrix = E[R’R]-1 . Standardized eigenvector
corresponding to the smallest eigenvalue of E[R’R]

Panel A: monthly non-scaled returns, condition number=13548, 1st va(E[R’R]) = 0.00007, 2nd

va(E[R’R])=0.00009.

Panel B: quarterly non-scaled returns, condition number=7851, 1st va(E[R’R]) = 0.00013, 2nd

va(E[R’R])=0.00018.

The data are monthly and quarterly returns of Fama-French 25 portfolios in excess of T-bill rate and the
return on the T-bill.  Monthly data start at 1952:01, end at 1997:12, 552 observations. Quarterly data start at
1953:01, end at 1997:04, 180 observations. The smallest eigenvalue of E[R’R] is the biggest eigenvalue for
the weighting matrix = inv E[R’R], thus the corresponding eigenvector is the most important weight on the
model errors.
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Figure 2. Time series of three conditioning variables 
 
Panel A: monthly conditioning variable cycle(IP) 

 
Panel B: quarterly conditioning variable cycle (GNP) 
 

 
 
 
 

IP

-0.12

-0.08

-0.04

0

0.04

0.08

0.12

5201 5701 6201 6701 7201 7701 8201 8701 9201 9701

 GNP

-0.06

-0.04

-0.02

0

0.02

0.04

0.06

5201 5701 6201 6701 7201 7701 8201 8701 9201 9701



Panel C: quarterly conditioning variable cycle(CAY) 

 
 
 
 
Cycle (IP) is the cyclical element in industrial production. Monthly data begin at 1952:01 and end at 
1997:12. Cycle (GNP) is the cycle element of GNP. Cycle (CAY) is constructed as the change in aggregate 
consumption-wealth ratio, derived in Lettau and Ludvigson (1999a). Cycle (GNP) starts at 1952:01, and 
ends at 1997:04. Cycle (CAY) starts at 1953:01 and ends at 1997:04. 
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Figure 3: model errors for monthly models with non-scaled factors

Panel A: Null

Panel B: CAPM

Panel C: CCAPM
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Panel D: JW

Panel E: CAMPBELL

Panel F: COCHRANE
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Panel G: FF3

Panel H: FF5

The data are monthly and quarterly returns of Fama-French 25 portfolios in excess of T-bill rate and the
return on the T-bill. Monthly data start at 1952:01, end at 1997:12, 552 observations. Quarterly data start at
1953:01, end at 1997:04, 180 observations. Model errors are defined in equation (20).
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Figure 4. Pricing Errors for Interesting Models

Panel A: monthly CAPM with scaled factors by IP

Panel B: monthly CCAPM with scaled factors by IP and JAN

Panel C: monthly JW with scaled factors by IP and JAN
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Panel D: monthly Campbell’s model with non-scaled factors (with benchmark FF3)

Panel E: monthly FF3 with scaled factors by JAN

Panel F: quarterly JW with non-scaled factors (with benchmark FF3)

Panel G: quarterly Campbell’s model with non-scaled factors (with benchmark FF3)
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Panel H: quarterly Cochrane’s model with scaled factors by GNP and JAN

Panel I: quarterly FF5 with non-scaled factors (with benchmark FF3)

The data are monthly and quarterly returns of Fama-French 25 portfolios in excess of T-bill rate and the
return on the T-bill. Monthly data start at 1952:01, end at 1997:12, 552 observations. Quarterly data start at
1953:01, end at 1997:04, 180 observations. Pricing errors are defined in equation (33).
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