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1 Introduction

The problem of identification when the data is generated by simultaneous equations has been

studied for several decades now.l!

It can be oversimplified to one in which the parameters of
interest (unknowns) belong to a system of simultaneous equations (structural form) that cannot
be estimated. Only a linear transformation of it, which is known as the reduced form, can. The
problem of identification is one where the number of equations obtained from the reduced form is
smaller than the number of unknowns.

The literature has solved the problem by offering additional constraints that have expanded the
number of equations. Some of those assumptions are relatively not controversial, such as normal-
ization and independence of the structural shocks. In general, these assumptions are not enough
to fully solve the problem and the literature has developed other restrictions that depend on prior
knowledge about the system of equations. Within this class of assumptions, the most commonly
used are: exclusion, sign, long run restrictions, and covariance constraints. These restrictions had
proven to be very useful. There are several circumstances, however, where they are difficult to
justify.

In this paper, I discuss a new identification procedure to solve the problem of endogenous
variables. This restriction is based on heteroskedasticity of the structural shocks, and the conditions
in which it can be used are relatively general.

I apply the methodology to measure the “contagion”, or propagation, between Argentina and
Mexico’s Brady Bonds. This is a case in which non of the standard assumptions can be defended,
thus leaving the problem of identification unsolved. Using the fact that Brady Bonds exhibit
important conditional heteroskedasticity, however, it is possible to estimate the contemporaneous
relationship.

The paper is organized as follows: In section 2, the typical problem of identification is specified,
and the new identification assumption is discussed in the context of two regimes. The conditions
under which the assumption can be used are developed. An application of the methodology is
implemented to measure the propagation of shocks between sovereign bonds from Argentina and

Mexico. In section 3, the case when there are more than two regimes is analyzed. In section 4,

!See Fisher [1976] for the most comprehensive treatment of the subject. See Haavelmo [1947] and Koopmans,
et.al. [1950] for the seminal contributions.




necessary conditions for identification are derived for multivariate processes with common shocks.
In section 5, two alternative procedures to define the regimes are highlighted. Finally, in section 6,

conclusions and extensions are presented.

2 New Identification Procedure

To illustrate the problem of identification assume we are interested in estimating the following

system of equations:

pt = PBgi+ey, (1)

G = apt+1, (2)

where (1) is the demand equation, (2) is the supply equation, p; are the observed prices, g; are the
observed quantities, and ¢; and 7, are the structural shocks. The parameters of interest are a, 3,
and the variance covariance matrix of the structural shocks: o2, 0%. In this system of equations
normalization has already been assumed?, and the orthogonalization of structural shocks, 0., = 0.3
As was indicated above, these assumptions are relatively not controversial. However, they are not
enough to identify the parameters. Equations (1) and (2) cannot be directly estimated because of
simultaneous equation bias: if o and 3 are different from zero, then the right hand side variables
are correlated with the errors in both equations. In this example, the only statistic that can be

obtained is the variance covariance matrix of the reduced form. Solving for p; and ¢; in equations

(1) and (2):

P = 1_—1a_ﬁ [Bn; + &) (3)

1
¢ = 1_aﬁ[ﬂt+aé‘t], (4)

2The coefficients of p; in the first equations, and of ¢: in the second one are equal to one. This assumption is
innocuous in the sense that it changes the units in which the disturbances are measured.

3In general, this constraint is imposed because the definition, or the economic interpretation, of the shocks in the
structural equations implies their independence: for example, nominal versus real shocks, permanent versus transitory
shocks, or supply versus demand shocks.




which implies a variance covariance matrix,

1 ,820,2, + 02 ,3072, + ao?

N (1- aﬂ)z . 0'% + a?0?

The problem of identification is that the variance covariance matrix only provides three equa-
tions (the variance of p;, the variance of g, and the covariance between p; and ¢;) and there are
four unknowns: a, g, 02, o2.

The literature has solve this by imposing additional parameter constraints: (i) exclusion re-
striction. This accounts to impose either a = 0, or 8 = 0.4 (ii) sign restrictions. The imposition
of the sign on the slopes of the structural equations can achieve partial identification because the
two inequalities imply a region of admissible parameters.® (iii) long run constraints. When the
structural form includes lag dependent variables, it is possible to constraint the long run behavior
of a particular shock. This assumptions is equivalent to impose that the sum of some of the lag
coefficients is equal to zero. ¢ Finally, covariance constraints, for example that 0,27 /02 is equal to
some constant.

These restrictions have proven to be very useful in several applications. However, there are
important economic problems in which non of the previous assumptions can be justified.

The purpose of this section is to offer a new identification method that is based on heteroskedas-
ticity, and the two standard assumptions of normalization and mdependence of the structural
shocks. Here, I discuss the case in which the heteroskedasticity can be described as two regimes.

In the following sections, I discuss some generalizations.

*Technically this is implemented as a Cholesky decomposition of the variance covariance matrix. This restriction
has been used in several applications, specially in the measurement of the transmission of monetary policy in US.
The restriction, however, is assuming the problem of simultaneous equations away; if any of the contemporaneous
parameters is zero then there is no problem of endogenous bias, and the estimation could have been done directly in
the structural equations. Circumstances in which this assumption can be used are, therefore, limited.

®Even though a unique estimate cannot be obtained, at least an admissible interval is derived. Blanchard and
Diamond [1989] were the first ones to use this restriction.

SIf it is known that one shocks does not have permanent effects, then under some conditions, it is possible to
obtain identification. For example, the assume that nominal shocks are short lived, while real shocks are permanent.
Imposing this constraint Blanchard and Quah (1989] and Shapiro and Watson [1988] were able to estimate the effects
of aggregate shocks.




2.1 Identification under two regimes.

Assume that the data exhibits two regimes in the second moments; assume that the parameters («
and [3) are stable through out the two regimes; and assume that it is known when the shift between
the regimes occurs.” Additionally, without loss of generality, assume that the first moments are
equal to zero.

Denote the regimes as s € {1,2}, and define the variances of the structural shocks in regime s

as 0¢,s and o, ¢ then variance covariance matrix of the reduced form for each regime is,

_ Wil,s Wi12,s 1 1820'721,3 + 0'373 ﬁa%,s + 040'3,3
Qs= :ﬁ 9 2 9 ’ 36{172} (5)
W22 g ( - Oz,@) : On,s +a Ocs

where {); is the variance covariance matrix of the regime s. Note that now the unknowns are six:
a, B, 02, 02, 0k,, and 02, But the two variance covariance matrixes provide six equations.
Therefore, this is a non linear system with six equations and six unknowns. If they are not a
combination then the system is just identified. Furthermore, note that no additional assumption is
required to identify the structural form; there are no parameter restrictions, other than the stability
of the coefficients.

After solving for the variances in equations (5), o and 3 satisfy the following non-linear system

of equations:

Wi2,s — Q- Wilg
= 2 = sed1.2 6
B o s€ {12} (6)

For the purpose of inference, the small sample distributions of o and 3 are derived by boot-
strapping, taken as given the asymptotic distributions of the variance covariance matrixes.® The
following proposition summarizes the conditions under which o and 3 are identified. In other words,

when the non linear system of equations are indeed independent.

"Several of these assumptions are relaxed in the following sections.
®See pages 300 and 301 in Hamilton [1994] for the distribution of the variance covariance matrix.




Proposition 1 Let ptrand q: be realizations of a bivariate random variable governed by equations
(1) and (2), where the parameters (o and 3) determining the law of motion are stable through out
all realizations, and where the disturbances exhibit heteroskedasticity that can be described as two
regimes in the variance covariance matrix.

Then, if the variance covariance matrizes satisfy the following two properties, the structural

form is just identified.

det [Qy — Q1] # 0 (7)

and

det [92 — le] #0 or w19,2 — 'w11,2w12,1 #0 (8)
w111 w1

?

Finally, a and B satisfy equations (6)

From now on the first condition (equation 7) is referred as the “determinant of the difference”,
while the second condition (equation 8) is the “determinant of the weighted difference” or the
“covariance of the weighted difference”.

Proof. Because equations (5) form a non linear system of six equations, the conditions in which
they imply six linearly independent equations cannot be trivially stated. However, by inspection,
there are only two cases in which the system fails to solve for both & and 3.

The first one is when the heteroskedasticity does not implies a change in the relative importance
of the structural shocks: in other words, when Qs = af24, for some scalar a. In this case, the system
lacks of one equation. Note that if Q9 = a)y then det [y —a$y] = 0, which can be tested by

computing whether or not

det [92 _ L2 91] Zo.
wi11,1

By construction this is equivalent to ask if the covariance of the normalized difference is equal to




ZETO: Wig,9 — ﬁ—ﬁfwu,l Lo. The asymptotic properties of this statistic are better behaved than the
one from the determinant, and in the empirical section this is what is implemented. Note that this
condition is not satisfied if the residuals on the estimation of {2y are exactly the same, and thus,
perfectly correlated.

"The second instance when there is no identification of both parameters is when only one of the

variances changes. In this case, the system is only partially identified. For example, assume that

029> 071 and 02, = 02 . The difference between the two matrixes is

2
ora=021 | B 8

1-ef)’ | 5 1

which provides two procedures to estimate 3, but none to compute a. The opposite occurs when
only o2 changes. This problem can also be tested given that the determinant of the difference of

the variance covariance matrixes is equal to zero,

0.2 _0.2 ‘32 ﬂ
det[Qg—Ql]z(;"i—aﬂ;;-det 5 L0,

‘This determinant is equal to zero if the residauls of the estimate of €2 and €y are perfectly
correlated.

In conclusion, to violate the conditions it is required that either the changes in the variance
covariance are fully explained by only one shock, or that the changes are proportional. Both
imply a perfect correlation in the residuals on the estimation of €2; and Qy. On the contrary, the
identification is valid if both variances shift, and if the relative importance of the shocks changes
across the regimes. This is the case, for example, of almost all macro-applications where ARCH is

used. W

Corollary 2 When the condition (7), the “determinant of difference”, is not satisfied, but condition
(8), the “covariance of the weighted difference” is, then the system is partially identified.

Proof. As is argued in the proof of proposition 1, when 0,27,2 > 02,71 and 0372 = Ug’l then there

are two methods to estimate 8. Defime AQ = Qs — Oy, then




_ A1
T AQ

Ao

h AQg9

and =

2

s 2
similarly, when Op2 =051

and 02, > 02,, a can be estimated as
£,2 &1

Ay

o Ay
— AQn;

d [ ——
ana « AQ12

Note that in both cases there is an extra equation to estimate the coefficient. This means that
the model can be tested. In particular, the hypothesis that the parameters are stable across the
regimes can be tested. W

The intuition of why identification is achieved is that the heteroskedasticity changes the region in
which the errors are distributed; when the parameters are stable, the heteroskedasticity rotates the
errors along the structural equations. This is what allows one to solve for the system of equations.
The simplest intuition can be developed by first analyzing the case in which only one shock is
increasing its variance. As is mentioned before, this achieves partial identification; however, the
intuition can be extended afterwards to the case studied here. Assume that it is known that at
some point in time there is an increase in the variance of the supply shocks. During that period,

2

the “cloud” of realizations is going to widen along the demand curve as is depicted in figure 1.
Comparing how the ellipse of the realizations has changed across the two samples allows one to
determine the slope of the demand curve.

This explanation has a very simple intrumental variable interpretation. Oversimplifying the
intuition, a valid instrument is a variable that affects one equation and not the other one. The
idea is that it “moves” one equation allowing to estimate the other one. The heteroskedasticity, in
this example, is exactly doing that. Spliting the sample between those times in which the supply
shocks are small and large separates those times in which the supply is “moving” relatively more.
The change in the size of the shocks in the supply curve is equivalent to find an instrument for the

demand curve.®

°In an earlier paper, I use the partial identification procedure (only one variance changes) to test for the stability
of the parameter estimated. I implement the test as an Instrumental Variable. See Rigobon {1999].




When both variances shift, then there is an expansion along both schedules. If the relative
importance of shocks remains the same, then the two ellipses are proportional and no additional
information is obtained from the heteroskedasticity, other than the magnitude of the shift. On the
contrary, if the relative importance of the shocks changes, then the ellipse widens more along one
of the schedules than the other and the problem is solved as before. There is only one combination
of a and B in which the increases in the variances are consistent with the expansion of the ellipse

along the two dimension.

[Figure 1 here]
The following three remarks are in order:

Remark 1 It is not necessary to know which shocks becomes more important across the regimes.

The fact that there is change is enough.

The proof of proposition 1 only requires the variances to shift, not the knowledge of the direction
of the shifts.

Remark 2 The assumption of knowing when the regime shift occurs can be relaxed. The two

variance covariance matrizes can be estimated by implementing a regime shift regression as in

Hamilton [1990].

First, to obtain identification no assumption about the relationship between the two variance
covariance matrixes was imposed. If the variance covariances are correlated across the regimes, but
satisfy conditions (7) and (8), then they still provide enough equations.

Second, the most efficient procedure is to impose the windows exogenously. However, if the
windows are wrongly assigned, then the estimates of the variance covariance matrixes are biased,
inconsistent, inefficient, and their difference likely not to be statistically significant. Thus, one of
the determinant conditions (and maybe both) is rejected and the identification cannot be used.
An alternative is to define the windows endogenously. The estimates are consistent, but might be

ineflicient. If conditions (7) and (8) are satisfied, then the procedure for identification can be used.

Remark 3 The assumption that the structural shocks have to be wmndependent can be relazed, and,
at least, the relative variances of the structural shocks in each of the regimes can still be estimated.

Assume the model is described as follows:




Pt = Bagt+ e+ g,

g = apt+n+ e,

whose reduced form is

L =B ||p| |1~ &t
—a 1 qt 6 1 Ur
| 2] L
A B

3
B14 Dt _ t
| %t ] | e

In this case, the procedure identifies a normalization of C = B~ A. The relative importance of
the shocks in each of the regimes still can be obtained (0./0y),. The structural parameters, however,
cannot be recovered. Further assumptions on how the structural shocks are interrelated are required

in order to identify the whole system.

2.2 Brady Bonds: An example

In this section, an application of the identification methodology is implemented to estimate the
propagation of shocks across sovereign risk bonds between Argentina and Mexico. This issue has
been discussed in the literature as “contagion” and the purpose here is to measure the strength of
the channels.!°

It should be clear that if Mexican shocks affect Argentina (through trade, for example), then
Argentinean shocks should affect Mexico. This means that the price of both sovereign bonds
are determined simultaneously. In this application, the two standard assumptions are easy to
justify: normalization is just changing the units in which shocks are measured, and the idiosyncratic

shocks to each country (elections, social demonstrations, natural disasters, etc.) can be considered

1%See Pristker [1999] for a survey on the theoretical literature and Forbes and Rigobon [1999] for a survey on the
empirical literature.




independent across them. The other identification assumptions, however, are difficult to defend:
(i) it is not reasonable to assume exclusion restrictions in one direction and not in the other one;
(ii) nor it makes sense to assume that one transmission is positive while the other one is negative;
(iii) there are no good reasons to assume that the shocks to one country are more persistent than
the shocks to the other one; (iv) and finally, it is difficult to substantiate an assumption about
the relative importance of idiosyncratic shocks across the countries. This leaves the problem of
identification unsolved with the standard techniques.

The data consists of the daily Brady Bond returns for Mexico and Argentina between January
1994 to December 1998 obtained from the EMBI+ index constructed by JPMorgan. In figure 2,
the two indexes are shown. As can be seen, the indexes are highly correlated; more than 99 percent

in levels and more than 80 percent in daily returns.
[Figure 2 here]

In figure 3, the rolling variances and covariance of daily returns is shown, where a 20 days rolling
window is used. Note that the moments change significantly through time. Moreover, it is easy to

identify the periods of crisis by looking at the large changes in the second moments.!!
[Figure 3 here]

The very large conditional heteroskedasticity present in the data grants the use of the procedure
here described to solve the problem of identification.
Brady Bond returns might be affected by common shocks, such as the international interest

rate, therefore, to control for them and lags the following specification is estimated first:

iBt:Zt+¢(L)xt+(I>(L)2t+Vt (9)

where z; is the vector of Argentinean and Mexican daily returns, 2, is the return on the US 10 years
bond, ¢ (L) and ® (L) are lag operators (usually 5 or 10 lags), and v; represent the residuals. The
10 years bond is used given that this is close to the average maturity of outstanding Brady bonds.

1The Mexican crisis implied an increase in the conditional variance of both countries by more than 15 times. The
same for the Russian crisis. The Asian crises, though, did not have a large impact on the conditional variances. As
is shown below, this is reflected in the quality of the estimates.
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Several sensitivity analysis were performed, and choosing a different US bond did not change the
results.

After regression (9) is estimated, the second step is to take the residuals and compute their
contemporaneous relationship using the procedure here developed. Note that under the assumption

of endogeneity, the residuals from regression (9) can be written as follows:

1
I g [6n; + &4,

vop = L [n: + aey]
2t = 1—af Tt t -

I define the crisis and tranquility window exogenously. Five cases are studied: the Mexican
crisis alone, the Asian crises, the Mexican and Asian crises together, the Russian crisis alone, and
All three recent crises together; Mexican, Asian, and Russian.

The crises periods are as follows: The Mexican crisis started in December 19, 1994 when the
abandonment of the fixed exchange rate occurred. The end of the crisis is set at March 31, 1995
when the markets calmed down after the US bailout. The South East Asian crises started with
the speculative attack against Thailand (June 01, 1997) and ended after the Korean crisis calmed
down at the end of January 1998 (January 31, 1998). Finally, the Russian crisis started with the
collapse in the bond market at the beginning of August (August 01, 1998) and lasted until the end
of the month (August 31, 1998).

The sample for each exercise is as follows: for the Mexican crisis, the sample runs from J anuary
01, 1994 until March 31, 1995; for the Asian crises the sample starts in April 01, 1995 and ends in
January 31, 1998; while for the Russian crisis the sample is from February 01, 1998 until December
31, 1998.

Table 1, presents the results of estimating the variance covariance matrix for both regimes.
The columns it is highlighted the crisis under consideration. The first set of three rows indicates
the variance covariance matrix in the low variance regime; the next three rows are the variance
covariance matrix in the high volatility regime; and the bottom three rows show the increase across
the two regimes. Note that the increase in the moments is appreciable across the regimes.

The next step is to determine if the estimates satisfy conditions (7) and (8) in proposition

11




Mexico
Mexico Asia
Mexico Asia Asia Russia Russia

Low Varance Regime

Variance Argentina (-107) | 0.6324 0.1248 05432 1.7854  0.7923

Covariance (-10-48 0.3676 0.0962 0.3197 1.0827 0.4713
-107%)

Variance Mexico 04113 01297 0.3616 0.8420 0.4584
Hig Variance Regime
Variance Argentina (-107*) | 8.9847 0.5979 31016 7.4546  3.5428
Covariance (-107* 7.2500 04201 2.4627 4.9882  2.7200
Variance Mexico (-107%) 8.9327 0.4165 29720 3.6873  3.0612

Change
Variance Argentina 14.21 4.79 5.71 4.18 4.47
Covariance 19.72 4.37 7.70 4.61 5.717
Variance Mexico 21.72 3.21 8.22 4.38 6.68

Table 1: Change in the variance covariance matrix during several crises. Exogenous crisis window.

1. Taking the change in the second moments as given, the distribution of the two conditions is
obtained using a bootstrap; 1000 series of residuals are computed using the asymptotic distribution
of the variance covariance matrixes estimated is table 1.12 For each run, the “determinant of the
difference” and the “covariance of the weighted difference” is calculated. Table 2 summarizes some

of the statistics of the bootstrapped distribution.

Mexico
Mexico Asia
Mexico Asia Asia Russia Russia
Determinant of the Difference

Average (-107) 23.3756  0.0299 2.0662 0.6977  2.0058
Standard Deviation (-10~%) 6.0336 0.0082 0.3403 0.7863  0.3420
Quasi t_stat 3.87 3.64 6.07 0.89 6.13
Mass below zero 0.0% 0.0% 0.0% 15.9% 0.0%

Covariance of the Weighted Difference
Average (-107%) 0.2057 0.0047 0.0637 0.0522 0.0610
Standard Deviation (-10*) 0.0756 0.0032 0.0144 0.0344 0.0137
Quasi t_stat 2.72 1.44 4.42 1.52 4.45
Mass below zero 0.00% 0.00% 0.00% 0.00% 0.00%

Table 2: Test of the two conditions. Exogenous crisis window.

As can be seen, if the quasi t_stats are used (remember that the small sample distributions
are not normal) the “determinant of the difference” condition is not statistically different from zero
during the Asian and the Russian crises. Using the mass below zero as the criteria for rejection,
then only the Russian crisis fails to satisfy this condition. On the other hand, the “covariance of

the weighted difference” cannot be rejected to be equal to zero during Asia and Russia using the

2The distributions of the bootstrapps are not shown for brevety. The results are provided upon request and can
be found in my web page.
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quasi t_stats, but both have no mass below zero. In other words, only during the Russian crisis it
is possible to be sure that the identification cannot be used. During the Asian crises, the results
have to be taken cautiously though.!3

In table 3, the estimates of & and 8 solving equations (6) are shown. Again, the distribution is

obtained by bootstrapping.

Mexico
Mexico Asia
Mexico  Asia Asia Russia  Russia
&

Mean 0.3247 0.1911 0.3139 0.7109 0.3088
Standard Deviation | 0.1470 0.0747 0.0791 05512 0.0871
Quasi t_stat 2.21 2.56 3.97 1.29 3.55
Mass below zero 2.60% 050% 0.20% 14.60%  0.20%
Mean 0.6474 0.6586 0.6495 0.4637 0.6493
Standard Deviation | 0.1133 0.0468 0.0609 0.2439  0.0669
Quasi t_stat 5.72 14.08 10.67 1.90 9.70
Mass below zero 000% 0.00% 0.00% 560%  0.00%

Table 3: Estimation of the structural parameters. Exogenous Windows.

First note that confirming the results from table 2, the parameters estimated during the Russian
crisis are not significantly different from zero. Moreover, as can be seen, it is not the case that the
coeflicient estimated is closer to zero, but that the standard deviation is large (in comparison to
the estimates in the other subsamples).

Second, the estimates are remarkably stable across sub-samples. The estimates are obviously
correlated, however, it is not clear how this should be taken into account. In order to provide some
idea of the robustness of the parameters two cases were tested; one assuming that the estimates are
independent, and the second one using the correlation that maximizes the possibility of rejection.
When the estimates are assumed to be independent, then it is not possible to reject the hypothesis
that the estimates are the same across all samples. When the minimum standard deviation is
computed, however, the estimates of & between Asia vs. Mexico-Asia, and Asia vs. All samples,
are statistically different. For ,B, again, it is not possible to reject the hypothesis that the estimates
are the same.

In table 4, the results of these tests are shown. The top panel describes the mean and standard

!3The implication of failling the conditions is that the conficence intervals of the parameters should be infinitely
wide. This is because there exists a continuum of solutions to the system of equations. I owe this interpretation to

Mark Watson.
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deviation of the test for é&: the upper triangle show the absolute value of the difference in the
parameters, while the lower triangle are the minimum standard deviations. The bottom panel are

the results for the /3 estimates.

Mexico Asia Mexico-Asia  Russia All

&
Mexico 0.13360 0.01078 0.38627 0.01583
Asia 0.07234 0.12282 0.51987 0.11777
Mexico-Asia | 0.06796 0.00438 0.39705 0.00505
Russia 0.40417 0.47651 0.47213 0.40210
All 0.05991 0.01243 0.00805 0.46408

8
Mexico 0.01121 0.00214 0.18372 0.00194
Asia 0.06651 0.00907 0.19493 0.00927
Mexico-Asia | 0.05239 0.01412 0.18586 0.00020
Russia 0.13063 0.19714 0.18302 0.18566
All 0.04633 0.02017 0.00606 0.17697

Table 4: Test of stability of parameters. Exogenous Windows.

3 Identification under more than two regimes.

Generalizations of the identification problem to more than two regimes should be straight forward.
First, I study the case in which there are S regime shifts. Second, I discuss the case in which there

is a continuum of states, or ARCH.

3.1 S regimes.

When the data exhibits multiple regimes, there is a variance covariance matrix for each of them,

giving rise to the following set of equations:

2 2 2 2 2
Q.= | “is @ize | _ 1 Blonstois PBogstacs,
g = = —_—

, s€{1,.,S5} (10)
Wa2,s (1-apB)® ) 072]’3 +a?o?,

where this system has 3S equations (one variance covariance matrix per regime) and 25 + 2 un-
knowns: S times two variances for each regime, plus two parameters (a and B).
For S larger than two the system has more equations than unknowns. This can have three

interpretations: Firstly, those equations can be thought as overidentifying restrictions, and the
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model can be tested.!'4 Secondly, it can be a factor regression model. The left hand side variables of
equations (10) are the estimates (or observables), the variances (O'%, s and 02 )are the unobservable
factors, and the coefficients are the weights or factor loadings.!® Thirdly, it has a minimum distance
interpretation, either as a NLS or as a GMM. Solving in equations (10) for o and 3, the same

relationship as equation (6) is obtained in each state.

W12,s — QO - Wil,s
= 2 2 1,....8 11
8 LU22,3—04'UJ12,3’ SG{ 3 eeey } ( )

The parameters can be estimated as of to reduce the distance between the left hand side and the

right hand side of equation (11) as a NLS,

2
Z[ﬁ w12,3—a-w11,3] -0
- — Y
W, — Q-

W12,s

E, |- 22 Mls | g, (13)
Wo2,s — Q- Wizg

Both the NLS and the GMM require important assumptions on the innovations of the system of

equations (10) in order to assure that equations (12) or (13) make econometric sense; for example,

Wi2,s—Q'Wil,s
W22,s— Q' W12,s

these assumptions have to guarantee that the deviations (,B - ) are orthogonal.

3.2 ARCH Residuals.

Finally, it is possible to estimate a bivariate ARCH or GARCH model and construct a system
similar to (10), where there is a set of equations for each period.

Again, this has the same interpretations as before, even though the overidentification interpre-

HMPor example, the underlying assumption that a and 3 are stable through time can be tested if at least three
regimes are present in the data.

15 Factor analysis usually assumes that the w;j ,’s are independent. It is unlikely, however, that this is the case in
this setup. Therefore proper corrections have to be taken into consideration in the estimation procedure.
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tation assumes a very large set of constraints that are not independent. Note that by construction
the observations are serially correlated; however, one advantage of the ARCH structure is that it

indicates the form of the dependence.

3.3 Brady Bonds: S = 4 regimes.

Going back to the Brady Bonds example, assume there are four regimes: three crises and one
tranquil period. The sample period runs from January 94 to December 98, the crises windows are
defined as before, and the tranquil time is the rest of the sample. It is assumed that each crisis
coincides with a different regime. After running the first step, four variance covariance matrices

are estimated (see table 5).

Regimes Tranquil Mexico Asia Russia
Variance Argentina (-107%) | 0.7922 89847 1.1502 7.4546
Covariance (-10-‘? 04713  7.2499 0.7844 4.9882
Variance Mexico (-107*) 0.4584 89327 0.6756  3.6873

Table 5: Variance Covariance Matrix for all the regimes.

Similarly as before, the Mexican and Russian crises imply important increases in the second
moments, while the Asian crises mildly affected the variance covariance matrix.The estimates of
the variances are similar to those obtained in the previous section.

The four variance covariance matrices provide more equations than unknowns. The parameters,
therefore, are estimated to reduced the distance in equations (11). This is the non linear least
square approach: minimize equation (12). The estimates and distribution of & and ,3 are obtained

by bootstrapping. In table 6 the results are summarized.

2] g
Mean 0.317345 0.639383
Standard Deviation 0.1919 0.0858
Quasi t-stat 1.65 7.52
Mass below zero 5.60% 0.20%

Table 6: Summary statistics of the bootstrapped distributions.

Note that the estimates are close to those obtained in the previous section. Moreover, it is
not possible to reject the hypothesis that the parameters are the same between these ones and all

previous five exercises even using the minimum standard deviation.
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4 Aggregate shocks

In the previous section, the stochastic process is bivariate and there are no common shocks. In this
section, I relax these assumptions and discuss the necessary conditions to achieve identification.
I continue to assume normalization of all structural shocks and aggregate shocks, as well as the

independence of them. Modify the structural form as follows:

Pt = P+ vz + ey, (14)

g = apt+z+n, (15)

where z; is an unobservable common shock whose variance is 02, The reduced form is then

Po= T ntet (8472, (16)

gt [+ e+ (14 ay) 2z, (17)

1
1-af

and where the variance covariance matrix is

1| Baia+(B+)?02 Bol+acl+(1+ay)(B+7)0?

In this case, the problem of identification cannot be solved using the heteroskedasticity. Each
additional variance covariance matrix contributes with three equations, but also with three new

unknowns; o2 2

e Ocs and 03, ¢ Thus the system remains equally underidentified.

How to solve the problem when there are common shocks then? Allowing for more endogenous

variables. Assume the structural form is written as follows:
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ANzN : =Iner | + : (18)

TNt ZK,t EN,t

where the assumption of orthogonalization implies,

Elzt,2i)] = 0 Yi#j, 1<i,j<K
E[Ei,t,ej,t] = 0 W # ja 1 < 17.7 S N
E[Zi,t,Ej’t] =0 Vl;éj, 1_<_’iSK, 1§]§N,

and where z,, 4, n € {1, ..., N} are the N endogenous variables; z 4, k € {1,..., K} are the K unob-
servable common (or aggregate) shocks, assumed to be independent but not identically distributed,
and with variance o, , in state s; e,; are the structural shocks, assumed to be independent,
but not identically distributed, and with variance o,y s in state s. As before, it is assumed that
there are s € {1,..., S} possible regimes. A,y is the matrix that describes the contemporaneous

parameters, where the assumption of normalization has been already imposed:

1 a2 -+ an
as 1 SR Y
Aven=1| . | o, (19)
| dn1 Qn2 - 1 ]

and 'y, i are the parameters from the common shocks. Normalization of the common shocks is

also assumed; in this case, it implies a unitary impact on the first equation,
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1 1 1]
Y21 Y22 Yok
Tvex = | 20 72 L (20)
| a1 T2 T Vak |

Proposition 3 A multivariate system of N equations, with K unobservable aggregate shocks, de-
scribed by equations (18), (19) and (20) can be identified if the number of states (S) is larger than

2%’%%(9 and zf there is a minimum number of endogenous variables that satisfy N>— N —2K >
0.

Proof. Note that the proposition states a necessary condition, but not a sufficient one. In other
words, a necessary condition for identification requires that the number of unknowns is smaller that
the number of equations, the sufficient condition indicates when the equations are also independent.

From equation (18), the number of equations is given by the variance covariance matrix in each

regime. This provides MJ\;LQ equations in each state. The number of equations is:

S-N(N2+1)

The total number of unknowns is as follows: The matrix Ay,y has N (N — 1) parameters; The
matrix ['yzx has K(N — 1) parameters; the variances of the aggregate shocks in each state, K
variances times S regimes; and the variances of the structural shocks in each regime, N variances
times S regimes. Therefore, the total number of unknowns is:

N(N-1)+K(N-1)+S-K+S8-N

Identification, then, requires
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S'w > N(N-1)+K(N-1)+8 K+8-N
2(N+K)(N—1)

>
5oz N2 - N-2K

(21)

Inequality (21) indicates the minimum number of states required to obtain identification.

In order for (21) to make sense, there is a minimum number of endogenous variables that is

required.

N?—-N-2K>0 (22)

This minimum number of endogenous variables is necessary to solve the problem that has motivated
this section. In particular, for N = 2 and K = 1 The inequality is not satisfied. In fact, in this
case, the proposition implies that the number of states has to be larger than co. M

There are several remarks that can be extracted from proposition 3.

Remark 4 First, in the absence of aggregate shocks only two states are required to achieve identi-
fication. When K = 0, the right hand side of equation 21 is equal to 2, independently of the number

of endogenous variables N.

Remark 5 Second, in the limit, when the number of endogenous variables is infinite, the system

can be just identified with only two states, independently of any finite number of aggregate shocks.
This is obtained by taking the limit in equation 21.

Remark 6 Finally, if K > 0 and N is finite, the number of states required to achieve identification

s always larger than two. With two states the constraint is always violated.

(N+K)(N-1)>N?-N-2K = KN>-K
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5 Additional methods to define the windows.

In this section, I study two alternative procedures to define the regime windows: First, I determine
the regimes endogenously using a Markov switching model in the spirit of Hamilton [1990]. Second,
I estimate the crisis window as those times in which the variance of the residuals is larger than 1.5
times the unconditional variance in the sample.

The idea is to determine how robust the parameters are to these changes in the definition of
the windows. I give most of the attention to the first one, and mainly present the results for the

last one.

5.1 Switching regime.

In this section, the two regimes are determined endogenously by estimating a switching regime
model that allows for changes in variances.!®'” The sample is split in the same five subsamples
studied before.

In table 7, the estimates of the variance covariance matrices are shown. The top row indicates
the subsample considered. The next three rows are the variance covariance estimates in the low
variance regime. The second set of three rows are the estimates for the high variance state. The
last set of rows compute the increase across regimes.!8

Note that, in general, the crisis regime is almost always 10 times more volatile than the tranquil
state. Using the asymptotic distribution is straight forward to show that the variance covariance
across the states are statistically different.

The first question that has to be answered is if the variance covariance matrixes satisfy the
two conditions in proposition 1. As before, taking the change in the second moments as given, the
distribution of the two conditions is obtained using a bootstrap. Table 8 summarizes some statistics
of the bootstrapped distributions.

The first set of results summarizes the properties of the distribution of the “determinant of the

difference” condition. The second set of rows presents the results for the “covariance of the weighted

*This model is estimated using the EM algorithm explained is Hamilton [1990] and in Hamilton [1994], chapter
22.

YThis step was computed either by forcing the means across regimes to be the same, or by allowing them to
change. Additionally, the lags were increased from 5 days to 10 days. The results are qualitatively the same.

18The estimates of the means are not shown given that they are not interesting for the purpose of this paper.
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Mexico
Mexico Asia
Switching Regime Mexico  Asia Asia  Russia Russia
Regime of low variance
Variance Argentina (-10'4) 0.594 0.179  0.265 0.316 0.273
Covariance (-10-‘? ) 0.341 0116 0.165 0247  0.179
-107%)

Variance Mexico 0.343 0.131 0.183 0.255 0.196
Regime of high variance
Variance Argentina (-107*) | 7.871 1903 4766 12.420  6.382
Covariance (-10-‘? 6.038 1.274 3504 7510  4.352
Variance Mexico (-107%) 7.449 1432 4211 5245  4.466

Change
Variance Argentina 12.26 9.62 16.96 38.29 22.39
Covariance 16.71 10.03 20.26 20.46 23.30
Variance Mexico 20.73 9.94 21.99 19.60 21.76

Table 7: Variance Covariance Matrix for several crises and combination of crises. Regime switches
are estimated endogenously.

Mexico
Mexico Asia
Switching Regime Mexico Asia Asia Russia Russia
Determinant of the Difference
Point Estimate (-107%) 19.029 0.887 6.942 7.427 8.619
Standard Deviation (-107%) 4205 0.252 1.062 2295  1.147
T-stat 4.43 3.52 6.54 3.24 7.52
Covariance of the Weighted Difference
Point Estimate (-107%) 1.530 0.118 0.550 2.153 0.228
Standard Deviation (-10™%) 0.578 0.088 0.219 0.734 0.168
T-stat 2.65 1.34 2.51 2.93 1.36

Table 8: Test of the determinant and the covariance of the weighted difference for several crises
and combination of crises. Regime switches are estimated endogenously.
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difference” condition. For each case, I report quasi-t-stats. Using the standard deviations it could
be concluded that the first condition is satisfied in all five exercises, while the second condition is
only statistically significant from zero in three cases of the five; it is not satisfied in the Asian and
All the crises.

The distributions of & and ,B are also determined by the bootstrapping. The estimates are
obtained by solving the non linear system of equations described in equations (6). In table 9 these

results are summarized.

Mexico
Mexico Asia
Switching Regime Mexico Asia Asia Russia Russia
&
Point Estimate 0.321 0.249 0.236 0.548 0.329
Standard Deviation | 0.110  0.451 0.187 0.052 0.511
T-stat 2.92 0.55 1.27 10.53 0.64
B8
Point Estimate 0.619 0.459 0.667 0.607 0.240
Standard Deviation 0.149 0.538 0.231 0.104 0.704
T-stat 417 0.85 2.89 5.83 0.34

Table 9: Estimation of the structural parameters for several crises and combination of crises.
Regime switches are estimated endogenously.

As can be seen, during the Mexican crisis, both & and ﬁ are statistically different from zero,
while during the Asian crises the estimates are not. This confirms the results from table 8, the
coeflicients are “well” estimated during the Mexican, Mexico-Asia, and the Russian crises. The
rejection from zero is not necessarily because the means are close to zero, but because the standard
deviation of the estimates are almost 4 times larger than those obtained during the Mexican crisis.!®
For the subsample of Mexico-Asia the estimate of 3 is statistically different from zero, but not &.

During Russia both estimates are statistically different from zero. Finally, when All the sample is

used, the estimate of & and ﬁ are not statistically different from zero.

5.1.1 Comparison of estimates across samples.

In this section, several comparision of the estimates are performed. First, a test to determine if
the estimates of & and 3 are statistically sensible to the choice of sample is performed. Second,

comparisons between these estimates and those from section (2.2) are computed.

19 Again, this result should be expected given the fact that in table 8 one of the conditions is not satisfied, which
means that the system of equations lack of one equation, and therefore, there are a continuum of solutions. In
practice, this implies that the distributions are flat and wide.
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As it should become clear from the set up, it has to be the case that the estimates are correlated
across the samples. As before, there is no easy solution for this problem given that & and ﬁ are
the result to a non linear system of equations, where their correlations comes from the correlation
between the variance covariance matrixes estimated in the switching regime. In table 10, I present
the results of testing if the estimates are statistically different assuming the worse possible correla-
tion; the one that minimizes the standard deviation of the difference in the estimates, or in other

words, the one that maximizes the chances of rejection.

Mexico Asia Mexico-Asia  Russia All
)
Mexican 0.071448 0.084 0.227166  0.009
Asian 0.341 0.013 0.298614 0.0%0
Mexican-Asian | 0.077  0.264347 0.311339 0.093
Russian 0.058 0.399 0.135 0.218
All 0.401 0.060 0.324 0.459
B
Mexican 0.15966 0.048 0.012171 0.379
Asian 0.389 0.208 0.14749 0.219
Mexican-Asian 0.082 0.306691 0.060153 0.427
Russian 0.045 0.434 0.127 0.367
All 0.556 0.166 0.473 0.600

Table 10: Tests to determine if the estimates are different across different sample choices. Regime
switches are estimated endogenously.

In table 10, the tests for & and 3 are performed. The table has two panels. In the first one, the
difference between the & estimators (the upper triangle) as well as the smallest possible standard
deviation of the difference (lower triangle) are shown. The second panel reports the results for ,B .
In the case of &, there are two out of ten instances in which the estimates might be statistically
different: between Mexico and Russia, and between Mexican-Asian combined crises and Russia. In
the case of ,B , the estimates are not statistically different from each other in all ten comparisons. If
the estimates are assumed to be independent, then it is not possible to reject the hypothesis that
the estimates are the same across all samples.

Finally, in table 11, comparisons between the estimates using the exogenous windows and the
switching regime are preformed. Under the assumption that the exogenous specification is more
efficient than the switching regime, the variance of the difference is equal to the difference in the

variances.?’ However, the table is constructed with the smallest standard deviation. As can be

*% A Hausman specification test like could be implemented. See Hausman [1978]. If this regression is well especified
both methodologies are consistent, but the one that uses the prior knowledge achieves the lower variance. On the
other hand, if the window is mispecified, the exogenous case is inconsistent but the switching regime is consistent.
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seen, the hypothesis that the estimates are the same cannot be rejected.

&

Smallest Smallest

Standard Standard
Difference Deviation | Difference Deviation
Mexico 0.004099  0.037186 0.028286  0.035334
Asia, 0.058056  0.376488 0.199158  0.490981
Mexico-Asia 0.077489  0.107759 0.017557  0.170172
Russia 0.163203 0.499199 0.143263  0.139875
All 0.020506  0.423731 0.409088  0.637265

Table 11: Tests to determine if the estimates are different between methodologies defining the
windows. Exogenous windows vs. Regime switching.

5.2 Regimes as large changes in second moments.

Finally, in this section, the crisis windows are defined as large changes in the conditional second
moments. The unconditional variance covariance matrix is computed from the residuals obtained
from the first step. The conditional variances and covariances are computed along rolling windows
of 20 days. The crisis periods are defined as those instances in which the conditional variances, or
covariance, (any one of the three) are larger than the mean values (the unconditional) plus 1.5 times
the standard deviation of the particular variable. In figure 4, the rolling window variance covariance
together with the crises windows are shown. Notice that the Asian crises are not included given
that they represented a relatively small shift in the variances, as it has being discussed before. This
is in constrast with the two previous methods defining the regimes.

The variance covariance matrix in each regime is computed, and in table 12, the results are

summarized. The two conditions, equations (7) and (8), are satisfied.

All crises Variance Variance

Argentina  Covariance Mexico

Low variance regime (-10~%) 1.16 0.68 0.65
High variance regime (-10™%) 11.24 13.18 17.44
Increase in the variance 9.70 19.34 26.76
Test that estimates are different 3.23 3.31 3.47

Table 12: Change in the variance covariance matrix during the three crises using the change in the
second moments to determine the crises windows: Mexican, South East Asian, and Russian crises.

In table 13, the values of & and B , as well as their standard deviations are shown.
The tests to determine if the estimates are statistically different from the previous two method-

ologies are shown in table 14. For the & estimates, there are two cases in which the test is rejected;
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Endogenous
Windows
a
Point Estimate 0.315000
Standard Deviation 0.146255
T-stat 2.153771
8
Point Estimate 0.724991
Standard Deviation 0.431501
T-stat 1.680160

Table 13: Estimation of the structural parameters for the three crises: Mexican, South East Asian,
and Russian crises. Crises windows are defined as 1.5 standard deviation increases in the conditional
second moments.

with the Mexican crisis using exogenous windows, and with the Russian crisis estimated using the
switching regime. For the B estimates, the estimates are statistically different only in the case
between the Asian crises estimated with the switching regime. Remember that these rejections are

obtained using the correlation that minimizes the variance, thus they should be taken cautiously.

& g

Smallest Smallest
Standard Standard
Difference Deviation | Difference Deviation

Exogenous Windows
Mexico 0.009665  0.000767 0.077117  0.318229
Asia, 0.123938  0.071575 0.065906  0.384737
Mexico-Asia 0.001118 0.067193 0.074978  0.370618
Russia 0.395935 0.404938 0.260837  0.187596
All 0.006166  0.059143 0.075178 0.364562

Switching Regime

Mexico 0.005566 0.03642 0.105403  0.282894
Asia 0.065882 0.304913 0.265064  0.106244
Mexico-Asia 0.078607  0.040566 0.057421 0.200447
Russia 0.232732 0.094261 0.117574  0.327471
All 0.01434  0.364588 0.484266  0.272703

Table 14: Tests to determine if the estimates are different among methodologies defining the win-
dows. Endogenous vs. Exogenous windows and Regime switching.

In conclusion, it is fair to say that the estimates are remarkably stable across samples and
methodologies to define the windows. This should be surprising taken into consideration that the

estimates in this section are not even considering the Asian crises at all as part of the crisis regime.

6 Conclusions and extensions

This paper develops a new identification assumption that solves the problem of simultaneous equa-

tions. The restriction is based on heteroskedasticity of the structural shocks, and the circumstances
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in which it can be used are relatively weak. As is discussed in proposition 1, identification requires
four assumptions: firstly, normalization; secondly, independence of the structural shocks, which
both are almost always used in this type of problems; thirdly, the stability of the structural pa-
rameters (a and B in my model); and finally, the existence of at least two regimes of different
variances. These assumptions should be relatively easy to justify in several macro and finance
applications. Additionally, to these assumptions, in order to achieve identification, the variance
covariance matrixes have to satisfy two testable conditions; the “determinant of the difference” and
the “covariance of the weighted difference”.

Furthermore, when more than two regimes are present in the data (either countable or not), the
system of equations generally has more equations than unknowns. This can have three interpreta-
tions: the extra equations can be used as overidentifying restrictions, or the system of equations
can be interpreted either as a factor analysis regression, where the parameters are the factor load-
ings and the structural variances the factors, or as a GMM or NLS regression. Finally, the paper
discusses the necessary conditions for identification under multivariate simultaneous equations, and
unobservable common shocks.

An application of the identification is implemented to measure the “contagion” between sovereign
bonds of Argentina and Mexico. The case when there are only two regimes, and four regimes are
studied. The estimates are remarkably stable to different definitions of the regimes, and to the
introduction of alternative controls.

The identification assumption described has several applications in financial economics where
the data exhibits conditional heteroskedasticity and important problems of endogeneity exists. For
example, in the stock market, prices and volumes are jointly determined. Using this identification
assumption it is possible to estimate the price impact of order flows. Moreover, the methodology
has applications in macroeconomics. Changes in the variance of interest rates could be used to
determine the importance of the different channels of monetary policy propagation, as to shed light
on the monetary policy reaction function.

In general, the methodology here developed can help to solve the problem of endogenous vari-
ables in those circumstances in which the researcher believes the model is stable, and it exhibits

heteroskedasticity.
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Figure 2: Argentina and Mexico Brady Index. Source J PMorgan.
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