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I. INTRODUCTION

The rate at which knowledge diffuses outward from the institutional setting and
geographic location in which it is created has important implications for the modeling of
technological change and economic growth, and for science and technology policy.
Models of endogenous economic growth, such as Romer (1990) or Grossman and
Helpman (1991), typically treat knowledge as completely diffused within an economy,
but implicitly or explicitly assume that knowledge does not diffuse across economies. In
the policy arena, ultimate economic benefits are increasingly seen as the primary policy
motivation for public support of scientific research. Obviously, the economic benefits to
the U.S. economy of domestic research depend on the fruits of that research being more
easily or more quickly harvested by domestic firms than by foreign firms. Thus for both
modeling and policy-making purposes it is crucial to understand the institutional,

geographic and temporal dimensions of the spread of newly created knowledge.

There is an existing empirical literature on international technology flows. Much of this
literature focuses on what might be described as “technology” diffusion rather than
knowledge diffusion. For example, Teece (1977) discusses the difficulties that a
multinational firm has in applying technology developed in one country to its operations
overseas. Park (1995) and Coe and Helpman (1995) examine the impact on a country’s
productivity growth of the trade-weighted R&D of other countries. Generally, a positive
effect is found, which can be interpreted as reduced-form evidence of knowledge
spillovers across international boundaries. While the mechanism for such spillovers is not
identified, it seems reasonable that many forms of communication and information
transfer would be correlated with bilateral trade flows. In these analyses, however, it is
difficult to distinguish the effect of “pure” knowledge flows from the effect of technology
flows embodied in advanced capital goods sold from one country to another. This
distinction is crucial. Knowledge is inherently nonrival in its use, and hence its creation
and diffusion are likely to lead to spillovers and increasing returns; it is this nonrival
property of knowledge that is at the theoretical heart of models that produce endogenous
growth from research. But to the extent that the knowledge or technology flow is



embodied in a purchased piece of equipment, it may not produce a spillover, or, if it does,
the spillover may take the form of a pricing or pecuniary externality rather than a

technological one (Griliches, 1979).

Knowledge spillovers are much harder to measure than technology transfer, precisely
because they tend to be disembodied. In previous work (Jaffe and Trajtenberg, 1996;
Jaffe, Henderson and Trajtenberg, 1993), we have looked at citations made by patents to
previous patents as a “window” on the process of knowledge flow. Jaffe, Henderson and
Trajtenberg, 1993, showed that patent citations do appear to be somewhat localized
geographically, implying that a region or country does utilize knowledge created within it
somewhat more readily than do more remote regions. In Jaffe and Trajtenberg, 1996, we
went further, looking in detail at citations from other countries’ patents to those of the
U.S. We showed there that there is a clear time path to the diffusion of knowledge, in
which domestic inventors’ citation probabilities are particularly high in the early years

after an invention is made.

While this previous work indicates the usefulness of patent citations for exploring
knowledge flows, it also highlights the need for careful attention to the details of the
patenting and citation processes. In particular, changes in citation practices, truncation
biases, technology field effects, and the presence of large numbers of “self-citations”

must all be taken into account in using citation data to examine knowledge flows.

We have three goals in this paper. First, we demonstrate how an econometric model can
be used to make citations a potentially useful measure of knowledge flows, by controlling
for the effects of truncation, changes in citation patterns, and technology field effects.
Second, we explore for the first time the citation patterns among all combinations of the
G-5 countries, the U.S., Great Britain, France, Germany and Japan. This gives a much
richer picture of the geographic dimension of citation diffusion, by examining the extent
and speed of diffusion of citations within and among all combinations of these countries.

This permits us to estimate the extent and nature of “localization” of citations within each



of these countries, to examine differences among the countries in their apparent
absorption of foreign technology, and to identify some interesting pairwise interactions.
Finally, we add the dimensions of “institutional localization” and “technological
localization” to the modeling, and examine the interactions between localization in these

dimensions and in geography.

II. KNOWLEDGE FLOWS AND PATENT CITATIONS

Consider a researcher or inventor working on a given technological problem at a
given time in a given geographic location and institutional setting. This inventor might
find it easier, cheaper or faster to solve her technological problem by virtue of access to
knowledge created earlier by other inventors and researchers. For linguistic color and
convenience, call the invention that is facilitated by some earlier piece of research the
“descendant” and the earlier work that contributed to it the “antecedent.” The question we
want to ask is: how is the probability that a given descendant will benefit from a specific
antecedent affected by the time, geographic location, institutional setting and
technological nature of each, and by the relationship between the two along each of these
dimensions. In particular, we are interested in the extent of “localization” in geography,
institutional setting and technology space, and how localization interacts with time. That
is, is a descendant more likely to benefit from an antecedent that is nearby
geographically, comes from within the same institution, and is technologically similar,
and does this increased likelihood of benefiting from nearby antecedents vary with the

length of time elapsed.

Our expectation is that knowledge follows a diffusion process through geographic,
institutional and technological spaces. Thus, researchers that are “nearby” along each of
these dimensions would be particularly likely to benefit disproportionately in the time
period immediately after the antecedent innovation occurs. We expect, however, that this
“localization effect” will tend to fade over time, so that eventually the probability of an
antecedent benefiting a remote descendant may be no lower than the probability of

benefiting one nearby.



Thus localization and the fading of localization are phenomena that derive from the
relationship between two inventions or inventors. But these relational phenomena are
intrinsically tied up with the attributes of the antecedent and descendant themselves. A
particular inventor (or group of inventors) may just be good at picking up and
implementing others’ ideas quickly, and others may be good at disseminating or
spreading the implications of their research, or may produce research which is
systematically more “fruitful” in stimulating others. The probability that a particular
group will benefit from some other group (and the changes over time of this probability)
will therefore be determined jointly by the properties of each group, and the properties of

the relationship between the groups.

In addition to diffusing outward over time, bits of knowledge also become obsolete.
Thus, though the probability that a given inventor will know of a given antecedent
increases as the time lag between them grows, the probability that the antecedent will
actually be helpful declines, on average. The combination of diffusion and obsolescence
processes may cause the probability of using a given antecedent to first rise and then fall

with elapsed time.

Our maintained assumption is that patents are a proxy for “bits of knowledge” and patent
citations are a proxy for a given bit of knowledge being useful in the development of a
descendant bit. This permits us to use the probability of citation as a proxy for the
probability of useful knowledge flow, and empirical citation frequencies as a measure of
that probability. Of course, the frequency with which generation of knowledge bits leads
to a patent (the “propensity to patent”) varies over time and space, as does the frequency
with which use of earlier knowledge produces a citation (the “propensity to cite”). These
variations in the correspondence between the data and the underlying constructs of
interest create problems of interpretation that must be dealt with via a combination of

multiple measurements and identifying assumptions.



The nature of these issues can be seen in Figure 1, which plots empirical citation
frequencies from other countries to the U.S., as a function of the time lag between the
citing and cited patents. The citation frequency is calculated as the total number of
citations divided by the product of the number of potentially citing and number of
potentially cited patents. For example, Japanese inventors took out about 22 thousand
patents in 1993. U.S. inventors took out about 36 thousand patents in 1969. A total of
about 800 citations from 1993-Japanese patents were made to 1969-U.S. patents. Hence
the estimated citation frequency for this combination is about 1x10°
(800/(22000*36000)). The citation frequencies plotted in Figure 1 are averages for all
combinations with a given lag for which we have data, e.g., the calculated frequency at
lag 30 derives from citations from 1993 to 1963 (our earliest data year) and 1994 (our last
data year) to 1964. We interpret the citation frequency as an estimate of the probability
that a randomly drawn patent in the citing group will cite a randomly drawn patent in the
cited group.

Figure 1

Raw Citation Frequencies to U.S.-Invented Patents,
by Citing Country

—— United States
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Important features of these data are immediately visible in Figure 1. First, the citation

frequency rises rapidly in the first few years after the cited patent, then peaks and declines



slowly over time. A significant number of citations are still being received many years
after initial grant. Second, a U.S.-invented patent is much more likely to be cited by a
U.S.-invented patent than it is by a foreign-invented patent. Finally, even putting aside

" the domestic/foreign distinction, there are noticeable differences in the citation
frequencies across citing countries. For example, the likelihood of a random U .K.-
invented patent citing a U.S.-invented patent is about 40% higher than the likelihood of a

random German-invented patent citing a U.S.-invented patent.

Although all of these qualitative features illustrated in Figure 1 are in some sense “real,”
raw citation frequencies are afflicted by numerous theoretical and actual biases that make
their interpretation dangerous. First, the observation of citations is always subject to
truncation bias. Since we can observe only the citations already granted, we can see
citations at long lags only for citations from very recent cohorts fo very old cohorts. The
significance of the truncation problem is greatly exacerbated by the fact that the number
of citations made per patent has been rising significantly in the last two decades
(Caballero and Jaffe, 1993). Thus the observations at long lags in Figure 1 all come from
patents granted when relatively many citations were made (e.g., citations from 1993
patents to 1963 patents), whereas the observations at short lags are mixtures of many
different cited cohort/citing cohort combinations (e.g., for lag=5 we have 1977 to 1972,
1987 to 1982, and so forth). We will see below that controlling for these interacting time
effects yields predicted probabilities for long lags considerably lower than those shown in

Figure 1.

In addition to artifacts of the citation process, the numbers in Figure 1 contain effects
operating along the institutional and technological dimensions that interact non-randomly
with geography. Not surprisingly, the probability that an inventor will cite another
inventor employed by the same firm is much higher than the probability of citing a
random inventor employed elsewhere. And, inventors employed by the same firm are
more likely to live in the same country than random inventors employed by different

firms. Hence the higher citation frequency for U.S. to U.S. than for Japan to U.S. is partly



due to a higher citation frequency within firms, combined with a geographic localization
of employees within firms. While for some purposes it might be appropriate to include
this “firm self-citation” effect within what we call the geographic localization effect, for
other purposes we may want to separate the two. Similarly, though ultimately less
important empirically, an inventor is much more likely to cite previous patents that are in
closely related technological fields to her own, and one might expect that inventors
working in the same field are more likely to live in the same country. Again, we would
like to be able to measure the geographic localization effect while controlling for
technological localization effects. The econometric model that we develop below is

meant to allow us to sort out and measure each of these different effects.

III. THE DATA

We are in the final stages of collecting from commercial sources a complete database on
all U.S. patents' granted since 1963. It includes data for each patent indicating the nature
of the organization, if any, to which the patent property right was assigned; the names of
the inventors and the organization, if any, to which the patent right was assigned; the
residence of each inventor?; the date of the patent application and the patent grant; a
detailed technological classification for the patent; and miscellaneous other information.
A file indicating all of the citations made by U.S. patents since 1977 to previous U.S.
patents complements the data on individual patents. Using the citation information in
conjunction with the detailed information about each patent itself, we have a rich mine of
information about individual inventive acts and the links among them as indicated by

citations made by a given patent to a previous one.

We have discussed elsewhere at great length the advantages and disadvantages of using
patents and patent citations to indicate inventions and knowledge links among inventions

(Jaffe, Henderson and Trajtenberg, 1993; Trajtenberg, Henderson and Jafte, 1997; see

! By "U.S. patents," we mean in this context patents granted by the U.S. patent office. All of our
research relies on U.S. patents in this sense. Currently about half of U.S. patents are granted to foreigners.
2 City and state for U.S. inventors, country for non-U.S. inventors.
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also Griliches, 1990). Patent citations perform the legal function of delimiting the patent
right by identifying previous patents whose technological scope is explicitly placed
outside the bounds of the citing patent. Hence the appearance of a citation indicates that
the cited patent is, in some sense, a technological antecedent of the citing patent. Patent
applicants bear a legal obligation to disclose any knowledge that they might have of
relevant prior inventions, and the patent examiner may also add citations not identified by
the applicant. In related work, Jaffe, Fogarty and Banks (forthcoming) examined in detail
the patents that did and did not contain citations to a specific set of important NASA
patents. The conclusion was that, while citations contain much “noise” in the form of
apparently spurious implied connections, on the whole they do provide useful

information about the generation of future technological impact of a given invention.

The analysis in this paper is based on citations to patents granted between 1963 and 1993.
We examine a set of “potentially cited” patents whose primary inventor resided in the
U.S., Great Britain, France, Germany or Japan, and which were assigned to corporations.
There are a total of about 1.5 million such patents. About 65% of these are from the U.S.
(i.e.., their inventors reside in the U.S.), 17% are from Japan, 10% from Germany, 5%
from Great Britain, and 4% from France. We then examine all citations made to these
corporate patents (whether or not the citing patent is itself corporate) from patents granted
in any of these five countries between 1977 and 1994. There are about 1.2 million
“citing” patents, and they made a total of about 5.0 million citations to the set of

“potentially cited” patents that we are considering.

Patenting in different countries differs in ways that affect observed citation frequencies.
Some indications of these differences are presented in Table 1, which summarizes the
patent data, from both the cited and citing perspectives, for the five different countries.
We also classify patents into five broad technological fields, based on the main patent
class assigned to the patent by the patent examiner.” These fields are: Drugs and Medical

Technology; Chemicals, excluding Drugs; Electronics, Optical and Nuclear Technology;



Mechanical Technology; and All Other. Table 1 gives some totals for patents and
citations for each of the five countries and five technology fields. Overall, 6% of the cited
patents are in Drugs and Medical, 28% in Chemicals, 22% in Electronics, etc., 35% in
Mechanical and 9% All Other. There are, however, significant variations across the
countries in the field composition of their patents. In particular, Japan has a larger share
of electronic patents and Germany a larger share of chemical patents than the U.S. Since
citation intensities vary by field within countries, raw differences between countries as in
Figure 1 are a mixture of country effects, field effects, and field-country interaction

effects. We discuss below how to sort out these effects.

Table 1
Patents and Citations by Country

Potentially Average Fraction Potentially
Cited Citations of Citing
Patents per Patent Self-Cites Patents

United States

1969 36406 2.74 0.07

1993 36512 0.31 0.31 53235
average per year 31135 3.50 0.29 42494
Drugs and Medical 5% 4.54 0.22

Chemical, exc. Drugs 29% 3.35 0.34

Electronics, Optics and Nuclear 21% 3.84 0.26

Mechanical 34% 3.32 0.30

All Other 11% 3.30 0.25

Great Britain

1969 2713 1.98 0.02

1993 1995 0.23 0.16 2294
average per year 2223 2.86 0.22 2471
Drugs and Medical 8% 3.10 0.22

Chemical, exc. Drugs 29% 2.89 0.24

Electronics, Optics and Nuclear 20% 3.17 0.17

Mechanical 35% 2.66 0.23

All Other 9% 2.64 0.18

? There are about 400 of these patent classes.



France

1969

1993

average per year

Drugs and Medical

Chemical, exc. Drugs
Electronics, Optics and Nuclear
Mechanical

All Other

Germany

1969

1993

average per year

Drugs and Medical

Chemical, exc. Drugs
Electronics, Optics and Nuclear
Mechanical

All Other

Japan

1969

1993

average per year

Drugs and Medical

Chemical, exc. Drugs
Electronics, Optics and Nuclear
Mechanical

All Other

All

1969

1993

average per year

Drugs and Medical

Chemical, exc. Drugs
Electronics, Optics and Nuclear
Mechanical

All Other

Potentially

Cited
Patents

1341
2446
1673

8%
28%
22%
35%

8%

3785
6255
4894
6%
34%
17%
35%
8%

1758
20997
8040
5%
23%
30%
36%
6%

46003
68205
47965
6%
28%
22%
35%
9%

Average
Citations
per Patent

2.04
0.22
2.58
2.40
2.42
2.84
2.63
240

2.15
0.21
2.64
2.72
2.56
2.73
27
2.42

2.02
0.31
3.44
2.80
3.21
3.72
3.54
2.82

2.60
0.30
3.34
3.89
3.18
3.66
3.24
3.12

Fraction
of
Self-Cites

0.01
0.24
0.18
0.19
0.20
0.14
0.18
0.16

0.06
027
0.22
0.20
0.27
0.18
0.20
0.19

0.05
0.28
0.19
0.18
0.22
0.19
0.18
0.19

0.04
0.25
0.22
0.20
0.25
0.19
0.22
0.19

Potentially
Citing
Patents

2908
2457

6891
6603

22291
13780

87619
67805

Table 1 also shows that a significant fraction of citations from each country are “self-

citations.” Self-citations are defined as those for which the citing and cited patent are both
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assigned to the same corporate organization.* Self-citations are more common in the U.S.
than in other countries. It also turns out that self-citation come more quickly on average,
and are more geographically localized. In order to get measures that more closely
correspond to knowledge “spillovers,” most of the analysis below is carried out excluding

these self-citations.

Finally, the number of patents taken out in the U.S. has grown at dramatically different
rates for different countries. In particular, while the number of U.S. invented patents in
1993 was essentially equal to the number in 1969, the number of Japanese-invented
patents increased by 1194% over that same period, and the number of Great Britain-
invented patents declined by about 26%.> Thus when we compare overall citation
frequencies for the different countries, we are looking at averages which are tilted

towards different citing cohorts.

IV. MODELING

A. Patent-pair citation frequencies

We seek to model the citation frequencies described in Section II above, the way in which
these frequencies evolve over time, and how they are affected by characteristics of the
citing and cited patent. One way to approach this would be with a probit-type model, in
which each citation is an observation, and the regression dataset is created by combining
the actual citations with a random sample of patent pairs that did not cite each other. One
could then ask how the predicted probability that a patent pair will result in a citation is

affected by various regressor variables. °

4 Identifying self-citations is complicated by the fact that patents may be assigned to corporate
entities that are affiliates or subsidiaries of other entities. We are in the process of refining the corporate
assignments of the patents in the database to take this into account, but the results in this paper are based on
self-citation defined only in terms of patents assigned to the same corporate entity. This almost certainly
understates the extent of self-citation.

3 As a reminder, these numbers are for patents taken out in the U.S. and assigned to a corporation;
U.S.-invented versus Japanese-invented is determined on the basis of the postal address of the primary
inventor.

% See Podolny and Shepard, 1997, for an application of this approach.
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In this application, however, we observe approximately five million citations; if this were
combined with an equal number of non-citing patent pairs, the regression dataset would
have ten million observations. The number of unique combinations of values of potential
regressor variables is, however, a small fraction of that. Put differently, if one were to run
a probit with those ten million observations, very many of those observations would have
identical values for any conceivable set of right-hand-side variables. In such a case, no
information is lost by combining observations into “cells” characterized by the values of
the regressor variables, and making the dependent variable the fraction of the patent pairs
in the cell for which a citation occurred. In this way, we reduce the number of
observations from more than five million (the exact value depending on the sampling
from the non-citing pairs) into a dataset with about 50,000 observations, with little loss of

relevant information.

Most of our potential regressors are categorical rather than continuous variables, such as
cited country, citing country, technology field, cited year and citing year. In addition to
these effects, we wish to capture the evolution of citations over elapsed time as shown in
Figure 1. For this purpose we adapt the formulation of Caballero and Jaffe (1993) and
Jaffe and Trajtenberg (1996). The citation frequency (the likelihood that any particular
patent K granted in year T will cite some particular patent k granted in year t) is assumed
to be determined by the combination of an exponential process by which knowledge
diffuses and a second exponential process by which knowledge becomes obsolete. That

1s:
pK) =1+ yD(k,K)a(k K)exp[- 8,06 K)(T - )] [1-exp(-B,(T -1))]

where B, determines the rate of obsolescence and B, determines the rate of diffusion. The
parameter o is a shift parameter that depends on the attributes of both the patent & and the
patent K. D(k,K) is a dummy variable, set equal to unity if the patent k is in the same
patent class as the patent K, and zero otherwise. Thus, the parameter y measures the
overall increase in citation frequency associated with the two patents matching by patent

class. The dependence of the parameters o and B, on k and K is meant to indicate that
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these could be functions of certain attributes of both the cited and citing patents. In this
paper, we consider the following as attributes of the cited patent k that might affect its
citation frequency:

* 1, the grant year of the potentially cited patent,

» ¢ the “location” of the cited inventor (U.S., Great Britain, France, Germany or Japan),

* g=1..5, the technological field of the potentially cited patent.

As attributes of the potentially citing patent K that might affect the citation likelihood we
consider:
T, the grant year of the potentially citing patent, and

e [=1..5, the location of the potentially citing patent.

Additional insight into this parameterization of the diffusion process can be gained by
computing the lag at which the citation function is maximized ("the modal lag"), and the
modal probability of citation. A little calculus shows that the modal lag is approximately
equal to 1/B,; increases in P, shift the citation function to the left. The maximum value of
the citation frequency is approximately determined by B,/B, Increases in B, holding B,
constant increase the overall citation intensity,” and are roughly equivalent to increasing the
citation frequency proportionately at every value of (T-t). That is, variations in B3,, holding
B, constant are not separately identified from variations in o, Thus, since the model is

somewhat easier to estimate and interpret with variations in a, we do not allow variations in

B>.

B. Expected citation count for “cells”

Consider a potentially cited patent with particular t, ¢ g attributes, e.g., a Japanese-
invented patent in the Drug and Medical area granted in 1985. The expected number of
citations that this patent will receive from a particular patent with a given T,L

combination (e.g., a British patent granted in 1993 that happens to be in the same patent

7 The approximation involved is that log(1 + B2/B.) = B,/B, . Our estimations all lead to B./B, on
the order of 10°°, and indeed the approximation holds to five significant figures.
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class) is just the above likelihood, as a function of ¢t,g, T, and D(k,K). The expected
number of citations from all patents with a given T,L combination is found by summing
the frequency shown in Eq. 1 over all such patents. Similarly, the expected total number
of citations fo all patents with the particular ¢t,g combination will be found by summing
over all such patents. The only tricky part of this double summation is dealing with
D(k,K). We show in Appendix A that one can start from Eq. (1) and aggregate to derive a

relationship for “cells” identified by ¢.t,g,T and L, where the dependent variable is the

Crgri

— %~ ie., the ratio of the number of citations
(N7 )(Nug)

expected frequency of citationp, , =

to the product of the number of potentially citing and potentially cited patents. In

expectation, this frequency is a function of the characteristics of k and K, and the variable:
PROX f1gTL — Zf [Igsf LS

where f, is the fraction of potentially cited patents in patent class s and f;; 5 is the fraction
of potentially citing patents in patent class s. PROX measures the extent to which the
potentially citing and potentially cited patents overlap in their patent class distribution.® It
is closely related to the technological proximity measure of firms used in Jaffe (1986).

This brings us to the following equation:

Pigrr = Qugre [1 + 7PROX,,gTL 1exp/~( B, )ugr (T -OJ[1-exp(-B(T-1)] + &pm @

which can be estimated by non-linear least squares if the error g, is well-behaved.

The data set consists of one observation for each feasible combination of values of ¢t,g, T
and L. Since t runs from 1963 to 1993 and T runs from (the greater of 1977 and t+1) to
1994, the number of cells for each ¢, g, L combination is 14x18 +
(17+16+15+14+13...+1). There are 125 ¢, g, L combinations, so the total number of cells
is 50,625. Simple statistics for this dataset are presented in Table 2. The average number

of cited patents in a cell is about 1800; the minimum is 16 (French Drug and Medical

¥ Recall that there are about 400 such patent classes, so that even within the five broad technology
fields, country-year pairs will vary in the extent of overlap in patent classes.
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patents in one particular year) and the maximum is almost 15,000 (U.S. Mechanical
patents in one particular year). The number of citations varies from 0 to over 6000 with a
mean of about 100; the mean of the citation frequency is about 4x10.

Table 2
Statistics for Regression Variables

Label Mean Std Dev Minimum Maximum
number of citations 98 341 0 6326
number of non-self-cite citations 78 270 0 5010
potentially cited patents 1791 2928 16 14735
potentially citing patents 14164 16141 1610 56065
cited grant year 1974.4 7.4 1963 1993
citing grant year 1986.7 5.0 1977 1994
citation frequency (x10°) 3.85 5.34 0 123.24
non-self-cite citation frequency (x10°) 2.78 3.11 0 40.57
technological proximity of cells 0.0075 0.0069 0.0008 0.0620
lag in years 123 7.4 1 31

regression weight (square

root[ncited*nciting]) 3391 3745 160 28742

C. Econometric issues and interpretation

The first specification issue to consider is the difficulty of estimating effects associated
with cited year, citing year and lag. This is analogous to estimating “vintage,” time, and
age effects in a wage or a hedonic price model. If lag (our “age” effect) entered the model
linearly, then it would be impossible to estimate all three effects. Given that lag enters our
model non-linearly, all three effects are, in principle, identified. In practice, however, we
found that we could not get the model to converge with the double-exponential lag
function and separate o parameters for each cited year and each citing year. We were,
however, able to estimate a model in which cited years are grouped into five-year periods,
indexed by p. Hence we assume that a(t) is constant over t within these periods, but allow

the periods to differ from each other.
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The estimation is carried out including “base” values for B, and B,. Location, field, cited
period and citing year effects are all estimated relative to a base value of unity.” The
various different effects are included by entering multiplicative parameters, so that the

estimating equation looks as follows:

Pugn =[1+ JPROX, ,
exp[-(ﬂl)ﬁlgﬁu (T- t)][l - exp("ﬁg (T' t))] + ErL

laazare,

Thus we allow a to vary by cited period, cited field, citing year and all possible
combinations of citing country and cited country. We allow B, to vary by cited field, and
every possible combination of cited and citing countries. In this model, unlike the linear
case, the null hypothesis of no effect corresponds to parameter values of unity rather than
zero (except for v, and the “base” values of B, and fB,). For each effect, one group is
omitted from estimation, i.e., its multiplicative parameter is constrained to unity. Thus the

parameter values are interpreted as relative to that base group.'

The estimate of any particular a(k), say o(g=Chemical), is a proportionality factor
measuring the extent to which the patents in the Chemical field are more or less likely to
be cited over time vis & vis patents in the base category (Drugs). Thus, an estimate of
a(g=Chemical) = 1.5 means that the likelihood that a patent in the field of Chemicals will
receive a citation is 50% higher than the likelihood of a patent in the base category,
controlling for other factors. Notice that this is true across all lags; we can think of an o
greater than unity as meaning that the citation function is shifted upward proportionately,
relative to the base group. Hence the integral over time (i.e., the total number of citations
per patent) will also be 50% larger. Similarly, if (¢ = Japan, L=U.S.) is .72, this means
that a Japanese patent is 28% less likely to get a citation from a random U.S. patent than

is arandom U.S. patent.

? As noted above, « is not separately identified from B, and B,. Hence we do not estimate a “base”
value for the parameter ; it is implicitly unity.

* The base group for each effect is: Cited time period (p), 1963-65; Cited field (2), “Drugs and
Medical”; Citing year (T), 1977; and Cited/Citing country (¢ L),U.S.-citing-U.S.
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We can think of the overall citation intensity measured by variations in o as composed of
two parts. Citation intensity is the product of the “fertility” (Caballero and Jaffe, 1993) or
“importance” (Trajtenberg, Henderson and Jaffe, 1997) of the underlying ideas in
spawning future technological developments, and the average “size” of a patent, i.e., how
much of the unobservable advance of knowledge is packaged in a typical patent. Within
the formulation of this paper, however, it is not possible to decompose the a-effects into

these two components."

In the case of a(K), that is, when the multiplicative factor varies with attributes of the
citing patents, variations in it should be interpreted as differences in the probability of
making a citation, all else equal, for patents in a particular category vis & vis the base
category. If, for example, a(¢ = U.S., L = Japan) is 0.76, this means that the average
patent granted to Japanese inventors is three-quarters as likely as a patent granted to
inventors residing in the U.S. to cite any given U.S. patent. Note that, just as variations in
o across cited patents are composed of both variations in fertility or importance and
variations in “patent size,” variations across citing patents can be caused by both
variations in true “knowledge use” and variations in the “propensity to cite.” Because
there are institutional reasons why the propensity to cite may vary across countries, this

has important consequences for interpreting the results. We return to this issue below.

Variations in B, (by attributes of either the cited or the citing patents) imply differences in
the timing of citations across categories of patents. Higher values of B, mean higher rates
of decay, which pull the citations function downwards and leftward. In other words, the
likelihood of citations would be lower everywhere for higher B,, and would peak earlier
on. Thus a higher . means more citations at all lags; a lower B, means more citations at

later lags.

1 Caballero and Jaffe (1993) attempt to identify the size of patents by allowing exponential
obsolescence to be a function of accumulated patents rather than elapsed calendar time. We intend to
explore this possibility in future work.
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When both o and f, vary, the citation function can shift upward at some lags while
shifting downward at others. For example, if . for citations from Japan to Japan is 2.32
and the B, for Japan to Japan is 1.54, this implies that the likelihood of citation in early
years is higher than the base group, but because of the higher f,, this difference fades
over time. Because obsolescence is compounded over time, differences in B, eventually
result in large differences in the citation frequency." If we compute the ratio of the
likelihood of citations for Japan-to-Japan relative to U.S.-to-U.S. using these parameters,
we find that one year after being granted, Japan-to-Japan citations are about twice as
likely as U.S.-to-U.S., but nine years down the road the frequencies for the two groups
are about the same, and at a lag of 20 years Japan-to-Japan citations are actually about

70% less likely than for the base category.

A final interpretation issue relates to citations from patents assigned to the same firm as is
the cited patent, so-called “self-citations.” As discussed by Jaffe, Henderson and
Trajtenberg (1993), self-citations cannot be regarded as evidence of spillovers. Hence if
we are interested in geographic localization of spillovers, we want to exclude self-
citations. On the other hand, self-citations are an important indicator of the cumulative
nature of technology, and of firms’ ability to appropriate the returns to their inventions."
Thus for some purposes, such as assessing the overall role of technology in regional
economic development, localization of citations inclusive of self-citations is of interest.
In order to focus on spillovers, we concentrate on the results exclusive of self-citations,

but we comment briefly on the very high degree of localization of self-citations.

12 Since increases in B1 both reduce the peak frequency (B,/B, ) and cause the function to decay
from the peak faster, such increases reduce the cumulative citation frequency or integral over time non-
linearly. The cumulative frequency is approximately o 3, 1By

13 The extent of self-citation is an indicator of firms’ successful appropriation. See Trajtenberg,
Jaffe, and Henderson, 1997. Putnam (1997) finds that the number of self-citations is a good predictor of
firms’ decision to pay renewal fees for patents that would otherwise expire.

18



We estimate Eq. 3 by non-linear least squares. Since the left-hand variable is an empirical
frequency, the model is heteroskedastic. To improve efficiency and get the right standard

errors, we weight the observations by the reciprocal of the estimated variance,

/(N”g)(NLT). In general, this weighting greatly improves the fit of the model, but does

not alter the parameter estimates materially.

IV.  RESULTS

Complete results from the estimation of Eq. 3 are presented in Appendix B. The model
has 82 parameters (y, base values of B, and j3,; 24 cited country/citing country interactions
for a; 4 technology field effects for a; 6 cited time period effects for a; 17 citing year
effects for a; 24 cited country/citing country effects for B,; 4 technology field effects for
B;). Overall, the model fits the data reasonably well. Because of the large sample size, the
estimated standard errors are quite small. The base value for B, is about .2, suggesting a
modal lag of about five years, which is not surprising based on Figure 1. The estimate for
the technology match parameter y is 99, which means that a patent is about 100 times
more likely to cite a patent in the same patent class as it is to cite a random patent in some
other class. In reality, of course, some classes are “closer” to each other than others in
technology space, but it is not surprising that, on average, patents in the same class are

much more likely to cite each other than to cite patents in any of the other classes."*

Technology field effects are present in both the o’s and the B,’s, but the J3, effects are not
large. The o’s greater than 1 mean that all other fields receive more citations than Drug
and Medical patents (the base group). The p,’s greater than 1 mean that other fields

receive citations somewhat faster than Drugs.”” The cited time period and citing year

1 Podolny and Shepard (1997), looking only at patents within a group of classes related to
semiconductor technology, found that citations from patents in the same class where about 15 times as
likely.

'3 The field differences found here for [, are smaller than we found in our previous paper (Jaffe
and Trajtenberg, 1996). Since that paper looked only at citations to U.S. patents, this suggests that there is a
greater variation in citation speed across fields in U.S. patents than in other countries’ patents. In particular,
we found that the citations to U.S. patents came much faster in electronics than in the other fields; this
effect is present in the overall data but is not as big.
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effects are similar to what we have found before: the number of citations received rises in
the 1970s and 1980s, and the number of citations made rises essentially throughout the

whole period.

Table 3 presents the estimates of the o and B, parameters in several different ways. The
top panel simply reproduces the o estimates presented in Appendix B, but arrays them in
matrix form. The second panel presents the estimated values (with standard errors) in
terms of (1/B,), which has years as units and is equal to the lag at which the citation
frequency reaches its maximum value. The bottom panel presents estimated values (with
standard errors) for af,/(B,)’, which is the integral of the citation function from t=0 to
infinity. This is an estimate of the expected number of citations that a single patent will
receive from a set of patents consisting of one random patent per year forever. Thus the
middle panel of the table measures the “speed” of citation diffusion and the bottom panel

measures the overall intensity of citation.'®

Table 3
Regression Coefficients in Matrix Form

Alphas
Citing

United Great

States Britain France Germany Japan
Cited
United States 1.00 0.72 0.65 0.56 0.76
Great Britain 0.71 1.78 0.79 0.75 0.66
France 0.60 0.72 2.17 0.73 0.63
Germany 0.55 0.73 0.74 1.32 0.83
Japan 0.72 0.62 0.67 0.81 2.32

16 We also tested various restricted versions of this model to see if the parameter differences
reported here are jointly significant. The following restricted versions of the model were all rejected, with
p-values of .0001 or less in the appropriate chi-squared test, in favor of the reported model: country effects
in the o’s but not the B,’s; effects for each cited and citing country, plus a “domestic localization” effect
common to all countries, but no cited country/citing country interaction effects; cited country/citing
country interaction effects in the o’s but only cited and citing country effects plus the localization effect in
the B,’s.
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Modal Lag

Citing

United Great

States Britain France Germany Japan
Cited
United States 5.25 5.08 5.08 5.08 441

(0.049) (0.070) (0.077) (0.074) (0.051)
Great Britain 5.39 4.24 4.63 4.68 4.46

(0.073) (0.049) (0.103) (0.092) (0.088)
France 5.43 4.85 4.02 4.67 451

(0.087) (0.114) (0.047) (0.101) (0.098)
Germany 5.42 4.56 4.58 4.23 4.14

(0.079) (0.093) (0.096) (0.051) (0.062)
Japan 4.99 4.80 4.52 445 3.40

(0.061) (0.104) (0.102) (0.070) (0.030)
Cumulative Probability

Citing

United Great

States Britain France Germany Japan
Cited
United States 1.49 1.01 0.91 0.78 0.80

(0.109) (0.075) (0.068) (0.058) (0.059)
Great Britain 1.11 1.72 0.92 0.88 0.71

(0.082) (0.128) (0.070) (0.066) (0.053)
France 0.95 0.91 1.89 0.85 0.70

(0.071) (0.070) (0.141) (0.065) (0.053)
Germany 0.86 0.82 0.84 1.28 0.76

(0.064) (0.062) (0.064) (0.095) (0.057)
Japan 0.97 0.77 0.74 0.87 1.45

(0.071) (0.059) (0.056) (0.065) (0.108)

Several features of these matrices are worth noting. Looking first at the ’s, the diagonal
elements strongly dominate both the rows and columns of the matrix. What this means is
that there is a strong pattern of geographic localization, in the sense that the domestic
citation function is shifted upward. This is true for all countries, and it is true whether one
compares the domestic citations to citations received from other countries (across the
rows) or citations made to other countries (down the columns). The other notable feature
of the top panel of Table 3 is the symmetry of the matrix. For example, o for Germany
citing U.S. and for U.S. citing Germany are the two lowest numbers in the matrix.
Conversely, the two highest non-diagonal numbers in the a table are for Germany citing
Japan and Japan citing Germany. Although these differences among the off-diagonal

elements are not as large as the localization effect of domestic citation, it suggests that
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inter-country knowledge flows are typically bi-directional, with relatively large or small

flows in one direction being associated with similar flows in the other direction.

Geographic localization is also evident in the B, parameters, presented in the middle panel
of Table 3 in the form of the estimated modal lag. Here the diagonal elements are
generally the smallest entry in each row and column, meaning modal citation lags are
noticeably shorter for domestic citations, relative to citations to and from others. The only
exception to this general pattern is the U.S. U.S. inventors are slightly faster to cite
Japanese inventors than they are to cite U.S. inventors (3,=1.05), and Japanese inventors

are faster to cite U.S. inventors than are U.S. inventors (8,=1.19).

There are also systematic variations across the countries that are superimposed on top of
the general pattern of localization. While the modal lags for citations made by the U.S.
range from 5 to 5.4 years (depending on the cited country), those for Japan range from 3.4
to 4.4. Indeed, it appears that the overall tendency of the U.S. to both generate and receive
long-lagged citations is part of the reason why U.S.-to-U.S. citations do not come more

quickly than those from and to others.

The fact that domestic citations generally involve both higher o and higher f, creates
offsetting effects for the overall number of citations, since the higher B, means that
citations fade faster and hence reduces the total holding o constant. The bottom panel of
Table 3 combines these effects by presenting the overall cumulative probabilities. The
estimates show that, in terms of total citations, the variations in a dominate the variations
in B,; the matrix is still strongly diagonal, indicating localization. These differences are
quite significant statistically, although it should be noted that this calculation relies
heavily on the assumed functional form as it integrates the citation function into the

infinite future.

Also noticeable in the cumulative probabilities is that the U.S. tends to both make and

receive more citations than other countries. Note, for example that the entry in the U.S.
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column contains the largest figure other than the diagonal in every row, and the U.S. row
contains the largest figure other than the diagonal in every column except Germany. This
result could be driven by differences between the U.S. and other countries in the
propensity to patent. If the U.S. has a low propensity to patent, then each patent granted
represents (on average) a larger chunk of knowledge, which could result in more citations
made and received per patent (Cabellero and Jaffe, 1993). It is more likely, however, that
the propensity of U.S. inventors to patent in the U.S. is greater than that of foreigners
(Eaton and Kortum, 1996). That is, U.S. inventors are more likely to take outa U.S.
patent on a trivial invention than are foreigners. All else equal, this should make the
average citation rate to and from the U.S.-invented patents lower than the corresponding
rates for foreign-invented patents. Since we find the opposite, this may be evidence
confirming a view of the U.S. as the most open and interconnected economic and

technological system.

There are also some interesting pairwise effects. The U.S. and Great Britain are “closer”
to each other (in terms of overall probability of citation) than any other country pair,
suggesting a possible effect of common language. Japan is closer to the U.S. than it is to
any of the European countries. Britain and France are closer to each other than to
Germany, but closer to Germany than to Japan. Note, however, that not all of these

differences are statistically significant.

Figures 2 through 6 show the effects of these parameter differences graphically, and also
present a useful pictorial comparison to the raw data presented in Figure 1. Each Figure
presents the estimated citation functions for citations o one of the countries, with the
different lines within each Figure corresponding to the different citing countries.
Comparing Figure 2 to Figure 1 shows some of the effects of controlling for non-
geographic effects. First, as suggested above, the “tails” in the estimated functions in
Figure 2 are much thinner. Second, while geographic localization is clearly present in
Figure 2, its magnitude is noticeably diminished, with the citation frequency for other

countries at the modal lag being roughly 55-75% of U.S.-U.S. as compared to 40-60% in
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Figure 1. As discussed further below, this is primarily the effect of eliminating self-

citations.
Figure 2
Estimated Citation Functions for Citation to U.S.-Invented Patents
51 (Excluding Self-citations)
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Figure 3
Estimated Citation Functions for Citation to British-Invented Patents
97 (Excluding Self-citations)
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Figure 4
Estimated Citation Functions for Citation to French-invented Patents
T (Excluding Self-citations)
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Figure 5
Estimated Citation Functions for Citation to German-Invented Patents
(Excluding Self-citations)
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Figure 6
Estimated Citation Functions for Citation to Japanese-Invented Patents
9 \ (Excluding Self-citations)
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In terms of the effects seen numerically in Table 3, the Figures show the “speed” of
Japan, as its line typically peaks early and then fades, and the “slowness” of the U.S.,
whose predicted frequency of citation is the highest after long lags in all of the pictures.
The graphs also show that the differences among non-domestic citing countries are
always smaller than the localization effect that separates domestic citations from foreign

ones.

Figures 2 to 6 generally show a pattern of “fading” of geographical localization. The
combination of relatively high o and relatively high B, for domestic citations means that
the initial domestic probability is much higher, but that it fades faster, so that other
countries typically catch up eventually. This can be seen in the “crossing” of the domestic
citation function with the others after 15 to 25 years. This phenomenon is also illustrated
in Table 4, which gives the probability of citation from various countries relative to the

domestic citation probability, for each cited country, in the first year and after 20 years.
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For every cited country except the U.S., the relative citation frequency of the other
countries is greater after 20 years than in the first year. Indeed, for Japan, every other
country cites its twenty-year-old patents with greater frequency than it does itself. This
results from the combined effect of fading of localization and the fact that Japan is
generally a high-f, (fast-fading) maker of citations. Conversely, the lack of fading of
geographic localization in citations to the U.S. reflects the general tendency of the U.S.

toward low B, (slow fading).

Table 4
Fading of Geographic Localization over Time

Relative Citation Rate for Citattons to U.S.:

Citing Country
Lag in years United States Great Britain France Germany Japan
1 1.00 0.72 0.65 0.56 0.73
20 1.00 0.64 0.58 0.49 0.37

Relative Citation Rate for Citations to Great Britain:

Citing Country
Lag in years United States Great Britain France Germany Japan
1 0.42 1.00 045 0.43 0.37
20 1.10 1.00 0.67 0.65 0.47
Relative Citation Rate for Citations to France:
Citing Country
Lag in years United States Great Britain France Germany Japan
1 0.29 0.34 1.00 0.35 0.30
20 1.00 0.77 1.00 0.67 0.50

Relative Citation Rate for Citations to Germany:
Citing Country

Lag in years United States Great Britain France Germany Japan
1 0.44 0.56 0.57 1.00 0.62
20 1.16 0.77 0.81 1.00 0.56

Relative Citation Rate for Citations to Japan:

Citing Country
Lag in years United States Great Britain France Germany Japan
1 0.34 0.29 0.31 0.38 1.00
20 2.01 1.49 123 1.39 1.00

All of the results discussed so far derive from estimation of the “full” model of Eq. 3. For
comparison to our earlier paper, as well as for the light it sheds on the interaction of

different effects, it is useful to consider briefly how the results differ in less complete or
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different models. In particular, our earlier research did not exclude self-citations, and did
not include the “technological proximity” effect. These effects are interesting in their own
right, and may also be expected to interact in important ways with geographic
localization. Table 5 summarizes the results with and without these non-geographic
effects. Generally, excluding self-cites significantly reduces the apparent geographic
localization, as well as reducing the extent to which that localization “fades.” That is, the
citation intensity from other countries, relative to the domestic citation rate, is lower in
columns 1 and 2 than in columns 3 and 4 in the first year, but is higher in columns 1 and
2 than in columns 3 and 4 after 20 years. What this means is that self-cites are highly
geographically localized (which should not be a surprise) and generally come at shorter
lags (Trajtenberg, Henderson and Jaffe, 1997). Thus including them creates strong
localization particularly in early years; excluding them dilutes localization; this weaker

initial localization then also fades less.

Table 5
Comparison of Models
No Tech. With Tech. No Tech. With Tech.
Proximity Proximity Proximity Proximity
Parameter, Parameter, Parameter, Parameter,

Incl. Self-Cites Incl. Self-Cites Excl. Self-Cites Excl. Self-Cites

R? 0.779 0.813 0.746 0.765
Betal 0.205 0.208 0.191 0.190
Beta2 5.258x10°° 2.019x10° 7.309x107 2.891x107
Technological Proximity

Parameter n.a. 101.24 n.a. 99.49

Citations to U.S.
Citation Intensity Relative

to U.S.-U.S.
Year 1
Great Britain 0.54 0.50 0.75 0.72
France 0.45 0.44 0.66 0.65
Germany 0.36 0.37 0.54 0.56
Japan 0.49 0.51 0.72 0.73
Year 20
Great Britain 0.80 0.78 0.67 0.64
France 0.73 0.74 0.59 0.58
Germany 0.65 0.67 0.50 0.49
Japan 0.44 0.44 0.38 0.37
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Citations to France
Citation Intensity Relative
to France-France
Year 1
U.S.
Great Britain
Germany
Japan
Year 20
U.S.
Great Britain
Germany
Japan

Citations to Japan
Citation Intensity Relative
to Japan-Japan
Year 1
U.S.
Great Britain
France
Germany
Year 20
U.S.
Great Britain
France
Germany

No Tech.

Proximity

Parameter,
Incl. Self-Cites

0.09
0.14
0.11
0.09

1.56
1.43
1.23
0.87

0.16
0.15
0.15
0.18

212
1.70
1.43
1.62

With Tech.

Proximity

Parameter,
Incl. Self-Cites

0.11
0.12
0.12
0.11

1.84
1.35
1.35
0.99

0.20
0.17
0.17
0.21

2.75
2.05
1.76
2.00

No Tech.

Proximity

Parameter,
Excl. Self-Cites

0.26
0.36
0.31
0.26

0.87
0.82
0.62
0.45

0.27
0.26
0.25
0.30

1.61
1.27
1.03
1.16

With Tech.

Proximity

Parameter,
Excl. Self-Cites

0.29
0.34
0.35
0.30

1.00
0.77
0.67
0.50

0.34
0.29
0.31
0.38

2.01
1.49
1.23
1.39

Inclusion of the technological proximity parameter has an effect similar to the exclusion

of self-cites, but much smaller. That is, except for citations to the U.S., Column 3 shows

slightly less localization than Column 4 (and Column 1 slightly less than Column 2),

whereas both Columns 1 and 2 show dramatically less than either 3 or 4. What this

suggests is that citations within the same patent class have a slight tendency to

geographic localization, but, not surprisingly, much less so than citations within the same

organization. Finally, there does not appear to be much interaction between the self-cite

and technological proximity effects. The parameter v is not much different in column 2

from in column 4. What this means is that self-citations exhibit approximately the same

tendency toward concentration in the same patent class as non-self-citations.
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V. CONCLUSIONS

In our view, the results in this paper demonstrate that there is much to be learned about
international knowledge diffusion from patents and their citations. Despite the fact that
we focus on patents granted by the U.S. patent office, rich patterns of interaction are
revealed, including interesting findings about the diffusion of citations within and
between countries other than the U.S. Some widely-held notions about differences in the
inventive processes across countries were confirmed, such as the reliance of the Japanese
on a relatively recent technological base. Others are less obvious, such as the strong
symmetry between citing and cited intensities, and the greater proximity of Japan to the

U.S. relative to Europe.

Overall, the results confirm our earlier findings that there is significant geographic
localization of knowledge flows. We can now, however, tell a more complete story about
the localization process, distinguishing the issue of speed from the issue of total intensity,
and describing how citations diffuse over time to more distant locations. In future work,
we intend to extend this in two directions. First, we will continue to look at more and
finer geographic distinctions, including other countries and regions within the U.S. We
conjecture, for example, that the West Coast of the U.S. is “closer” in technology space to
the Pacific Rim, while the East Coast is closer to Europe, for both geographic and cultural

reasons.

The second research avenue we are pursuing is to relate the knowledge flows implied by
the citation patterns to the commercial impact of invention as measured by productivity
improvements. If citations are a proxy for the pathways by which the cumulative impact
of new technology is brought to bear, then they ought to play in a measurable
intermediating role between the R&D series of various countries and the international
productivity series. Thus our estimated citation flows can be used in place of trade flows
to construct weighted stocks of foreign R&D to search for international R&D spillovers

as in Park (1995) and Coe and Helpman (1995).
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An issue that remains for further study is the extent to which the results may be tainted by
systematic biases in the patent approval process that generates citations. Our maintained
hypothesis is that the citation process itself does not differ depending on the domicile of
the inventor. One possible bias is introduced by the fact that we are examining citations
within the U.S. patent system. If a given invention is covered by patents issued in more
than one country, then the obligation to cite this invention can be discharged by a citation
to any of the members of the patent “family” around the world that cover the same
invention in different countries. Further, U.S. inventions are often patented in the U.S. but
not in Japan, while Japanese inventions patented in the U.S. are usually also patented in
Japan. As a result, localization of citations to U.S. patents might be explained by a
tendency of Japanese inventors to cite the Japanese patent covering prior art rather than
the U.S. patent on the same invention, combined with the fact that such a patent will often
be unavailable for U.S.-invented patents. This would not, however, explain why U.S.
patents issued to Japanese inventors are more likely to cite other U.S. patents issued to
Japanese inventors than they are to cite U.S. patents issued to German inventors; if
anything, the bias introduced by patent families would suggest that our estimates of

localization for citations to countries other than the U.S. are understated.

Our basic goal in this paper was to explore the process by which citations to a given
patent arrive over time, how this process is affected by characteristics of the cited patent,
and how different potentially citing locations differ in the speed and extent to which they
"pick up" existing knowledge, as evidenced by their acknowledgment of such existing
knowledge through citation. Recognizing that many inventions are never patented, that
knowledge can flow from one inventor to another without being acknowledged by a
citation, and that many citations probably do not reflect knowledge flow, we nonetheless
view this process as a useful window into the otherwise "black box" of the spread of
scientific and technical knowledge. The value of this view could obviously be enhanced,
however, by a deeper understanding of the relationship between patent citations and
knowledge flows. This will require more qualitative and institutional examination of

inventions, patents and citations. A fruitful avenue is to build on the work of Jaffe,
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Fogarty and Banks by using inventors’ detailed knowledge of the technological

relationship between inventions to “test” the links implied by citations.

Patent citations offer a rich repository of information about the locus of technological
activity, and the relationships among activities in different places. Systematic use of these
data requires, however, careful attention to the need to control for time and technology
field effects that otherwise have an impact on simple comparisons across countries or
other units of observation. Fortunately, the patent data are sufficiently numerous that
detailed controls can, in fact, be implemented. Though any model obviously imposes
structure on the data, one can allow for complex patterns of interactions among effects.
Indeed, readers of this paper have no doubt already thought of additional interactions that
we could have estimated with our data but did not. We hope that, as these data become
more widely available, other researchers will pursue questions that we have not

considered.
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APPENDIX A
DERIVATION OF EXPECTED CITATION FREQUENCY FOR A “CELL”
Let s index the patent classes represented by patents with the t, ¢, g attributes, and
S index the patent classes represented in the set of patents with the T,L attributes. Let N,
represent the number of cited patents in a given class s, Ny,  the number of citing patents
in a given class S, and C,,q; s be the total number of citations from class S in year T and

country L 7o class s in year t, country ¢ and field g. Starting from Eq. 1, the expected value

of the citation count for a given “cell” is:
E[C, IgsTLS ] = (NTLS)(NIrgs)[l + ]/D(S,S)] (247748 eXp['(ﬂl )[lgTL (T - t)][J - eXP(‘ﬂg (T - t))] (Al)
where D(s,S) is now unity for s=S and zero otherwise. We can now sum over all s and S
to yield:
E[Coiyri ] =22 Nyys Nug )1+ 1D(5,8) ctigr €Xp[~( B, Jugn. (T =] [1-exp(-B,(T-1)
s S
or
E[C,lgn J]=Ny ngl Qigrt, exp[-(ﬁl)h‘gTL (T-0][1-exp(-B,(T - t))]z Z [1+ 7D(5=S)fnsfhgs ]
s S

where f1; s=(Nr /Ny )and analogously for f, .. The double summation over s and S can be

replaced by a single sum over s, because the only non-zero entries are where D(s,S) is unity

or s=S. Thus

E[ ChgTL]

m = QugrL eXP['(ﬁJngn(T-f)][] -exp(- 5,(T - l‘))][l + ;/Zs:[fmfhgs]] 2
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APPENDIX B
COMPLETE REGRESSION RESULTS

Parameter

Technology Match (gamma)

BETA1

BETA2 (x10%

ALPHAS:
U.S. citing U.S.
U.S. citing Great Britain
U.S. citing France
U.S. citing Germany
U.S. citing Japan
Great Britain citing U.S.
Great Britain citing Great Britain
Great Britain citing France
Great Britain citing Germany
Great Britain citing Japan
France citing U.S.
France citing Great Britain
France citing France
France citing Germany
France citing Japan
Germany citing U.S.
Germany citing Great Britain
Germany citing France
Germany citing Germany
Germany citing Japan
Japan citing U.S.
Japan citing Great Britain
Japan citing France
Japan citing Germany
Japan citing Japan

BETAls:
U.S. citing U.S.
U.S. citing Great Britain
U.S. citing France
U.S. citing Germany
U.S. citing Japan
Great Britain citing U.S.
Great Britain citing Great Britain
Great Britain citing France
Great Britain citing German
Great Britain citing Japan
France citing U.S.
France citing Great Britain
France citing France
France citing Germany
France citing Japan

Estimate

36

99.489
0.190
0.289

1.000
0.710
0.600
0.545
0.720
0.722
1.781
0.717
0.729
0.623
0.654
0.791
2.170
0.744
0.671
0.560
0.746
0.726
1.320
0.813
0.761
0.659
0.634
0.827
2318

1.000
0.973
0.967
0.969
1.052
1.033
1.239
1.083
1.151
1.094
1.033
1.133
1.306
1.146
1.163

Asymptotic
Standard
Error

2.903
0.002
0.022

n.a.

0.013
0.013
0.011
0.011
0.014
0.031
0.026
0.023
0.020
0.014
0.028
0.037
0.024
0.022
0.012
0.023
0.024
0.022
0.018
0.012
0.020
0.021
0.018
0.025

n.a.

0.011
0.014
0.012
0.010
0.012
0.013
0.025
0.023
0.023
0.014
0.024
0.014
0.023
0.025

Asymptotic
t-statistic

34.3*
107.5*
13.3*

n.a.
-22.6
-30.0
-42.7
-25.9
-19.9

252
-10.8
-12.0
-19.3
-24.3

-7.6

312
-10.8
-14.8
-38.1
-11.3
-11.3

14.5
-10.4
-20.4
-16.9
-17.1

-9.4

53.1

n.a.
-2.4
-2.4
-2.5

5.0

2.6
18.1

33

6.7

4.1

23

54

220

6.3

6.4



Germany citing U.S.
Germany citing Great Britain
Germany citing France
Germany citing Germany
Germany citing Japan
Japan citing U.S.
Japan citing Great Britain
Japan citing France
Japan citing Germany
Japan citing Japan
ALPHAs:
Drugs & Medical
Chemical, excl. Drugs
Electronics, etc.
Mechanical
All Other
BETAIls:
Drugs & Medical
Chemical, excl. Drugs
Electronics, etc.
Mechanical
All Other

CITING TIME PERIOD
1963-65
1966-70
1971-75
1976-80
1981-85
1986-90
1991-93

CITING YEAR
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994

NOTES:

37

1.033
1.122
1.125
1.240
1.180
1.190
1.178
1.164
1.269
1.543

1.000
1.529
2279
1.857
1.765

1.000
1.018
1.144
1.069
0.993

1.000
2.523
4.048
4.257
3.936
3.877
3.276

1.000
1.100
1.094
1.136
1.152
1.166
1.167
1.176
1.228
1.253
1.334
1.349
1.355
1.292
1.266
1.289
1.298
1.361

0.013
0.021
0.023
0.013
0.017
0.011
0.022
0.024
0.017
0.010

n.a.

0.022
0.031
0.025
0.032

n.a.

0.008
0.008
0.008
0.009

n.a.

0.180
0.288
0.307
0.289
0.291
0.253

n.a.

0.015
0.016
0.016
0.016
0.017
0.017
0.018
0.019
0.020
0.022
0.024
0.025
0.025
0.025
0.026
0.028
0.030

25
5.8
54
18.5
10.6
17.1
8.2
6.8
15.6
54.3

n.a.
23.9
41.8
33.9
242

n.a.
23

17.2
8.7

-0.8

n.a.
8.5
10.6
10.6
10.1
9.9
9.0

n.a.
6.5
6.0
8.5
94
9.8
9.6
9.8

11.8

12.4

15.0

14.8

14.4

11.9

10.7

11.0

10.8

12.1



50625 observations

R*>=.7648

Standard error of the regression = 7.55x10°*

t-statistics are calculated for H :parameter = 1, except as noted

t-statistic is for H,:parameter = 0
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Figure 1:
Figure 2:
Figure 3:
Figure 4:
Figure 5:
Figure 6:

Table 1:
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Table 3:
Table 4:
Table 5:

Figures and Tables
Raw Citation Frequencies to U.S.-Invented Patents, by Citing Country
Estimated Citation Functions for Citation to U.S.-Invented Patents
Estimated Citation Functions for Citation to British-Invented Patents
Estimated Citation Functions for Citation to French-Invented Patents
Estimated Citation Functions for Citation to German-Invented Patents

Estimated Citation Functions for Citation to Japanese-Invented Patents

Patents and Citations by Country

Statistics for Regression Variables
Regression Coefficients in Matrix Form
Fading of Geographic Localization over Time

Comparison of Models
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