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ABSTRACT

Costs of equity for individual firms are estimated in a Bayesian framework using several
factor-based pricing models. Substantial prior uncertainty about mispricing often produces an
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average return departs significantly from the pricing model’s prediction. Uncertainty about which
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of overall uncertainty about a firm’s cost of equity, although uncertainty about betas is nearly as
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Introduction

The expected rate of return on a firm’s stock, the “cost of equity,” is an important input for
making decisions affecting the firm. Because it affects the discount rate at which expected
future cash flows are valued, the cost of equity plays a key role in the firm’s investment
decisions. For a public utility, the estimated cost of equity capital has a direct impact on

how the prices of the firm’s services are regulated by its state public utility commission.

The cost of equity is equal to a riskless interest rate plus the expected excess return on the
firm’s stock. One approach to estimating the latter quantity uses a standard asset-pricing
model, in which the expected excess return hinges on sensitivities of the firm’s stock return
to market-wide factors.! If r, denotes the stock’s excess return and f; denotes a K x 1 vector
of the factors, all realized in period ¢, then the stock’s sensitivities, or “betas,” are the slope
coefficients in the regression

re=a+0fi +e, (1)

where ¢, is the mean-zero regression disturbance. When the factors appropriate to the given
model are constructed as excess portfolio returns or payoffs on zero-investment positions,
as will be the case in the models analyzed below, then the pricing model implies o = 0.2
That is, the pricing model implies that the stock’s expected excess return, pu, is given by 3,

where ) is the vector of “factor premiums,” the expected values of the factors.

The elements of 8 and A must be estimated, so the true cost of equity is uncertain.
Moreover, even if 3 and A were known for certain, one might be skeptical about whether
any pricing model could deliver the correct cost of equity for every stock. That is, a decision
maker might be uncertain about whether the model misprices the stock in question, so that

the expected excess return might actually be
p=a+ A (2)

where o is some unknown non-zero amount by which the model misprices the stock. This
“mispricing” uncertainty about « contributes further to the uncertainty about the cost of
equity. Finally, if the decision maker has any doubts about which pricing model to use, then
the uncertainty about p also includes that “model” uncertainty. This study attempts to
quantify these various sources of uncertainty and gauge the relative importance of each in

estimating a firm’s cost of equity.

In the presence of mispricing uncertainty, a decision maker might wish to combine a

cost-of-equity estimate produced by a pricing model with an alternative estimate, such as



the stock’s historical average return. Suppose for example that, apart from any empirical
evidence, a manager believes that there is a one-third probability that the difference between
his stock’s expected return and the value implied by the CAPM is at least 5% per annum in
absolute value. In other words, the manager’s “prior” standard deviation for his stock’s ar is
about 5%. Given this degree of skepticism in the accuracy of the pricing model, how much
attention should the manager pay to the historical average return on the firm’s stock when
estimating the firm’s equity cost of capital? Specifically, suppose that, based on the last
two decades, the firm’s stock has a sample estimate of its CAPM « equal to 8% per annum
with a tstatistic greater than two. To what extent should this skeptical manager make
use of that historical information? With complete faith in the CAPM, such information
would be ignored—only the market risk premium and the stock’s beta would be used in
estimating the cost of equity. With an extreme degree of uncertainty about the model’s
accuracy, one might simply ignore the CAPM and estimate the firm’s cost of equity as the
stock’s historical average rate of return, which would be 8% higher than the CAPM value.
We explore solutions to this problem with intermediate degrees of mispricing uncertainty, as

in the example given here.

We develop and apply a method for estimating the cost of equity using a Bayesian ap-
proach. In this setting, the decision maker does not know the true expected excess return but
instead uses the conditional expectation E(r,|®), where ® denotes the information available
at the time of the decision. We assume that excess returns have constant mean g, so the
decision maker’s estimate for the expected excess return is then simply the posterior mean
of i given ®, and the decision maker’s uncertainty about the cost of equity is reflected in
the posterior variance of u. As Cornell, Hirshleifer, and James (1997) conclude, “judgment
enters the process at numerous points,” regardless of the method used to estimate the cost
of capital. A basic feature of the Bayesian approach is that a decision maker’s judgment,
represented by prior beliefs, enters the estimation in a manner guided by a scientific principle
(Bayes’s theorem) as opposed to more ad hoc methods. As discussed above, one aspect of the
decision maker’s judgment that we can explore is uncertainty about whether a pricing model
can deliver the precise expected excess return for a given stock. We find that, in many cases,
mispricing uncertainty that seems important in economic terms does not impact greatly the
estimated cost of equity. That is, the posterior mean of u is close to the posterior mean
obtained when mispricing is ruled out, even when the sample least-squares estimate of o
departs significantly from zero. Suppose one’s prior beliefs are that the stock of interest is
typical in terms of its betas and its variance of ¢;. Then, when the prior standard deviation

of o is 5% per annum, as in the above example, the estimated cost of equity is less than 1%



(per annum) above the CAPM value, even though the sample estimate of « is nearly 8%
and its t-statistic exceeds two. In this sense, a pricing model that might be viewed by the
decision maker as being only mediocre in its ability to price stocks accurately is still relied

upon fairly heavily in estimating the cost of equity.

This study investigates factor-based models with a focus on the estimates they produce
rather than on their asset-pricing abilities versus each other or versus non-factor-based ap-
proaches. Even though the latter issues continue to invite debate in the academic literature,
we suggest that these factor-based models have received sufficient interest to merit investi-
gating their potential use by decision makers. Three pricing models are used to illustrate our
approach. The first is the CAPM, where the single factor is specified to be the excess return
on a market index portfolio. The second model, proposed by Fama and French (1993), con-
tains that market factor plus two additional factors: the difference in returns between small
and large firms and the difference in returns between firms with high and low ratios of book
value to market value. The third model also has three factors, but, instead of prespecifying
them, we extract them from returns on a large cross-section of stocks using the asymptotic

principal components method of Connor and Korajczyk (1986).

Uncertainty about which of the three factor-based models to use can contribute non-
trivially to a decision maker’s overall uncertainty about the cost of equity, but this source
of uncertainty is typically less important than the parameter uncertainty within any given
model. For example, when each model is assigned an equal probability of being the “correct”
one, we obtain an overall posterior standard deviation for the cost of equity of 5% or more
per year, depending on the prior uncertainty about «, but that value is typically no more

than 0.75% above the posterior standard deviation of p obtained within any single model.

Uncertainty about 3 contributes substantially to the overall uncertainty about the cost
of equity for an individual firm, but somewhat more important is the uncertainty about
A, the vector of factor premiums. Fama and French (1997) estimate expected returns for
industry portfolios using both the CAPM as well as the Fama-French (1993) three-factor
model. Based on frequentist standard errors, they conclude that by far the largest source of
imprecision in industry costs of equity arises from estimation of A. Ferson and Locke (1997),
also in a frequentist setting, examine sources of error in CAPM-based estimates of expected
returns on portfolios of stocks grouped by industry or market capitalization. They similarly
conclude that errors in 3 are likely to be less important than errors in estimating the market
premium.® Although uncertainty about 3, not surprisingly, is more important for individual

firms than for portfolios, our conclusion regarding the importance of uncertainty about A is



otherwise similar to the conclusions of these studies. In all three of the models, the histories
of the factors are available beginning in July 1963, but the factors are correlated with other
series whose histories begin earlier. As a result, the longer-history series contain additional
information about A, as discussed by Stambaugh (1997). We find that, in the absence of
uncertainty about mispricing, uncertainty about A remains the most important source of
uncertainty about a firm’s cost of equity, even after incorporating information about A that

is contained in series whose histories begin in 1926.

In keeping with the spirit of a factor-based approach, much of our analysis assumes that
the information set used by the decision maker consists of histories of factors and stock re-
turns. That is, the decision maker does not make use of firm-specific characteristics, except
perhaps in constructing the factors (as in, for example, the Fama-French (1993) model).
Previous studies have recommended the use of firm-specific characteristics in estimating the
cost of equity (e.g., Elton, Gruber, and Mei (1994) or Schink and Bower (1994)), and the
usefulness of various firm-specific characteristics in explaining expected returns has been
argued recently by Daniel and Titman (1997). Another feature of the Bayesian approach is
that it allows the decision maker to introduce additional prior information about the firm
whose cost of equity is to be estimated, and our methodology allows the decision maker to
either ignore or incorporate such prior information. In specifying the prior, the firm can be
regarded as a random draw either from the whole cross-section of stocks, when firm-specific
characteristics are ignored, or from a group of firms with similar characteristics, when the
firm’s characteristics are incorporated. As a simple illustration of the latter case, we include
a firm’s industry classification as additional prior information and analyze estimates of ex-
pected excess returns on stocks of utilities, which constitute an industry in which estimated

costs of equity have clear practical relevance.

The remainder of the paper is organized as follows. The methodology is developed in
Section I, wherein we present the general form of the priors used in our Bayesian approach,
explain how we obtain the resulting posterior distributions of p and its components, and
describe the empirical-Bayes procedure used to obtain parameters in the prior distributions.
Sections II and III contain our empirical results. Section II reports and analyzes posterior
moments of the expected excess return and its components for individual stocks. Those
results include a detailed analysis for one stock as well as analyses for two cross-sections: a
broad universe of 1,994 stocks and a smaller set of 135 utility stocks. Section III investigates
the potential uncertainty about the cost of equity that arises from uncertainty about which

pricing model to use. Section IV reviews the conclusions.



I. Methodology

A. Overview

The estimate of a stock’s expected excess return is given by the posterior mean, E(u|®),
where p is a function of the unknown parameters «, 3, and A (equation (2)) and & is
the historical sample information available to the decision maker. The imprecision in the
estimate of the expected excess return is characterized by the posterior variance, Var(u|®).
The posterior mean and variance are obtained by combining the sample information about
the unknown parameters with the decision maker’s prior beliefs about those parameters. A
key feature of the prior beliefs is the mispricing uncertainty about «, represented by the
prior standard deviation, o,. We let o, take different values on the interval (0, oo) in order

to explore the role of mispricing uncertainty in estimating the cost of equity.

Prior beliefs about the elements of 8 and their correlations with o are constructed by
viewing the firm as a random draw from a cross-section of firms. The prior mean of 3, for
example, is set equal to the average of the ordinary-least-squares (OLS) estimates of 3 for
the firms in the cross-section. This cross-section can be selected either as a broad universe or
as a subset of firms that share one or more characteristics with the firm whose cost of equity
is to be estimated. That firm’s posterior mean of 3 is then “shrunk” away from its own
OLS estimate and toward the cross-sectional mean, in a manner similar to that discussed
by Vasicek (1973). If, as in an example presented later, the firm is a public utility and the
cross-section consists of other utilities, then the given firm’s 3 is shrunk toward the average
3 for utilities. In estimating costs of equity for various industries, Fama and French (1997)

follow a similar approach and shrink each industry’s 3 toward the market-wide average 3.

The prior mean of « is set equal to zero: in the absence of any observations of the firm’s
historical stock performance, the decision maker is viewed as unable to sign the potential
mispricing. This assumption about the prior mean of «, although perhaps the most natural,
is made for simplicity and is not required by the methodology. In particular, one could
instead set the prior mean of & equal to the average OLS estimate of « for a cross-section of
firms with characteristics similar to the given firm in question, as done with 3. The latter
approach would be one way to incorporate the type of characteristics-based pricing effects
investigated by Daniel and Titman (1997).

The decision maker is assumed to have “diffuse” prior beliefs about A, the vector of

factor premiums. In other words, without observing any past realizations of the factors, the



decision maker would have essentially no idea about their expected values. The histories
of the factor realizations are often longer than the firm’s return history used in the cost-of-
capital estimation. Moreover, additional information about the factor premiums is obtained
from variables whose histories are longer than those of the factors. In the one-factor CAPM
and the two three-factor models used here, the histories of the factors begin in July 1963, but
the returns on the factors are correlated with longer series that provide additional information
about the factor premiums. For example, the Fama-French NYSE-AMEX-Nasdaq market
index, which we use as the market factor in the CAPM and in the Fama-French three-factor
model, has returns available starting in July 1963, but those returns are highly correlated
with the returns on the value-weighted NYSE portfolio, which CRSP supplies beginning
in 1926. As shown by Stambaugh (1997), that longer-history series contains additional
information about the mean of the shorter-history market factor. For each of the pricing
models used here, the cost-of-equity estimates incorporate the additional information about
factor means that is contained in three series whose histories begin in January 1926: the
value-weighted NYSE portfolio, the equally weighted NYSE portfolio, and the Ibbotson
small-stock portfolio (all obtained from CRSP).

The remainder of this section provides the details of the methodology. The reader who

wishes to proceed directly to the empirical results may skip to Section II.

B. Stochastic Setting

Let r denote the T x 1 vector of returns on the stock of the firm whose cost of equity is
to be estimated. In many cases, the stock’s return history, or at least the portion of that
history used in the estimation, may be shorter than the history of the factors. It is assumed
that there are S observations of the factors, with S > 7". Let F*) denote the T x K matrix
containing the 1" observations of the factors corresponding to the same periods as the returns
in r. The regression disturbance ¢; in (1) is assumed to be, in each period ¢, an independent
realization from a normal distribution with zero mean and variance o2, so the most recent

T observations of the returns and the factors obey the regression relation
r=Xb+e, e~ N(0,0%Ip), (3)

where V' = [a 7], X = [ip F)], € contains the T regression disturbances, ¢ is a T-vector
2

[43

of s, I is a T x T identity matrix, and the notation “~” is read “is distributed as.”

In addition to the S observations of the K factors, there exist L observations of K,

variables that are correlated with the factors. If . > S, then, as shown by Stambaugh



(1997), the longer histories of these additional variables contain information about A, the
K x 1 vector of factor means, beyond that contained in the factor histories alone. Let y;
denote the K x 1 vector containing the observations of the additional variables in period
t, and let Y (&) denote the L x K matrix containing all L observations of 1. For each of
the S periods over which both f; and y; are observed, define the “augmented” set of factors
& =[f! v}], and assume that

fi~ N, G), (4)
where the realizations are independent across ¢, 8/ = [X 03], and G denotes the covariance

matrix of f?. For the L — S periods in which only v, is observed, it is also assumed that
Y ~ N(02, Gao), (5)

again with independent realizations across t, where (GG9o is the corresponding submatrix of
G. That is, the marginal distribution of y, is given by (5) for all L periods. Finally, it is

assumed that f{* is independent of ¢ for all ¢.
Given the above assumptions, it follows that the likelihood function for the parameters
(b, o, 8, ) can be factored as
p(r, F9, Y P1b, 0,0, G) = p(r|FD, b, 0)p(F D, Y D0, G), (6)
where the likelihood function for the regression parameters is
1 1
T -
PUrIF™,b,0) o — exp{ ~3(r = Xb)(r = Xb)}, 7)

and the likelihood function for the moments of the factors and additional variables is

I 1 LS ,
p(F® YD|0,G) o |Gao| "7 exp {—5 > (e — 602)'(Ga2) M (we — 92)}
=1

L

><|G|_%e><ip{—l > (ff—9)’(G)_1(f{’—9)}- (8)

2 t=L-S+1

(The notation “o” is read “is proportional to.”)

C. Priors

C.1. General Specification

We propose a normal-inverted-gamma prior on the regression parameters b and o:

blo ~ N(b,¥(0)) 9)
g° ~ 2’ (10)

7



where

()t ot | »

o) [ (55) alpas75) Vs
In the above, o5 is a K x 1 vector containing the square roots of the diagonal elements of V3,
the covariance matrix of 3, and p,g is a K x K diagonal matrix with the simple correlations
between a and the elements of 3 on the main diagonal. Since b does not depend on o, the

marginal prior covariance matrix of b equals

Vi =cov (b,b) = E(¥(0))

2

_ Ou Ua(paﬁo-ﬁ),
B |: 0a(Pasop) Vs } 7 (12)

and it is assumed that Vj is positive definite. In order to have ¥(o) be positive definite, we

also require

2 2
/ot -1 [E(U)] v—2(T [(V - 1)/2]
o = N 13
T3PagVs Pap0s < E(0?) 9 T (v/2) (13)
where the equality of the second and third expressions follows from the properties of the
inverted gamma distribution for &,*
B(o?) = 2 (14)
v—2

e Dlv —1)/2] vst
_ Dl = /2] vsb o 5
Blo) = e = (5) (15)

In specifying the parameters for the above priors, we use an empirical-Bayes procedure that
relies on data for a cross-section of individual stocks. The effects of “mispricing” uncertainty
are investigated by entertaining a wide range of values for 0,. Details of that approach are

provided in Subsection C.2.

Observe in (11) that the conditional prior variance of « is proportional to o2, the variance
of ¢;. This feature of our prior recognizes that a high value of |a| accompanied by a low value
of o2 implies a high Sharpe ratio for some combination of the asset, the factor-mimicking
positions, and cash (earning the riskless rate).> In particular, (a/c)? is the difference be-
tween the maximum squared Sharpe ratio for such a combination and the maximum squared
Sharpe ratio for combinations of only the factor-mimicking positions and cash.® Following
MacKinlay (1995), a prior positive association between « and o is imposed to reduce the
probability of high Sharpe ratios as compared to priors that treat those parameters as in-
dependent. In contrast, we do assume independence between 3 and o in the absence of a

compelling a priori argument to the contrary.



The structure of the covariance matrix for b, ¥(c) in (11), produces a prior that is
essentially a hybrid of two more standard alternative priors for the regression model. In one
alternative, the normal density for b and the inverted-gamma density for o2 are independent,
so that no part of the covariance matrix for b involves o2 (e.g., Chib and Greenberg (1996)).
As explained above, this prior would make o independent of 0% and hence assign greater
probability to high Sharpe ratios. In the other alternative, the well-known natural-conjugate
prior, the marginal prior for o2 is still inverted gamma, but the entire covariance matrix of b
is proportional to o2 (e.g., Zellner (1971), Chapter 3). In the formula for the posterior mean
of 3 for that case, the relative weights on the sample estimate and the prior mean do not
depend on sample information about o. That is, B is given no more weight when the sample
residual variance is small than when it is large, and that property is unappealing. Vasicek
(1973) argues that the natural-conjugate prior is inappropriate when the prior parameters

are estimated from a cross-section of stocks.

We assume that the regression parameters are independent of the moments of f;*, the
augmented set of factors:

p(b,0,0,G) = p(b, 0)p(0, G). (16)
The prior density for # and G is specified as

K+K 1
p(6,G) o G2, (a7)
which is the standard diffuse prior used to represent “non-informative” beliefs about the

parameters of a multivariate normal distribution (e.g., Box and Tiao (1973)).

C.2. Prior Parameters

In order to construct the prior distribution for the regression parameters in (9) and (10), we
specify the elements in b and V} and the scalar quantities so and v. (Note from (11) through
(15) that Vj;, s2 and 1 determine the conditional covariance matrix ¥(o).) The prior values
are chosen with the objective that the prior mean of b for any given stock be the mean of b
in a given cross-section of stocks and that the prior unconditional covariance matrix of b for
that stock, Vj, be the covariance matrix of b in the cross-section. Similarly, the prior mean
and variance of o2 for the stock, determined by sy and v/, correspond to moments of o2 in

the cross-section.

We construct prior distributions using two specifications for the cross-section of stocks.
The first cross-section consists simply of all stocks on the NYSE and AMEX (subject to



a data-availability requirement detailed below). In this first specification, which is used
throughout much of our analysis, the stock to be analyzed is essentially viewed as a random
draw from the universe of all stocks. Although this approach strikes us as a reasonable
starting point, at least for our exploratory study, it is only one of many methods that might
be used to specify the prior. In a statistical sense, the normal-inverted-gamma prior in (9)
and (10) is generally characterized as “informative” as opposed to diffuse (non-informative),
but this first specification of the prior does not rely on specific knowledge about the firm.
In an economic sense, therefore, this prior is rather uninformative. In contrast, our second
cross-section of stocks consists solely of utilities, so the prior thereby constructed can be
viewed as economically informative. In other words, the prior incorporates knowledge of a

characteristic—industry classification—of the firm whose cost of equity is to be estimated.

The cross-sectional moments of b and o2 are not directly observable. We take an
empirical-Bayes approach and estimate those moments using values of b and 62 computed
for a large cross-section.” Fama and French (1997) apply a similar methodology, following
Blattberg and George (1991), in computing shrinkage estimates of § for industry portfo-
lios. The first prior, based on the broad cross-section, is constructed as follows. For each
stock in the CRSP monthly NYSE-AMEX file with at least 24 months of data in the pe-
riod from July 1963 through December 1995, we compute b and 62 using all of that stock’s
available data during that period. The stock returns are in excess of the return on a one-
month Treasury bill (from CRSP’s SBBI file). For the CAPM and the Fama-French (1993)
three-factor model (hereafter the FF model), the factor data begin in July 1963 and consist
of monthly realizations of three factors: (i) the excess return on a market-index portfolio
of NYSE, AMEX, and Nasdaq stocks, (ii) the difference in returns between a small-stock
portfolio and a large-stock portfolio, and (iii) the difference in returns between a portfolio
of high book-to-market (B/M) stocks and a portfolio of low B/M stocks.® Only the first of
these factors is used in the CAPM. To construct the three factors for the Connor-Korajczyk
(1986) model (hereafter the CK model), we take all stocks with at least one year of data on
the NYSE-AMEX monthly CRSP file for the 7/63-12/95 period and then extract one set of
factors for that entire period using the method in Connor and Korajczyk (1987) that allows

for missing observations.’

The statistics b and &2, computed for each stock, are used to construct the prior param-
eters b, V}, s, and v. The prior mean of b, b, is set equal to the cross-sectional average of

the 13’5, except that the first element, &, is set to zero. The prior covariance matrix of b, V},

10



is constructed as follows. First, we compute the matrix
Vo = E(b) - 62(X'X);, (18)

where Z(b) is the sample cross-sectional covariance matrix of the b’s. The second term in (18)
2

is the average across stocks of the usual estimate for the sampling variance of Z), where 07
and (X'X); are based on the observations available for stock 7. (The bar denotes an average
across stocks.) As noted by Fama and French (1997), under standard assumptions, V, is an
estimate of the cross-sectional covariance of the b’s. For all three models, it happens that Vi
is positive definite (not guaranteed in general). To construct the matrix Vj, as represented
in (12), V3 is set equal to the corresponding submatrix of ‘71,, and pqg 1s taken from the
correlation matrix associated with Vj,. Rather than set o2 equal to the (1,1) element of Va,
however, we instead let it take a wide range of values, ranging from zero to infinity.!° Each
value of o, is then combined with the fixed values of V3 and p,g, using (12), to form the

matrix Vj, used in the prior.

The inverted gamma density for ¢ implies!!

2(E(0?))
=44+ ——. 19
v * Var(o?) (19)
We substitute the cross-sectional mean of the 6’s for E(¢?) in (19), and for Var(c?) we
substitute
T, - K-1_,
Dy = £(6%) — TQO?. (20)

)

Equation (20) is the analog to equation (18). The first term on the right-hand side is
the sample cross-sectional variance of the %’s, while the second term is the cross-sectional
average of the estimates of the sampling variance of 62. That is, 62 denotes the estimated
residual variance for stock 7, based on T; observations for that stock, and the estimated
sampling variance of 62 is the quantity under the bar in (20). The value of v in the prior is
set to the next largest integer of the resulting value on the right-hand side of (19). Given that
value of v, the value of s3 used in the prior is obtained from (14), where the cross-sectional

average of the 6%’s is substituted for E(c?).

Panel A of Table I reports the parameter values used in the prior constructed from the
entire cross-section of stocks. Note that in the CAPM the prior correlation between o and 3
is positive. This occurs in spite of a negative cross-sectional correlation between the sample
estimates & and B, as has been observed in previous studies (e.g., Black, Jensen, and Scholes
(1972)). That is, the off-diagonal element of the first matrix on the right-hand side of (18)

is negative. The positive correlation in the prior results from the fact that the average

11



sampling covariance between & and 3 , appearing in the second term on the right-hand side
of (18), is also negative, and the difference results in a positive estimate of the cross-sectional
covariance between « and 3. For the other two models, the prior correlations between o and
the elements of 3 are generally negative. In particular, the prior correlation between « and
the HM L sensitivity (the last element of b in the FF model) is -0.55. This value, obtained
here with individual stocks, is consistent with a similarly large negative correlation between

o and HM L sensitivities for industry portfolios observed by Fama and French (1997).

As noted earlier, the prior based on the entire cross-section can be viewed as economically
non-informative compared to a prior that makes use of a cross-section selected according to
one or more of the firm’s characteristics. For example, if a public utility’s cost of equity is
to be estimated, the prior parameters can be obtained from a cross-section of utilities rather
than the cross-section of all stocks. Our second prior uses the cross-section of 186 utility
firms (SIC codes between 4900 and 4999) with at least 48 months of data in the period
from July 1963 through December 1995. The same approach described earlier for the entire
cross-section is applied here, except that the off-diagonal elements of V}, are set to zero. The
latter simplification and the 48-month data requirement are imposed in order to obtain a
positive-definite prior covariance matrix for b with this smaller cross-section. Panel B of

Table I reports the parameter values in this utility-specific prior.

D. Posteriors

The posterior density for the parameters is proportional to the product of the prior density
and the likelihood function. Given the factorizations of the likelihood function in (6) and
the prior density in (16), the posterior density can also be factored as the posterior for b
and o multiplied by the posterior for # and (. We analyze these two posteriors separately
and then explain how we combine the posterior moments for b and A to obtain posterior

moments for the expected excess return.

D.1. Regression Parameters

The joint prior density p(b,o) is equal to the product p(blo)p(c), where the normal prior
density for b given o in (9) can be written as!?

1 _

plr) o W) Fexp{ -0 -1V 0 -5)]
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x Zexp{-o -5 (U0 6=, (21)

and the marginal inverted-gamma prior density for ¢ in (10) can be written as

2
vsg
202

p(o) o ey exp{- 22)

Multiplying the prior densities in (21) and (22) and the likelihood in (7) gives the joint

posterior for b and o, which can be written as

1 1 ) S D
plb,0lr, FT) o ——exp {—-2—05 [ng £ TG+ (b~ ) (¥(0)) (b~ b)
+B-bYX'X(b- 6)] } : (23)

where b = (X'X)"'X'r and T6? = (r — Xb)'(r — Xb). We compute moments of this
joint posterior using the Metropolis-Hastings (MH) algorithm, a Markov chain Monte Carlo
procedure introduced by Metropolis et al. (1953) and generalized by Hastings (1970). (For
an introduction to the MH algorithm, see Chib and Greenberg (1995) or Gilks, Richardson,
and Spiegelhalter (1996).) Briefly, a sequence of draws of b and ¢ is constructed by making
"candidate” draws from a “proposal” density and then accepting a new candidate or retaining
the previous value based on a rule that assures the resulting scquence for (b, o) forms a
Markov chain whose invariant distribution is the “target” posterior density of interest. The
posterior moments of the parameters are computed as the sample moments of a large number
of draws. We use a “block-at-a-time” version of the MH algorithm, where b is drawn directly
from the conditional density p(b|o,r, F{T)), but o is drawn from a proposal density given
by the conditional posterior density for ¢ that arises when ¢ and b are made independent
in the normal-inverted-gamma prior.!> The target density for o is the conditional density
p(olb, r, FT)), which is proportional to the right-hand side of (23) (since b is then viewed as
a constant and the marginal density of b, by definition, does not involve o). We simulate a |
MH chain of 50,500 draws, discard the first 500 draws, and estimate the posterior moments
of b and ¢ over the remaining 50,000 draws. The number of draws is chosen such that, across
repeated independent runs of the MH algorithm, differences in the computed first and second

moments of b are small enough for us to report at least two decimal places in our results.

From (23) we see that the conditional posterior for b given ¢ can be written as

plo,m, FT) o« exp {—% [(b B (0) (b= b) + (b— 6)’(%){’){)(1) - B)J}
X exp {—%(b —bo)M(b— 50)} : (24)



where .
M=V(0)"+5X'X, (25)
o
and

- _ 1 -
by = M1 | U (o)1 + ;X'Xb : (26)

Hence, the conditional posterior distribution for & given ¢ is normal with mean b, and
covariance matrix M~!, so it is easily sampled directly, as noted in the above description
of the MH algorithm. Observe that b, is a (matrix) weighted average of the prior mean b
and the sample estimate l;, where the weights are the precisions of b and b conditional on o.
This weighting can be interpreted as shrinking the sample estimate b toward its prior mean
b, where the degree of shrinkage depends on the relative reliability of the sample estimate.

This shrinkage effect is discussed further in Section II.

We find that the first and second posterior moments of b, computed using the MH al-
gorithm, are approximated well by the moments of p(b|o,r, F(T)) evaluated at a reasonable
estimate of o (using (25) and (26)). An estimate of ¢ for this purpose is computed in two
steps. Using (26), the posterior mean of b conditioned on ¢ = ¢ is computed, and its value
is denoted as b*. The final estimate of ¢ is computed as the posterior mean of ¢ conditioned
on b = b*, using the conditional posterior density for o that arises when o and b are made
independent in the normal-inverted-gamma prior (i.e., the proposal density for ¢ in the MH
algorithm). In the empirical analyses in Sections I and III, we present a one-stock example
based on the MH algorithm, but we use the approximation to compute posterior moments
for a large number of stocks, since performing the MH algorithm for each stock would be

computationally prohibitive.

D.2. Factor Means

Define the first and second sample moments of y;,
- 1 /
92 = ZY(L) Ly, (27)

and

R 1 ~ n
Goy = Z(Y<L> — 0 05 (YD) — 0. (28)

Let Y denote the S x K; matrix containing the S observations of y, corresponding to
the same S periods as those in F¥), and define Z = [1g Y¥)]. The least-squares coefficient

matrix in a multivariate regression of F%) on Y% is

~ A/
A" |2 (zz A AC 29
/
i
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where h; is K x 1 and Hy is K x K 1, and the sample covariance matrix of the residuals is

3= %(F@) — ZH)(F® - ZH). (30)

The sample statistics in (27) through (30) prove useful in computing the posterior first
and second moments of A, which are derived in Part A of the Appendix. The posterior mean
of Ais

S =y + Fa, (31)

and the posterior covariance matrix of A is

- S 1 17l R
o= (—)tr 27| 2. )8
A S—K-2 (( ) 0 (f——_l?:lKL——Q) Gag + 0292

1 PP
HyCo H 2
+(L—K—I(L—z) 2l (32)

where “tr” denotes the trace operator. When S = L, A in (31) simplifies to the vector of

sample means of the factors over the S periods. That is, the more common estimate of the
factor premia arises as a special case of our estimate when no longer-history asset returns

are included in the estimation.

D.3. Cost of Equity

Recall that the stock’s expected excess return is given by
p=a+Ng=[1Nb (33)

Once we have obtained the posterior first and second moments of \ and b, it is straightforward
to compute the first and second moments of u, since the posterior distributions of those
parameters are independent. As noted at the outset, the decision maker’s estimate of the
expected excess return is the posterior mean of u, which, given the independence of A and
3, is simply

E(ulr, F YWY = a4+ X3, (34)

where & and 3 denote posterior means of « and 3. The posterior variance of u is given by

1 N

(8) y(L)y — 1 - 3V, 3
Var(ulr, F&), Y1) = tr (Vgl/\ V,\+/\A’D+ﬁv’\ﬁ’ (35)

where V, and V3 denote the posterior covariance matrices of b and 3.'
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In the empirical results presented in the next section we compute the posterior variance
of ¢ and its components, a and G'A. For the latter quantity we report the unconditional
variance as well as variances that condition on either 3 or A set equal to their posterior
means. The conditional variances provide additional insight into the sources of uncertainty

about the cost of equity. These variances of 3’A are computed as

Var(8'\|r, F) Y(L)) =tr (Vg [V)\ + 5\'5\]) + 3'VAB, (36)
Var(8A|A = A, r, FS YD) = XNV3A, (37)

and
Var(F'\|3 = 3,7, F® vV = 3V, 5. (38)

II. Cost-of-Equity Estimates: Posterior Moments

A. Results for an Individual Stock

We first compute the moments of the posterior distribution for the expected excess return
and its various components for the stock of a specific firm, Bay State Gas Company. One
reason for this choice is that, across the three models, the OLS estimates of b for this
company generally differ substantially from the cross-sectional averages, so the shrinkage
effects discussed earlier can be illustrated. If we were instead to select a typical stock, b
would be close to the cross-sectional average used to specify the prior mean, so any shrinkage
effects would be minimal. In addition, selecting a utility allows us to compare results based

on the first all-stock prior to those based on the second utility-specific prior.

As explained in the previous section, given the form of the likelihood and the assumed
prior independence between the regression parameters (b and o) and the factor means (A),
the posterior moments of the regression parameters depend only on the data used in the
regression model. The monthly history of Bay State Gas begins in December 1974, so in
this case, the regression-model data consist of monthly returns on the stock and the factors
for the 253 months in the period from December 1974 through December 1995. For Bay
State Gas, the Metropolis-Hastings algorithm is used to compute the posterior means and
standard deviations of the regression parameters, as described in the previous section. Panel
A of Table II reports the posterior means and standard deviations of the CAPM « and /3.
These posterior moments are reported for seven values of o, the prior standard deviation

of o that characterizes a decision maker’s mispricing uncertainty about the given model.
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A dogmatic belief in the ability of the model to deliver precisely the expected excess return
is characterized by o, equal to zero. As o, moves from zero to infinity, the decision maker’s
confidence in the pricing model’s ability declines, so greater weight is placed on the regression
estimate &: the posterior mean of Bay State Gas’s a moves from 0 to 7.66% (annualized).
The latter value is close to Bay State’s & estimate of 7.92%—the small difference arises from
correlation in the posterior between o and 3.}> Observe, however, that the posterior mean
of @ moves away from zero rather slowly. For example, the posterior mean of «a is only 11
basis points (bp) above zero at 0, = 3% and only 73 bp above zero at 0, = 5%. This slow
movement away from the prior mean for « occurs in spite of the fact that the t-statistic
associated with the Bay State’s & is equal to 2.07. (This case supplies the example discussed
in the introduction.) In other words, even with substantial skepticism about the ability of
the CAPM to capture precisely the expected excess return on any given stock, and even
with a historical average return that departs substantially from the CAPM prediction, the

posterior mean of the stock’s excess return is still fairly close to the CAPM implied value.

In most cases, as with Bay State Gas, the posterior mean of « is shrunk away from the
sample estimate & and toward the prior mean @ = 0. That is, the posterior mean for the
expected excess return pu is shrunk away from the stock’s sample average excess return and
toward the value implied by the factor-based pricing model. The matrix expressions in (25)
and (26) do not immediately reveal the weight given to & in computing the posterior mean
of &. An approximation that reveals the rough order of magnitude of the shrinkage effect
for o is obtained by setting the prior correlations between a and 8 and the sample means
of the factors equal to zero. In that case, (25) and (26) imply that the posterior mean of «
is given by

& = Waa + (1 — Wa)a, (39)

where

E(c?)

Yo = E(0?) + To2
Recall that E(c?) is the prior mean of o2, which in this case is equal to 0.016 on a monthly
basis, using (14) and the CAPM values in Panel A of Table I. If 0, = 5% on an annualized
basis, then the corresponding monthly value of o, used in the calculations is 0.0042 (=
.05/12). For T = 253, as with Bay State Gas, equation (40) implies W, = 0.78. That is,

even with mispricing uncertainty of 5% per annum, and a value of T' that is fairly large

(40)

compared to those often used in practice, the prior mean of « is still given heavy weight in
computing the posterior mean of a. Of course, as ¢, becomes large, we see from (40) that
the sample estimate & is given increasingly greater weight, as illustrated by the results in

Table II. Alternatively, & would also be given greater weight if the prior mean E(¢?) were
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lower. Such might be the case, for example, if one were to estimate the expected excess
return on an asset known a priori to possess lower residual variance, such as a diversified
portfolio of stocks. For the typical individual stock, however, as will be further demonstrated
in the next subsection, & is given heavy weight only when the prior mispricing uncertainty

is very high.
o

The prior mean & is set to zero in this study, but, as noted earlier, one could instead set
@ to a non-zero value, possibly the average sample & for a cross-section of stocks that share
similar characteristics with the given stock. The degree of shrinkage toward that prior mean

would, for a given o, be otherwise similar to that demonstrated here.

Equations (25) and (26) essentially imply that the shrinkage weights applied to 3 and 3
in determining the posterior mean of 3 depend on the prior precision about 3 as compared
to the sample precision of the regression estimates, and the latter increases in the sample
length T". For Bay State Gas, with T' = 253, the posterior mean of 3 is much closer to the
least-squares estimate of 0.42 than the prior mean of 1.12, and the posterior mean moves
only slightly, from 0.47 to 0.45, as o, goes from zero to infinity. For smaller values of T', the
posterior mean of 3 is shrunk more toward the prior mean. The slight dependence on o,
arises from correlation in the posterior between « and 3, both through p,s in the prior and

through the off-diagonal elements in the first row of X’X.

The expected excess return has « as one of its components. Panel B of Table II reports
posterior moments for the other component, 5'A, and the overall expected excess return, u.
Recall that information about A is contained not only in the available histories of returns
on the factors but also in the longer histories of other series that are correlated with the
factors. The first part of Panel B reports posterior moments based on the longer period from
January 1926 through December 1995, whereas the second part reports moments based on
the shorter period beginning in July 1963. The posterior mean of A, 5\, is 8.05% based on
the longer period but only 5.52% based on the shorter period. This difference reflects the
fact that the average return on the NYSE portfolios is higher over the 1926-95 period than
during the shorter 1963-95 period. Given the high positive correlations between the NYSE
indexes and the Fama-French NYSE-AMEX-Nasdaq index, the posterior mean of the latter
index is adjusted upward (see Stambaugh (1997)). This adjustment produces a cost-of-equity
estimate for Bay State Gas that is above the shorter-period estimate by about 1.2%. For the
overall period, the posterior mean of the expected excess return p is about 3.8% based on a
strict CAPM (o, = 0) and, given the behavior of the posterior mean of o discussed above,

the posterior mean of ;1 remains between 3% and 4% for values of o, smaller than 5%. That
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is, prior uncertainty about Bay State Gas’s CAPM mispricing («) that seems substantial in
economic terms still results in a posterior mean fairly close to the CAPM value. As will be
demonstrated below, this observation generalizes across stocks and across the three pricing

models considered.

The results based on the shorter period, in the second part of Panel B of Table II, ignore
the longer-history asset returns in the estimation of the factor premiums. As noted earlier, in
such a case )\ is simply equal to ), the vector of sample averages of the factors. Also, due to
the relatively large T for Bay State Gas, the posterior mean of 3 is very close to 3 =0.42. The
posterior mean of o ranges from 0 to 7.66%, and the latter value is close to &, which equals
7.92%. As aresult, in the extreme cases when o, equals zero and infinity, our estimates of the
expected excess return in this shorter period are close to alternative textbook-recommended
estimates (e.g., Benninga and Sarig (1997)). For o, = 0, our estimate of 2.59% is close to the
simpler CAPM-based estimate 3, which equals 2.32%. For o4 = 00, our estimate of 10.12%
is close to the sample mean of 11.61% for the excess returns on Bay State Gas’s stock, and
the corresponding posterior standard deviation of 4.07% is close to the frequentist estimate
of 4.01% for the standard error of the sample mean. (The difference between 10.12 and 11.61
arises primarily from the fact that the average market premium for the 1963-95 period, used
in computing the posterior mean of y, is slightly less than the average market premium over
the somewhat shorter period for the returns on Bay State Gas.) The close correspondence
between our estimates in the two extreme cases and the two common alternative estimates

is also observed for both of the multifactor models.

Posterior standard deviations of u, «, and S\, reported in Table II, summarize the un-
certainty about Bay State Gas’s expected excess return and its components. The values
reported for S\ include both the unconditional standard deviation as well as standard de-
viations that condition on either 3 or A set equal to their posterior means, 3 and A (The
calculations rely on equations (35) through (38) in the previous section.) Based on the 1926—
95 period, the posterior standard deviation of Bay State Gas’s (annualized) expected excess
return ranges from 1.25%, in the case of a dogmatic belief in the CAPM (0, = 0), to 4.02%,
in the case of a diffuse prior about deviations from the model (o, = oc). The first value is
essentially the posterior standard deviation of 3\, which is largely unaffected by o,. Further
discussion of posterior standard deviations is deferred to the later analysis of cross-sectional

averages.

Tables III and IV report posterior moments for the components of Bay State Gas’s

expected excess return under the Fama-French (FF) model and the Connor-Korajezyk (CK)
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model. In general, the observations made above for the CAPM apply to these three-factor
models as well. In particular, Bay State Gas’s & is 5.04% in the FF model and 7.08% in the
CK model, but, even with o, as large as 5%, the posterior means for a are only 0.85% and
1.90% in the two models. Also, the information about A contained in the longer histories
of the additional assets has a substantial effect on the estimated cost of equity. For both of
the three-factor models, the expected excess return for Bay State Gas based on the longer
1926-95 period is higher than that based on the shorter 1963-95 period by about 1.5%
for the FF model and 1.2% for the CK model. When mispricing uncertainty associated
with each model is modest, the estimates of expected excess return for Bay State Gas differ
substantially across the three models. The CAPM implies the lowest estimates, which often
lie below the estimates from the three-factor models by 2% or more. The FF estimates
exceed the CK estimates by more than 1% at the lowest values of o,, but, at 0, = 5% the
differences between those models are less than 50 basis points. In Section III, we analyze the
potential uncertainty about the cost of equity induced by such differenes across models, and
we compare that component of uncertainty to the component that arises from uncertainty

about the parameters within a given model.

B. Results for a Broad Cross-Section

For each stock on the NYSE and AMEX having at least 60 months of data continuing through
December 1995, we compute the same posterior moments reported for Bay State Gas in
Tables II-IV using the stock’s available monthly history back through July 1963. Each value
in Tables V--VII is the arithmetic average across those 1,994 stocks of the corresponding value
reported in Tables II-IV. As explained earlier, computing the posterior moments for each of
these stocks using the Metropolis-Hastings algorithm would be computationally prohibitive.
Instead, in constructing Tables V-VII we use the approximations to the first and second
posterior moments of b discussed in the previous section. The approximations appear to work
well. For example, when the values in Tables II-IV are recomputed using the approximations,

none of the posterior means and standard deviations change by more than 2 basis points.

Unless stated otherwise, our discussion in this subsection is confined to results obtained
using the longer 1926-95 period. The FF and CK models yield posterior means of y for the
typical (average) stock in the range of 11% to 12%, roughly 3% higher than the corresponding
mean under the CAPM. For the FF model, this difference relative to the CAPM is due largely
to the second and third factors, since the average posterior means of the market betas are

similar for the two models (1.01 versus 0.97). The average posterior means of the betas on
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SMB; and HML, are 0.68 and 0.32, which indicates that the average firm in the cross-
section is tilted toward smaller capitalization and higher book-to-market. When combined
with the posterior means for SM B, and HML,; of 3.6% and 5.3%, those betas account for
the bulk of the difference between the CAPM and FF expected excess returns for the average
stock. The difference between the CAPM and the CK model is more difficult to describe,

given that the factors are less easily identified.

The average posterior standard deviations in Tables V-VII reveal various aspects of
uncertainty about the cost of equity for a typical individual stock. An exact version of
a pricing model, where a = 0, implies an expected excess return equal to 3’'A, and that
quantity’s average posterior standard deviation is largely unaffected by the prior uncertainty
about a. The average posterior standard deviation of 3'X is about 2.8% for the CAPM
and 4.1% for the FF and CK models. These values reflect the uncertainty in both 3 and
A. For the typical stock, we see that uncertainty about 3 alone contributes substantially
to the overall uncertainty about the cost of equity for an individual stock. Specifically, the
average conditional standard deviation of 5'\ given A = X is about 1.3% for the CAPM,
2.5% for the FF model, and 2.2% for the CK model. On average, uncertainty about J3 is
less important than uncertainty about A, but not dramatically so: the average conditional
standard deviation of '\ given 4 = 3 is about 2.4% for the CAPM and 3.1% for the
FF and CK models. Note also from these conditional standard deviations that the higher
unconditional posterior standard deviations of 4’ in the three-factor models, as compared
to the CAPM, reflect additional uncertainty about both 5 and A.

In all three models, the posterior means of A\ are affected substantially by augmenting
the factor histories, which begin in July 1963, with the longer histories of additional series
that begin in 1926. These effects on posterior means indicate an important reliance on the
information in the longer histories of the additional variables, but the posterior standard
deviations of 3’ for the longer period are generally of about the same magnitude, or even
slightly larger, than the posterior standard deviations for the shorter period. This outcome
might seem puzzling, but the comparison of posterior standard deviations does not really
provide a sensible measure of the additional information provided by the longer histories. The
reason is that the longer histories can also provide additional information about uncertainty.
In particular, since the sample volatility of the long-history series is higher prior to 1963 than
after, the posterior beliefs about the factors’ variances center on higher values when based on
the overall period. This increase in posterior variance of the factors, ceteris paribus, raises
the posterior variance of A, the vector of factor means. In effect, more information can reveal

greater volatility, and thus greater uncertainty, than otherwise perceived. That effect then
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works in opposition to the more obvious one (also present): longer histories provide more

information about factor means and, ceteris paribus, lower their posterior variances.

When o, is very large, the posterior standard deviation of « is fairly close to the usual fre-
quentist standard error for the estimated regression intercept. In that case, not surprisingly,
the posterior uncertainty about o dominates the posterior uncertainty about the expected
excess return. At lower values of o, the posterior standard deviation of « is typically about
1/2 to 3/4 of 0,. For example, when o, = 5%, the posterior standard deviation of « is just
over 3% in all three models. The difference between the posterior standard deviation of
and the posterior standard deviation of 5’ arises due to uncertainty about «. In general,
for values of o, between 3% and 5%, it seems that uncertainty about « is of roughly similar
importance to uncertainty about § and A in explaining the overall posterior uncertainty

about a typical stock’s expected excess return.

Recall that, for each of the three models, the estimate of the expected excess return
for Bay State Gas is not very sensitive to the presence of economically plausible “pricing
uncertainty,” represented by o,. As the results in Tables II-IV demonstrate, for values of
0, up to 5%, the posterior mean of Bay State Gas’s & remains within 2% of its prior mean
of zero, even though the least-squares estimate &, based on over 21 years of data, ranges
between 5% and 8% for the three models. For the other 1,993 firms in our cross-section, the
degree to which the cost of equity is sensitive to o, cannot be discerned from the averages
reported in Tables V-VII. In order to explore this issue, we plot in Figures 1 through 3, for
the three pricing models, each stock’s posterior mean of i obtained with o, = 0 versus the
stock’s posterior mean of p obtained with a non-zero value of o,. The latter value of o, is,
in different plots, 3%, 5%, 10%, and infinity. A stock’s vertical deviation from a 45-degree
line is approximately ¢, the posterior mean of « for that stock, since the values plotted are
i) (horizontal axis) versus & -+ B\ (vertical axis), and 3 is virtually unaffected by o,. In
all three figures, the upper-left plot reveals that, across the 1,994 stocks in the cross-section,
the estimate of the expected excess return obtained with o, = 3% is generally quite close
to that obtained with o, = 0. The scatter of points becomes more disperse as the non-zero
value of ¢, increases, but not very quickly. Even for o, = 10%, the estimates of expected
excess return from all three models display a clear association with those obtained using an

exact pricing relation.

Note that the elements of b are assumed to be constant during the 7" periods for which the
stock’s historical returns are used in (3) and (7). In the empirical analysis reported above, we
take T to be the stock’s entire history, at least back through July 1963. Thus, we essentially
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use “long-run” betas and ignore potential fluctuations in individual-stock betas over time.
Several alternative approaches could be pursued. For example, 7' might be restricted to at
most 60 months, as is consistent with common practice. We have redone the calculations for
that case and find similar results, except that, not surprisingly, the estimate of the expected
excess return is affected even less by &. In other words, for any economically reasonable prior
uncertainty about mispricing, the estimate of the expected excess return is very close to the
estimate produced by zero prior uncertainty. Also, the uncertainty associated with b rises
somewhat for most stocks. Although we could have just as easily reported those results, we
find the longer-period results, especially those involving «, to be more interesting. Another
approach that might be a fruitful direction for research would be to reformulate the Bayesian
model to allow changes in b. In a frequentist setting, for example, Shanken (1990) specifies b
to be a linear function of observable state variables. Fama and French (1997) implement such

a procedure by letting an industry’s betas depend on its size and book-to-market ratio.!®

C. An Industry-Specific Approach: Utilities

For the 135 utilities having at least 60 months of data continuing through December 1995,
we compute the posterior moments in the same manner as above, except that the prior
is constructed using the cross-section of utilities instead of the all-stock cross-section (as
explained in Section 1.C.2). These two priors result in different estimated expected excess
returns for the 135 utilities. Figure 4 plots, for each model and for o, = 3% and ¢, = 5%, the
estimates of expected excess returns obtained with one prior versus those obtained with the
other. Although the plots exhibit strong positive associations, and the ranges of estimates
are similar for both priors, it is also clear that the differences between the two priors can

produce non-trivial differences in estimated costs of equity.

Compared to the averages for the broad cross-section, the average posterior means of
o for the utilities are smaller, ranging roughly from 5% to 8%. (In the interest of space,
we present only a brief summary of the results corresponding to those reported in Tables
V through VII.) As before, the CAPM estimates are on average the smallest, and the FF
estimates are the largest. The posterior standard deviations of y are also smaller than their
counterparts in the broad cross-section, by a factor of roughly two. This lower uncertainty
about the expected excess return for utilities is due both to lower average betas and to lower
posterior standard deviations of the betas. For example, the average posterior mean of the
CAPM betas for utilities is only about 0.57, which is less than the average of 1.01 for the

broad cross-section, and the average posterior standard deviation of the CAPM betas is only
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0.07, which is less than half the corresponding value of 0.16 for the broad cross-section.

The uncertainty about A is more important than the uncertainty about 3 and, not sur-
prisingly, this difference is more pronounced for utilities than for a typical stock from the
broad cross-section. Again with the CAPM as an example, the average conditional stan-
dard deviation of 3\ given A = A is about 0.57%, whereas the average conditional standard
deviation of 3\ given 8 = 3 is about 1.35%. The lower beta-related posterior uncertainty
for utilities also arises in small part from the utility-specific prior. Recall from Table I that
the prior standard deviations for the betas are lower for the utility-specific prior than for
the all-stock prior. As compared to the all-stock prior, those lower prior standard deviations
produce lower posterior standard deviations as well as greater shrinkage of the posterior
means of the betas toward their prior means. Both effects are modest, however. With the
CAPM, for example, the beta-related uncertainty averaged across the 135 utilities is 0.63%
based on the all-stock prior versus 0.57% based on the utility-specific prior. As reported
earlier, the all-stock prior mean for the CAPM beta is 1.12, the OLS estimate of Bay State
Gas’s CAPM beta is 0.42, and the posterior mean of its beta lies between 0.45 and 0.47
based on the all-stock prior (depending on o,). The posterior means for Bay State’s betas
based on the utility-specific prior are nearly identical, 0.44 to 0.47, although these values
represent a greater degree of shrinkage toward the prior mean of 0.64. Note that simply
using the latter utility-average beta in estimating Bay State Gas’s cost of equity places too
little weight on that stock’s sample beta. Of course, this result also depends on the relatively
long 253-month sample period used here for Bay State Gas. For shorter sample periods, the

shrinkage toward the industry average beta is stronger.

Figure 5 displays six plots corresponding to those displayed in Figures 1-3, where the
non-zero values of o, are set equal to 3% and 5% (results for o, equal to 10% and infinity
are not shown). That is, for all three models, each utility stock’s expected excess return
estimated with o, = 0 is plotted against its expected excess return estimated with o, = 3%
or 0, = 5%. As before, the plots exhibit clear positive associations. In Figure 5, the
deviations from a 45-degree line for a given o, are of roughly the same magnitude as those
in Figures 1-3. That is, the posterior means of « deviate from zero by similar amounts. This
result combines two offsetting effects: the absolute values of & tend to be somewhat lower
for utilities, but those & values receive relatively more weight in computing the posterior
means. The latter effect arises from the utility-specific prior, wherein the prior mean for o2
is lower than that for the all-stock prior—roughly 0.0045 versus 0.015 (using the values for
v and s3 in Table I and equation (14)). As implied by the approximation in (39) and (40),

a lower value for E(0?) results in greater weight placed on & relative to &. The individual

24



stock analyzed previously, Bay State Gas, belongs to the sample of utilities. Recall that its
& values across the three models are quite high—between 5% and 8% per annum. With the
utility-specific prior, the posterior mean of Bay State Gas’s o with o, = 5% ranges between
2.4% and 3.8%, as compared to the range of 0.7% to 1.9% obtained using the all-stock
prior (in Tables II-IV). Thus, when the decision maker’s prior incorporates the belief that
the stock of interest has a lower residual variancc than the typical stock, due to the firm’s
industry classification or other characteristics, then the historical average return is given

heavier weight in estimating that firm’s cost of equity.

III. Model Uncertainty

Recall from Tables II through IV that estimates of the expected excess return on the stock
of Bay State Gas differ by 2% or more across the three factor-based pricing models. In their
analysis of industries, Fama and French (1997) find that the CAPM produces estimated
industry costs of equity that can differ from those produced by the FF model by 2% or
more. Such differences across models create additional uncertainty about the cost of equity
for a decision maker who remains uncertain about which model to use. As a first step
in exploring the potential importance of differences across models in costs of equity for
individual firms, we simply plot the estimate of the expected excess return (posterior mean
of p) obtained using one model versus that obtained using another model. Figure 6 plots
the estimated expected excess returns from the CAPM versus those from the FF model for
the previously analyzed cross-section of 1,994 stocks and the all-stock prior. Figure 7 plots
the CAPM estimates versus the CK estimates, and Figure 8 plots the FF estimates versus
the CK estimates. Each figure contains four plots, produced with o, equal to 0, 5%, 10%,
and infinity. In general, the plots reveal positive correlation between expected excess returns
estimated using different models, although the degree of correlation depends on o, as well
as the pair of models being compared. The plots in Figure 7, for the CAPM versus the CK
model, exhibit the highest correlation, but even those plots exhibit more dispersion than
any of the top two plots in Figures 1 through 3. That is, the disagreement across models in
estimates of expected excess returns appears to be greater than the disagreement within a
given model produced by changing the degree of prior mispricing uncertainty (o4) from 0 to
5%. Also recall that, as o, increases, the estimated expected excess returns from all three
models generally move closer to the stock’s historical average excess return. As a result, the
closest agreement across models is observed for the plots in which o, = 00. The agreement

in those plots is not perfect, however, due largely to the fact that the sample period used to

25



estimate the factor premiums is longer than the period used to estimate the betas. Thus, the
estimated expected excess return still differs from the historical average, and that difference

varies across the pricing models.

The disagreements among models can be quantified further by associating a probability
with each model and then computing the variance of a given stock’s p associated with
model uncertainty. (Part B of the Appendix provides a more formal treatment.) For each
model, the prior and posterior distributions of the parameters in the model are conditioned
on that model’s being the appropriate one. If there are Q models under consideration,
g =1,...,Q, let iy denote the posterior mean of y obtained under model ¢, and let 7,
denote the decision maker’s posterior probability associated with model ¢q. Then, taking the
unconditional posterior mean across models, the decision maker ultimately estimates the

expected excess return to be
Q
B= D Tyl (41)
g=1

Combining estimates across models occurs in practice. For example, the New York State
Public Service Commission has endorsed the use of equal weights across three different
models to estimate the cost of equity for public utilities under its supervision. The three
models used by the Commission are the CAPM (more precisely, an average of four CAPM-
based estimates) and two non-factor-based models—the “Discounted Cash Flows” model
and the “Comparable Earnings” model. The commission has also considered the inclusion

of multifactor models in estimating costs of equity for public utilities (DiValentino (1994)).

Let @, denote the posterior variance of u obtained under model g. When estimating
the expected excess return, the decision maker is left with overall uncertainty given by the

unconditional posterior variance across models:
Q Q ,
v =D Talug + D malfig — 1) (42)

The first term on the right-hand side of (42), the expected value across models of the posterior
variance of yu, is essentially the average within-model uncertainty about the expected excess
return. This component of the overall uncertainty is analyzed in the previous section. The
second term on the right-hand side of (42), the variance across models of the posterior mean
of p, can be termed “model” uncertainty, or the component of the overall posterior variance

of u attributable to uncertainty about which model to use.

Calculation of posterior model probabilities (7,’s) is beyond the intended scope of this

study. As noted at the outset, we focus more on issues related to using various factor-based
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models for cost-of-equity estimation rather than on issues related to testing such models or
evaluating their relative merits. In order to illustrate the calculation of model uncertainty,
we consider various sets of candidate models and, for each set, the 7,’s are made equal across
models. When only two models are entertained, model uncertainty is bounded above by the
value we report with equal 7,’s. With three models, the greatest of those bounds for the
three possible two-model combinations is the upper bound on model uncertainty for the
three-model combination. Although assigning equal probabilities across the three models
generally results in a value somewhat less than that upper bound, that simple specification
still provides a fairly generous assessment of model uncertainty that is useful in revealing
its potential importance relative to the within-model parameter uncertainty discussed pre-

viously.

We analyze the effects of model uncertainty using a range of values for o,, the prior
within-model mispricing uncertainty, but each value of o, is held constant across models in
order to limit the analysis to a manageable number of cases. Many more cases are possible,
of course, since a decision maker’s prior uncertainty about « can differ across models. When
0, is (nearly) zero, so that the decision maker essentially believes a priori that a given model
prices stocks without error, it seems unreasonable that the same decision maker would still
assign non-zero probabilities to other models. Although a decision maker might know that
one of the models is exactly correct—just not which one—such a scenario seems unlikely. In
general, uncertainty about which model to use would be accompanied by uncertainty about
whether any one model prices all stocks accurately. Since estimates of expected excess return
tend to differ less across models as o, increases, as can be seen in Figures 6-8, the values of
model uncertainty obtained with equal model probabilities but o, = 0 in each model will, for

most stocks, tend to overstate the model uncertainty that would be encountered in practice.

Table VIII reports the model uncertainty about p as well as the amount of overall uncer-
tainty, which includes the within-model parameter uncertainty. Calculations are reported for
the various two-model subsets as well as for the set of all three models. The results are based
on the longer 1926-95 period and are computed for the same alternative values of o, used
in Section II. All values are reported as annualized percentage standard deviations. Also
shown, for comparison, are (square roots of) the expected values across the three models
of the posterior variances of u, , and 3’A. Panel A of Table VIII displays results for Bay
State Gas, the individual stock examined previously. Recall from Tables II through IV that,
when o, = 0, the estimate for the expected excess return on Bay State’s equity is lowest for
the CAPM (3.77%) and highest for the FF model (6.94%). The model uncertainty for that

pairing of models is 1.58% (annualized standard deviation), which is the highest value among
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those for the two-model sets in Panel A of Table VIII. The model uncertainty associated
with the three-model set is 1.29%, which is less than the average within-model uncertainty of
1.51%. As o, grows large, within-model uncertainty increases, since it includes uncertainty
about ¢, and model uncertainty typically declines (although the latter effect is somewhat
non-monotonic for Bay State). Thus, in terms of contributions to the overall uncertainty
about Bay State’s cost of equity, uncertainty about the values of the parameters within a

given model is greater than uncertainty about which model to use.

Panel B of Table VIII reports the averages across the 1,994 stocks of each value in Panel
A. For the typical stock, both model uncertainty and overall uncertainty are higher than
for Bay State Gas, a utility. Otherwise, the conclusions are similar. In particular, even
with o, = 0, the average model uncertainty is less than the average within-model parameter
uncertainty: 2.26% versus 3.71%. The average overall uncertainty about p in that case is
4.40%, only 0.69% higher than the average within-model uncertainty. As o, grows large, the
average model uncertainty decreases and the average within-model uncertainty increases. In
general, although model uncertainty is substantial, it appears to be less than the within-
model parameter uncertainty in estimating costs of equity for individual firms using the

factor-based models entertained here.

We conduct a similar analysis for the utilities industry. Figure 9 displays the plots
corresponding to those in Figures 6-8 for o, set to 3% and 5%, the plots corresponding
to those in Figures 6-8. That is, each utility’s expected excess returns estimated using
two different models are plotted against each other, where the utility-specific prior is used
instead of the all-stock prior. The associations between the estimates obtained from different
models appear to be stronger than those observed in Figures 6-8 for the whole cross-section
of stocks. All three models typically produce rather similar estimates, and the fit between
the estimates from the CAPM and the three-factor CK model is especially close. Note that,
contrary to the observation for the whole cross-section, the cross-model plots in Figure 9
are less disperse than the within-model plots in Figure 5. In other words, the disagreements
across models in utilities’ estimated expected excess returns appear to be smaller than the
disagreements within a given model produced by changing the degree of prior mispricing

uncertainty (o,) from 0 to 5%.

Table IX is the equivalent of Table VIII, except that it is constructed for the utilities
industry and based on the utility-specific prior. The results for Bay State Gas in Panel
A are quite similar to those obtained with the all-stock prior. In Panel B, which reports

averages across the 135 utility stocks, both model uncertainty and overall uncertainty about
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the expected excess return are smaller for utilities than for the whole cross-section. In
particular, even with o, = 0, the model uncertainty for the pairing of CAPM and CK
is only 0.74%, which is consistent with the close correspondence between the estimates of
expected excess returns from those models displayed in Figure 9. Despite some differences in
magnitude, the relative proportions of model uncertainty and overall uncertainty are similar
to those observed in Table VIII. Thus, in the utilities industry, uncertainty about which
model to use again appears to be less important than uncertainty about the parameters

within a given model.

IV. Conclusions

Costs of equity capital implied by factor-based pricing models can be estimated in a Bayesian
setting. After using the available data, a decision maker possesses uncertainty about a firm’s
cost of equity that is characterized by the posterior standard deviation of p, the expected
excess return on the firm’s stock. The posterior standard deviation of p is typically at least
3% per year in a one-factor model and 4% per year in a three-factor model, even if the
possibility that the model might misprice the stock is ruled out a priori. For utilities, this
standard deviation is smaller but generally at least 2% per year. Uncertainty about a pricing
model’s potential mispricing of the stock («) increases the uncertainty about u, but the pos-
terior mean of py—the decision maker’s estimate of the expected excess return—is generally
not affected greatly by uncertainty about a. When a decision maker is uncertain about
which factor-based model to use, the estimate of the stock’s expected excess return is then a
weighted average of estimates from different models. The model uncertainty associated with
that estimate is nontrivial, typically adding another 0.7% to the overall posterior standard
deviation of i, but the model uncertainty on average is less than the within-model parameter

uncertainty.

The framework introduced here allows a decision maker to adjust a stock’s estimated
expected excess return away from the value implied by a pricing model and toward the
historical average excess return on the firm’s stock (since the posterior mean of « is adjusted
away from zero and toward the OLS intercept &). That is, instead of either taking the strict
implication of a pricing model or completely abandoning the model in favor of the simpler
historical average return, the decision maker can combine those estimates. The weight on
the historical average essentially depends, for a given sample length, on the decision maker’s

prior uncertainty about the model’s mispricing (o,) and his prior expectation of the stock’s
p g p
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residual variance (E(c?)). If the stock is a priori judged likely to possess average residual
variance, and if the prior mispricing uncertainty is, say, less than 5% per annum, then the
weight on the stock’s historical average return is low. In such a case, even if the mispricing
uncertainty seems substantial in economic terms, the traditional use of the pricing model—
taking its exact implication as the cost-of-equity estimate—generally yields a reasonably
close approximation to the posterior mean. Of course, that simpler estimate does differ

somewhat from the posterior mean, and the latter can be computed using our methodology.

There are scenarios in which even those who favor simpler methods might be advised
to estimate the cost of equity using our Bayesian approach. Adjusting the cost-of-equity
estimate toward the stock’s historical average return becomes more important when one
believes a priori that the stock’s residual variance is lower than that of the typical stock.
The weight on the historical average return is generally decreasing in E(o?). Therefore, when
the stock’s characteristics lead one to assign a lower prior mean for o2, the cost-of-equity
estimate should place less weight on the traditional pricing-model estimate and more weight
on the average return. Such a scenario is illustrated in this study for the case of utility
stocks. In such a scenario, if it happens that the historical average return for the stock of
interest is far from the pricing model’s prediction, and if the sample generating that estimate
is fairly long, then the information contained in the stock’s historical average excess return
should probably be incorporated, even for modest values of ¢,. Our framework provides a

method for doing so.

As noted at the outset, the Bayesian approach provides a coherent framework for per-
mitting a decision maker’s judgment, expressed as prior beliefs, to enter the cost-of-equity
estimation. A key feature of those prior beliefs explored in this study is the degree of mis-
pricing uncertainty (o,). We set the prior mean of the pricing error (&) equal to zero, but
that specification could be relaxed, as discussed previously (Section I). In particular, the
prior mean for the pricing error could depend on one or more characteristics of the firm.
The posterior mean for « is then adjusted away from that non-zero prior mean and toward
@, and the degree of that adjustment would depend on the prior parameters o, and E(o?)

in essentially the same manner as discussed previously.

Given the imprecision associated with estimates of factor premiums, found here and in
previous studies, it seems essential that those quantities be estimated using as much informa-
tion as possible. Our methodology allows that information to include series whose histories
are longer than those of the factors—over twice as long in this study. We find that the

additional information in those series produces posterior means for the factors, and thus for
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1, that differ substantially from those based on the factor histories alone. We also find that,
even after incorporating the additional information in series beginning in 1926, uncertainty
about factor premiums still makes the largest contribution to overall uncertainty about the
expected excess return (in the absence of uncertainty about «), although uncertainty about
betas is nearly as important for the typical individual stock. The priors for the factor pre-
miums are specified in this study as diffuse (non-informative). One might instead be able
to construct reasonable informative prior beliefs about one or more of the factor premiums,
and the posterior uncertainty about a stock’s expected excess return would then no doubt
be less than we report. Alternatively, introducing additional historical data, possibly within
a different stochastic setting, might also prove helpful. In general, the uncertainty about

factor premiums present in cost-of-equity estimation offers payoffs to future research.
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Appendix

A. Posterior Moments of Factor Premiums

This section extends results in Stambaugh (1997) and derives the posterior mean and
variance-covariance matrix of A in (31) and (32) when the likelihood function is given by (8)
and the prior is given by (17). Recall that A contains the first K elements of . Let ® denote
the data set consisting of F®) and Y )| the sample information about the moments of f.

Define the population counterparts to the quantities in (29) and (30),

Hy = GGy, (A1)
hy = A— Hyby, (A.2)

and
S = Gy — HyG (A.3)

where (11, G12, and Gy, are the submatrices of (G in (4) that correspond to the partitioning
of f' = [f{ wl], and let

hy
ne 5] s

It is shown in Stambaugh (1997) that

p(H, %, 0, G22|®) = p(H, X[D)p(02, G22|P), (A.5)
where
p(H,T|®) « ||~ 7= exp {—%n« (SE+ (H — AyZ'2(H - 0)) 2—1} . (A6)
and

L-K+Kj+1 1 A N -, _ _
(03, Ca|®) o |G| =7 exp {—éL tr (G + (02 — 0,)(6 — ,)') GQ;} (A7)

From (A.7), the conditional posterior of 0, given Gy is
1 . .
P(05] Gz, @) ox |G| ~F excp {—§L(92 —0,) G (02 — 92)} , (A.8)
which is a multivariate normal density with

E(0|Gan, ®) = E(62]®) = 0 (A.9)
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and .
COV(@Q, 0:’_)'6’22, (I)) = Z‘GQQ. (AlO)

From (A.7) and (A.8), the marginal posterior density of G; is
L-K+K 1 N
P(Cnl®) o |Gl 5 exp { =L tr (GG (A11)
which is an inverted Wishart density with

E(Gxn|®) = Gao, (A.12)

where (A.12) follows from properties of the inverted Wishart distribution. (See, for example,
Anderson (1984), pp. 268-270.) Therefore, since the conditional mean in (A.9) does not
involve (G52, the unconditional posterior covariance matrix of 65 is the expectation of (A.10),
which, using (A.12), is

1

Cov (0, 04| ®) = 7—— - 26;22. (A.13)
Next rewrite equation (A.2) as
A= De, (A.14)
where
D =1Ix®|1 6], (A.15)
¢ =vec{H}, (A.16)

and “vec{H}” denotes the K x (K, + 1) column vector formed by stacking the successive
columns of H. Similarly, define
¢ = vec{H}. (A.17)

From (A.6) and the analysis of the multivariate regression model in Zellner (1971, p. 227),

the conditional posterior density of ¢ given ¥ can be written as

Ki+1 1
(AT, ) o [T~ 75 exp {—§(c YT ® 2 D) (e — a)} 7 (A.18)

which is a multivariate normal density with
E(c|X,®) =¢ (A.19)
and

Cov(c,d |, ®) = Cov(c,d|®) = ® (Z'2)L. (A.20)
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Because ¢ and 6, are independent (cf. (A.5)), it follows immediately from (A.9) and (A.14)
through (A.17) that
E(\|62, ®) = hy + H,0,, (A.21)

and the unconditional posterior mean of A, X, is given by (31).

From (A.6) and (A.18), and again relying on the analysis in Zellner (1971), p. 227, the

marginal posterior density of ¥ is given by
1 N
p(5|®) o |2|—¥exp{—§s-tr(zz—l)}, (A.22)

and, using the same property of the inverted Wishart distribution as in (A.12), the uncon-

ditional posterior mean of ¥ is

S .

Given (A.19), the unconditional posterior covariance matrix of ¢ is the expectation of the

conditional covariance matrix in (A.20), which, using (A.23), is equal to

S

COV(C, Cl|(I)) = S—_I('—_QS ® (Z/Z)_l. (1&24)
Combining (A.14) and (A.24) gives
S .
Y ! — IZ -1 !
Cov(\, X|6q, @) TRk 3 2D(Z ®(Z'Z)")D
_ _ 5 (newo]| ) (A.25)
T OS-K-2 2 02 ’ '

and taking the unconditional expectation of (A.25), using (A.9) and (A.12), gives

E (Cov(A, X|6y, @)|®) =

(s=x=)" (W)_l

Also, from (A.21) and (A.13),

1 é, 3
; N A.26
by (=tr=s) G + 00 D (A.26)

Cov (E(A|fz, ®), E(N|0,®)|®) = Cov (Ha0,6,Hj|®)
= HyCov(0y, 05|®)H,
= HyGon H,. (A.27)

By the variance decomposition rule, the sum of the matrices in (A.26) and (A.27) gives W,

the unconditional variance-covariance matrix of A, and that result is displayed in (32).
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B. Model Uncertainty: Details

We briefly summarize here the framework underlying equations (41) and (42). Interested
readers may also consult Kass and Raftery (1995) and Poirier (1995), Chapter 10, for related
discussions. Let m denote a random discrete quantity that takes values ¢ = 1,...,(Q) and
serves as an index for the ) models under consideration. Let r, = p(m = q) denote the prior
probability for model ¢, and let 3, denote the vector of parameters in model ¢q. Let D denote
the observed data, which in our case consist of the stock’s return history, the histories of the
factors (six in total, across the three models) and the three additional longer-history series

used to augment the factor histories in each model.
The posterior model probability 7, = p(m = ¢|D) is, from Bayes’s theorem, given by

x,p(Dlm = q)

Ty = — (A.28)
! E?:l Ejp(Dlm =J)
and the marginal density of the data under model j (j = 1,...,Q) is given by
p(Dlm = j) = [ p(DIojm = Hp(eslm = 5)ds;, (A.29)

where p(d;|m = j) and p(D|d;,m = j) are the prior parameter density and the likelihood

function for model j, respectively.

If the prior parameter density for one or more of the models is improper, then obtaining 7,
can be problematic, since undefined constants appear in the numerator and/or denominator
of (A.28). In our setting, even though the prior density for # and ¢ in (17) is improper,
model probabilities can still be defined, because that improper prior density can be made
identical across the three models. In our setting, the parameter vector for model ¢ can be
partitioned as d; = [J41) O(2)], Where 041y contains the elements of b and o and d(») contains
the elements of § and G. The elements of d,(;) differ in number and identity across models,

but d(2) can be made identical across models (as discussed below). In that case, from (16),

p(dg|m = q) = p(Ogmylm = @)p(d2)), g¢=1,...,0Q. (A.30)

Therefore, even though p(d(2)) is defined only up to an undetermined constant, that constant
appears in both the numerator and denominator of (A.28), and thus the ratio can be defined.
As discussed by Kass and Raftery (1995), this treatment of ratios of improper priors for
parameters that are common across models is due to Jeffreys (1961) and has been widely

adopted.
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The above statement that J(2) can be made identical across models requires some clarifi-
cation. As f and G are defined in Section I, they contain different elements across models.
Recall that they are the mean and covariance matrix of the vector of augmented factors,
& = [f! vi], where f; is an observation of the K factors for the given model and y; is an
observation of the three long-history series. Although y; is the same across all three models,
the factors differ across models. If, however, f* is instead defined as a larger vector contain-
ing 1, and the union of all six factors across the three models, and  and G is defined as the
mean and covariance matrix of that larger vector, all of the posterior moments reported are
essentially unchanged. Specifically, 7, and H in (31) and (32) are redefined as submatrices
of larger arrays, but their values are unchanged. As a result, equation (31), which gives the
posterior mean of A, is unaffected. In equation (32), which gives the posterior covariance
matrix of A, the value of K changes to 6 (from either 1 or 3), but both S and L are large
enough (390 and 840) such that any resulting changes in the reported standard deviations
are trivial. Initially defining € and G in the above fashion would complicate the presentation
of the methodology, so, given that the choice of definitions is essentially irrelevant to the

empirical results, we adopt the simpler definition in Section I.

In Section II, we report and analyze the first and second moments of p(u|D,m = q), the
marginal posterior density of u for model ¢, where i is a function of 9,. With well-defined
posterior model probabilities, the conditioning on model ¢ is removed by computing the

overall (unconditional) density

Q
p(uD) = 3 map(ulD,m = g), (A.31)
g=1
and the first and second moments of this density are given by (41) and (42). (See Leamer
(1978), pp. 117-118.)

In the model uncertainty calculations presented in Tables VIII and IX we simply set the
posterior model probabilities to be equal across models. Computing those probabilities using
(A.28) is beyond the scope of this study. Moreover, if the set of prior model probabilities
(m,’s) is the same for each stock, then the posterior probabilities would differ across stocks.
Rather than take that course, we instead specify equal posterior probabilities in order to
simplify the analysis and, as discussed previously, obtain what is likely to be a generous
assessment of model uncertainty. (Of course, assuming the same posterior model probabil-
ities across stocks implies that the prior probabilities would differ across stocks.) Explicit
posterior model probabilities would probably be more interesting in a multi-asset setting,

and such an extension is a possible direction for future research.
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Table I
Parameters Used in the Priors

In Panel A, for each stock with at least 24 months of data in the period 7/1963-12/1995, b is the
ordinary-least-squares estimate of b defined by the regression

Tt = [1 ftl]b+€t7

where 7; is the excess return on the stock and f; is a vector of factors. The sample variance of the residuals
from that regression is 62, an estimate of o2, the variance of ¢;. In Panel B, b and 62 are obtained for
every utility stock with at least 48 months of data in the above period. The prior mean of b, b, is computed
as the cross-sectional average of the E)’s, except that its first element, the mean of «, is set to zero. The
prior standard deviations and correlations are obtained from Vb, which is computed as the cross-sectional
covariance matrix of the b’s minus the cross-sectional average of the time-series sampling variances of the
b’s. The prior covariance matrix of b, V3, is computed from Vi by varying the prior standard deviation of o
(04) between zero and infinity while preserving the correlation structure of V4. In Panel B, the off-diagonal
elements of V}, are set equal to zero in order to have that matrix be positive definite. The prior mean of
02 is computed as the cross-sectional average of the 62’s, and the prior variance of o2 is computed as the
difference between the cross-sectional variance of the 62’s and the cross-sectional average of the time-series
sampling variances of the 6%’s. Given the prior mean and variance of o2, properties of the inverted gamma
density imply the values of v and s2, which are the two parameters used to define the prior density of .

Prior parameters
Prior moments of b(= [a 3]") for o
Model Mean Std. dev. Correlations v 52

o

Panel A. All Stocks

CAPM 0 0-o0 1 0.26 5 0.0097
1.122 0.424 1
3-factor FF 0 0—o00 1 -0.15 -0.28 -0.55 5 0.0086
1.006 0.384 1 0.26 0.20
0.967 0.860 1 0.45
0.382 0.654 1
3-factor CK 0 0—o00 1 -0.19 -0.24 0.08 5 0.0084
1.051 0.563 1 0.00 -0.42
0.017 0.750 1 -0.12
0.056 0.424 1
Panel B. Utilities
CAPM 0 0-o0 1 0 6 0.0030
0.641 0.228 1
3-factor FF 0 0—oc 1 0 0 0 6 0.0028
0.735 0.176 1 0 0
-0.001 0.326 1 0
0.420 0.213 1
3-factor CK 0 0—o0 1 0 0 0 6 0.0029
0.493 0.293 1 0 0
-0.091 0.019 1 0
0.420 0.213 1
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Table 11

Posterior Means and Standard Deviations for the Components of Bay State Gas’s
Expected Excess Return from the CAPM

The expected excess return on the stock, u, is given by p = a + A, where X is the expected excess
market return, and o and 3 are parameters in the regression of the stock’s monthly excess return on the
excess market return:

re =0+ Brae + €.

The moments for the parameters of the regression model, reported in Panel A, are based on monthly excess
returns for the period 12/1974-12/1995 (253 months). The ordinary least-squares estimates are & = 7.92%
(annualized) and B = 0.42. The moments for the quantities involving A, reported in Panel B, are based on
monthly excess returns for the periods indicated and, for the longer period, use the additional information
in the history of returns on the value-weighted and equally weighted NYSE portfolios and the Ibbotson
small-stock portfolio. Also reported for each period is ot = &+ BA, which is the posterior mean of y obtained
with diffuse priors on all parameters, where A denotes the posterior mean of A. Except for the moments of
3, all posterior means and standard deviations are reported as annualized percentage values.

Prior Standard Deviation of « (04)
0 1% 3% 5% 10%  30% o0

Panel A. Regression parameters

Means
o 000 -0.10 011 073 277 626 7.66
J5] 047 047 047 047 046 045 045
Standard deviations
o 000 038 110 172 273 372 3.9
J6] 0.07 0.07 0.07 0.07 0.07 0.07 0.07

Panel B. Components involving the expected market return
1/1926-12/1995; i = 11.30, X = 8.05

Means
Iy 3.77 368 389 451 651 990 11.25
G\ 3.97 378 379 378 374 365 3.60
Standard Deviations
" 1.25 1.32 167 211 296 3.83 4.02
BA 1.25 126 126 1.25 1.24 1.22 1.21
BA A= by 058 058 0.58 058 058 059 0.59
BX|B = B 1.10 1.10 110 1.10 1.09 1.06 1.04
7/1963-12/1995; 1 = 10.24, A =5.52
Means
7 259 249 270 333 534 876 10.12
O 259 259 260 259 256 250 247
Standard Deviations
7 1.31 1.37 171 215 300 3.87 4.07
BA 1.31 1.31 1.32 1.31 1.30 1.27 1.26
B A= by 040 040 040 040 040 040 040
B8 = 8 1.24 124 124 1.24 122 119 1.18
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Table 111

Posterior Means and Standard Deviations for the Components of Bay State Gas’s
Expected Excess Return from the Three-Factor Fama-French Model

The expected excess return on the stock, y, is given by 4 = o + F’A, where A is the vector of expected
values of the three Fama-French factors (rps:, SM By, and HML,), and o and 3 = [1 82 3]" are parameters
in the regression of the stock’s monthly excess return on the factors:

re =oa+ Birars + BoSMBy 4+ BsHM Ly + €.

The moments for the parameters of the regression model, reported in Panel A, are based on monthly data for
the period 12/1974-12/1995 (253 months). The ordinary least-squares estimates are & = 5.04% (annualized)
and ,8 = [0.50 0.08 0.40]". The moments for the quantities involving A, reported in Panel B, are based on
monthly data for the periods indicated and, for the longer period, use the additional information in the
history of returns on the value-weighted and equally weighted NYSE portfolios and the Ibbotson small-stock
portfolio. Also reported for each period is gt = & + ﬁ’/\, which is the posterior mean of p obtained with
diffuse priors on all parameters, where A denotes the posterior mean of A. Except for the moments of 3, all
posterior means and standard deviations are reported as annualized percentage values.

Prior Standard Deviation of a (04)
0 1% 3% 5% 10% 30% 00

Panel A. Regression parameters

Means
o' 0.00 0.05 0.35 0.85 2.25 447 4.97
51 0.54 053 053 0.53 0.52 0.52 0.52
Ba 0.10 0.10 0.10 0.10 0.09 0.09 0.09
33 043 042 0.42 0.41 040 0.39 0.39

Standard deviations

o 000 034 099 157 262 374 398
51 0.08 008 008 0.08 008 008 0.08
B2 0.12 012 0.12 0.12 012 012 0.12
33 013 013 013 013 013 013 0.13

Panel B. Components involving the expected factors
1/1926-12/1995; i = 11.48, A = [8.05 3.63 5.32)

Means
7 6.94 697 723 766 894 11.02 11.34
8’ 694 692 687 6.82 669 655 6.56
Standard Deviations
7 1.74 175 190 218 2.88 380 4.04
B’ 1.74 174 174 174 174 1.72 1.72

BA|N= :} 1.09 109 110 111 112 113 1.12
gX|p=p 133 132 132 131 129 1.27 1.27

7/1963-12/1995; ji = 10.06, A = [5.52 3.01 5.05)

Means
7 5.41 5.44  5.71 6.15 7.44  9.35 10.07
G’ 5.41 5.39 5.35 5.30 520 5.08 5.10

Standard Deviations
I 1.69 169 18 216 288 3.83 4.07
5P 1.69 1.69 1.69 1.68 168 1.66 1.66

AAIA=X 091 091 092 093 094 094 094
A=/ 138 138 137 137 135 132 1.32
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Table IV

Posterior Means and Standard Deviations for the Components of Bay State Gas’s
Expected Excess Return from the Three-Factor Connor-Korajczyk Model

The expected excess return on the stock, u, is given by p = a + '), where ) is the vector of expected
values of the three Connor-Korajezyk factors (Fy .+, Fo ., and F3,), and « and 3 = [ 32 8s]’ are parameters
in the regression of the stock’s monthly excess return on the factors:

re=a+ BiF,+ BoFos + BaFy + g

The moments for the parameters of the regression model, reported in Panel A, are based on monthly data for
the period 12/1974-12/1995 (253 months). The ordinary least-squares estimates are & = 7.08% (annualized)
and 3 = [0.35 — 0.04 0.18]. The moments for the quantities involving A, reported in Panel B, are based
on monthly data for the periods indicated and, for the longer period, use the additional information in the
history of returns on the value-weighted and equally weighted NYSE portfolios and the Ibbotson small-stock
portfolio. Also reported for each period is it = & + B’ A, which is the posterior mean of p obtained with
diffuse priors on all parameters, where A denotes the posterior mean of A. Except for the moments of 3, all
posterior means and standard deviations are reported as annualized percentage values.

Prior Standard Deviation of a (o,)
0 1% 3% 5% 10%  30% oC

Panel A. Regression parameters

Means
T 000 0.19 092 1.90 4.12 6.61 6.93
51 039 039 038 038 037 0.36 0.36
Go -0.06 -0.06 -0.06 -0.05 -0.05 -0.05 -0.04
B3 0.18 0.18 0.18 0.18 0.18 0.18 0.18

Standard deviations

a 0.00 040 116 180 283 3.77 3.96
Ji! 0.0r 007 007 007 0.07 007 0.07
B2 0.06 006 006 0.06 0.06 0.06 0.06
B3 0.06 006 006 006 0.06 0.06 0.06

Panel B. Components involving the expected factors
1/1926-12/1995; j = 12.04, X = [10.85 — 2.22 5.94]

Means
“ 542 560 6.29 722 934 11.73 12.04
) 542 541 537 532 522 512 5.11
Standard Deviations
7 1.51 156 1.8 227 3.07 3.88 4.05
e 1.51 1.51 1.51 1.50 1.48 1.46 1.46

X |x= 5: 0.83 083 083 0383 0.84 084 0.85
BXNB=p5 1.23 122 121 120 1.18 1.15 1.15

7/1965-12/1995; j = 10.90, X = [7.65 — 3.17 5.66]'

Means
7 4.18 4.36 5.06 6.01 8.15 10.56 10.87
B’ 4.18 417 414 4.11 4.03 3.95 3.94

Standard Deviations
7 1.51 1.55 1.86 228 3.09 391 4.08
8’2 1.51 1.50 1.50 1.49 1.47 145 1.45

BN = :} 066 066 066 066 066 0.67 0.67
gX|B=p 131 131 130 129 127 1.24 1.24
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Table V

Averages Across Stocks of Posterior Means and Standard Deviations for
Components of Expected Excess Returns from the CAPM

Posterior means and standard deviations for components of expected excess return are computed for
each of the 1,994 stocks that have data through December 1995 and have at least 60 months of historical
returns, and the cross-sectional averages of those values across all stocks are reported below. The expected
excess return on a stock, pu, is given by u = a + 8A, where X is the expected excess market return, and «
and ( are parameters in the regression of the stock’s monthly excess return on the excess market return:

e =+ Bra + €.

The moments for the parameters of the regression model, reported in Panel A, are based on each stock’s
available history of monthly returns, back through July 1963. The moments for the quantities involving A,
reported in Panel B, are based on monthly excess returns for the periods indicated and, for the longer period,
use the additional information in the history of returns on the value-weighted and equally weighted NYSE
portfolios and the Ibbotson small-stock portfolio. Also reported for each period is A, the posterior mean of
A. Except for the moments of 3, all posterior means and standard deviations are reported as annualized
percentage values.

Prior Standard Deviation of a (04)
0 1% 3% 3% 10%  30% 00

Panel A. Regression parameters

Means
o 0.00 000 011 029 0.71 1.24 1.51
Is) 1.01 1.01 1.01 1.01 1.01 1.01 1.01
Standard deviations
« 000 072 209 330 548 832 930
3 016 0.16 0.16 0.16 0.16 0.16 0.16

Panel B. Components involving the expected market return
1/1926-12/1995; X = 8.05
Means

i 8.11 812 822 840 883 9.35 9.60

G 8.11 812 812 812 811 810 8.09
Standard Deviations

I 2.78 293 360 4.45 6.23 876 9.61

BA 2.78 278 278 278 297 2797 277

BA A=A 128 128 128 127 127 127 1.28

BA|B =7 2.36 236 236 236 236 235 235

7/1963-12/1995; A = 5.52
Means

7 5.57 557 567 586 628 680 7.06

G 5.57 5.57 B5ET 537 557 556  5.55
Standard Deviations

I 2.87 3.01 367 450 629 884 9.72

GA 2.87 287 287 287 287 286 2.87

BN A= 5: 0.88 088 088 087 087 087 0.88
BA|B=0 266 266 266 266 266 265 2.65
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Table VI

Averages Across Stocks of Posterior Means and Standard Deviations for Components
of Expected Excess Returns from the Three-Factor Fama-French Model

Posterior means and standard deviations for components of expected excess return are computed for
each of the 1,994 stocks that have data through December 1995 and have at least 60 months of historical
returns, and the cross-sectional averages of those values across all stocks are reported below. The expected
excess return on a stock, u, is given by u = a + ')A, where A is the vector of expected values of the three
Fama-French factors (rast, SMB;, and HML,), and o and 8 = [3) B2 f3]’ are parameters in the regression
of the stock’s monthly excess return on the factors:

re =0+ brye + BoSMBy+ BsHML; + €.

The moments for the parameters of the regression model, reported in Panel A, are based on each stock’s
available history of monthly returns, back through July 1963. The moments for the quantities involving A,
reported in Panel B, are based on monthly data for the periods indicated and, for the longer period, use the
additional information in the history of returns on the value-weighted and equally weighted NYSE portfolios
and the Ibbotson small-stock portfolio. Also reported for each period is A, the posterior mean of A\. Except
for the moments of 3, all posterior means and standard deviations are reported as annualized percentage
values.

Prior Standard Deviation of a (0q)
0 1% 3% 5%  10%  30% 00

Panel A. Regression parameters

Means
« 0.00 0.03 009 0.16 029 042 0.35
01 097 097 097 097 097 097 0.97
B9 068 068 068 068 068 068 0.68
O3 0.32 0.32 0.31 0.31 0.31 0.31 0.32

Standard deviations

o 000 066 193 3.09 527 820 9.05
Ie3) 0.16 0.16 0.16 0.16 016 0.16 0.16
B2 026 026 026 026 026 026 0.26
B33 026 027 027 027 027 026 025

Panel B. Components involving the expected factors
1/1926-12/1995; X = [8.05 3.63 5.32'

Means
I 11.97 11.99 12.05 12.11 1223 1236 12.31
B'A 11.97 1196 11.96 11.95 1194 11.94 11.96

Standard Deviations
7 408 402 419 465 6.04 859 9.62
G’ 408 408 4.09 4.09 409 406 4.01
BA|A=A 245 246 247 248 248 243 2.37

Ax|B=5 305 305 305 305 305 305 305
7/1963-12/1995; X = [5.52 3.01 5.05)

Means
7 9.00 9.03 9.09 915 927 940 9.35
B'A 9.00 9.00 899 899 898 898 9.00
Standard Deviations
I 3.94 389 410 459 6.05 864 9.65
B 394 394 395 395 395 391 3.88

G'A A= A 205 206 207 207 207 203 197
A8 = 3.17 317 317 317 317 317  3.16

o
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Table VII

Averages Across Stocks of Posterior Means and Standard Deviations for Components
of Expected Excess Returns from the Three-Factor Connor-Korajczyk Model

Posterior means and standard deviations for components of expected excess return are computed for
each of the 1,994 stocks that have data through December 1995 and have at least 60 months of historical
returns, and the cross-sectional averages of those values across all stocks are reported below. The expected
excess return on a stock, p, is given by u = o + '\, where X is the vector of expected values of the three
Connor-Korajezyk factors (F1 ¢, Fay, and F3,), and o and 8 = [ B2 B3]’ are parameters in the regression
of the stock’s monthly excess return on the factors:

re=oa+ b+ Bako + B3Fs + €.

The moments for the parameters of the regression model, reported in Panel A, are based on each stock’s
available history of monthly returns, back through July 1963. The moments for the quantities involving A,
reported in Panel B, are based on monthly data for the periods indicated and, for the longer period, use the
additional information in the history of returns on the value-weighted and equally weighted NYSE portfolios
and the Ibbotson small-stock portfolio. Also reported for each period is A, the posterior mean of A. Except
for the moments of 3, all posterior means and standard deviations are reported as annualized percentage
values.

Prior Standard Deviation of a (04)
0 1% 3% 5% 10%  30% 00

Panel A. Regression parameters

Means
o 0.00 -0.01 0.01 0.09 0.35 0.88 1.13
1 097 097 097 097 097 097 0.97
Ba 0.02 0.02 0.02 0.02 0.02 0.02 0.02
o 0.14 0.14 014 0.14 014 0.14 0.14

Standard deviations

o 000 073 213 335 551 8. 8.95
&5 022 022 022 022 022 022 0.22
B2 0.12 012 012 0.12 012 0.12 0.12
B33 015 015 015 015 015 015 0.15

Panel B. Components involving the expected factors
1/1926-12/1995; X = [10.85 — 2.22 5.94]'

Means
L 11.36 11.34 11.36 11.44 11.68 12.18 12.43
3\ 11.36 11.35 11.35 11.34 11.33 11.31 11.31

Standard Deviations
7 409 412 453 515 6.64 883 9.63
B’ 409 409 4.09 4.09 409 4.09 4.08
G|\ = A 223 223 223 224 224 224 224
X8 = B 3.10 3.10 310 3.09 3.09 3.09 3.09

7/1963-12/1995; X = [7.65 — 3.17 5.66]

Means
I 8.19 817 8.20 8.27 8.52 9.03 9.28
B\ 8.19 319 8.18 818 8.17 8.15 8.15

Standard Deviations
T 3.83 387 432 499 656 886 9.61
i) 383 383 383 383 383 382 382
XA = py 1.65 1.65 1.66 1.66 1.66 1.67 1.66
gA|B=F 318 318 318 3.18 318 3.17 3.17
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Table VIII
Model Uncertainty and Overall Uncertainty About the Cost of Equity

The table reports the uncertainty about a stock’s expected excess return (1) that arises from entertaining
multiple pricing models, the overall uncertainty about y that incorporates both model uncertainty and within-
model parameter uncertainty, and the average within-model parameter uncertainty. The three pricing models
are the CAPM, the three-factor Fama-French model (FF), and the three-factor Connor-Korajczyk model
(CK). For any given subset of models entertained, each model is assigned equal probability. Each stock’s o
and 3 are defined by the regression

re=a+p8 fi +e,
where 7; is the stock’s excess return, f; is a vector of factors, and A = E(f;). All values are reported as
annualized percentage standard deviations. In the third part of Panel A, the posterior variances are averaged
across models before taking the square root to obtain the values reported, and those latter values are then
averaged across stocks to obtain the values reported in the third part of Panel B.

Prior Standard Deviation of a (04)
0 1% 3% 5% 10%  30% 00

Panel A. Results for Bay State Gas

Model uncertainty about pu when the set of
models entertained is

CAPM and FF 1.58 165 167 157 121 055 0.14
CAPM and CK 0.82 09 119 135 141 091 0.39
FF and CK 076 069 047 022 020 036 0.25
CAPM, FF, and CK 1.29 135 140 139 124 075 0.32
Querall uncertainty about p when the set
of models entertained is
CAPM and FF 219 226 244 266 3.15 3.84 4.02
CAPM and CK 1.61  1.73 213 257 332 394 4.04
FF and CK 1.80 1.79 193 223 296 383 4.02
CAPM, FF, and CK 199 205 229 259 321 389 4.03
Average across the three models of the
within-model uncertainty of
1 1.51  1.55 1.81 218 296 3.81 4.02
o 0.00 037 108 169 271 372 3.93
B'A 1.51 151 151 151 150 148 148

Panel B. Average Across 1,994 Stocks of the Values in Panel A

Model uncertainty about i when the set of
models entertained is

CAPM and FF 2.10 208 200 191 1.72 153 142
CAPM and CK 1.68 1.67 163 158 150 147 147
FF and CK 1.50 141 122 104 077 061 0.79
CAPM, FF, and CK 226 220 207 193 171 155 1.57
Overall uncertainty about u when the set
of models entertained is
CAPM and FF 4.24 423 451 503 646 887 9.78
CAPM and CK 394 400 446 512 6.68 9.00 9.78
FF and CK 448 443 463 509 643 878 9.69
CAPM, FF, and CK 4.40 440 467 519 659 893 9.79
Average across the three models of the
within-model uncertainty of
7 371 374 413 476 631 875 9.62
@ 0.00 071 206 325 542 823 910
B'A 371 371 372 372 372 370 3.68
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Table I1X
Model Uncertainty and Overall Uncertainty About the Cost of Equity for Utilities

The table reports the uncertainty about a stock’s expected excess return () that arises from entertaining
multiple pricing models, the overall uncertainty about p that incorporates both model uncertainty and within-
model parameter uncertainty, and the average within-model parameter uncertainty. The three pricing models
are the CAPM, the three-factor Fama-French model (FF), and the three-factor Connor-Korajczyk model
(CK). For any given subset of models entertained, each model is assigned equal probability. Each stock’s o
and § are defined by the regression

re=a+ 8 fi + e,
where r, is the stock’s excess return, f; is a vector of factors, and A = E(f;). All values are reported as
annualized percentage standard deviations. In the third part of Panel A, the posterior variances are averaged
across models before taking the square root to obtain the values reported, and those latter values are then
averaged across stocks to obtain the values reported in the third part of Panel B.

Prior Standard Deviation of a (04)
0 1% 3% 3% 10%  30% o0

Panel A. Results for Bay State Gas

Model uncertainty about p when the set of
models entertained is

CAPM and FF 168 162 129 093 046 0.18 0.14
CAPM and CK 088 08 075 0.63 046 036 0.34
FF and CK 079 076 054 031 000 018 0.21
CAPM, FF, and CK 1.37 133 1.06 078 043 029 0.28
Overall uncertainty about . when the set
of models entertained is
CAPM and FF 223 230 270 310 360 3.8 3.93
CAPM and CK 1.62 176 244 299 359 390 395
FF and CK .77 189 249 3,01 359 390 3.9
CAPM, FF, and CK 201 210 260 306 360 390 394

Average across the three models of the
within-model uncertainty of

i’ 147 163 237 296 357 389 3.93
a 000 074 19 269 341 377 3.82
G’ 147 147 146 145 144 144 143

Panel B. Average Across 135 Utilities of the Values in Panel A

Model uncertainty about j when the set of
models entertained is

CAPM and FF 159 152 116 083 048 030 0.27
CAPM and CK 074 071 056 043 032 032 033
FF and CK 1.01 097 074 054 039 036 0.36
CAPM, FF, and CK 141 135 104 077 051 042 041

Qverall uncertainty about 1 when the set
of models entertained is

CAPM and FF 238 246 291 334 389 426 4.32
CAPM and CK 1.78 195 268 325 390 429 435
FF and CK 214 226 283 333 392 429 435
CAPM, FF, and CK 224 235 286 333 391 428 435

Average across the three models of the
within-model uncertainty of

1 171 188 265 3.23 387 426 4.32
o 0.00 081 2.08 282 357 4.00 4.07
G'A 171 171 171 171l 171 171 171
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Figure 1. Effects of mispricing uncertainty in the CAPM. The prior mispricing
uncertainty, oy, is the annualized prior standard deviation of ««. Each graph plots, for 1,994
individual stocks, the estimate of the expected excess return (E(r)) with o, = 0 versus E(r)
with a non-zero value of o,.
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Figure 2. Effects of mispricing uncertainty in the three-factor Fama-French (FF)
model. The prior mispricing uncertainty, o, is the annualized prior standard deviation of
«. Each graph plots, for 1,994 individual stocks, the estimate of the expected excess return
(E(r)) with o, = 0 versus E(r) with a non-zero value of o,.
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Figure 3. Effects of mispricing uncertainty in the three-factor Connor-Korajczyk
(CK) model. The prior mispricing uncertainty, o4, is the annualized prior standard devia-
tion of a. Each graph plots, for 1,994 individual stocks, the estimate of the expected excess
return (E(r)) with o, = 0 versus E(r) with a non-zero value of o,.
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Figure 4. Effects of economically informative versus non-informative priors on
estimates of expected excess returns for utility stocks. Each graph plots, for 135
utility stocks, the estimate of the expected excess return (E(r)) with an economically infor-
mative prior versus E(r) with an economically non-informative prior. Results are displayed
for three pricing models: the CAPM, the three-factor Fama-French (FF) model, and the
three-factor Connor-Korajczyk (CK) model. The prior mispricing uncertainty, o,, is the
annualized prior standard deviation of «.
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Figure 5. Effects of mispricing uncertainty on estimates of expected excess re-
turns for utility stocks. The prior mispricing uncertainty, o,, is the annualized prior
standard deviation of a. Each graph plots, for 135 utility stocks, the estimate of the ex-
pected excess return (E(r)) with o, = 0 versus E(r) with a non-zero value of o,. Results are
displayed for three pricing models: the CAPM, the three-factor Fama-French (FF) model,
and the three-factor Connor-Korajczyk (CK) model.
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Figure 6. Comparison of expected excess returns from the CAPM and the Fama-
French model. Each graph plots, for 1,994 individual stocks, the estimate of the expected
excess return (E(r)) from the CAPM versus E(r) from the three-factor Fama-French (FF)
model. The prior mispricing uncertainty, o4, is the annualized prior standard deviation of
Q.

51



E(r) from CK model
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Figure 7. Comparison of expected excess returns from the CAPM and the
Connor-Korajczyk model. Each graph plots, for 1,994 individual stocks, the estimate
of the expected excess return (E(r)) from the CAPM versus E(r) from the three-factor
Connor-Korajczyk (CK) model. The prior mispricing uncertainty, o, is the annualized
prior standard deviation of «.
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Figure 8. Comparison of expected excess returns from the Fama-French and
Connor-Korajczyk models. Each graph plots, for 1,994 individual stocks, the estimate
of the expected excess return (E(r)) from the three-factor Fama-French (FF) model versus
E(r) from the three-factor Connor-Korajczyk (CK) model. The prior mispricing uncertainty,
Oa, 18 the annualized prior standard deviation of «.
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Figure 9. Comparison of expected excess returns on utility stocks from different
pricing models. Each graph plots, for 135 utility stocks, the estimate of the expected
excess return (E(r)) from one model versus E(r) from another model. Three pricing models
are entertained: the CAPM, the three-factor Fama-French (FF) model, and the three-factor
Connor-Korajezyk (CK) model. The prior mispricing uncertainty, o,, is the annualized prior
standard deviation of «.
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Notes

1Such models include the Capital Asset Pricing Model (CAPM) of Sharpe (1964) and
Lintner (1965), the intertemporal CAPM of Merton (1973), and the Arbitrage Pricing Theory
of Ross (1976). An issue beyond the intended scope of this study is the selection of the

appropriate riskless rate for computing the total cost of equity. See, for example, Cornell,
Hirshleifer, and James (1997).

2See Huberman, Kandel, and Stambaugh (1987) for a deeper discussion of this point.

3Ferson and Locke (1997) reach this conclusion even after allowing the errors in betas to

encompass errors in constructing the market index.
4See Zellner (1971), p.372.

A portfolio’s Sharpe ratio is its expected excess return divided by its standard deviation

of return.
6See, for example, Gibbons, Ross, and Shanken (1989).

"Vasicek (1973) proposes using a cross-section of stocks to obtain the parameters of the
prior distribution for the market beta. See Berger (1985) for a general discussion of empirical-

Bayes methods.
8We thank Ken French for providing these data.

9The factors are the first three eigenvectors of the T x T matrix (T = 390) whose (s,t)

. N, . .. .
element is (1/N,,) 3,0 i sTit, Where 7 is the excess return on stock ¢ in month ¢ and N,

denotes the number of stocks that have returns in months s and .

10Technically, the priors and posteriors given in our formulas are defined only for finite
positive values of o, so the results reported for “zero” and “infinity” are actually computed

by setting o, to very small and very large values.
11 This follows directly from the moments given by Zellner (1971), p. 372.

2The second line in (21) follows from

o? o\’ _
(E(UQ)) - (E a)) 4PasVs  Pass

2(0)] = o

o

| V3l

xX o.
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13The prior for ¢ is the same as in (10), and the prior for b is specified as normal with mean
b and covariance matrix V4. The conditional posterior for o given b is inverted gamma in
that case, and the acceptance rate for candidates drawn from this proposal density typically
ranges between 75% and 79% across the three pricing models. The procedure described
above, where the proposal density for some of the parameters (b in this case) is the same as
the target “full conditional” density, is sometimes referred to as “Metropolis within Gibbs,”
although Chib and Greenberg (1995) suggest that such terminology is inappropriate. As
they point out, Gibbs sampling, introduced by Geman and Geman (1984), is a special case
of MH in which all parameters are drawn from their full conditional densities. Casella and
George (1992) provide an introduction to the Gibbs sampler, and an early finance application
appears in Kandel, McCulloch, and Stambaugh (1995).

4From (33) and the independence of A and 3, the conditional variance of p given A (where

all moments are posterior) is

Var(u|A) = [1 NV ow (v} N
Pl A DUV
and the expectation of this quantity, taken with respect to A, is the first term on the right-

hand side of (35). The conditional mean of x given A is & + &), and the variance of this
quantity, taken with respect to A, is the second term on the right-hand side of (35).

1°Recall that « is the first element of b in equations (25) and (26). With non-zero off-
diagonal elements in the first row of M !, the posterior covariance matrix of b (conditional
on o), the posterior mean of a generally depends, for a finite 7', on all of the elements of b
and b. The slight non-monotonicity in & observed in the first row of Table II is most likely

due to the influence of the F-related terms on «.

1®Fama and French (1997) find support for such a specification, although they do not
find its merits over the simpler procedure to be clear cut. Moreover, they also suggest
(p. 170) that, because variables such as size and book-to-market may be somewhat under
management’s control, “firms might be better off using full-period constant-slope [costs of
equity] for capital budgeting.” Schink and Bower (1994), for example, use full-period betas

in estimating the costs of equity for individual public utilities.
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