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value. In this paper, we show that hedge fund performance fees are valuable to money managers, and
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cost of the high-water mark contract under certain conditions. Our results provide a framework for
valuation of a hedge fund management company.
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High-Water Marks and  
Hedge Fund Management Contracts 

 

 The growth of the hedge fund industry over the past decade has brought an unusual form of 

performance contract to the attention of the investment community.1 Hedge fund managers typically receive 

a fraction of the fund’s return each year in excess of the high-water mark. The high-water mark for each 

investor is the maximum share value since his or her investment in the fund.2 These performance fees 

generally range from 15 percent to 25 percent of the new profits earned each year. In addition, managers also 

charge a regular annual fee of one percent to two percent of portfolio assets. For example, George Soros’ 

Quantum Fund charges investors an annual fee of one percent of net asset value with a high-water mark 

based performance fee of 20 percent of net new profits earned annually. As a result, the Quantum Fund 

returned 49 percent (pre-fee) in 1995 on net assets of $3.7 billion resulting in an estimated total 

compensation of $393 million for that year, most of which was due to the incentive terms.3  Of course, when 

the high-water mark is not reached, manager returns are substantially reduced. In 1996, the Quantum fund 

lost 1.5 percent, and thus, earned only their regular annual fee $54 million (1 percent of the $5.4 billion of 

assets).  

While the Quantum Fund stands out as an unusually good performer over the past decade, its 

compensation terms are typical of the hedge fund industry. High-water mark contracts have the appealing 

feature of paying the manager a bonus only when the investors make a profit, and in addition, requiring that 

the manager make up any earlier losses before becoming eligible for the bonus payment. On the other hand, 

their option-like (non-linear) characteristics clearly could induce the manager to alter his investment strategy, 

and the large bonus of 20 percent above the benchmark clearly reduces long-term asset growth. 

 In this paper, we examine the costs and benefits of high-water mark compensation to investors. To 

do so, we develop a valuation equation that allows us to estimate the division of wealth that the investor 

implicitly makes with the portfolio manager upon entering into such a contract. We find for reasonable 

                                                           
1 The term hedge fund is used to characterize a broad class of skill-based asset management firms that, for a variety of 
reasons, do not qualify as mutual funds or money managers regulated by the Investment Company Act of 1940. For 
recent academic research on the hedge fund industry, performance incentives and performance, see Fung and Hsieh 
(1997, 1999, 2000), Brown, Goetzmann and Ibbotson (1999), Brown, Goetzmann, and Park (1997) and Ackerman, 
MacEnally, and Ravenscraft (1999). 

2 The various partners’ funds are all pooled so they earn the same rate of return, but different partners may have a 
different high-water mark depending on the maximum share value reached since their investment in the fund. 

3 Figures are from the U.S. Offshore Funds Directory, 1995 and 1996 editions for the Quantum Fund N.V. Returns 
assume re-investment of income. Manager fees are calculated from reported changes in net asset value. 
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parameters of the valuation equation that the present value of fees and other costs could be as high as 33 

percent of the amount invested. A more representative number, though, is probably 10 percent to 20 percent. 

A significant proportion of this compensation is due to the incentive feature of the contract; however, the 

tradeoff between regular fees and high-water mark fees depends upon the volatility of the portfolio and the 

investor’s withdrawal policy. We find that this proportion is high when money is “hot,” i.e., when the 

probability of investors leaving the fund is high, and when the volatility of the assets is high. In contrast, 

when investors are likely to remain for the long term, and when volatility is low, the regular-fee portion of 

the contract provides the greatest value to the manager. 

This apparently significant transfer of wealth to the manager may, however, be economically 

justified. We show that excess performance as small as an alpha of three percent could compensate the 

investors for such charges. 

We also consider why high-water mark contracts exist, and in particular, why they are used by hedge 

funds as opposed to mutual funds. While their prevalence in the hedge fund industry might be an accident of 

history, the high-water mark compensation contract may have features particularly suited to the types of 

investment strategies employed by hedge funds. The role of volatility and investor withdrawal, for example, 

may account for why we find high-water mark incentives used in asset classes such as hedge funds, 

commodity funds, and venture capital funds. In these asset classes, investor payoff is presumably based more 

upon expectations of superior manager skill and less upon the expected returns to an undifferentiated or 

passively managed portfolio of assets. Given that hedge fund investment is, in a sense, a pure bet on manager 

skill, our analysis provides a framework for considering how much skill a hedge fund manager must have to 

justify earning such high fees.  

In addition to the valuation of the high-water mark contract, we explore the question of whether the 

high-water mark compensation is due to the fact that hedge fund technology may have diminishing returns to 

scale. Most hedge fund managers are engaged in some form of “arbitrage in expectations,” in the domestic 

and global debt, equity, currency, and commodities markets. By their very nature, scaling these arbitrage 

returns may not be possible as investors purchase more fund shares. Most mutual funds can compensate their 

managers for past performance with a fixed percentage fee on assets, since good performance will attract 

new money. Hedge funds, however, may not be able to take or even want new funds. 

To test whether the high-water mark contract may be a substitute for increasing compensation 

through fund growth, we examine the empirical relationship between hedge fund investor cash-flows and 

performance. In contrast to similar studies in the mutual fund industry, we find that neither large funds nor 

funds with superior performance sell new shares — indeed we find evidence that they experience net share 

repurchases. This is consistent with the hypothesis that the hedge fund industry itself has important limits to 
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growth. This also has implications for investors seeking alternative investments to equities and debt. While 

hedge fund performance over the past ten years has been strong on a risk-adjusted basis, this performance 

may be in part due to the relatively small size of the hedge fund sector. The unwillingness of successful 

funds to accept new money may be indicative of diminishing returns in the industry as a whole as investment 

dollars flow in. We conjecture that the option-like fees commanded by hedge funds exist because managers 

cannot expect to trade on past superior performance to increase compensation through growth.  

The paper is structured as follows. Section I develops a valuation model for determining the cost of 

the manager’s contract. Section II estimates parameters for the model, using data on hedge funds. Section III 

provides some comparative statics and discusses the implications of our results. Section IV illustrates some 

extensions to the model. Section V presents evidence on hedge fund performance, size, and fund flows. 

Section VI concludes. 

 

I. The Management Contract Cost Model 

 The hedge fund management contract has interesting option-like characteristics. It is a potentially 

perpetual contract with a path-dependent payoff. The payoff at any time depends on the high-water mark that 

is related to the maximum asset value achieved. As such, the contract can be valued using option-pricing 

methods. The major difference in our approach is to use an equilibrium derivation. Typically, option pricing 

is based on replicating a claim. Replicating a hedge fund is not possible since the information used in finding 

the arbitrages, which give it value, are, by necessity, private. Furthermore, since our approach is an 

equilibrium one, the valuation is not necessarily valid for an agent like the fund manager who likely holds a 

undiversified portfolio with his wealth concentrated in the fund’s assets. 

 We work in a continuous-time framework and assume that, in the absence of payouts, the assets of 

the fund follow a lognormal diffusion process with expected rate of return μ and logarithmic variance 2. 

Although the investors’ assets are pooled for management, we model a single investor’s position in the fund 

because each investor may have different withdrawal expectations and a different high-water mark if 

investment occurred at different times. The variable S represents the market value (or net asset value) of the 

investor’s position, and H is the current high-water mark; it is the highest level that the net asset value has 

reached subject to certain adjustments. The net asset value is reduced when the client makes withdrawals or 

receives distributions from the fund. There may be regular or periodic withdrawals or distributions, which 

we approximate as continuous occurring at the rate W(S, H, t):  

 [ ( , , ) ] , .dS S W S H t cS dt Sd S H        (1) 

The fund may experience a complete withdrawal of an investor’s assets. We model this as occurring 
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when the asset value drops to some low level, S(H, t), representing a loss of confidence by this investor in 

the hedge fund’s managers. In addition, an investor may withdraw his funds before this level is reached. 

Such a withdrawal might represent a liquidity need or more profitable investment opportunities elsewhere. 

The probability per unit time of such a liquidation is (S, H, t).4 

The fund has operating expenses, including a regular management fee that must be paid from the 

assets. We assume these expenses are proportional to the value of the fund, cS per unit time. When the asset 

price moves above the high-water mark, the manager also collects an extra or performance fee equal to the 

fraction k of this return. In the stylized setting of the model, the performance fee is earned continuously. In 

practice, the performance fee is usually accrued on a monthly basis with H being reset annually or quarterly.  

In the simplest case, the high-water mark is the highest level the asset value has reached in the past. 

For some incentive contracts, the high-water mark grows at the rate of interest or other contractually stated 

rate, g. It is also adjusted by withdrawals and often certain expenses are allocated to its reduction. When the 

asset value is below the high-water mark, it is not affected by the random variation in S. It is only adjusted 

due to withdrawals, allocated expenses, and the contractual growth rate. Since these are not locally random 

in our model, the evolution of H is locally deterministic. The common practice is to adjust H by the same 

proportion that withdrawals and allocated expenses have to the asset value. So for S < H, the evolution of H 

is 

 
( , , )W S H t c S

dH g H dt
S

     
 (2) 

where g is the contractual growth rate of the high water mark (usually zero or r) and cS is the costs and fees 

allocated to reducing the high-water mark. When the asset value reaches a new high, the high-water mark is 

reset to this higher level. 

We are interested in determining the values of the performance fees, P(S, H, t); the regular annual 

fees, A(S, H, t); the sum of the two, F(S, H, t); and the investor’s claim, I(S, H, t). The variable S represents 

the market value of the assets held and does not recognize that the managers have superior information that 

makes the assets more valuable (at least in this combination) than the market believes. On the other hand, the 

values, P(), A(), F(), and I(), are not market values; indeed, the claims are not marketable. Rather, they are 

the values of the claims as computed by a representative investor who knows the premium performance the 

managers of the fund are providing. In particular, we shall see that I + F exceeds the market value of the 

                                                           
4 We refer to the complete withdrawal of an investor’s money as a liquidation to distinguish it from the regular or 
periodic withdrawals. This does not imply that the fund as a whole is liquidated. Other investors may have different 
“rules” or different high-water marks due to investing at different times. 
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assets held. 

 Let f represent the value of a generic claim, then, for S < H, the evolution of this value is  

 

2
2 2

2

1 ( , , )
[ ( , , ) ]

2

[ ( , , ) ] .

f f W S H t c S f f
df S W S H t cS S g H dt

S S S H t

f
Sd f S H t f d

S

 

  

                   


  


 (3) 

There are no 2 2 f H or 2  f H S terms because H is locally deterministic when H < S. The different 

values are distinguished by different payouts from the fund to the claim; different boundary conditions; and 

different post-liquidation values, f(S, H, t). This is the known value of the claim after the investor’s funds 

are withdrawn. For any of the fee claims, this is 0; for the investor’s claim, it is S. The first two terms in (3) 

are the usual Itô description of the evolution; d is the increment to a point process;  = 0 and  = 1 before 

and after the investor’s liquidation, respectively with [ ] ( , , ) .  �d S H t dt  

If the assets of the fund could be purchased, we could now determine the values through the usual 

no-arbitrage arguments of the Black-Scholes model. However, it is unrealistic to assume that investors can 

replicate the hedge fund without the special knowledge of the managers. Furthermore, even if they could 

replicate the claim, doing so would require a short position in the very assets the managers believe provide 

the superior returns to the hedge fund.  

In place of the absence of arbitrage, we will use an equilibrium derivation as in Merton (1976) or 

Ingersoll (2002). Quite generally, the value of any asset can be determined with a martingale pricing 

operator, , and the valuation relation [ ( ) ( , , ) ] 0,d f D S H t dt   where D () is any payment made to the 

claim being valued. If we select as the martingale process the marginal utility of any investor, then the value 

determined is this investor’s subjective value. If the investor selected is the representative investor, then we 

derive the market value of the asset. For the representative investor, the evolution of the martingale pricing 

operator is d/ = rdt + [(μm  r)/m]dm, where μm and m are the expected rate of return and logarithmic 

standard deviation on the market, and dm is the Weiner process for the market. 

 The pricing relation for the claim is then5  

                                                           
5 The derivation assumes there is no relation between changes in  and a liquidation. There can be no relation between 
the changes in  and the value of f when liquidation occurs, since the liquidation change in the magnitude of f is 
deterministic. The only relation could be between changes in  and the event of a liquidation. In a more general model, 
the liquidation probability  could depend on changes in  or its level. 
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 
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[ ( , , ) ] ( , , )[ ( , , ) ]
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


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             
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           






S SS t H S

S SS t

m
H S m

m

d f D dt

f dS f dS f dt f dH f f d f d d f dS D dt

f S W S H t cS S f f S H t f S H t f

rW S H t c S
g Hf rf D dt f S d d

S

 (4) 

The expression ( / ) [ ]   m md d in the final term is the standard CAPM beta for the fund’s asset value. 

We define the premium return on the fund’s assets as  = μ  r  β(μm  r).6 Then, while the fund's assets are 

below the high-water mark, the present value functions satisfy the option-like partial differential equation: 

 
2 21

2

( , , )
0 [( ) ( , , ) ]

( , , )[ ( , , ) ] ( , , ) for .

 



          

      

SS S H

t

W S H t c S
S f r S W S H t cS f g Hf

S

f S H t f S H t f rf D S H t H S

 (5) 

Although a different derivation was used, this equation has the standard Black-Scholes interpretation. The 

first four terms are the expected risk-neutral change in the value of the fees due to the changes in S, H, and t. 

The expected rate of return on S has been “risk-neutralized” to r + . There are no fHH or fHS terms because H 

is locally deterministic when H < S. For the same reason, the expected change in H requires no risk-neutral 

adjustment. 

The function (S, H, t) is the probability per unit time of the investor liquidating his position. The 

term ( , , )[ ( , , ) ]S H t f S H t f   is the risk-neutral expected change in the claim due to liquidation. If the 

investor liquidates, which happens with probability dt, the value of the claim changes from f to f; this is 

the known value of the claim after the investor’s funds are withdrawn. For any of the fee claims, this is 0; for 

the investor’s claim, it is S.  

The term D(S, H, t) is the flow rate of costs whose present value (along with that of the performance 

fees) we are determining. It is like a dividend paid to the derivative asset in the Black-Scholes model. For the 

performance fees, the regular annual costs and fees, and the investor’s claim, the payouts are D(S, H, t) = 0, 

D(S, H, t) = cS, and D(S, H, t) = W(S, H, t), respectively. 

Note that we are doing this valuation from the point of view of an investor in a competitive market. 

To the extent that the manager cannot hedge away the risk inherent in the funds and the fees, he may assign a 

                                                           
6 This definition of  is completely general. There is no need that the CAPM holds in this economy to derive our 
formulas. The CAPM is consistent with our assertion that managers who can provide a positive  have ability, but this 
is simply a matter of interpretation. Our model would still be valid for any other zero-ability value for . What we have 
assumed is that any good-buy opportunities that the active manager finds in the market are limited. If the hedge fund 
could find true arbitrages, then  could be made as large as desired by taking zero-cost arbitrages at unlimited scale.  
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personal utility-adjusted value to the fees that is less than the market value.7 

Four boundary conditions are required to solve this equation. Three of the boundary conditions for 

the problem are 

 

 
 
 

( , ),  ,  0 ,      ( , ,  ) 0 ,   and  ( , , ) ( , )

( , ),  ,  0 ,      ( , ,  ) 0 ,   and  ( , , ) ( , )

( , ),  ,  ( , ) ,      ( , ,  ) 0 ,   and  ( , , ) ( , ) .

H A

H P

H I

A S H t H t A S t A S H T S H

P S H t H t P S t P S H T S H

I S H t H t S H t I S t I S H T S H

    

    

    

  (6) 

The first conditions indicate that when the asset value falls to the liquidation level, S(H, t), then the investor 

will withdraw all his money and there are no further costs or fees. The second conditions say if the high-

water mark is very high relative to the asset value, then there is little chance of ever receiving an incentive 

payment, so a change in the high-water mark will not affect the value of the fees or the investor’s claim. The 

third conditions apply the contractual sharing rules at the maturity of the management contract, T. Invariably, 

these hedge funds have no contractual termination, so such a boundary condition would not apply. 

A fourth condition applies along the boundary S = H. When the asset value rises above the high-

water mark to H + , the high-water mark is reset to H + , and a performance fee of k is paid, reducing the 

asset value to H + (1  k). Therefore, P(H + , H, t) = k + P(H +   k, H + , t) or 

 ( , , ) ( , , ) .
 

             S H

P P
k P H H t P H k H t k

S H


         (7) 

In the limit, as   0, this is exact, giving the fourth boundary condition 

 .
S H

P P
k k

S H 

      
     (8) 

This condition applies to both the total value of the fees and the performance fees alone. The boundary 

conditions for the regular annual fees and the investor’s claim are [kA/S  A/H]S=H = 

[kI/S  I/H]S=H = 0, because these claims do not receive the performance payments. 

To obtain a closed-form solution for the present values, we make several simplifying assumptions: 

                                                           
7 See Ingersoll (2002) for a discussion of subjective pricing and an analytical model in the context of incentive options. 
Applying those results to this model, the valuation equation for a fund manager with a relative risk aversion of  who 
holds the fraction  of wealth in the hedge fund with a residual variance (relative to the market) of v2 would be 

 
2 2 21

2

2 2

( , , )
0 [ ] ( , , )

( , , )[ ( , , ) ] [ ] ( , , ).

  



              

      

SS S H

t

W S H t c S
S f r v S W S H t cS f g Hf

S

f S H t f S H t f r v f D S H t

 

 
The analysis and numerical results of this paper are still valid with the modified parameters r  r  2v2 and c  c + 
(1 )v2. 
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(i) The liquidation level is a constant fraction of the high-water mark, S(H, t) = bH.  

(ii) Withdrawals are proportional to asset value W(S, H, t) = wS.  

(iii) The premium return, α, and probability of liquidation are constant, (S, H, t) = . 

Since withdrawals, liquidation, and the premium were the only time-dependent features of the 

problem, the present value function f no longer depends explicitly on time under these assumptions, and ft = 

0. Furthermore, it is clear by the economics of the problem that f is now homogeneous of degree one in S and 

H, so the solution has the form f(S, H, t) = HG(x), where x  S/H. Substituting this and the derivatives fH = G 

 xGx , fS = Gx and fSS = Gxx/H into (5) gives an ordinary differential equation8  

 2 21
2 ( ) ( ) 0 ,xx xx G r c g c xG r c g w G x                  (9) 

where  = 0 for f = P,  = c for f = A or f = F, and  = w +  for f = I. As well as simplifying the solution, this 

differential equation provides insight into the effects of different parameters. 

 There are ten parameters in the valuation equation: r, , and  are environmental; k, c, c, and g are 

contractual; and w, , and b are actually endogenous choices, which we have assumed here to be constant. 

The first two “choice” variables enter the solution in a symmetric fashion; an increase in the withdrawal rate, 

w, is exactly the same as an increase in the probability intensity of liquidation, . In other words, for our 

model, withdrawing funds at the constant rate w has exactly the same effect on the present value as a 

probability w per unit time of withdrawing all the funds. Therefore, it will be simplest to just think of w +  

as the effective withdrawal rate. 

Similarly, the parameters r, c, and g have symmetric effects. An increase in the interest rate is 

equivalent to a contractual decrease in the growth rate of the high-water mark. It is also equivalent to an 

increase in the fees that are allocated to reducing the high-water mark. Note that an increase in c is an 

accounting change that does not directly increase costs. It does, however, indirectly increase the present 

value of future costs by lowering the high-water mark and thereby shortening the time until a performance 

fee is charged. An increase in c or a decrease in g are therefore like an increase in r, which increases the 

risk-neutral expected rate of growth in the assets, which also shortens the expected time until a performance 

fee is charged.  

The solution to this equation is G(x) = x/(c + w +   ) + Ax + Bx, where A and B are constants 

of integration and  and  are the larger and smaller roots of the characteristic quadratic equation; i.e., 

                                                           
8 When the contractual growth rate in the high-water mark, g, is not zero, it is usually set equal to the interest rate. For 
these contracts, equation (9) does not depend on r. Therefore, in such cases, the formulas below would hold even with a 
stochastic rate of interest, provided that the other variables like , w, and  do not depend on r. 
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 22 2 21 1

2 2

2

2 ( )
.

c r c g c r c g r c g w     
 

                  
  

 (10) 

Use of the positive and negative signs gives  and , respectively. Note that  < 1 < .  

The values of the total fees, performance fees, and the investor’s claim are 
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 (11c) 

The present value of the annual fees is then A(S, H) = F(S, H)  P(S, H). 

To gain a better understanding of the solution, it is helpful to look at the simpler problem when there 

is no liquidation due to a drop in the asset value; i.e., b = 0. In the absence of a lower liquidation barrier, the 

present value of the performance fees alone and all the fees are  
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 (12) 

The first factor in P(), kH/[(1+k)1] measures the present value of the performance fee at the 

inception of the fund (or whenever S = H). The factor (S/H) is the reduction in the present value of the 

future performance fees due to the time required before the asset value reaches the high-water mark and they 

can be earned; that is, (S/H) is the present value of $1 paid the first time the stock price rises from S to H.9 

The product of these two factors gives the present value of the performance fees at any level of asset value.  

As discussed earlier, the effective withdrawal rate of the investor is w + , so in the absence of a 

performance fee, the present value of the perpetuity of the regular fees would be proportional to the fraction 
                                                           
9 See Ingersoll (2000) for a discussion of the valuation of these contracts known as first-touch digitals. The first-touch 
digital in (13) is a combination of the simple first-touch digitals for hitting H and bH, whose values are (S/H) and 
(S/bH). 
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that the fees are of all outflows adjusted for the premium return, c/(c + w +   ). With a performance fee, 

the present value of the perpetuity of regular fees is this same fraction of the asset value net of the 

performance fees. So the value of the regular annual fees is A(S, H) = [c/(c + w +   )][S  P(S, H)]. The 

total value of the fees is the sum of these two quantities. 

Now we return to the case when the fund is liquidated when the asset value falls to bH. A similar 

interpretation can be given. The present value of $1 paid the first time the stock price rises from S to H 

without first hitting bH is 

 min

( / ) ( / )
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The value of the performance fees at the inception of the contract (when S = H) is given in (11b) as 
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The value of the performance fees at any other stock price S is this initial value of the performance fees 

multiplied by the present value function in (13); that is, P(S, H) = (S, H; | Smin > bH)P(H, H). The value of 

the regular annual fees is the fraction c/(c + w +   ) of S  P(S, H), less an additional first-touch 

correction to account for the cancellation of the regular fees when the stock price hits bH. 

The total value of the assets under management; i.e., the value of the fees and the investor’s claim 

together is   
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 (15) 

This is value based upon knowing the managers’ superior performance and, therefore, is more than the value 

of assets under management, S.  

In the absence of performance fees, the expected rate of growth of the funds under management 

would be μ  c  w  . The total expected payout at time t is ( ) [ ]   tc w S  so the superior performance 

would give an effective value to the managed assets of 
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This value exceeds the market value of the assets without management, S,10 and the value of the fund 

computed in (15). The presence of performance fees affects the value, because they are removed from the 

funds under management and no longer earn the premium, . 

In Section III below, we provide some typical numerical values for the contract, after determining 

relevant value for the parameters in the next section. 

 

II. Model Parameters 

To address the question of what are reasonable parameter values for the valuation model, we turn to 

the database of hedge fund returns used in Brown, Goetzmann, and Ibbotson (1999) (hereafter BGI). The 

data are annual returns and fund characteristics gathered from the 1990 through 1996 volumes of the U.S. 

Offshore Funds Directory. Offshore funds in the directory represent a substantial portion of the hedge funds 

in operation and include most of the major managers.11  

 

A. Fund Volatility 

To estimate the fund volatility, we calculate the sample standard deviation for all funds. Of 610 hedge funds 

in the sample, 229 have return histories exceeding two years. Of this group, the median and mean sample 

standard deviation are 18.7 percent and 23.0 percent per year, respectively. There are two reasons why such 

a small percentage of funds have enough data to calculate volatility. First, many funds have started recently, 

so a large number of the extant funds have only a short track record. Second, the attrition rate for funds is 

relatively high — about 20 percent of these funds fail each year. Since we are effectively conditioning upon 

fund survival, we are presumably losing the funds that had such poor returns that they failed in their second 

year. This may bias our volatility estimate downward. 

 

B. Withdrawal Rate, w, and the liquidation parameters,  and b 

In our model, the payout policy w is a flow; however, it is unlikely that all hedge fund investors 

conceive of it that way. A constant payout ratio is a reasonable assumption for certain institutional investors 

such as university endowments and charitable foundations, which choose payout ratios as a matter of policy; 

however, it may not be a reasonable assumption for the most common type of hedge fund investor — 
                                                           
10 Note that the total withdrawals from the assets, c + w + , must exceed the superior performance, ; otherwise, 
the fund will have a residual value at infinity whose present value is infinite. A similar result is true with 
performance fees, although the exact value of  for which this transversality violation occurs is higher and depends 
on the other parameters as well, since the performance fees also limit the growth of the asset value. 

11 See Brown, Goetzmann, and Ibbotson (1999) for a complete discussion of the coverage of the database. 



 
 12 

traditionally, a high-net worth individuals. Life-cycle issues are potentially important, and in addition, 

modeling the conditional probability of withdrawal may be useful in determining a realistic value for w. 

BGI estimate that the annual attrition rate for funds is 20 percent per year. This estimate is 

conditioned upon the fund appearing originally in the annual database. Thus, it neglects funds that started 

and disappeared before year end. Consequently, a fund must survive through the end of the year of its 

inception to be counted. This would suggest that new funds have a probability of liquidation greater than 20 

percent. By the same token, some of the largest funds, such as the Quantum fund, are long-lived. The 20 

percent is not a dollar-weighted estimate of fund disappearance. Consequently, the probability of liquidation 

might be lower than 20 percent on a dollar-weighted basis. In any case, individual investors may have 

completely different “rules” for liquidation, which are not captured by the aggregate disappearance rate. 

In addition, it is difficult to separately estimate  and b. Without information concerning the reason 

for the liquidation from any given hedge fund, we cannot tell if the intention was to liquidate when the assets 

fell to this level or if the liquidation was a chance occurrence (captured by ). And, of course, it is the 

intentions and expectations of the participants that determine the pricing. It is our belief that most investors 

expect to liquidate if the assets do not perform well. To cover as wide a range as possible, we look at 

liquidations policies of b = 0, 0.5, 0.8. The value b = 0 corresponds to no asset-based liquidations. We 

present these numbers mostly for the purpose of comparison.  

We suspect that many investors (apart from the managing partners) would liquidate if the asset value 

fell by 15 percent to 25 percent from their personal high-water mark. This corresponds to b = 0.85 to 0.75. 

We report present values for b = 0.8. These numbers should be representative of the present value of the 

management fee contract of a single hedge fund. They may not, however, be appropriate to measure the total 

hedge fund cost for an investor who merely transfers his money to a different hedge fund when liquidating. 

The middle value, b = 0.5, can be interpreted as giving the total present value to the investor of the 

management fees from investing in a series of hedge funds. The investor withdraws his money completely 

from hedge funds only when the value of the assets falls to 50 percent of the original investment’s high-

water mark.12 

 

C. Performance Fee, k, and Regular Annual Fee, c 

The vast majority of the funds have performance fees of 20 percent. In 1996, this was true of 213 of 

                                                           
12 In fact, the numbers reported for b = 0.5 understate the present value of the costs of management fees under this 
scenario. When the investor moves his money to a new hedge fund, he also “agrees” to lowering the high-water 
mark to the current asset value. The effect of this adjustment is discussed in Section IV. 
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the 301 funds. The fees ranged from zero to 42.5 percent. Regular annual fees are usually around one to two 

percent. In 1996, 254 of the 301 funds had fees in this range, with the former being slightly more common. 

The annual fee rates ranged from 0.5 percent to 6 percent. A natural question is what factors differentiate 

funds on the basis of fees. We tried volatility, past performance, and fund size as predictors, and found none 

to explain differences in performance fees.  

 

III. Interpretation of Model 

Table I shows the present value of the management fees and costs as a fraction of the asset value for typical 

parameter values r + c  g = 5 percent, k = 20 percent, c = 1.5 percent, w +  = 5 percent and 10 percent,  = 15 

percent and 25 percent, and b = 0, 0.5, and 0.8. The values of both fees types are increasing in S since the fees paid are 

always in proportion to the asset value. The performance fee increases more than proportionally to S since the higher is 

S/H, the shorter will it be until the high-water mark is hit again and the performance fee can be collected. The regular 

annual fees are affected differently by the ratio S/H. When b = 0, the proportional value of the regular annual fees is 

decreasing in this ratio, since any payment from the fund’s assets (like the performance fee) reduces the value of the 

assets and hence the value of future regular annual fees. But, the former effect is stronger, and the value of the two fee 

components together is increasing in the ratio S/H. When there is a liquidation barrier (b > 0), then the value of the 

regular fees is increasing in the ratio for small values of S/H because hitting the barrier cancels all future fee payments 

so a nearby barrier reduces the value of future fees. For the same reason, the total value of the fees and each component 

separately is decreasing in the liquidation barrier, b.  

 

 

 The value of the fees and of each component is decreasing in the withdrawal rate w + , since any 

reduction in the asset value decreases the base on which these fees are paid. The value of the performance 

fee is generally increasing in , since they have option-like characteristics. The exception is when the asset 

value is close to the liquidation barrier. An increase in  decreases the average time until the liquidation 

barrier is hit and if the barrier is close, this effect dominates the other and the performance fees value is 

decreasing in . The value of the regular annual fee is decreasing in . As σ increases, the average time 

before the liquidation barrier or the high-water mark is hit decreases. Both of these events decrease future 

annual fees, the former because the contract is canceled, the latter because the performance fee payment 

decreases the asset value. 

Due to the perpetual nature of the investment problem, the present values of the fees are very 

sensitive to the withdrawal policy, w + . As seen in Table I, an increase in the withdrawal rate from 5 to 10 

percent decreases the value of the regular annual fees by about 40 percent and the performance fees by 30 to 

50 percent (except with the highest liquidation barrier b = 0.8). The effect is stronger in percentage terms at 

Place Table I here 
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lower volatilities, though the decrease in the dollar value of the fees is greater at larger volatilities. Notice 

that for low asset volatility, the regular annual fee portion of the compensation is the dominant source of 

value, particularly when the withdrawal rate, w + , is small. This is not surprising, since the “option” value 

is increasing in σ and the present value in perpetuity of the regular fees is decreasing in w. This suggests that 

manager compensation contracts may separate according to the volatility of the strategies and investment 

outflows.  

The present value of the fees is a large fraction of the value of the assets under management. Even 

with a sizable withdrawal rate, the fees can be expected to absorb one-fifth to one-third of the funds assets. 

Whether the manager provides investment advice commensurate with these fees is addressed below. Of 

course, even without a performance fee, the fraction of wealth paid as fees is very high. For instance, in the 

simple case with no performance fee or liquidation barrier, costs and fees come to the fraction c/(w +  + c) 

of the asset value. With a five percent payout and a 1.5 percent regular annual fee, this is 23 percent of the 

asset value.13 With a 20 percent performance fee, the cost of the regular annual fee drops to 20.1 percent, but 

the performance fees are worth 13.1 percent bringing the total present value of the fees to 33.1 percent of the 

assets under management. Thus, even low regular annual fees claim a non-trivial proportion of investment 

assets. 

 Table II gives the value of the regular annual fees, the performance fees, and the investor’s claim 

when the manager provides a premium return of  = 300 basis points. The cases are the same as given in 

Table I. The fees are worth more with a premium return because the assets will grow at a faster rate and both 

provide a higher base on which the fees are paid and exceed the high-water mark more often. The total value 

of the fees and the investor’s stake sum to more than 100 percent because the manager’s ability to earn a 

premium return means the managed assets are worth more than their market value. Note that the values of 

the fees are less with a higher withdrawal rate since this reduces the assets on which the fees are based. 

Conversely, a higher withdrawal rate increases the value of the investor’s stake under most circumstances for 

the same reason. However, when the investor’s portion by itself is worth somewhat more than the market 

value of the assets, then reducing the withdrawal rate may increase the investor’s value since withdrawing 

assets prevents the premium return, α, from being earned on them.  

 

 

                                                           
13 Of course, the regular fee is not all profit to the manager. It must cover management expenses. For active 
managers, these costs may be high. Even a low-cost equity index fund may have expenses of 40 basis points. With 
the payout rule of 5 percent, index fund expenses translate into an eight percent fraction of the investor wealth. With 
a payout ratio equal to current dividend yields, this fraction increases to about 13 percent.  

Place Table II here 
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Similarly, unlike the case  = 0, a higher liquidation barrier is not always beneficial to the investor 

when a premium is being earned. Withdrawing assets from the fund recovers the full asset value, but also 

prevents any sharing of the future premium earnings. As shown in the first and second panels of Table II, 

both the investor and the managers would prefer no liquidation (b = 0) to liquidating when the assets drop to 

half the high-water mark. Obviously, the managers would prefer to close the entire fund and start a new one 

(with H = S) assuming, less obviously, they could convince these or other investors to provide them with the 

money. In addition, the decision to liquidate is actually endogenous and clearly depends on perceptions 

about the excess performance to be provided. Once the assets drop to half of the high-water mark, the 

investor may no longer believe that the managers can provide excess performance.   

 This also means that the high-water mark contract may create a type of lock-in for underperforming 

hedge funds. Consider two hedge funds with the same parameter values as give in Table II (w+ = 10 

percent,  = 15 percent, b = 0.5), but assume one hedge fund has an α of 2.5 percent and the other has an α of 

three percent. Suppose an investor holds $70 million in the lower performing fund with a high-water mark of 

$100 million. His position is currently worth $70.40 million. If he moved it to the better-performing fund and 

could keep the $100 million high-water mark, it would be worth 1.0467$70 million = $73.3 million. 

However, moving the money to a new fund would establish a new high-water mark of $70 million so, in the 

new fund, the assets would be worth only 1.0016$70 million = $70.11 million. This decrease in the value is 

due to the write-down of the high-water mark and is what creates the lock-in. 

How does a high-water mark contract compare to a simple, regular annual fee contract? Absent any 

incentive differences induced by the contracts, it is possible to characterize the trade-off between a higher 

regular annual fee and the performance fee that gives a fixed total fee value of F. This comparison should be 

made at the inception of the contract when S = H. Solving (11a) for the performance fee, k, gives 
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 (17) 

which, along with the regular annual fee, c, is the compensation required to make the total of the fees worth 

F. Assuming that investors are indifferent among contracts that cost the same, this fixed point provides a 

measure of the trade-off between the two fee types.  

 Table III shows the tradeoffs for a representative set of parameters for a benchmark case of a 

contract with a 20 percent performance fee, a 1.5 percent regular annual fee, and no superior performance. 

The table shows the fee structures that would have the same present value for various withdrawal rates and 

volatilities. For example, with a withdrawal rate of five percent, a volatility of 15 percent, and no liquidation, 

the benchmark incentive contract has the same cost as a one percent regular annual fee contract with a 
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performance fee of 31.24 percent or a 2 percent regular fee and a 9.44 percent performance fee. This trade-

off is valid at the inception of the contract (or whenever S = H); when the asset value is below the high-water 

mark, then the incentive contract has a smaller value so the performance fee, k, would have to be larger. 

However, the comparison is properly made at the inception of the contract when S is equal to H.  

 

 

As shown in the table, this trade-off is dramatically affected by the volatility of the assets and the 

possibility of liquidation, but not so much by the withdrawal policy w + . With asset volatility at 25 percent, 

the investor would be willing to pay a 27.62 percent performance fee to reduce the regular annual fee to one 

percent. If the contract were to be liquidated if the asset value fell to half the high-water mark, the investor 

would be willing to pay a 29.02 percent performance fee to reduce the regular annual fee to one percent. 

An important question for both the investor and the manager is how large a performance fee is 

justified by a given level of performance. The active manager's contribution will just merit its cost to the 

investor if the value of the investor’s claim equals S when the contract commences. Therefore, the excess 

return required to make the investor indifferent about entering into the compensation contract at the start of 

the fund is the solution to I(S, S) = S. Using (11c) to solve I(S, S) = S for k gives the maximum high-water 

performance fee justified by a particular α. This is 
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 (18) 

Equation (18) gives the maximum performance fee rate. Hedge funds may well charge less than this. If 

different hedge funds compete for the same capital, they may charge substantially less than the rates indicated here. In 

particular, if investment capital is a scarce resource relative to potential hedge fund managers, virtually all benefits of 

the hedge funds may go to the investors. Then, managers might be earning fees only just sufficient to draw them into 

the business. 

Table IV shows the maximum performance fee justified by a given  for different levels of asset 

volatility and withdrawal policies. The justified fee rate is decreasing in , since for a given rate, the value of 

the fee is larger for a larger volatility due to the option characteristic of the valuation equation. When the 

withdrawal rate increases, the performance required to compensate the investor at a given fee also increases. 

It may seem strange that better performance is required with higher withdrawal rates, but recall that α 

measures the extra return per unit time. With a higher withdrawal rate, the funds are managed for a shorter 

period of time on average, so a high per-period premium must be earned to offset the fee discount in value.  

 

Place Table III here 

Place Table IV here 
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For an asset volatility of 15 percent, the required excess return is 300 to 400 basis points to justify a 

performance fee of 15 to 20 percent. For an asset volatility of 25 percent the excess return required to justify 

a performance fee of 20 percent ranges from 350 to 750 basis points.14 This is certainly within the range of 

the performance provided by many hedge funds, at least in the early 1990s. Whether it is consistent with 

investors’ beliefs ex ante is more difficult to determine. 

 Although it seems natural to identify the manager’s contribution in terms of a positive additional rate 

of return (i.e., an alpha), this might not be the appropriate way of considering the benefits to investing in a 

hedge fund. The benefits expressed by alpha are linear in the capitalization of the fund, but hedge funds 

might in fact provide decreasing returns to scale. An alternative way of thinking of hedge funds is that they 

are firms that can capture a fixed amount of “arbitrage” profits in the economy. In other words, they have a 

limited net present value. The choice of how to finance this venture is a capital structure decision. From this 

perspective, the issuance of additional shares has a diluting effect on the outstanding claims — investors 

simply divide a fixed pie of arbitrage gains. In this framework, new money — i.e., a positive flow of funds 

into the account from new investors — has only limited attraction to the hedge fund manager. It benefits him 

only to the extent that he is unable to borrow the funds his activities require or to the extent that he fears 

bankruptcy through a margin call. 

 

IV. Extensions to the Model 

 The model developed here can be extended in many ways to capture additional features of interest. 

Many people have claimed that the convex payoff structure in hedge funds fees creates an incentive for the 

managers to take on excess risk and, in particular, to take on more risk when the asset value is substantially 

below the high-water mark. Carpenter (2000) has proven this is optimal behavior when the compensation is 

with an option-like payoff based on the portfolio’s terminal value. 

If the fee structure induces the manager to alter the portfolio, the volatility of the managed assets 

may not be constant but vary systematically with asset value. Rather than assume a particular functional 

form for the managed volatility, we adopt a simple but general approach that allows the managed volatility to 

have a wide variety of forms. We divide the range S  (bH, H) into N regions n1H < S < nH with 0 = b 

and N = 1. The volatility can be different in each region 

                                                           
14 If the hedge fund is compared to a passive investment with fees or other costs like an index fund, then a more 
appropriate measurement of required superior performance might be  less these fees. Typically, costs for index 
funds are very low. For example, Vanguard Index Trust has costs of less than 20 basis points. 



 
 18 

 1( , ) for    / .n n nS H S H       (19) 

If Carpenter’s (2000) analysis applies, then we should find  large for the very low regions of asset value; 

however, we permit any relations amongst the various values of the volatility. 

The value of the investor’s claim and the various components of the fees still satisfies the same 

pricing equation with the same general solution in each range. The parameter  is of course different in each 

solution. The lower boundary condition for the first region and the upper boundary condition for the highest 

region are as before. The extra boundary conditions are that the functions and their first derivatives must 

match across each change of region. For example, the boundary conditions for the total fees are  
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The boundary conditions for the performance fees alone are the same. The region-matching boundary 

conditions for the investor’s claim are also the same. The first and second boundary conditions for the 

investor’s claim are I1(bH, H) = bH and [IN /S  IN /H]|S=H = 0. 

The value of the annual fees, performance fees, total fees, and investor’s claims in the nth region are 
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The parameters n and n are given in equation (10) for the various values of n. The constants of integration 

are 
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This valuation of the fees permits an analysis of the incentives to manage volatility.  

When there is no lower boundary liquidation (0 = b = 0), then the solution to (21) shows that the 

value of fees is higher in all regions for larger volatilities. However, in this case, there is also no incentive to 

micro-manage the volatilities. The volatility in each region should be set as high as possible if the goal is to 

maximize the present value of future fees. 

When there is liquidation at low asset values (0 = b > 0), then volatility should be managed. In 

particular, since the fee value is zero at liquidation, the volatility should be reduced as the asset value drops 

near the liquidation level to ensure that liquidation does not occur. At higher asset values, a larger volatility 

should be adopted to increase the value of the performance fee based on the high-water mark (again 

assuming a goal of fee value maximization). This conclusion is inconsistent with that of Carpenter (2000) in 

which volatility goes to infinity as asset value goes to zero. 

For example, consider a hedge fund with two regimes; the volatility differs when the asset value is 

below or above 75 percent of the high-water mark ( = 0.75). If the withdrawal rate is w +  = five percent, b 

= 0.5, and the other parameters are as given in Table III, then the volatility should optimally be decreased to 

8.6 percent from 15 percent when the asset value drops into the lower regime. If the volatility regime 

changes at  = 0.8 or 0.7 instead, then the lower regime volatility should be set to 9.2 percent or 7.8 percent, 

respectively.  

A similar procedure can be applied if the withdrawal rate or liquidation probability, w or , changes 

with asset value or in response to performance. Of course, further analysis should be done to determine how 

investors might choose these parameters endogenously. 

We can also use this region-based method to determine the total cost of being invested in a series of 

hedge funds. As mentioned in footnote 12, the implicit cost of investing in a first hedge fund exceeds the 

present value of the fees paid to just that one fund if the money is to be withdrawn after poor performance 
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and invested into a second hedge fund. When this transfer is made, the high-water mark for the new fund is 

equal to the amount transferred, but the high-water mark of the fund from which the money has been 

withdrawn is higher, and probably substantially higher since the reason for withdrawal is poor performance. 

This step-down in the high-water mark is an additional cost facing the investor, because performance fees 

will be owed when the asset value rises above the high-water mark — something that occurs sooner with the 

lowered high-water mark. The investor is willing to “pay” this additional cost since he presumably no longer 

believes the second fund has an alpha that is sufficiently higher to justify it. 

Suppose money is withdrawn from the first fund and invested into a second if the asset value drops 

to b1H. Assume, for the moment, that the money will be withdrawn from this hedge fund and not reinvested 

if the asset value drops further to the fraction b2 of the new fund’s high-water mark. Then the present values 

generated by this second fund are just the solutions as given before. We will refer to the investor’s claim as 

I2(S, H; b2). The present value of the investor’s claim while in the first fund, I1(S, H), includes the step-down 

cost of resetting the high-water mark. The factor I1() is the solution to the standard pricing equation15 as 

well, with the boundary condition 

 1 1 1 2 2 1 1 2( , ; , ) ( , ; ) ,I b H H b b I b H b H b  (23) 

which is used in place of I(bH, H) = bH. The right-hand side of (23) is the present value of the claim on the 

second fund when the investment is transferred and high-water mark is reset equal to the value of the money 

transferred. 

The present value of the investor’s claim when invested in the first of two funds with the same 

parameters is  
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15 The withdrawal rate, costs, alpha, or other parameters can be different for the two funds. We use the parameters of 
the second fund to determine I2(). We use the parameters of the first fund in the partial differential equation to 
determine the total present value from both funds, I1(). The parameters of the second fund are captured in the total 
value through the boundary matching condition. 
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If the investor uses a series of more than two funds, then the same method is applied sequentially. 

The present value of the benefits of the final fund are determined in the usual way. The present value of the 

benefits of the last two funds are determined as just described with the boundary condition 

IN1(bN1H, H; bN1) = IN(bN1H, bN1H; bN). This procedure is repeated for all earlier hedge funds. In this case, 

In() represents the present value of the benefits of the nth and all subsequent funds. 

 

V. Incentives and New Money 

  Over the long term, the real compensation function of the manager depends on both the explicit 

contract and implicit relation between performance and capital inflows. Because the technology of hedge 

funds is different from that of mutual funds, the performance-flow relationship may potentially be different 

from that observed in the mutual fund industry. In a stylized framework in which the hedge fund manager 

identifies and exploits limited arbitrage-in-expectations opportunities, capital can be put to profitable use 

without incurring systematic risk only up to a point. Beyond that point, presumably the manager has no 

comparative advantage. A natural question is whether a performance fee structure might induce the manager 

to accept investment beyond the point at which the capital can be used efficiently. While a high regular 

annual fee and performance fee might tempt such behavior, it may be difficult for a manager to conceal the 

risk characteristics of the portfolio for long. Increasing systematic risk exposure by a hedge fund would 

presumably indicate that the limits to skill at pure arbitrage in expectations have been reached. Performance 

fees may exist to offset a possible negative relationship between performance and capital inflow. 

Do hedge funds take new money when they do well? If the manager’s technology were linear, then 

on balance, more money would be welcome at any time. If, instead, there is a declining schedule of 

profitable arbitrage opportunities, then new money would be accepted when the fund decreased in scale, 

rather than when it grew, at least for large funds. To test the hypothesis that hedge fund managers do not 

accept new money when they do well, we examine the relationship between flow of funds and past 

performance for hedge funds by regressing net fund growth on lagged return in cross section. If managers 

accept new money after a good year, and/or investors pull out of poorly performing funds, we would expect 

to find a positive regression coefficient. On the other hand, if managers refuse new money after a good year, 

and seek additional funding after a bad year, then we would expect to find a negative regression coefficient 

on past returns. We define net fund growth as the increase in net asset value of the fund due to the purchase 

of new shares, as opposed to the investment return of the fund. This requires us to make the simplifying 

assumption that new shares are purchased only at the beginning of the year — purchases during the year will 
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be interpreted as investment return.16 Another problematic issue is survivorship. Although we have defunct 

fund data, we must make some assumption regarding the fund outflow in the year of its disappearance. We 

address survival issues by assuming a 100 percent outflow in the year a fund closes. We control for year 

effects by performing the regression separately for each year, and also by including year dummies for the 

stacked regression. 

 

A. New Money Regression Results 

Besides estimating a single linear response, we also consider how the response differs depending 

upon past fund performance. Following Sirri and Tufano (1992) and Goetzmann and Peles (1997) we 

examine the differential response of new money to past returns via a piecewise linear regression. We 

separate fund return in cross section into quintiles each year, and allow the coefficients to differ across 

quintiles. We test for the equality of the coefficients across quintiles via a Chow test. The results for the 

single response regression are reported in the first panel of Table V, and the results for the piecewise 

regression are reported in second panel of Table V. The year-by year results for the piecewise regression are 

reported in Table VI. 

 

 

 The results from panel 1 indicate that new money responds negatively to past positive performance. 

The response differs across quintiles of lagged returns, however. The best and worst performers have quite 

different coefficients. Panel 2 shows that new money responds by flowing out of the poorest performers as 

one might expect. The positive sign of the regression coefficient for the first quintile indicates that flows in 

the subsequent period have the same sign as the returns in the preceding period. However, money also flows 

out of the good performers. Funds in the top quintile show a negative response to positive performance. 

These results are quite different from the pattern observed in mutual funds. Sirri and Tufano (1992), 

Chevalier and Ellison (1995) and Goetzmann and Peles (1997), for example, all find money flows into top 

performers and flows into poor performers as well. This is exactly the opposite of what we find for our hedge 

fund sample. The negative response to top performance we find in the hedge fund universe provides some 

support for the hypothesis that good performers may not readily accept new money.  

Although a Chow test rejects equality of the coefficients across the quintiles, the t-statistics on the 

smallest quintile in our sample are marginal at the 5 percent level, meaning we should be cautious about 

interpreting the positive coefficient as strong evidence of a negative response to poor performance. In fact, in 

                                                           
16 When we assumed that money flowed in at the end of the period, the results were essentially the same. 

Place Tables V and VI here 
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Table VI, the year-by-year regression results indicate that the pattern differs considerably over time. 

 

B. Sorting on Size 

Another approach to the issue of whether the technology of hedge funds is linear is to test whether 

larger funds continue to take new money. We can address this question simply by sorting on size, and then 

averaging a measure of new money. Table VII reports the results of this exercise. We break funds into size 

quintiles in the first period, and then we average the net growth of the fund in the following period for each 

quintile. We define growth slightly differently, under the assumption that money flows in at the end of the 

period. As in the previous test, we find this change makes no difference in our results. Table VII shows that 

the largest size funds have net cash outflows, while the smallest performers have net cash inflows. Unlike the 

flow of funds regressions above, this pattern is relatively consistent throughout the period, with negative 

flows for large funds and positive flows for small funds each year. The second panel of the table shows the 

results of t-tests for each group, annually as well as in the aggregate — the extreme quintiles have means 

different from 0. As in the previous test, this pattern is consistent with the story that well-capitalized funds 

avoid taking new money. It differs in that it is also consistent with the hypothesis that smaller funds raise 

capital. Since we did not sort on performance, many of the funds in the first quintile may be good performers 

and thus able to raise new money, or stop funds from flowing out.  

 

 

Taken together, the empirical tests suggest that hedge fund managers may behave differently from 

mutual fund managers with respect to accepting new money. While mutual funds demonstrate dramatic 

positive inflows into superior performers, this appears not to be the case with hedge funds. In addition, large 

funds do not seem to grow at a rate as high as smaller funds — even when growth is measured in dollar 

terms rather than percentage terms. We conjecture that this may be due to the limits of the investment 

strategies employed by hedge fund managers. To the extent that they engage in “arbitrage in expectations,” 

success creates its own limitations.  

 

VI. Conclusion 

Hedge funds are an interesting investment class with an unusual form of manager compensation. In 

this paper, we provide a closed-form expression for the cost of a hedge fund manager contract and examine 

its implications to both the manager and the investors. We also provide estimates of the typical parameter 

values for the equation. The high-water mark provision creates a distinct option-like feature to the contract. 

Our computed cost of the contract increases in the variance of the portfolio when the asset value of the fund 

Place Table VII here 



 
 24 

is not far below the high-water mark. As a result, the manager has an incentive to increase risk, provided 

other non-modeled considerations are not overriding.17  

Depending on the variance, the performance fee effectively “costs” the investors 10 to 20 percent of 

the portfolio. Including the regular fees, the total percentage of wealth claimed by the hedge fund manager 

can be between 30 and 40 percent. Investing with a hedge fund manager would only appear to be rational if 

he or she provided a large, positive risk-adjusted return in compensation. In particular, we find that rational 

investors would expect 200 to 500 basis points in additional risk-adjusted return (alpha) when they enter into 

a hedge fund contract. Interestingly, BGI report that alphas for hedge funds over the 1989 through 1995 

period are positive, and range from four to 8 percent annually. Consequently, hedge fund contracts may be 

priced about right. 

 How exactly are we to interpret these valuation formulas? They were derived by standard 

continuous-time pricing methodology. From the investors’ viewpoint, this can be interpreted as a Black-

Scholes hedging derivation, but generally the manager cannot do any form of delta hedging. Indeed, the very 

form of the contract is no doubt designed to solve some complex agency problem. We have argued, though, 

that it is probably best to think of the contract between the manager and the investor more as a way of 

financing the firm than as an incentive contract for the manager. In that light, then, the exact contract form 

will be a function of all of the different forces that impact corporate form, in addition to the usual culprits of 

moral hazard and observability. 

 Despite these caveats, though, the valuation formulas do determine the cost to the market of 

investing in the hedge fund, given any particular withdrawal policy. This permits us to derive the alpha 

required to offset this cost. Alpha, in turn, is a function both of the manager’s abilities and of the incentives 

implicit in the contract, so ours is a partial equilibrium analysis that takes a given contract form — the one 

prevalent in the market — and examines the required alpha generated. Any exercise that changes the 

parameters of the contract will generate a new required alpha. Candidate equilibrium contracts will be fixed 

points in which this unanalyzed mapping from incentive contracts to alphas generates the same alpha as the 

market cost of the contract, which we have derived. Furthermore, given the withdrawal policy, the valuations 

we obtain describe the market (or risk-neutral) value to the manager. This is appropriate for a firm that offers 

such a fund, but since the contract cannot be monetized without negating its incentive value, the actual value 

to a risk averse manager would be lower.  

In considering why high-water mark contracts exist in the hedge fund industry, we considered how 

                                                           
17 An obvious non-modeled feature is the effect of this increased risk on a risk-averse manager who cannot hedge or 
diversify away the increased risk. 
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hedge funds differ in terms of the product they offer. An analysis of the relative benefits of the regular 

annual fee vs. the performance fee to the manager suggests that high variance strategies and strategies for 

which the investors may pull out soon, lend themselves to high-water mark contracting. The relative value of 

the regular annual fee portion on the contract decreases as the time until the investor’s withdrawal decreases. 

Empirical evidence on the short half-life of hedge funds may explain why hedge fund managers choose to 

use high-water mark contracts. 

It has become nearly axiomatic in studies of the investment management industry that managers seek 

to increase the size of assets under management. This presumes, however, that the benefits to investment in 

the fund can be scaled up with the growth in net asset value. While our sample focuses on the off-shore 

hedge fund industry, there are important regulatory limits to growth in the on-shore hedge fund industry. 

Until 1996, the number of investors in a hedge fund was limited to 99. Recent regulatory changes have 

increased this limit to 499 under certain conditions, but even this limit is likely to effectively cap the growth 

in assets that a fund manager might expect. Hedge fund strategies are fundamentally different from “long” 

asset portfolio strategies, however. Large sectors of the hedge fund industry have nearly zero “beta” 

exposure. Many hedge funds use the invested money as margin for maintaining offsetting long and short 

positions. Hedge fund managers are made up of event arbitrageurs, global macro market and debt market 

speculators, pairs traders and opportunistic managers exploiting undervalued securities. They use leverage of 

all types to exploit these opportunities — from short-selling equities to sophisticated debt repurchase 

agreements. In this context, the dollar investment benefits the manager only to the extent that he is credit 

constrained in his strategy. By their very nature, arbitrages in expectations are not infinitely exploitable. 

Since it is not possible to directly investigate the relationship between scale and strategy payoff, we 

use flow of funds, return, and size data from the hedge fund industry over the period 1989 through 1995 to 

explore the issue of linear vs. non-linear returns to scale. Regression of net growth in fund assets on lagged 

returns indicates that, unlike the mutual fund industry, the hedge funds show a net decrease in investment, 

conditional upon past performance. We conjecture that this is due to the manager’s unwillingness to increase 

the fund size. A sort on fund size, however, shows that small funds tend to grow (net of returns), while large 

funds tend to shrink. 

This pattern may help explain the usefulness of the high-water mark compensation to the hedge fund 

manager. While mutual fund managers and pension fund managers can increase their compensation by 

growing assets under management, hedge fund managers cannot. Thus, they must explicitly build in benefits 

conditional upon positive returns, since they appear to resist net growth. 

The implications of these results extend beyond the issue of the cost of compensation within an 

important sector of the investment industry. The existence of high-water mark contracts may in fact be a 
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signal to investors that the returns in the industry are diminishing in scale. Option-like incentive contracts are 

scarce in the mutual fund industry and pension fund management industry, but are prevalent in the real estate 

sector, the venture capital sector, and the hedge fund sector. Perhaps the compensation structure itself is 

telling us that future returns in these asset classes depend crucially upon how much money is chasing a 

limited set of unique opportunities. 
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Table I 
Values of Fees and Investor’s Claim 

 
Value of fees and investor’s claim as a percentage of the asset value of the fund. Values are computed using 
the formulas in (11). Parameter values are r + c  g = 5 percent, k = 20 percent, c = 1.5 percent,  = 0,  = 
15 or 25 percent in left and right panels respectively, w +  = five or 10 percent in top and bottom panels, 
respectively. The liquidation point is b = 0, 0.5, 0.8 in the three sections. 
 

 

1
1

1
1

1 1

( , ) 1 ( ) [ (1 ) 1]
( , ) ( / )

(1 ) 1 [ (1 ) 1]

( ) [ (1 ) 1]
( / )

(1 ) 1 [ (1 ) 1]

( , ) ( / ) ( / )
( , )

(1 ) 1 [ (1

F S H w k k cb
f S H c S H

S c w k b k

b w k k cb
S H

k b k

P S H S H b S H
p S H k

S k b




 

  


 

   

 

  
   

  
 

 






 




  



     
         

    
      


 

  
( , )

( , ) ( , ) ( , )
) 1]

A S H
a S H f S H p S H

k S
  

 

 

 
For  = 0:  i(S, H) = 1  F(S, H)/S = 1  f(S, H) 

 
      b = 0 

 = 15%   w +  = 5%    = 25%   w +  = 5%   
S/H Regular Perform Total S/H Regular Perform Total 

 a(S, H) P(S, H) f(S, H)   a(S, H) p(S, H) f(S, H) 
1.0 20.1% 13.1% 33.1%  1.0 18.8% 18.6% 37.4% 
0.9 20.4% 11.6% 32.0%  0.9 19.1% 17.2% 36.3% 
0.8 20.7% 10.2% 30.9%  0.8 19.4% 15.8% 35.2% 
0.7 21.0% 8.8% 29.9%  0.7 19.8% 14.3% 34.1% 
0.6 21.4% 7.4% 28.8%  0.6 20.1% 12.8% 32.9% 
0.5 21.7% 6.1% 27.7%  0.5 20.5% 11.2% 31.7% 

       
 = 15%   w +  = 10%    = 25%   w +  = 10%   

S/H Regular Perform Total  S/H Regular Perform Total 
 a(S, H) P(S, H) f(S, H)   a(S, H) p(S, H) f(S, H) 

1.0 11.9% 8.7% 20.6%  1.0 11.4% 12.8% 24.2% 
0.9 12.1% 7.3% 19.3%  0.9 11.6% 11.4% 23.0% 
0.8 12.3% 5.9% 18.2%  0.8 11.7% 10.0% 21.7% 
0.7 12.4% 4.7% 17.1%  0.7 11.9% 8.6% 20.5% 
0.6 12.6% 3.6% 16.2%  0.6 12.1% 7.2% 19.3% 
0.5 12.7% 2.6% 15.3%  0.5 12.3% 5.9% 18.1% 
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Table I 

Values of Regular Annual Fees and Incentive Fees (cont) 
 
      b = 0.5 

 = 15%  w +  = 5%    = 25%   w +  = 5%   
S/H   Regular Perform Total   S/H   Regular Perform Total 

 a(S, H)  p(S, H)  f(S, H)    a(S, H) p(S, H)  f(S, H)  
1.0 17.30% 12.31% 29.61%  1.0 9.71% 13.62% 23.34% 
0.9 17.47% 10.82% 28.30%  0.9 9.74% 12.09% 21.82% 
0.8 17.22% 9.24% 26.46%  0.8 9.36% 10.29% 19.64% 
0.7 15.99% 7.40% 23.39%  0.7 8.24% 8.02% 16.27% 
0.6 12.14% 4.85% 16.98%  0.6 5.69% 4.91% 10.60% 
0.5 0.00% 0.00% 0.00%  0.5 0.00% 0.00% 0.00% 

       
 = 15%   w +  = 10%    = 25%   w +  = 10%   

S/H   Regular  Perform Total  S/H   Regular  Perform Total 
 a(S, H) p(S, H) f(S, H)   a(S, H) p(S, H) f(S, H) 

1.0 11.05% 8.54% 19.59%  1.0 7.46% 10.97% 18.43% 
0.9 11.16% 7.06% 18.22%  0.9 7.49% 9.45% 16.94% 
0.8 11.04% 5.65% 16.69%  0.8 7.22% 7.81% 15.03% 
0.7 10.34% 4.25% 14.59%  0.7 6.40% 5.94% 12.33% 
0.6 8.01% 2.64% 10.65%  0.6 4.47% 3.56% 8.03% 
0.5 0.00% 0.00% 0.00%  0.5 0.00% 0.00% 0.00% 
 

 
      b = 0.8 

 = 15%   w +  = 5%    = 25%   w +  = 5%   
S/H   Regular Perform Total   S/H   Regular Perform Total 

 a(S, H) p(S, H) f(S, H)   a(S, H) p(S, H) f(S, H) 
1.0 3.73% 5.03% 8.76%  1.0 1.28% 4.36% 5.64% 
0.9 3.09% 3.11% 6.20%  0.9 1.03% 2.52% 3.56% 
0.8 0.00% 0.00% 0.00%  0.8 0.00% 0.00% 0.00% 

       
 = 15%   w +  = 10%    = 25%   w +  = 10%   

S/H   Regular  Perform Total  S/H   Regular  Perform Total 
 a(S, H) p(S, H) f(S, H)   a(S, H) p(S, H) f(S, H) 

1.0 3.36% 4.61% 7.97%  1.0 1.23% 4.23% 5.46% 
0.9 2.79% 2.78% 5.57%  0.9 1.00% 2.43% 3.42% 
0.8 0.00% 0.00% 0.00%  0.8 0.00% 0.00% 0.00% 
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Table II 
Value of Regular Annual Fees, Incentive Fees and Investor’s Claim  

When Fund Has Superior Performance 
 
Value of fees and investor’s claim as a percentage of the asset value of the fund. Values are computed using 
the formulas in (11). Parameter values are: r + c  g = 5 percent, k = 20 percent, c = 1.5%,  = 0,  = 15 or 
25 percent in left and right panels respectively, and w +  = 5 or 10 percent in top and bottom panels, 
respectively. The liquidation point is b = 0, 0.5, 0.8 in the three sections. 
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b = 0 

  = 15%  w +  = 5%       = 25%  w +  = 5%      
S/H Regular Perform Total Investor S/H Regular Perform Total Investor

a(S, H) p(S, H) f(S, H) i(S, H) a(S, H) p(S, H) f(S, H) i(S, H)
1.0 30.9% 27.9% 58.8% 103.1% 1.0 28.4% 33.7% 62.1% 94.8%
0.9 31.4% 26.6% 58.1% 104.8% 0.9 28.9% 32.5% 61.4% 96.4%
0.8 32.0% 25.3% 57.3% 106.7% 0.8 29.5% 31.3% 60.7% 98.2%
0.7 32.6% 23.9% 56.5% 108.7% 0.7 30.0% 29.9% 60.0% 100.1%
0.6 33.3% 22.3% 55.6% 110.9% 0.6 30.7% 28.5% 59.1% 102.2%
0.5 34.0% 20.7% 54.7% 113.3% 0.5 31.4% 26.8% 58.2% 104.6%

 = 15%  w +  = 10%       = 25%  w +  = 10%      
S/H Regular Perform Total Investor S/H Regular Perform Total Investor

a(S, H) p(S, H) f(S, H) i(S, H) a(S, H) p(S, H) f(S, H) i(S, H)
1.0 15.1% 14.6% 29.7% 100.5% 1.0 14.3% 18.9% 33.2% 95.4%
0.9 15.3% 13.2% 28.5% 102.1% 0.9 14.6% 17.5% 32.1% 97.1%
0.8 15.6% 11.7% 27.3% 103.8% 0.8 14.8% 16.1% 30.9% 98.7%
0.7 15.8% 10.3% 26.1% 105.5% 0.7 15.1% 14.6% 29.7% 100.5%
0.6 16.1% 8.9% 25.0% 107.2% 0.6 15.3% 13.1% 28.4% 102.2%
0.5 16.3% 7.4% 23.8% 108.9% 0.5 15.6% 11.5% 27.1% 104.1%
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Table II 
Value of Regular and Incentive Fees and Shareholder’s Claim  

When Fund Has Superior Performance (continued) 
 

b = 0.5 
  = 15%  w +  = 5%       = 25%  w +  = 5%      

S/H Regular Perform Total Investor S/H Regular Perform Total Investor
a(S, H) p(S, H) f(S, H) i(S, H) a(S, H) p(S, H) f(S, H) i(S, H)

1.0 28.15% 26.18% 54.32% 101.97%  1.0 13.48% 20.88% 34.36% 92.60%
0.9 28.54% 24.86% 53.40% 103.68%  0.9 13.56% 19.38% 32.94% 94.18%
0.8 28.61% 23.24% 51.84% 105.37%  0.8 13.16% 17.36% 30.51% 95.80%
0.7 27.59% 20.83% 48.42% 106.76%  0.7 11.81% 14.37% 26.18% 97.44%
0.6 22.60% 15.86% 38.47% 106.74%  0.6 8.39% 9.43% 17.82% 98.96%
0.5 0.00% 0.00% 0.00% 100.00%  0.5 0.00% 0.00% 0.00% 100.00%

 = 15%  w +  = 10%       = 25%  w +  = 10%      
S/H Regular Perform Total Investor S/H Regular Perform Total Investor

a(S, H) p(S, H) f(S, H) i(S, H) a(S, H) p(S, H) f(S, H) i(S, H)
1.0 14.50% 14.34% 28.84% 100.16%  1.0 9.45% 15.29% 24.74% 94.16%
0.9 14.71% 12.90% 27.60% 101.81%  0.9 9.51% 13.79% 23.29% 95.72%
0.8 14.75% 11.38% 26.13% 103.38%  0.8 9.25% 12.00% 21.24% 97.25%
0.7 14.29% 9.62% 23.91% 104.67%  0.7 8.34% 9.67% 18.02% 98.67%
0.6 11.87% 6.96% 18.83% 104.91%  0.6 6.00% 6.22% 12.22% 99.78%
0.5 0.00% 0.00% 0.00% 100.00%  0.5 0.00% 0.00% 0.00% 100.00%

 
b = 0.8 

  = 15%  w +  = 5%       = 25%  w +  = 5%      
S/H Regular Perform Total Investor S/H Regular Perform Total Investor

a(S, H) p(S, H) f(S, H) i(S, H) a(S, H) p(S, H) f(S, H) i(S, H)
1.0 4.85% 7.26% 12.11% 97.59%  1.0 1.40% 4.95% 6.36% 96.45%
0.9 4.13% 5.03% 9.16% 99.10%  0.9 1.15% 3.01% 4.16% 98.13%
0.8 0.00% 0.00% 0.00% 100.00%  0.8 0.00% 0.00% 0.00% 100.00%

        
 = 15%  w +  = 10%       = 25%  w +  = 10%      

S/H Regular Perform Total Investor S/H Regular Perform Total Investor
a(S, H) p(S, H) f(S, H) i(S, H) a(S, H) p(S, H) f(S, H) i(S, H)

1.0 4.23% 6.43% 10.66% 97.80%  1.0 1.35% 4.79% 6.14% 96.56%
0.9 3.61% 4.34% 7.96% 99.27%  0.9 1.10% 2.88% 3.99% 98.22%
0.8 0.00% 0.00% 0.00% 100.00%  0.8 0.00% 0.00% 0.00% 100.00%
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Table III 
Regular Annual and Incentive Fee Trade-offs 

 
Incentive and regular annual fee combinations that have same value when the asset value is at the high-water mark, as given in equation (17). 
Parameter values are: r + c  g = 5 percent,  = 0,  = 15 or 25 percent and w +  = 5 or 10 percent, b = 0, 0.5, and 0.8 
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  b = 0   b = 0.5   b = 0.8  

w +  = 5%   w +  = 10%   w +  = 5%   w +  = 10%   w +  = 5%   w +  = 10%   

c  =15%  = 25%  = 15%  = 25%  = 15%  = 25%  = 15%  = 25%  =15%  = 25%  = 15%  = 25%
4.00% 25.62% 11.58% 21.33% 8.23% 16.53% 0.42% 16.64% 0.14% 0.96% 11.19% 0.65% 11.18%
3.75% 21.87% 8.88% 17.86% 5.76% 13.49% 2.19% 13.58% 1.93% 2.69% 12.03% 2.41% 12.03%
3.50% 17.94% 6.08% 14.26% 3.22% 10.33% 3.99% 10.39% 3.77% 4.46% 12.88% 4.20% 12.88%
3.25% 13.83% 3.19% 10.50% 0.60% 7.03% 5.84% 7.07% 5.64% 6.27% 13.74% 6.03% 13.74%
3.00% 9.54% 0.19% 6.59% 2.10% 3.59% 7.73% 3.61% 7.56% 8.11% 14.61% 7.91% 14.61%
2.75% 5.07% 2.91% 2.54% 4.87% 0.02% 9.67% 0.03% 9.52% 9.99% 15.49% 9.82% 15.48%
2.50% 0.41% 6.11% 1.67% 7.73% 3.70% 11.64% 3.70% 11.52% 11.91% 16.37% 11.77% 16.37%
2.25% 4.43% 9.42% 6.03% 10.67% 7.56% 13.66% 7.56% 13.57% 13.87% 17.27% 13.76% 17.26%
2.00% 9.44% 12.84% 10.53% 13.69% 11.56% 15.73% 11.57% 15.67% 15.87% 18.17% 15.80% 18.17%
1.75% 14.63% 16.36% 15.19% 16.80% 15.71% 17.84% 15.71% 17.81% 17.92% 19.08% 17.88% 19.08%
1.50% 20.00% 20.00% 20.00% 20.00% 20.00% 20.00% 20.00% 20.00% 20.00% 20.00% 20.00% 20.00%
1.25% 25.53% 23.75% 24.96% 23.28% 24.44% 22.21% 24.43% 22.24% 22.13% 20.93% 22.17% 20.93%
1.00% 31.24% 27.62% 30.06% 26.66% 29.02% 24.46% 29.01% 24.53% 24.30% 21.87% 24.38% 21.87%
0.75% 37.10% 31.60% 35.31% 30.12% 33.76% 26.76% 33.73% 26.87% 26.51% 22.82% 26.63% 22.82%
0.50% 43.11% 35.69% 40.70% 33.67% 38.63% 29.12% 38.59% 29.26% 28.77% 23.77% 28.94% 23.78%
0.25% 49.28% 39.90% 46.23% 37.32% 43.65% 31.52% 43.59% 31.70% 31.07% 24.74% 31.29% 24.75%
0.00% 55.60% 44.24% 51.90% 41.05% 48.81% 33.98% 48.74% 34.20% 33.42% 25.72% 33.68% 25.72%



 
 33 

Table IV 
Maximum Incentive Fee Consistent with a Given Level of Superior Performance 

 
The maximum incentive fee justified by a given level of superior performance as given in equation (18). Parameter values are: r + c  g = five percent, c = 
1.5 percent,  = 15 or 25 percent, w +  = five or 10 percent, and b = 0, 0.5, and 08.. 
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  b = 0    b = 0.5   b = 0.8  

w +  = 5%   w +  = 10%   w +  = 5%   w +  = 10%   w +  = 5%   w +  = 10% 

  = 15%  = 25%  = 15%  = 25%  = 15%  = 25%  = 15%  = 25%  = 15%  =25%  = 15%  = 25%
2.0% 7.33% 5.25% 6.70% 4.65% 6.98% 3.85% 6.49% 3.68% 4.00% 1.62% 3.94% 1.61%
2.5% 14.91% 10.71% 13.63% 9.47% 14.27% 7.87% 13.25% 7.50% 8.18% 3.27% 8.04% 3.25%
3.0% 22.69% 16.39% 20.77% 14.47% 21.83% 12.06% 20.26% 11.48% 12.54% 4.96% 12.33% 4.93%
3.5% 30.67% 22.27% 28.12% 19.65% 29.65% 16.42% 27.51% 15.61% 17.08% 6.68% 16.79% 6.64%
4.0% 38.82% 28.36% 35.65% 25.00% 37.70% 20.96% 34.98% 19.90% 21.82% 8.44% 21.43% 8.38%
4.5% 47.13% 34.64% 43.36% 30.52% 45.95% 25.68% 42.64% 24.36% 26.75% 10.23% 26.27% 10.17%
5.0% 55.58% 41.10% 51.22% 36.20% 54.38% 30.59% 50.49% 28.97% 31.89% 12.07% 31.30% 11.98%
5.5% 64.15% 47.75% 59.24% 42.05% 62.98% 35.68% 58.51% 33.76% 37.23% 13.94% 36.52% 13.84%
6.0% 72.84% 54.56% 67.38% 48.05% 71.71% 40.96% 66.68% 38.71% 42.78% 15.84% 41.94% 15.73%
6.5% 81.63% 61.54% 75.65% 54.21% 80.57% 46.44% 74.98% 43.83% 48.54% 17.79% 47.57% 17.66%
7.0% 90.51% 68.67% 84.03% 60.51% 89.52% 52.11% 83.40% 49.13% 54.52% 19.78% 53.40% 19.64%
7.5% 99.48% 75.95% 92.52% 66.96% 98.57% 57.99% 91.94% 54.60% 60.71% 21.81% 59.44% 21.65%
8.0% 108.52% 83.36% 101.10% 73.55% 107.70% 64.05% 100.57% 60.24% 67.13% 23.88% 65.70% 23.70%
8.5% 117.62% 90.91% 109.76% 80.26% 116.90% 70.32% 109.29% 66.06% 73.76% 25.99% 72.16% 25.79%
9.0%  † 98.58% 118.51% 87.11% † 76.78% 118.09% 72.05% 80.62% 28.15% 78.84% 27.93%
9.5%  † † 127.34% 94.08% † 83.44% 126.97% 78.22% 87.70% 30.35% 85.72% 30.11%

10.0%  † † 136.23% 101.16% † 90.29% 135.91% 84.55% 95.01% 32.59% 92.83% 32.34%
    

† transversality condition violated. 
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Table V 

Net Fund Growth and Lagged Returns, 1990 - 1995 
 
The table reports the results of two linear regressions of net fund growth on previous year returns. The growth 
in net asset value of fund i in year t, Nit , is defined as the new dollar cash flow into the fund (in millions) in 
the year following the return observation. It is calculated as Nit = NAVi,t1[(1+Git)/(1+Rit)  1], where NAVit is 
the fund net asset value in year t, Rit is the total return for fund i in year t, and Git is the percent change in net 
asset value for fund in the year. This assumes that money is only invested at the beginning of the year, and that 
reinvested dividends are defined as growth. The form of the regressions are: 
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Year effects (defined as differences from 1995) are captured by dummies Ij. Coefficients on returns are 
allowed to differ according to quintiles each year: Ri,t-1,q where coefficients 6 through 10 capture quintiles 1 
 
The table reports the results of two linear regressions of net fund growth on previous year returns. The growth 
in net asset value of fund i in year t, Nit , is defined as the new dollar cash flow into the fund (in millions) in 
the year following the return observation. It is calculated as Nit = NAVi,t1[(1+Git)/(1+Rit)  1], where NAVit is 
the fund net asset value in year t, Rit is the total return for fund i in year t, and Git is the percent change in net 
asset value for fund in the year.  This assumes that money is only invested at the beginning of the year, and 
that reinvested dividends are defined as growth.  The form of the regressions are: 
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Year effects (defined as differences from 1995) are captured by dummies Ij.  Coefficients on returns are 
allowed to differ according to quintiles each year: Ri,t-1,q where coefficients 6 through 10 capture quintiles 1 
 

Regression 1 Results 
                 coef  std.err  t.stat  p.value  
Intercept     -1.71    19.4   -0.08    0.92 
     1990      0.01    24.7    0.00    0.99 
     1991     10.56    23.4    0.45    0.65 
     1992     39.75    21.9    1.81    0.06 
     1993    -18.37    21.0   -0.87    0.38 
     1994    -16.83    21.1   -0.79    0.42 
   Return    -62.28    24.0   -2.60    0.00 

 
Multiple R-Square = 0.0306  N = 934 
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Regression 2 Results 

Intercept    -7.104    20.4 -0.3484  0.7276 
     1990    14.357    25.1  0.5709  0.5682 
     1991    18.254    23.4  0.7815  0.4347 
     1992    45.338    21.9  2.0695  0.0388 
     1993   -19.063    20.9 -0.9116  0.3622 
     1994    -0.585    22.4 -0.0261  0.9792 
Smallest 1  127.621    65.6  1.9450  0.0521 
         2   42.556   130.1  0.3272  0.7436 
         3   60.703    92.0  0.6601  0.5094 
         4    9.453    61.4  0.1541  0.8776 
Largest  5 -112.260    27.9 -4.0292  0.0001 

  
Multiple R-Square = 0.0491   

Chow test of coefficient equality: F = 5.23, 3,872 p-value = .998 

 

 




