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I. Introduction

This paper studies the relationship between city-level house-price dynamics and
homeowner borrowing patterns. We ask the following question: is it the case that in cities
where homeowners are more leveraged--in the sense of having higher loan-to-value (LTV)
ratios--house prices respond more sensitively to city-specific economic shocks, such as changes
in per-capita income?

In addressing this question, we take up an old and recurring theme in the literature on
asset-market fluctuations, a theme which centers on the role of collateralized borrowing in
shaping the behavior of asset prices. In its most general form, the proposition is that when
buyers finance the purchase of assets with collateralized borrowing, this can lead the prices of
these assets to become more sensitive to exogenous changes in fundamentals. Specific versions
of this story have been told in the context of a variety of markets, including those for stocks
(Garbade (1982)); corporate asset sales (Shleifer and Vishny (1992)); land (Kashyap, Scharfstein
and Weil (1990), Kiyotaki and Moore (1995)); as well as the market which we examine here,
that for houses (Stein (1995)). The common mechanism in all of these papers is that the ability
to borrow is directly tied to asset values, which imparts an upward tilt to asset-demand
schedules. That is, over some regions, a fall in asset prices can actually lead to reduced asset
demands, because it impairs the ability of potential buyers to borrow against the assets--this is

the key amplifying effect.'

'This direct two-way feedback--from asset prices to borrowing limits back to asset prices--
distinguishes this particular class of models from the rest of the broader, and much larger
literature on credit constraints and economic activity. Prominent examples of this latter body
of work include which Fisher (1933) and Bernanke and Gertler (1989).
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Our decision to focus on the housing market is motivated by three considerations. First,
as we argue below, housing represents an asset category where--in contrast to say, stocks--it
seems a priori plausible to posit that the effect of leverage on prices might be large. A second
motivation is that if house prices are in fact significantly impacted by leverage, the ultimate
economic consequences are likely to be important. Topel and Rosen (1988) show that movements
in prices exert a powerful influence on housing starts, and it is well-known that housing starts
in turn play a major role in business-cycle fluctuations. Finally, from a practical perspective,
city-level housing markets offer good data for the sort of test we wish to conduct: the markets
are arguably distinct from one another; we can get reasonable price indices; and there is a good
deal of variation across cities in homeowner leverage.

The remainder of the paper is organized as follows. In Section II, we articulate in more
detail the theory we are testing. Section III describes our data set. Section IV contains our
principal empirical results, and Section V subjects these results to a range of robustness checks.

Section VI concludes.

II. Theory

While the general story about collateralized borrowing and its effect on asset prices
sounds straightforward, there are some subtleties involved in applying it to the housing market.
It is perhaps easiest to see the nature of these subtleties by comparing the housing market to the
stock market. In the stock market, the familiar argument is that when speculators buy stocks
on margin, this creates the potential for destabilizing "pyramiding/ depyramiding" effects. The

chain goes as follows: first, an initial negative shock to fundamentals knocks down prices. At



reduced price levels, highly-levered speculators are force to dump their shares in order to meet
margin calls; this forced selling in turn further depresses prices, leading to more forced selling,
and so on.

Now try telling this same story, substituting "homeowner with a mortgage" for
"margined-up speculator". One difference is immediately apparent. When house prices fall,

the homeowner is not forced to sell his house, no matter how low his LTV ratio sinks; a typical

mortgage loan does not have a margin-call feature.” Thus a leveraged homeowner who has
been hard-hit by a decline in house prices always has the option to sit tight, thereby having no
effect on housing demand or supply.

So why then does homeowner leverage have any implications for house-price
fluctuations? The model in Stein (1995) provides one possible answer. The model is one of
repeat buyers--families who already own a home but who have reasons to want to move (e.g.,
new job, better schools, etc.) These families are never forced to sell their homes under adverse
conditions, but may choose to if the gains from moving are large enough. In particular, at any
level of house prices, families can be divided into three groups: 1) "unconstrained movers"; 2)
"constrained movers"; and 3) "constrained non-movers".

Families in the first group are sufficiently wealthy that financial constraints have no effect
on their behavior. Thus for them, housing demand is a decreasing function of price, and they
perform a stabilizing role. Families in the second group have an intermediate level of wealth,

and face binding financial constraints. In equilibrium, they each choose to sell their old house

’However, a homeowner who does not move will face difficulty in refinancing his existing
mortgage at lower rates if his LTV ratio falls too far. See Caplin, Freeman and Tracy (1993)
for evidence that this effect is economically important.
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and buy a new one, but the new one is smaller than they would like, because they do not have
enough money for a larger downpayment. It is this second group that plays the crucial
destabilizing role in the model, because their net demand for housing is an increasing function
of price: if house prices were to rise, a constrained-mover family would be able to realize more
from the sale of their old house, and use this to make a downpayment on a larger new house.
Finally, families in the third group are so wealth-constrained that in spite of the potential gains
from moving, they are better off sitting tight, as discussed above. Thus they neither buy nor
sell, and have no effect at all on house prices.3

The key implication that follows from this line of reasoning is that in order for leverage
effects to have meaningful consequences for house prices, there must be a relatively high ratio
of constrained movers to unconstrained movers in the population. This occurs when a large
fraction of homeowners are packed into a narrow range of "high" LTV ratios, where "high"
represents a value--perhaps 80% or so--where downpayment constraints begin to become
binding. Thus in testing the theory empirically, we would ideally like a measure of leverage at
the city level that captures this "packing" concept. That is, something like the median LTV ratio
in a city is not the most theoretically desirable measure; it would be better to have something
like the percentage of homeowners with LTV’s in excess of 80%.

Subject to this "packing" condition being met, simulations in Stein (1995) suggest that
the impact of fundamental shocks on house prices can be greatly magnified relative to the

benchmark case of no financial constraints. The reason that leverage can matter so much in the

3Although they have no effect on equilibrium prices in this model, constrained-non-mover
families are central to understanding another important housing-market phenomenon: the fact that
trading volume is strongly correlated with prices.
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housing market is that the potential for stabilizing arbitrage is limited. Again, the contrast with
the stock market is instructive. In spite of its surface appeal, the stock-market story of margin
"pyramiding/depyramiding" has been subject to a great deal of skepticism.* The root of this
skepticism is the idea that stabilizing arbitrage should be relatively easy in the stock market: all
it takes to cut off a downward leverage-induced spiral in stock prices is a small set of relatively
risk-tolerant arbitrageurs who are not credit-constrained. In contrast, this basic arbitrage
argument has much less force in the housing market: if house prices begin to drop, it is unlikely
that a small set of arbitrageurs will buy up a large chunk of the housing stock, because unlike
with equities, there are obvious diminishing returns to owning more than one house.’

Before proceeding, we should highlight two caveats. On the conceptual front, while the
model in Stein (1995) is useful in motivating our tests, and giving some qualitative guidance on
the choice of variables, it also suffers from a crucial weakness for our purposes, in that it is
static. Thus all the model really predicts is that prices will, in some timeless sense, react
"more" to fundamental shocks in high-leverage cities; it is silent on the dynamic nature of the
adjustment process. In other words, the model provides no guidance for thinking about whether
any price discrepancies between otherwise identical high- and low-leverage cities ought to open

up quickly or slowly in response to fundamental shocks, be long-lived or eventually decay away,

*To get a feel for the debate over whether margin borrowing destabilizes stock prices, see,
e.g., the exchange between Hardouvelis (1990) and Hsieh and Miller (1990).

’Similarly, Shleifer and Vishny (1992) offer a reason why arbitrage will have limited
stabilizing effect in the corporate asset sales market: those potential buyers who are most likely
to be unaffected by adverse shocks to a given industry, and hence to be financially unconstrained
in a downturn, are industry outsiders, who simply cannot extract as much value from the assets
in question. See Pulvino (1995) for evidence from the airline industry that supports this view.
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etc. Since our empirical work must inevitably confront these dynamic issues, we cannot claim
that we are disciplined by a fully articulated theoretical model.

In terms of statistical inference, our biggest potential pitfall arises out of the fact that any
measure of leverage at the city level, no matter how well it corresponds to the underlying
theory, is endogenous. To see how this might cause problems, consider the following alternative
story, which we label the "emerging-city hypothesis".® The premise of this story is that some
cities are in the process of undergoing fundamental transitions. Moreover, such transitions are
purported to have two distinct effects. First, they are accompanied by increased migration into
the city. This migration in turn impacts city measures of leverage; for example, it is plausible
that newcomers to a city will buy homes with higher loan-to-value ratios, perhaps because they
tend to be younger and thus have accumulated less wealth.’

Second, for cities in the process of transition, current economic shocks such as changes
in per-capita income contain more information about future growth prospects. Consequently,
forward-looking asset prices such as house prices should rationally respond by more to these
economic shocks. If these two assertions are both correct, there will be an induced correlation
between city measures of leverage and the sensitivity of house prices to income shocks, even if
leverage plays no causal role. We do our best to distinguish between this emerging-city

alternative hypothesis and our leverage-based hypothesis in Section V.C.

We thank Anil Kashyap for pointing out this alternative hypothesis to us.

’Indeed, as we will see below, the data support the idea that increases in a city’s population
growth are associated with higher levels of homeowner leverage.

6



III. Data Sources

Our data on borrowing patterns at the city level come from the American Housing Survey
(AHS) for 44 metropolitan areas between 1984 and 1994. The AHS is administered jointly by
the Bureau of the Census and HUD. Each city is survey approximately once every four years;
every year 11 cities are surveyed. The cities surveyed are Anaheim, Atlanta, Baltimore,
Birmingham, Boston, Buffalo, Chicago, Cincinnati, Cleveland, Columbus, Dallas, Denver,
Detroit, Fort Worth, Hartford, Houston, Indianapolis, Kansas City, Los Angeles, Memphis,
Miami, Milwaukee, Minneapolis, New Orleans, New York, Norfolk, Northern NJ, Oklahoma
City, Philadelphia, Phoenix, Pittsburgh, Portland, Providence, Riverside, Rochester, Salt Lake
City, San Antonio, San Diego, San Francisco, San Jose, Seattle, St. Louis, Tampa, and
Washington.

In each city survey, data from several thousand randomly selected households are
obtained. Among other questions, the AHS asks homeowners whether they have one (or more)
mortgage(s), and what the monthly payments and other terms of the mortgage(s) are. Using the
owner-reported terms of the mortgage, the AHS calculates the principal remaining on the
mortgage; using this estimate of the principal and what the owner estimates to be the market
value of the property, the AHS then calculates LTV ratios.?

Drawing on the summary statistics published by the AHS, we are able to obtain several
different measures of leverage at the city level. The first, which we call PACK, is the fraction

of all owner-occupants with LTV ratios exceeding 80%. We use 80% as a cutoff because it is

*Homeowners’ estimates of the value of their own home, while biased upwards, do not
appear to be related to the characteristics of the owner, the house, or the local housing market.
See Goodman and Ittner (1992).



a standard benchmark for "excessive" LTV ratios, used for example to determine private
mortgage insurance requirements. As discussed above, the PACK measure probably comes
closest to capturing the relevant theoretical construct in Stein (1995)--namely the extent to which
a city has a large fraction of the population "packed” into a narrow range of high LTV’s.

One potential problem with PACK is that its value might be quite sensitive to any errors
homeowners make in estimating the value of their homes. In light of this concern, we also work
with two other measures which are likely to be more robust to such errors: YESMTG, the
fraction of all owner-occupants having a mortgage of any size; and MEDIAN, the median LTV
ratio among those owner-occupants who have a mortgage.

Table 1 gives some basic summary statistics for our three leverage measures. On average
across the entire sample, 66% of homeowners have mortagages. Among these mortgage
holders, the median LTV ratio is 52%. Of all homeowners, 14% have LTV’s exceeding the
80% threshhold. Fortunately for our purposes, there is also a good deal of variation across cities
in the leverage measures. For example, the PACK variable ranges from a min of 3% in
Northern New Jersey in 1986 to a max of 35% in Denver in 1989. Similarly, the median LTV
ranges from a min of 24% to a max of 75%, with the same two cities representing the extreme
points.’

The bottom half of Table 1 also investigates the extent to which our three leverage
measures are correlated with one another. The correlation between PACK and MEDIAN is very

high, at .89. PACK is also quite correlated with YESMTG, with a coefficient of .46. The

°For New York City in 1986, leverage was so low that the AHS did not report either
MEDIAN, or the data needed to construct PACK. We thus omit this observation, except when
using the YESMTG measure of leverage.



weakest correlation is between MEDIAN and YESMTG, at .30.

The AHS-derived leverage measures are only available for each city at four-year
intervals. Other metropolitan-area variables are available annually. For house prices, we use
the Conventional Mortgage Home Price Index, jointly created by researchers at Freddie Mac and
Fannie Mae using repeat-sales prices from mortgage transactions.'® For population and income
per capita, we use data from the Bureau of Economic Analysis. In all cases, we deflate nominal
variables by the aggregate US CPI index to obtain real values, and compute annual changes by
taking log differences. Table 1 also provides some summary statistics for our data on house
prices, demographics and income.

Given that we wish to exploit the annual data that we have on house prices, income and
demographics, the once-every-four-year nature of the AHS survey represents a substantial
weakness. There are two basic approaches that we can take to deal with this problem. In most
of our analysis, we use a "stale data" method: we run annual regressions, and in each city-year
use for a leverage variable the most recent value which we have for that city. This means that
at any point in time, we can have a leverage measure that is as much as three years out of date.
Because the staleness of the data effectively amounts to measurement error, we would expect
that this approach would yield downward-biased estimates of the impact of leverage on house-
price dynamics--i.e., our estimates using this approach are likely be too conservative.

In an effort to mitigate this potential bias, we also experiment with an alternative

%One concern with this sort of repeat-sales price index is that it may generate price changes
that are spuriously positively correlated over time. This does not pose too much of a problem
for the particular sort of tests that we conduct below, but it may badly confound other related
analyses--e.g., attempts to measure the volatility of house prices. See Section IV.C below for
a full discussion of these issues.



"projected data” method. The idea here is to use the annual series that we do have available to
create annual projected values of our leverage variables, and to use these projected values in
place of the stale data. As one would expect, this method tends to boost our estimates of the

importance of leverage.

IV. Empirical Results
A. A Benchmark Model of House-Price Dynamics

Our ultimate goal is to see how house-price dynamics vary across cities with different
measures of homeowner leverage. But before we can do this, we need to select a benchmark
model of city-level house-price dynamics. Ideally, this model should capture in a simple and
robust way three key features of house prices that have been repeatedly documented in prior
empirical work: 1) prices respond to contemporaneous economic shocks; 2) there are short-run
"momentum” effects; and 3) there is a long-run tendency for "fundamental reversion".!

Table 2 details our search for a benchmark specification. There are six columns. In
each one, we regress annual house price appreciation at the city level--denoted by dP--on some
combination of the following six right-hand-side variables: the contemporaneous change in per-
capita income dI,, and two of its lagged values, dl, and dI,; two lagged price appreciation
terms, dP,, and dP,,; and the start-of-period ratio of price to per-capita income, P,,/I,,. All the
regressions also include fixed effects for each year and each city, so that we are always working

with deviations from both: national averages in any year; and long-run city averages. (The data

!'See, e.g., Case and Shiller (1989, 1990), Cutler, Poterba and Summers (1991), Poterba
(1991) and Abraham and Hendershott (1994) for empirical models of house-price dynamics.
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strongly reject the hypothesis that these year and city dummy variables do not belong).

Column (1) shows that in a univariate regression, the elasticity of prices with respect to
contemporaneous income is about .8, This univariate regression achieves an adjusted R? of .34.
In columns (2)-(5), we begin adding in the other variables. These tend to reduce the coefficient
on the contemporaneous income term dI,, but substantially enhance the explanatory power of the
regression. Column (5) shows that when all six variables are used simultaneously, the adjusted
R? rises to .74. However, in this regression, only three variables--dl, dP,,, and P, /], ,--are
statistically significant. The other variables are apparently subsumed by these three.

This suggests that we can do almost as well with a more parsimonious specification which
uses only the three most important variables from column (5). This sparer regression is run in
column (6). As can be seen, there is no loss in explanatory power to speak of--the adjusted R®
remains at .74. The coefficient on dI, is .356; that on dP,, is .495; and that on P,,/I,, is -.195.
This three-variable model captures nicely and simply the three features of house prices alluded
to above: 1) sensitivity to contemporaneous shocks (the dI, term); 2) short-run momentum (the
positive dP,, term); and 3) long-run fundamental reversion (the negative P, /I, term).

To illustrate this point, Figure 1 depicts the impulse response of house prices to a
permanent one-percent increase in per-capita income, using the parameter estimates from column
(6) of Table 2."> As can be seen from the figure, the first year’s effect on house prices is .36

percent. This increase then feeds positively into the next year’s prices both by raising the lagged

’Preliminary analysis suggests that income shocks at the city level are in fact permanent--
i.e., that income roughly follows a random walk. In particular, when we run the change in
income on the city and year dummies and two lags of the change in income, the coefficients on
these first two lags are 0.13 (t-stat = 1.3) and 0.02 (t-stat = 0.3) respectively.
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price change term and lowering the price-to-income term. After about four years, the
adjustment is complete, so that house prices have risen one percent and are back in line with
income levels."

From this point forward, we use the three-variable specification in column (6) of Table
2 as our baseline. Everything that follows asks in one way or another whether some or all of

the coefficients in this simple model are related to the measures of leverage.

B. The Impact of Leverage

Table 3 presents a first test of our central hypothesis. We begin with the three-variable
specification, and add a single interaction term, given by dI,*DEBT,,,, where DEBT,, is a once-
lagged leverage measure. In column (1) we use PACK as the leverage measure; in column (3)
we use YESMTG; and in column (5) we use MEDIAN. In words, we are asking if prices are
more sensitive to contemporaneous income shocks in high-leverage cities.

As can be seen from the table, the answer to this question appears to be yes. Whichever
measure of leverage is used, the interaction terms are always positive and statistically significant.
Moreover, the magnitude of the leverage effect is quite large in economic terms. This is
perhaps easiest to see by comparing the impulse response of house prices to an income shock

for cities with different leverage levels. This is done in Figure 2. The figure uses the parameter

BBy including the lagged price-to-income ratio on the right-hand side of the equation, we
are implicitly imposing the assumption that the long-run elasticity of prices with respect to city-
specific income shocks is one. Empirical evidence in Poterba (1991) suggests that this is not
unreasonable. Note, however, that because we have city and year dummies, we do allow for:
1) different cities to have different average price-income ratios (perhaps due to variations in land
availability, etc.); and 2) general trends in national price-income ratios (perhaps due to changes
in the tax code, demographics, etc.).
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estimates from column (1) of Table 3, and compares a city with the 10th percentile value of
PACK (which is approximately 5%) to a city with the 90th percentile value of PACK (which
is approximately 25%).

The figure depicts a dramatic difference in the implied reaction of the two cities toa 1%
income shock. In the high-leverage city, prices are up by .64 % in the first year, as compared
to only .19% in the low-leverage city. By the third year, the corresponding cumulative price
movements are 1.23% and .68%. Thus in the high-leverage city, prices actually overshoot their
new long-run value by a substantial margin. This overshooting reaches a peak in the fourth
year, when the price increase hits 1.29% in the high-leverage city, before turning around.

As a slight variation on the specifications in columns (1), (3), and (5) of Table 3, we also
tried including the lagged measure of leverage DEBT,, itself in the regression as an additional
control variable. This is done in columns (2), (4) and (6) of the table. To some extent,
leverage represents the outcome of an endogenous choice on the part of borrowers and lenders.
If these agents are forward-looking, they may be more willing to enter into high-LTV loans
when house prices are expected to rise. Thus one might expect higher values of leverage to
predict higher price appreciation. Indeed, for all three of our measures, high leverage today is
positively correlated with future price appreciation; this conditional correlation is strongest (and
either statistically significant or close to it) for those two measures that directly capture high
LTV ratios, PACK and MEDIAN. However, for our purposes the important point is that
including this extra variable in the regression does not materially change the estimated
coefficients on the key dI*DEBT,, interaction term.

One concern with the regressions in Table 3 is that they are very tightly parametrized.
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First of all, they allow only the dI, coefficient to vary with leverage, and force the dP,, and
P, /1, coefficients to be constant. Second, they impose a linear relationship between the
leverage measures and the dI, coefficient. Since some of these restrictions may not be
warranted, we experiment in Table 4 with a much more loosely specified version of the same
basic test. We now divide our sample up into quartiles, sorted on the leverage variable DEBT,,,
and run separate versions of the benchmark regression from column (6) of Table 2 for each
quartile. The table reports the results for the top and bottom quartiles, using sorts based on each
of our three definitions of leverage.

Three basic conclusions emerge from Table 4. First, prices still seem to respond more
sensitively to income shocks in high-leverage cities: the coefficient on dI, is always substantially
larger in the high-leverage quartile. Moreover, even with the loss in statistical power that this
method entails, the difference is strongly significant for the YESMTG measure of leverage, and
marginally significant for the PACK measure. Second, there is much less of a discernible
pattern across quartiles in terms of the coefficients on dP_, and P,,/I.,. For example, the
coefficient on dP,, is about the same across quartiles when we use PACK; is higher in the high-
leverage quartile when we use YESMTG; and is lower in the high-leverage quartile when we
use MEDIAN.

Finally, consistent with these first two observations, the regressions in Table 4 yield
impulse response functions that look quite similar to those implied by the regressions in Table

3. This is illustrated in Figure 3, which plots the impulse responses for the high and low

14



quartiles according to our PACK measure of leverage." The only noteworthy difference from
Figure 2 is that while the high-leverage city still reacts much faster to an income shock, it no
longer overshoots its new long-run value. Overall then, the two types of specifications point

to the same basic conclusions.

C. Implications for House-Price Volatility?

At first glance, it might appear that the regression results in Table 3--wherein high-
leverage cities have a higher coefficient on dI--would imply that the volatility of house prices
is greater in these cities. However, this simple intuition is not generally correct. It does hold
in the special case where the regression coefficients on dP,, and P,/I,, are equal to zero; in this
univariate case with no dynamics, a greater sensitivity to the one driving variable dI, is obviously
equivalent to greater volatility (assuming that this driving variable itself follows the same process
across different cities).!> But when the coefficients on dP,, and P,,/I, are non-zero, one can
show that there is not necessarily any direct relationship between the coefficient on dI, and the
volatility of house prices.

This result can be better understood by reference to Figure 2. In this figure, we see what
might be termed sluggish reaction for the low-leverage city, in the sense that it takes prices

several periods to adjust to an income shock. Now loosely speaking, to the extent that

"“Figure 3 is more or less directly comparable to Figure 2, because the midpoints of the
bottom and top quartiles in Figure 3 are the 12.5th and 87.5th percentiles respectively, whereas
in Figure 2 we defined low and high leverage as the 10th and 90th percentiles respectively.

This simple case is essentially what emerges out of the theoretical model in Stein (1995).
Because the model is a static one, there is a direct correspondence between sensitivity to
contemporaneous fundamentals and volatility.
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increasing the coefficient on dI,, accelerates the reaction without going so far as to generate "too
much” overshooting, it can actually lead to a less volatile price series.

Consistent with this line of reasoning, we find little direct empirical evidence in support
of the hypothesis that house prices are more volatile in high-leverage cities. For example, when
we regress the absolute house-price change in a city on our various measures of city leverage
(as well as on the city and year dummies), we obtain point estimates that are very close to zero
and statistically insignificant.

How should one interpret the fact that leverage seems to make house prices more
sensitive to fundamentals, yet not more volatile? Although one can tell a variety of economic
stories, we should caution that this phenomenon might also be simply the outcome of
measurement error in our house-price indices.'® As Case and Shiller (1989) emphasize, the
way that repeat-sales type indices are constructed can induce spurious positive serial correlation
in house-price changes. In other words, the positive coefficient on dP,, that we document in our
regressions--and hence the sluggish reaction that we portray, e.g., for the low-leverage cities in
Figure 2--may be partially an artifact of the data, and not a true characteristic of house prices."’

Similarly, our failure to find significant differences in house-price volatility across high
and low-leverage cities may also be due to the artificially smoothed nature of our house-price

series.  Indeed, if measurement error in the house-price indices is a problem, it is

'*In the conclusion, we discuss one possible story, rooted in the idea that housing-market
participants are irrational and have a tendency--absent leverage effects--to underreact in the
short-term to news about fundamentals.

"However, it should be pointed out that even after correcting for this spurious correlation,
Case and Shiller (1989) still find some residual tendency for sluggish reaction in house prices.
They interpret this as evidence of market inefficiency.
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straightforward to argue that we are better off doing as we have been in Tables 3 and 4, and
trying to make inferences about the sensitivity of prices to fundamentals, as opposed to

inferences about the volatility of prices."

V. Robustness Issues

Next, we investigate the extent to which our results are robust to several variations in
estimation technique. The tests we conduct below represent modifications of our more tightly-
parametrized specification from Table 3. We have also examined the analogous modifications
of the looser specification in Table 4; as one might expect based on the comparisons above,

these yield very similar conclusions, so in the interests of brevity, we do not report them.

A. Qutliers

Table 5 checks whether the results in Table 3 are due primarily to a few influential
outliers. We sort the observations on both dP, and dI,, and discard the top and bottom one
percent of the realizations for these two variables. As can be seen from Table 5, this actually
results in a fairly substantial increase in the dI*DEBT,, interaction coefficients in both the
PACK and MEDIAN-based specifications. The point estimates in the YESMTG case are
somewhat reduced, but still statistically significant. In sum, it seems clear that our results are

not due to a handful of outliers, but rather reflect the central tendencies of the data.

"®In a univariate regression of dP, on dI,, measurement error in P, would cause no bias at all
in the estimated coefficient, since it is on the left-hand side of the equation.
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B. Correcting for Stale Leverage Data

As noted above, the AHS survey occurs only once every four years for a given city, so
that in our work with annual data, we often have outdated measures of leverage. Thus far we
have more or less ignored the problem, using the stale data with no adjustments. We now try
to do better. One approach is to construct an annual proxy for leverage using the four-year AHS
data and other data that we have available annually. In doing so, we do not want to simply
interpolate the four-year data, since this could potentially make the constructed leverage variable
at any point in time contain information about future price movements."

Instead, for the approximately 110 city-years in which we do have fresh measures of
leverage, we run a "kitchen sink” first-stage regression of leverage on the start-of-period price-
to-income ratio, as well as on current and once-lagged values of: house price changes; growth
in income per capita; and population growth. Using the estimated coefficients from this
regression, we then can construct an annual projected leverage measure for each city and year.
The advantage of this approach is that the projected leverage measure at any time t now only
contains information available at that time.”

Table 6 shows the results of the kitchen sink regressions, for each of our three leverage
measures. With seven explanatory variables, the adjusted R*’s range from .31 to .46. Many

of the right-hand-side variables are statistically insignificant, but three emerge quite clearly as

To see why, suppose we proxy for PACK in year t+2 by averaging observations of PACK
at t and t+4. The value of PACK at t+4 may contain information about price movements after
t+2--e.g., if a sharp price rise in year t+3 reduces LTV’s in subsequent years.

2Except, of course, to the extent that the regression coefficients themselves are based on
data from the entire sample period.
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important: 1) lagged income growth, which has a negative net effect on leverage; 2) population
growth, which has a positive net effect; and 3) the price-to-income ratio, which has a negative
effect. The positive population-growth effect is particularly noteworthy, as it lends some
credence to the "emerging-city” hypothesis discussed above--cities that are experiencing
abnormally high levels of inward migration do seem to have higher homeowner leverage. We
will return to this point shortly.

In Table 7, we re-run the regressions of Table 3, but substitute in our projected leverage
measures for the actual stale data. As one might have expected based on the idea that we are
fixing a measurement error problem, the coefficients on the key dL*DEBT,, term increase in
all six specifications. In many cases, the magnitude of this increase is quite substantial. For
example, in the column (1) specification using the PACK measure, the coefficient of interest
rises from 2.27 in Table 3 to 3.03 in Table 7, an increase of approximately 33%. Figure 4
redoes our impulse response comparison from Figure 2, now using the newly estimated
coefficients from column (1) of Table 7. The implied differences between the high- and low-

leverage cities are now even more pronounced than before.

C. Addressing the Emerging-City Hypothesis

While all the results to this point are consistent with the hypothesis that leverage has a
causal impact on house-price dynamics, there is also an alternative interpretation, based on the
emerging-city hypothesis. Recall that the idea here is that there are some transitioning cities
which have two key traits: 1) they are experiencing above-average population growth, which

leads to higher measures of leverage; and 2) their shocks to per-capita income are relatively
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more informative about long-run city prospects.

We now make a couple of attempts to distinguish between our leverage-based hypothesis
and this alternative. One approach is to assume that the extent to which a city can be
characterized as "emerging" is more or less fixed over the 10-year duration of our sample
period. If this identifying assumption is correct, we can completely control for the emerging-
city phenomenon, by using a city fixed-effects approach--i.e., by only looking at the effects of
within-city variations in leverage, and dummying out across-city variations.?!

We implement this approach in Table 8. The specifications are the same as in Table 3,
except that we allow each of the 44 cities to have its own coefficient on dI,. Thus if some cities
are more "emerging" than others over the entire sample, and hence have house prices that are
more sensitive to income shocks, this will now be picked up in the city-specific dI, coefficients,
and not in the dI*DEBT,, interaction term. As it turns out, this does not reduce the interaction
coefficients. In fact, in five of six cases, the interaction terms increase relative to Table 3, in
some cases by quite a bit. Naturally, by removing all the across-city variation in our leverage
measures, we reduce the precision of our estimates. Still, the interaction coefficients remain
statistically significant in three of the six specifications.

One objection to this methodology is that the "emerging" characteristic is not fixed for
cities over the entire 10-year sample period. For example, a city that was not emerging in 1984

may begin to emerge in 1990. If this is the case, things become more difficult. Because we do

211t should be emphasized that the city fixed effects that we have in mind here are above and
beyond those already in the baseline model. In other words, we have already allowed the
average degree of price appreciation to vary city-by-city; now we are proposing to allow the

sensitivity of prices to income to also vary city-by-city.
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not have perfectly exogenous instruments for leverage, the best we can do is to control directly
for any observable variables that are likely to proxy for the extent to which a city is emerging.
One such candidate variable that we have already discussed is population growth.

In Table 9, we run a horse race which effectively asks: are our previous interaction
results truly due to leverage effects, or merely to the fact that leverage is correlated with
population growth, which is in turn a proxy for "emergingness"? The regressions are similar
to those in Table 3, with the following modifications. In columns (1), (3) and (5), we add a
second interaction term, dI,*dPOP,,, where dPOP, is defined as a city’s population growth in
the year from t-1 to t. In columns (2), (4) and (6), we also add dPOP,, by itself. Thus we treat
the dPOP variable exactly symmetrically to the DEBT variable, and let the data tell us which
one better explains variation in the coefficient on dI,. The answer is clear-cut. The interaction
terms involving dPOP,; are completely insignificant, while those involving DEBT, , are almost
exactly identical to the ones in Table 3.

Overall, Tables 8 and 9 are good news for the proposition that leverage exerts a causal
influence on house-price dynamics. Of course we recognize that because we do not have perfect
instruments for leverage, the possibility remains that this inference is muddled by some as-yet
unspecified endogeneity problem. But to the extent that we have been able to formulate two
concrete and testable versions of an alternative hypothesis--i.e., the emerging-city hypothesis--

this particular explanation of our findings has been shot down.

V1. Conclusions

Our empirical results are compactly summarized by the sort of impulse responses
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depicted in Figure 2. The reaction of house prices to income shocks is markedly different across
high- and low-leverage cities. In high-leverage cities, our baseline estimates suggest not only
that prices react quite quickly to an income shock, but also that the magnitude of the reaction
is so large that it entails a substantial temporary overshooting of prices relative to their new-long
level. In contrast, the price reaction in low-leverage cities is much more gradual, and there is
no overshooting to speak of. These differences are robust to a range of variations in estimation
technique. Moreover, to the best of our ability to sort it out, it appears that the relationship
reflects causality running from leverage to house prices, as opposed to a spurious byproduct of
the endogeneity of our city-level measures of leverage.

These results are consistent with the broad spirit of recent theoretical models that
emphasize how collateralized borrowing can make asset prices more sensitive to fundamental
shocks. At the same time, the results also serve to underscore weaknesses in some of the
existing models. In particular, the empirical phenomenon documented in this paper is an
inherently dynamic one: as can be seen in Figure 2, the price gap between a high- and low-
leverage city widens in the first couple of years after an income shock, and then gradually
narrows after that. In contrast, the model of the housing market in Stein (1995) is static, and
thus cannot capture this dynamic adjustment process. Thus one clear direction for future
research involves building explicitly intertemporal models of house prices that can both
accomodate leverage effects and at the same time generate empirically plausible price dynamics.

In this regard, there are two quite different approaches that one might take. On the one
hand, one might try to stick within the confines of a fully rational model that--as in Kiyotaki and

Moore (1995)--incorporates both intertemporal considerations and collateralized borrowing. It
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is not yet clear to us at this point how far such a model will be able to go in terms of
rationalizing the specific kinds of impulse responses seen in Figure 2.

Alternatively, one might superimpose leverage effects on top of a "behavioral” model
of house-price dynamics. That is, one might begin by accepting the interpretation of Case and
Shiller (1989, 1990), Cutler, Poterba and Summers (1991), and many others, who suggest that
the short-run momentum and long-run fundamental reversion seen in house prices reflects an
irrational speculative phenomenon. The question would then be how homeowners’ debt positions
either temper or amplify these baseline speculative inefficiencies. Interestingly, in this sort of
model, there might be cases where leverage actually has a net beneficial effect on housing-
market efficiency. For example, if the gradual price adjustment seen in low-leverage cities
reflects the fact that market participants systematically underreact in the short run to news about
fundamentals, then to the extent that homeowner leverage accelerates the reaction of prices, it

might be helping to make the market more efficient.
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Table 1: Summary Statistics, 44 cities, 1985-1994

Description Mean | Std Min Max
Dev

House Prices
DNOMPRICE Nominal Price Change 0.03 0.05 -0.11 10.27
DCPI Inflation (National CP1, Year 0.04 0.01 0.02 0.05

Average)
DP Real Price Change -0.01 }0.05 -0.13 10.23
Mortgage
PACK Percent with L/V > 8 0.14 0.07 0.03 0.35
YESMTG Percent Having MTG 0.66 0.08 0.44 0.80
MEDIAN MEDIAN of all MTGs 0.52 0.12 024 075
Demographics
and Income
DNOMINC Nominal Change in Inc Per Cap | 0.05 0.02 -0.03 |0.12
Dl Real Change in Inc Per Cap 0.01 0.02 -0.05 ]0.07
DPOP Change in Population 0.01 0.01 -0.01 |0.07

Correlation Matrix
PACK YESMTG

YESMTG 0.46 1
MEDIAN 0.89 0.30




Table 2: Real House Prices and Real Income

(D ) () (4) () (6)

DI, 0813 0484 0298 0268 0426 0356
(5.05) (3.17) (249) (198) (332) (3.49)

DI, 0.553 0296  0.161
(3.17) (1.79)  (1.42)
DI, 0.275 -0.038  -0.105
(2.22) (033)  (1.31)
DP,, 0737 0718 0530  0.495

(837) (833) (7.19) (9.59)

DP,, -0.165 -0.179 -0.003
(2.166) (2.88)  (0.06)

P/, -0.220 -0.195
(6.83)  (8.08)

No. of Obs 418 330 330 330 330 374
Adj. R2 0.34 0.43 0.64 0.65 0.74 0.74

The dependent variable is DP,, the change in the log of the median house price in year t in city j,
deflated by the national consumer price index. DI, is the change in the log of the per capita
income in year t in city j, deflated by the national consumer price index. P,/ is the ratio of the
median house price to per capita income in year t in city j.

All regressions include city and year dummies.

Robust t-statistics in parenthesis.



Table 3:  Debt Regressions
DEBT =
PACK

DI, 0.077  0.088
(0.47)  (0.54)

DI *DEBT,, 2268 1784
(2.45)  (1.96)

DEBT,, 0.071
2.31)

DP,, 0.516  0.510
(9.61)  (9.84)

P/, 0192  -0.188

(7.98)  (8.04)

Implied Avg 0.39 0.39
Slope on
D],

Number of Obs 370 370
Adjusted R2 0.74 0.74

DEBT =
YESMTG

-1.451
(2.13)

2.687
(2.62)

0.500
(9.82)

-0.189
(8.26)

0.32

374
0.75

-1.436
(2.03)

2.666
(2.49)

0.010
(0.13)

0.501
(9.77)

-0.189
(8.25)

0.32

374
0.75

DEBT =
MEDIAN
0373 -0.338
(1.06)  (0.95)
1460 1332
(2.24)  (2.03)
0.039
(1.88)
0.526  0.521

(9.45)  (9.47)

0192  -0.190
(8.02)  (8.06)

0.41 0.41
370 370
0.74 0.74

The dependent variable is DP,, the change in the log of the median house price in year t in city j,
deflated by the national consumer price index. DI, is the change in the log of the per capita
income in year t in city j, deflated by the national consumer price index. P_,/1, ,is the ratio of the

median house price to per capita income in year t-1 in city j.

All regressions include city and year dummies.

Robust t-statistics in parentheses.



Table 4: Debt: High vs. Low

DEBT = DEBT = DEBT =
PACK YESMTG MEDIAN

HIGH LOW  Diff HIGH LOW Diff HIGH LOW Diff

DI, 0489 0.039 045 0477 -0215 069 0267 0001 027
(2.23)  (0.31) (1.77) (2.24) (1.64) (2.77) (1.49) (0.01) (0.92)
DP,, 0398 0376 002 0708 0330 038 0360 0510 -0.15
(2.68) (9.21) (0.14) (7.08) (532) (3.21) (2.08) (7.08) (0.80)
P/, 0028 -0.145 0.12  -0.211 -0.112 -0.10 -0.003 -0214 021

(0.19)  (5.62) (0.79) (3.52) (3.54) (147) (0.02) (6.29) (1.45)

No. of Obs 92 92 90 91 92 90
Adjusted R2  0.53 0.89 0.75 0.80 0.55 0.80

The data are sorted on the debt variable, and split into quartiles. The top and bottom quartiles are
used.

The dependent variable is DP,, the change in the log of the median house price in year t in city j,
deflated by the national consumer price index. DI, is the change in the log of the per capita
income in year t in city j, deflated by the national consumer price index. P_/I, ,is the ratio of the
median house price to per capita income in year t-1 in city j.

All regressions include city and year dummies.

Robust t-statistics in parentheses.



Table 5: No Outliers

DEBT =
PACK
DI, -0.237
(1.64)
DI *DEBT,,  3.054
(3.47)
DEBT,,
DP,, 0.459
(8.81)
P, /L, -0.160
(8.18)

Number of Obs 354
Adjusted R2 0.75

-0.236
(1.64)

2.714
(3.11)

0.051
(1.86)

0.456
(8.97)

-0.158
(8.24)

354
0.75

DEBT =
YESMTG

-1.008
(1.92)

1.757
(2.21)

0.444
(8.81)

-0.161
(8.42)

358
0.75

-0.980
(1.77)

1.716
(2.05)

0.017
(0.23)

0.445
(8.83)

-0.161
(8.44)

358
0.75

DEBT =
MEDIAN
0819 -0.793
(2.74)  (2.64)
1963  1.857
(3.61)  (3.39)
0.028
(1.48)
0.466  0.463
(8.83)  (8.85)
0.159  -0.158

(8.10)  (8.16)

354 354
0.75 0.75

The top and bottom 1% of observations sorted on DP, and DI, have been dropped.

The dependent variable is DP,, the change in the log of the median house price in year t in city j,
deflated by the national consumer price index. DI, is the change in the log of the per capita
income in year t in city j, deflated by the national consumer price index. P, /1, is the ratio of the

median house price to per capita income in year t-1 in city j.

All regressions include city and year dummies.

Robust t-statistics in parentheses.



Table 6: First Stage Regressions

DEBT =

PACK

Coef
Constant -0.04
DP, -0.09
DP,, -0.22
DI, -0.20
DI, -1.97
DPOP, 5.05
DPOP,, -3.02
P /1, -0.10
Number of Obs 109
Adjusted R2 0.46

T-stat

-0.38
-0.52
-1.31
-0.69
-6.50

4.40
-2.62
-3.24

DEBT =
YESMTG

Coef
0.45
-0.25
-0.23
0.02
-3.29
8.07
-4.77
-0.08

109
0.43

T-stat

3.34
-0.87
-0.70

0.05
-7.03

4.98
-2.97
-1.67

DEBT =
MEDIAN

Coef

0.40
-0.17
0.06
-0.49
-0.20
1.21
1.98
-0.10

110
0.31

T-stat

476
-0.90
0.34
-1.21
-0.61
1.04
1.75
-3.38

The dependent variable is the debt measure. DP, is the change in the log of the median house

price in year t in city j, deflated by the national consumer price index. DI, is the change in the log
of the per capita income in year t in city j, deflated by the national consumer price index. P, /1, is
the ratio of the median house price to per capita income in year t-1 in city j. DPOP, is the change

in the log of the city’s population.



Table 7: Projected DEBT

DEBT = DEBT = DEBT =
PACK YESMTG MEDIAN
DI, 0.113  -0.124 -1.600 -1728  -0.668  -0.652
(0.50)  (0.53) (142) (2.02) (137)  (1.27)
DI, *DEBT,, 3.029 3099 2888  3.062 1884 1854
(230)  (2.23)  (1.72) (180) (2.14)  (2.01)
DEBT,, -0.009 -0.033 0.004
(0.24) (0.55) (0.17)
DP,, 0517 0514 0499 0498 0521  0.523
(9.78)  (9.40)  (9.80)  (9.68)  (9.65)  (9.27)
P/, 0.190 -0.191 -0.191 -0.193 -0.193  -0.193

(8.09)  (793) (8.17) (8.18)  (8.15)  (8.08)

Number of Obs 374 374 374 374 374 374
Adjusted R2 0.75 0.75 0.74 0.74 0.75 0.75

The debt measure is based on linear regressions of debt on income, population, price, and price-
to-income variables.

The dependent variable is DP,, the change in the log of the median house price in year t in city j,
deflated by the national consumer price index. DI, is the change in the log of the per capita
income in year t in city j, deflated by the national consumer price index. P, /1, is the ratio of the
median house price to per capita income in year t-1 in city j.

All regressions include city and year dummies.

Robust t-statistics in parentheses.



Table 8: City-Specific Income Terms

DEBT =
PACK
D], * %
DI, *DEBT, 3.950
(2.37)
DEBT,,
DP,, 0.513
(7.67)
P/, -0.182
(7.80)
P-value for H,: City-
specific DI, are zero  0.62
Number of Obs 370
Adjusted R2 0.74

* %

2.900
(1.46)

0.048
(1.29)

0.509
(7.87)

0.177
(7.84)

0.77

370
0.74

DEBT =
YESMTG

* X

1.824
(0.43)

0.510
(7.89)

-0.180
(1.78)

0.92

374
0.74

* %k

2.829
(0.53)

-0.034
(0.35)

0.509
(7.80)

-0.180
(7.77)

0.92

374
0.74

DEBT =
MEDIAN

% %

3.854
(3.12)

0.509
(7.79)

-0.183
(7.87)

0.49

370
0.74

** indicates that the coefficient on DI, is allowed to vary across the 44 cities.

“P-value for H, City-specific DI, are zero” is the significance level from an F-test, testing the

hypothesis that the coefficient on DI, varies across cities.

The dependent variable is DP,, the change in the log of the median house price in year t in city j,
deflated by the national consumer price index. DI, is the change in the log of the per capita
income in year t in city j, deflated by the national consumer price index. P, /1, is the ratio of the

median house price to per capita income in year t-1 in city j.

#* %k

3.862
(3.08)

-0.000
(0.01)

0.509
(7.81)

-0.183
(7.87)

0.58

370
0.74

All regressions include city and year dummies, and city-specific coefficients on DI,.

Robust t-statistics in parentheses.



Table 9:

DI,

DI, *DEBT,

DEBT,,

DI, *DPOP,

DPOP,,

DP,

P/,

Number of Obs
Adjusted R2

The dependent variable is DP,, the change in the log of the median house price in year t in city j,
deflated by the national consumer price index. DI, is the change in the log of the per capita
income in year t in city j, deflated by the national consumer price index. P, /1, is the ratio of the
median house price to per capita income in year t-1 in city j. DPOP, is the change in the log of the
city’s population.

DEBT =
PACK

0.072
(0-2)

2.241
(231)

0.565
(0.10)

0.516
(9.62)

-0.192
(7.94)

370
0.74

0.077
(0.45)

1.718
(1.78)

0.072
2.31)

1.313
(0.23)

-0.012
(0.06)

0.510
(9.96)

-0.188
(8.00)

370
0.74

Population Growth and Debt

DEBT =
YESMTG

-1.535
(2.25)

2.868
2.71)

-2.700
(0.50)

0.500
(9.82)

-0.189
(8.16)

374
0.75

All regressions include city and year dummies.

Robust t-statistics in parentheses.

-1.537
(2.14)

2 883
(2.56)

0.004
(0.06)

-3.059
(0.55)

0.054
(0.29)

0.498
(9.84)

-0.189
(8.12)

374
0.75

DEBT =
MEDIAN

-0.375
(1.06)

1.481
(2.15)

-0.622
(0.11)

0.526
(9.47)

-0.192
(7.96)

370
0.74

-0.339
(0.96)

1.320
(1.89)

0.039
(1.86)

0.388
(0.06)

-0.024
(0.13)

0.521
(9.60)

-0.190
(7.99)

370
0.74



Figure 1:Dynamic Response of Price to Income
Without Estimated Debt Effect, Table 2, Column 6

0 T T T T T

01 2 3 4 5 6 7 8 9 10 11 12 13
Years



Figure 2:Dynamic Response of Price to income
Estimated Debt Effect From Table 3, Column 1
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Figure 3: Dynamic Response of Price to Income

Estimated Debt Effect From Table 4, Columns 1 and 2
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Figure 4:Dynamic Response of Price to Income
Estimated Debt Effect From Table 7, Column 1
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