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1 Introduction

This paper is concerned with the nature of information arrival in financial markets, its
implications for the pricing of derivative securities and empirical methods for estimating in-
formation arrival. Understanding the nature of the information arrival process is important
for several reasons. First, several studies have documented that the nature of information
flow to the market affects the temporal patterns and moments of trading activity and re-
turns. In particular, intradaily patterns in the return variance, the moments of trading
activity measures, and the probability of (non) trading have been related to information
arrivals (Berry & Howe 1994, Penman 1987). For instance, Torbensen (1993) demonstrates
that the information flow interpretation of stochastic volatility is compatible with formal
models of market microstructure in which informational asymmetries and exogenous liquid-
ity needs motivate trade. The model he develops is consistent with the “mixed distribution
hypothesis” for daily returns since it is governed by the mixture of distributions characteriz-
ing respectively the return innovations associated with the arrival of news and the interdaily
flow of information arrivals (Epps and Epps 1976, Tauchen and Pitts 1983).

Second, the nature of the information arrival process is an important consideration in
the specification of the stochastic process that underlies movements in asset prices. Different
specifications of the stochastic process governing asset prices have important consequences
for the pricing of derivative assets. For instance, the celebrated Black—Scholes model with
continuous sample paths has been shown to misprice options (Black 1975 and MacBeth and
Merville 1979).! Furthermore, considerable empirical evidence has shown that asset price
dynamics follow a discontinuous sample path that radically departs from the continuous
process underpinning the Black and Scholes (1973), and Merton (1973) models (Brown and
Dybvig 1986, Jarrow and Rosenfeld 1984).

Given the limitations of geometric Brownian motion, several authors have proposed op-

1The Black—Scholes model frequently predicts prices that are lower than those actually observed on call
options that are deep out of the money and near to expiration.



tion pricing models based on diffusion-jump processes or semimartingales (Merton 1976 and
Cox and Ross 1976).2 The jumps are postulated to come about due to the arrival of discrete
information governed by a Poisson process. Cox and Ross (1976) derive their model under
the assumption of a pure jump process by no—arbitrage arguments and the market is as-
sumed complete. However, as was demonstrated by Naik and Lee (1990), in Merton’s (1976)
model the market is incomplete due to discrete jumps with random sizes. Contingent claims
can no longer be priced by the no-arbitrage condition in the Harrison and Kreps (1979)
sense. The jump risk is assumed to be nonsystematic and therefore not priced implying
that the market portfolio has no jumps. However, Jarrow and Rosenfeld have shown that
the market portfolio contains jumps. Naik and Lee subsequently proposed an option pricing
formula for European options on the market portfolio, an index. Ahn (1992) extended the
model to price European options on individual stocks which jump when the market jumps.
Bates’(1991) lucid analysis, which is also related to that of Naik and Lee (1992), recognizes
the importance of systematic jump risk, and presents an interesting model and empirical
results.

An important limitation of existing jump-diffusion models is the implicit assumption
that the rate of arrival of information is constant (the mean of a Poisson distribution is
a constant). A constant mean implies that discrete information arriving in the market is
homogeneous. In this paper we explore the implications for pricing options of relaxing this
restrictive and unrealistic assumption. We assume that jumps are caused by the arrival of
heterogeneous information—extraordinary news items (financial, political, company based or
industry wide) announcements about shifts in fiscal and monetary policy or even the result
of bursting speculative bubbles.

In this paper we propose a more general diffusion—jump process where the jump process

is a doubly stochastic Poisson process (Snyder and Miller 1991).> We use the diffusion

2The diffusion jump processes have sample paths that are continuous from the right and have left hand
limits.
3Beaglehole (1993) analyzes a similar probler: in which he assumes that the stochastic intensity parameter



doubly—stochastic Poisson process to price stock, index and currency European options.?
We demonstrate that our model is able to reduce some of the pricing biases, or “smile effects”
generated by option pricing models with diffusion—jump processes. Key to obtaining this
result is the assumption that the intensity parameter is driven by a random variable that
follows a gamma distribution. This assumption yields a negative-binomial jump process. As
a result, the equilibrium risk-free interest rate is lower in our model than in the standard
diffusion—jump process. To see this, note that the mean of a negative-binomial distribution
is larger than that of a Poisson distribution. Which in turn implies that the jump risk—
premium of the negative-binomial case is larger than that of the Poisson case. Hence, a
lower equilibrium risk-free interest rate is obtained under the negative-binomial case. We
also analyze the effects of the jump risk—premium via the effect of the correlation coefficient
of the underlying security’s logarithmic jump with the market portfolio’s logarithmic jump,
and we compare the results to those of Ahn (1992).

Finally, we turn to an empirical question. How would one go about estimating information
arrival? Existing methods of characterizing information flows have several limitations. For
instance, to document patterns of information arrival, Berry and Howe (1996) construct an
index of public information flow to financial markets based on the number of news releases by
Reuter’s News Service per unit of time. This index measures the “quantity” of information
(in terms of the intensity of information arrivals). The authors find that this measure of
information arrival is nonconstant, displaying seasonalities and distinct intraday patterns.
However, this finding is not based on the estimation of information arrivals. Furthermore,
because of the aggregate nature of the index, no statements can be made about the “type”
of information (in terms of the specific content of information).

The maximum likelihood method that we develop in this paper is able to characterize

both the quantity and type of information flow. The use of maximum likelihood methods

is a linear function of stochastic volatility, which in turn is driven by a mean—reverting diffusion process.
4The analysis generalizes the work of Naik and Lee (1990) and Ahn (1992). Our work on the capital asset
pricing model is closely related to Merton (1971, 1973), Breeden (1979) and Bates (1991), inter alia.



for the estimation of point processes was suggested by Vere-Jones (1975). The consistency
and asymptotic normality of the ML estimates was proven by Ogata (1978).

Our treatment differs from these seminal papers in several ways. First, we focus on
estimation of a discrete time DSPP. Second, we consider a model with a parameterized mean
value with covariates. Third, we propose a method for approximating the log-likelihood
function. The procedure developed requires numerical integration. Statistical properties of
the likelihood approximation and the estimator are analyzed by asymptotic and simulation
methods.

The rest of the paper is organized as follows. In Section 2 we develop the general option
pricing model and the CAPM. In Section 3 we discuss the negative-binomial case and the
effects of the jump risk on the option price. In Section 4 we propose a maximum likelihood
estimator of a DSPP and provide simulation evidence on the performance of the estimator

in finite samples. Section 5 concludes. The appendices contain proofs.

2 Pricing Options with Heterogeneous Information

Arrival

In this section we assume the jump risk in the underlying process is systematic (or priced),
and discrete information is heterogeneous. This implies the jump risk is undiversifiable. Let
(Q, F, P) be a probability space, where Q2 denotes a set of states of nature, F denotes the
o-algebra of subsets of €2, and P denotes the probability measure on F . The filtration,
{Ft : t > 0}, to which the set of random variables is adapted defines the information set
available to the agents. The filtration is right- continuous and P—complete as in Back (1991).

In this economy we have continuous trading and agents have identical endowments and
preferences. There is a single consumption good. The investor has two types of investment
opportunities, a risky financial security and a risk—free security. The returns from the risky

security follow a diffusion-jump process. The consumer splits his wealth between consump-



tion and investment in each of the securities, so as to maximize expected utility subject to
his budget constraint.

Next, we define a doubly—stochastic Poisson process (Snyder and Miller 1991, page 341).

DEFINITION 1 (Doubly-Stochastic Poisson Process): {N(t) : t > 0} is a doubly—stochastic
Poisson process with intensity process {y(t,z(t)) : t > 0} if for almost every given path of the

process {z(t) : t > 0}, N(-) is a Poisson process with intensity function {y(t,z(t)) : t > 0} .

Put differently, a doubly-stochastic process {N(t) : ¢ > 0} is conditionally a Poisson
process with intensity {v(¢, z(t)) : t > 0} given {z(¢) : ¢ > 0}. The unconditional distribution
for the doubly— stochastic Poisson process is found by unconditioning over the distribution
of the information process of the intensity parameter. Then, the unconditional probability

that the number of jumps occurring in [0,t] is j, is given by

Pr[N(t) =j] = E(Pr[N(t)=jlz(s): 0 5 s < t])
= [T ([ ts.atonas) exp (= [2tatoas)ap), )

where P(z) is the probability distribution function for z and IE denotes expectation. If
v(+) is integrable, {N(t) : t > 0} is referred to as a self-exciting counting process with
intensity process {\(t),t > 0} (Snyder and Miller 1991, Theorem 7.2.1, page 348). In this
case A(t) = IE[y(t,z(¢))|N(s) 1 0 < s < t].

Let the intensity parameter or mean of the unconditional distribution (1) be A\. We are
assuming that the unconditional distribution can be evaluated. Later we present examples
where (1) is easily evaluated. There is an underlying risky security whose price, S, follows a

diffusion—jump process of the form

%‘2 = (a — Ak)dt + adZ(t) + ydN (), (2)

where {Z(t) : t > 0} is a standard Wiener process, {N(t) : ¢ > 0} is a doubly-stochastic
Poisson process, unconditioned on the intensity function, with mean X such that Pr(dN(t) =

1) = Adt and Pr(dN(t) = 0) = 1— Adt, dZ(t) and dN(t) assumed to independent. The mean
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of the rate of occurrence of jumps is A . It turns out that In{1+y) ~ ®(u — 1/262, 62), where
®(-) denotes a normal distribution. The expected proportionate jump change in the stock
price if the jump occurs is denoted k. The standard deviation of stock returns conditional
on the jump not occurring is ¢ and « is the instantaneous mean of log returns. The process
in (2) is geometric Brownian motion most of the time, but A times a year the price jumps
discretely by a random amount (percentage) y. Following Gihman and Skorokhod (1972)

the stock price at time ¢t when that at time s(¢ > s) is known is given by

S(t) = S(s)exp <(a — —;—02 — X&)t —s)+a(Z(t) - Z(s)) + gt: yi) . (3)
i=Ny+1

Next, we consider the pricing of a European call option when the underlying process is a
diffusion—jump with doubly-stochastic Poisson jumps. We assume there are no transaction
costs and taxes, no penalties for short sales, and the market operates continuously. Merton’s
(1976) model is not market—complete in Harrison and Kreps (1979) sense as demonstrated
by Naik and Lee (1990). To achieve completeness we need to value the option in equilibrium
where a representative agent maximizes expected utility subject to some budget constraint.

In equilibrium any arbitrage profit has zero value since marginal utility is zero. Stock,

currency and index (market) options will be priced.

2.1 Pricing Stock Options

A stock option pricing model with non—diversifiable jump risk was developed by Ahn (1992).
In this section we extend the model by allowing heterogeneous discrete information, implying
that the distribution of the number of jumps is given by the doubly-stochastic Poisson
process given in (1) above. The linchpin to the model is the fact that the jumps in the
market are correlated with jumps in the individual stocks.

Consider a simple economy whose information structure is as described above. In this
economy there is a risk—averse representative agent who maximizes lifetime expected utility

subject to a budget constraint. We assume the representative agent maximizes logarithmic



utility U(t) = In(C(¢)). Then, the agent’s objective is to solve the following stochastic

optimal control problem
J(W(t)) = max E, [ [ e M n(C(s))ds| | (4)

subject to
AW = [(aa — r) + )W () — C(2)] dt + aW (£)odZ (t) + aW ()yudN(2), (5)

where J is the indirect utility function, W (t) is wealth at time ¢, C(¢) is the consumption
flow at time ¢, 3 is the rate of time preference, a is the amount invested in a risky security
and y,, is the jump in wealth arising from the jump in the security price.

The Hamilton—-Bellman—-Jacobi equation is

0 = max [e‘f”U(C(t)) + Ji+ Jwlala — 1)+ r)W(t) — C(t)) + -;—JWWUQa2W2(t)+

AE[J(aW (1 + yo) + (1 — a)W) = J(W)]|, (6)

where J is the indirect utility function, J; is the partial derivative of J with respect to ¢, and
Jw is the partial derivative of J with respect to W. The indirect utility function is J(W (t)) =
(1/8)exp(—pBt) In(W (t)). The first—order conditions for the consumer’s optimization problem

[APel)

(6), optimizing with respect to C and “a” are
e PU(C) = Jw =0, (7)

JwW(a = 1) + JywolaW? + AIEAJ,, = 0, (8)
where the term AJy, = [Jy (W (1 + yu) — W) — Jy ] is the jump in the marginal utility of
wealth when a jump occurs. Since Jy, = e Pt/(8W (t)) and marginal utility, U’(C) = 1/C,
optimal consumption, from (7) is

C* = W (2). (9)

Since, Jww = —exp(—08t)/8W (t)2, from (9), the optimal portfolio holding a* is given by

a* = - [(J—WJZWQ) (a — 7)Y+ AEAJ, | . (10)

JWW
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To obtain an expression for the equilibrium risk—free interest rate we first need to derive

the CAPM. We state this as a proposition.

PROPOSITION 1 The fundamental Capital Asset Pricing Model (CAPM) when stock returns

exhibit doubly—stochastic Poisson jumps with systematic risk is given by

oo B [(152) (2]

where osw = Bunoo[(dS/S)(dW/W)]/dt and AS = S(1+y)—S is the jump in the underlying

security price.

Proof : The instantaneous return on a risky asset must satisfy the condition

IE, [JW(W(t + dt)) (%ﬁ — e”ﬂ>} = 0. (12)

Dividing (11) by 8J/8W and rearranging gives the standard result

E, (%) - rdt = —IE, [(d—jv—:i) (g)] + o(dt), (13)

where lim o(dt)/dt = 0 as dt — 0. To obtain an expression for dJ,, we apply Itd’s lemma

which yields
1
dJw = Judt + JwdWan_o + 5waaﬁvwzdt + AJwdN (t) + o(dt), (14)

where

AWan—o = (W — C/W)Wdt + oW dZ,,.

Substituting (14) into (13) and ignoring terms of order odt yields the fundamental CAPM
in (11). .
The term ogy in (11) is the instantaneous covariance per unit time between the stock
and market returns when a jump does not occur. Expression (11) is similar to that in Bates’
(1991) Proposition Al except that here A is the mean of the stochastic intensity parameter

as opposed to a fixed parameter. Equation (11) holds in general and therefore will also hold



for the market’s expected excess return, ay — r(W). Therefore, the instantaneous risk—free

rate is

(dJw/Jw)
dt

r(W)=-IE [ 7,

J = Qaw — 0’3/ + Eivay H(JW(W(l hi yw)) —~ JW)} yw:l . (15)

A closed form expression for the CAPM can be easily derived under the assumption of

logarithmic utility. We state this as a theorem.

THEOREM 1 The Capital Asset Pricing Model (CAPM) when stock returns exhibit doubly—
stochastic Poisson jumps with systematic jump risk and the representative agent has log
utility is

o —1 = 0w — Bav=ry[((1 + y) ™" = 1)), (16)
where

r=aw — va + IEdN:l')’[(l + yw)_l - 1)yw]- (17)

Proof : The proof follows from (11) and (15) by noticing that with log utility (J., (W (1 +

Yu)) = Jw)/Jw = (1 +yu) ' — 1. .

It follows that the risk—free interest rate is given by
=y — 0% — Ak — A (exp(—,um +62) - 1) , (18)

and the expected rate of return on the stock is given by
O = Ak +WOOw + Oy — 02 — Mgy — A (exp(—pm + 62 — pbbm) — 1) , (19)

where x = exp(p) — 1 and &, = exp(pm) — L.

The equilibrium expected return Oea, on the option written on the security is

o0 AJ
a0 =170+ S| == | 0sw — Egnvay [—W] [O(S(1+y) - O] (20)
s Jw
Also, from It0’s lemma we know that
00 00 1 , (0%
= - — Ak — 0S| — AE 1 - 0). 21
ro0 = —— + (a K)so<as)+2a (352 +AE(O(S(1+y)) - 0).  (21)

10



Substituting (16) for « in (21) and then equating (20) to (21) results in the fundamental
differential equation for the option price under systematic jump risk. We state this as a

proposition.

PROPOSITION 2 The partial differential equation that the option satisfies under log utility

and systematic jump risk from doubly—stochastic Poisson jumps is

80 80\ 1 820
bl — AK* il T 202 | D) *\\ _ —
G K)S(as)+2as (652)+)\ (O(S(L+y*)-0)-r0 =0, (22

where A\* = By (Jw (W (1+y))/Jw) = AE(14y,) "}, and s* = E(y*) = k+covly, Adw/Jw)]/[E(1+

Adw/Jw]) = exp(p — 6s) = exzp(p*) — 1, and In(1 + y*) ~ ®(u* — 1/262,62).
Proof Equating (20) to (21) and substituting (16) for « yields

(s (2] ()

E (|25 fors+47) - o)) - o (23

Notice that under log utility [Jw (W (1 +y))/Jw] = (1 + yw)~'. Equation (23) follows from
(22). .

As is customary, the fundamental differential equation is solved with respect to the bound-
ary conditions of the option O(S(T), K,r,0,0?%) = max{0,S(T) - K}, and O(0, K,r,0,02) =
0, where K is the strike. The call option is priced as if the representative investor is risk—

neutral and the risk-neutral stochastic differential equation for the stock price is

ds* * Kk * * *
o = (r — A'k*)dt + 0dZ* + y*dN™. (24)

The general solution to the partial differential equation which yields the option price is

0(5(t),7) = E, {e—ﬁf (%%) max|0, S(T) — K]} : (25)

where 7 = T —t is the time to maturity of the option and J(¢) = 1/(W (¢)) is the marginal

utility of wealth. The dynamics of the wealth process is given by

Ne
W (t) = W{(s)exp ((aw - %agv — M = B)(t — 8) + ow(Zw(t) — Zuw(s))+ > ym,) :
1=qs+1
(26)

11



Substituting (26) into (25) yields the call option price

i=qs+1

Nt
os(t),r) = B [exp ((aw 2% = Mo = BT~ 1) 4 0w(Zu(T) — Zuli)) + 3 ymi)

Nt
max(S(t))exp ((a - % —M)T —t)+0(Z(T) - Z(¢)) + Z yi) - K, (1}7)
i=Ni+1

We use techniques for bivariate distributions employed by Rubinstein (1976) and Ahn (1992)

to the option pricing model. We state the model as a theorem.

THEOREM 2 The European call option pricing model for stock options when underlying stock

returns contain systematic doubly—stochastic Poisson jumps is

O(S(t),7) = 2/000% (/ot'y(s, x(s)ds)j exp (— /ot'y(s,m(s)ds> dP(z)

exp(—A7 (7)) e[S B(dy) — exp(—rnT) K B(d2)), (28)

where

P In(S/K) + rnt + 1/2(c?1 + 62%)
T (021 + §25)1/2 ’

d2 = d1 — [0’2T+62j]1/2,

£ = p— ptm+ 65— pép,

1 66m
tn o= 71— A - exp(—um—%&,zn))%-jg—]T :
ro= Oy — Ugv - )‘(ezp(_’ﬂm + 63}1) + exp(um) - 2)’

®(-) is a standard normal distribution, and P(x) is the probability distribution of the random

variable x.

Proof . Appendix A. .
Merton’s (1976) model with non-systematic jumps, can be obtained from (28) by setting
the expected jump amplitudes of the underlying stock with the market portfolio and the

variance of jumps equal to zero, (that is p, = 6, = 0).

12



2.2 Pricing Index and Currency Options

In this subsection we develop a model for valuing index and currency options. Assume that
the dividend yield on the index is d. Since the index is taken to be the market portfolio the
correlation coefficient is unity, that is p = 1. Also the dividend yield on the index, d, equals
that of the market portfolio, 3. Further, the mean and variance of the diffusion and jump
components of the index equal those of the underlying security. That is o« = ay,, 0? = o2,

= pm, 62 = 62, and £ = 0. Substituting the restrictions into (28) yields the price of an
w=p 4

index option. We state this as a theorem.

THEOREM 3 The European call option pricing model for indez options under systematic

doubly—stochastic Poisson jumps is

o(S(t),r) = Z(:)/:o % (/ot'y(s, x(s)ds)j exp (— /ot v(s, x(s)ds) dP(z)
ezp(—d7)[SP(d) — exp(—rp,7) K ®(da)], (29)

where

g~ [n(S/K) +rar +1/2(0%r + 6%)]
k [027 + §25]1/2 ’

d2 = dl—[02T+62j]1/2,

£ = B— fm+ 062 — p6bm,
o= r = A Xeap(—p+6) +55 - T,

ro= aw— oy, — Aezp(—p + 6%) + exp(p) — 2),
d is the dividend yield and ®(-) is a standard normal distribution.

Proof : Follows immediately from the proof of Theorem 2. .
To find the pricing formula for currency options set the dividend yield equal to the foreign

interest rate and replace the underlying security price by the forward price of the currency.

13



3 Negative—Binomial Jumps

In this section we consider a particular example for the distribution of the stochastic inten-
sity parameter (¢, z(t)). Suppose the information process behind the stochastic intensity
parameter y(t, z(t)) is a random variable (¢, z) = zv(t), where v(t) is a deterministic func-
tion of time, t. In this case {N(t) : t > 0} is a stochastic process with an intensity parameter
v(t) that is scaled by the random variable z. If the distribution of z is a Gamma distri-
bution then it is possible to show that the resultant unconditional distribution of jumps is

negative-binomial. We state this as a proposition.

PROPOSITION 3 If there is discrete information arriving in the market and the rate of ar-

rival, v(t) is randomly scaled by a gamma distributed random variable =, with density

b bz £-1
e T 0<z<00, £€>0, >0
HOESS (30)
0 elsewhere,
then the unconditional probability distribution of the number of jumps, j, is a negative—

binomaial distribution

_G+e-1)

) = e ) (1-mt  j=0,1,2.... (31)

where m = b/ (b + [{v(s)ds).

Proof : Appendix B. "

The associated process { N(t) : t > 0} for the negative-binomial distribution is known as
an inhomogeneous Polya Process, Snyder and Miller (1991). An option pricing formula can
be easily derived using the approach developed in section 2 and Theorem 3. We state this

as a theorem.

THEOREM 4 The European call option pricing model for stock options when underlying stock

returns contain systematic negative-binomial jumps is

—~E+s-1

O(S(t),K,r,7,0%) = j;omﬂ (1 — ) exp(—Ar(ef — 1))e¥
[S®(d1) ~ exp(—raT) K (d2)], (32)

14



where

g = n(S/K) + rat + 1/2(c%1 + 6%j)]
! [02r + 625]1/2 !

dy = dy — [0 + 6%]2,

€ = 1= pm+ 8y — pbbm,
E+g)m
(1-m)
o Jbom

Th = r—/\(eE—exp(—um+6,2n))+];_-— —

r o= oy — ofv — Mezp(—pm + 6,2n) + ezp(pm) — 2),

®(-) is a standard normal distribution.

Proof : Follows immediately from the proof of Theorem 2. "
Note that A is now the mean of a negative-binomial distribution. To value options on

an index we let o = oy, 02 = 02, p = pm, 62 = 6% € = 0, and the dividend yield is d = 3.

w?

We state this as a theorem.

THEOREM 5 The European call option pricing model for indices under systematic negative—

binomial jumps is

i_o(:) +j- 1(1 — )¢ [exp(—dr)S®(d;) — exp(— T )K ®(ds)], (33)

where

g — n(S/K) +rar +1/20%r +6%)]
1 [0 + 625]1/2 ’
dy = dy— [o%r + 6%]2,

(E+g)m

(1-m)

6
ra = 7= A+dep(-p+o?) +5i5 -T2,

T

ro= aw— o2, — Mexp(—p + 6%) + exp(p) — 2),

where d is the dividend yield and ®(-) is a standard normal distribution.

15



Proof : Follows immediately from the proof of Theorem 2. )

To obtain the formula for pricing currency options set the dividend yield equal to the
foreign interest rate d = r; and replace the underlying security price with the forward price
of the currency. Note that if the intensity parameter is fixed then we are back to the standard
Poisson jump process and it is straightforward to show that the option pricing models of

Naik and Lee and Ahn can be obtained.

3.1 The Effect of Systematic Jump Risk

In this subsection we analyze the effect of systematic jump risk on the price of derivative
securities. We compare our results to those of Ahn (1992) which we use as a bench-mark. To
understand the effect of a random intensity parameter implied by negative binomial jumps
we first compare the mean of a Poisson distribution with that of the negative-binomial

distribution. We state the relationship between the two means in Lemma 1.

LEMMA 1 The mean, A, of a negative-binomial random variable is at least as large as that

of a Poisson distributed random variable.

Proof: Let the mean of a Poisson distributed random variable be A, and that of the negative—
binomial be A as indicated above. It is well-known that A = (é+j)7/(1—n) and \, = (£+7)7.
Since 1 — m < 1 for any m > 0, it follows that A > A,. .

Next, we consider the effect of the negative-binomial jump risk. To simplify the argument
assume the instantaneous dividend yield is zero (d = 0) and the expected jump amplitudes
of the market portfolio and the underlying security are zero (4 = p,, = 0). Then, the value

of the call option in (32) is given by

O(S(t),K,r,7,0% E (6'-(2]_—11)' I(1 — m)%exp(— A7 (e — 1)e¥
[S’<I>(d1) — exp(—rp7)K ®(d2)], (34)
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where

. [n(S/K) + rot + 1/2(c?r + 625)]
! [02r + 624]1/2 ’

d2 = dl —_ [0’2T+52j]1/2,

£ = 64— pbbm
(E+g)m
(1-m)
_ Jpbbm

rh = T — ,\(eE — exp(—6,2n)) ,
.

r o= ay-o. — Aexp(62) - 1).

Notice that the systematic jump risk affects the equilibrium risk—free rate. In particular,
as the jump variance (62) increases the interest rate falls. Since the mean of the negative-
binomial (A ) is larger than that of the Poisson distribution (\p), this implies that the
risk—free rate with DSPP is lower than that in the Poisson jump case of Ahn (1992) when
all other parameters are fixed. Furthermore, it is well known that as the risk—free rate falls
the value of a call option also falls. Hence, our model will yield lower option values than
that of Ahn. Our model reduces the ubiquitous “smile effect”, where standard models tend
to overprice options that are deep in or out of the money when all other parameters remain
fixed.

Next, we consider the precise effect of the jump risk. We have alluded to the fact that the
risk—free rate falls as the jump variance of the market portfolio increases. The expectation
from this effect is a rise in hedging demand for the risk—free bonds as the uncertainty from
jumps in the market portfolio increases. To analyze the effect of jump risk we differentiate
(34) with respect to p, the correlation coefficient of the underlying stock’s logarithmic jump
with the market portfolio’s logarithmic jump. The derivative is

90,

o Sémbcov(j, ®(d1(4))] (35)
_ E+5-1)! : :
= SémbAT WW (1= m)5(@(d1(4)) — ®(di(5 + 1)) | . (36)

As j increases the kurtosis of the normal cumulative distribution also increases for out of
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the money options but decreases for in the money options. The increase in the kurtosis is
larger for the negative-binomial jumps case than for the Poisson jump case, since the mean
of jumps is larger for the negative-binomial case. Then, the covariance, cov[j, ®(d1)] > 0
for out of the money options but for in the money options cov[j, ®(d1)] < 0. For § < K,
00.:/0p < 0, and for S > K, 30,/0p > 0.

The above discussion implies that when the option is deep out of the money, as the
correlation increases, the option becomes less valuable. When the option is deep in the
money, as the correlation increases, the option becomes more valuable. The effect is greater
in either case under the negative-binomial case than under the Poisson case.

It turns out that the effect of changes in p operate in two ways. First, as p increases,
the risk-adjusted mean of jumps A\* = Xef falls. The corollary is a fall in the option price.
Second, as p increases the expected return on the stock increases, due to the increase in
the risk-premium. The terminal stock price has a higher probability of being quite high,
increasing the chances of the option finishing deep in the money. This effect is captured by
the risk-adjusted mean of jumps in the expression for r, above. Since the two effects work
in opposite directions their relative importance is what matters. For deep out of the money
options, an increase in expected stock returns may not significantly increase the probability
of being in the money, and so the second factor is dominated by the first one which does not
depend on the moneyness of the option. Thus the option falls as p increases. For deep in

the money options factor two dominates factor one leading to a rise in the option value.

4 Maximum Likelihood Estimation

In this section we use likelihood theory to derive estimators of the parameters of a DSPP.

Let Ny : t = 1,2,... be a doubly stochastic Poisson process with a mean value process
Ayt =1,2.... Suppose that for each T' the mean value process has a density with respect
to a o—finite product measure 7, f(A1,...,Ar,€) which depends on a parameter ¢ € R,
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Then the marginal probability function of {N;} is given by

T e—At /\nt

f(nl,...,nT;s)=/H  f(My- . A e)deT(R). (37)
t=1

Tyt

Suppose that the mean value process {A;} has the following form
)‘t = At(’U,t, 9),

where 0 is a parameter in IR? and {u,;} is a sequence of iid random variables having den-
sity f(u;¥) with respect to Lesbegue measure. The mean value may also depend on some

covariate z;. Then (37) becomes

-)\t u,8) u 7
f(ny,...,np;8,9) H/ )\t( ,9) tf(u;i?)du. (38)
t=1

This is the probability density function of a Poisson mixture with a mixing density f(u;d).

The log likelihood function is
T —/\g(uﬂ),\ 0™
o) = g [ [ st
t=1

Tlt!

flu;9)du| . (39)

As usual the maximum likelihood estimator 8 is the root of the likelihood equation

9 L) = ilt(é) —0, (10)
50 2
where
W(8) = :—BIng(Nt,e 9) (1)
= ey e 20 G rogn = oy, (a2

provided that A;(u,#) has continuous partial derivatives such that

du < 00,

l—)\ (u, 8) f(u;9)

’—log)\ (u,8)f(u;9)|du < oo,
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so that differentiation can be done under integration. Furthermore, if

0
20 log Ai(u, 0) = h(8),

then we have the following relationship;

f(nt;gvﬁ)

If higher order partial derivatives of log A;(u, #) exist then all the higher order partial deriva-

i108 f(ng;6,9) = h(B) |ne — (ne + 1)

56 (43)

tives of the log likelihood can be written in terms of the probability functions themselves.

Identifiability of # is guaranteed by the condition on the functional form of X, specifically
At = (u,01) = X = (u, 02) for all  implies #; = 8, .

The existence and uniqueness of the MLE depends on the mixing density and the form of

At(u,8). We present this point as a theorem below.

THEOREM 6 If: (i) %log At(u,8) exists and as a function of © is continuous on a conver
set © for each uw € R, (ii) log M\(u, 8) is concave and A\i(u,8) is convex on ©, then the roots
of the likelihood equation correspond to the maxima of the log likelihood function. Moreover

if at least one of nylog A(u,8) — A(u, 0) is strictly concave, then the solution is unique.

Proof : Let
q(0,u) = M@\, (u, 0)"™,

which is log—convex in # on © under the conditions stated above. So for 0 < a < 1 and
fi,8y € Q)

g(aby + (1 — )by, u) < q(87,u)%q(B2, u)1™).
Then by Hélders inequality
Euq(af + (1 — a)fy,u) < [Euq(f1,u)°] []EUQ(9 — 2, u)]““*)] ,

where IE, is the expectation with respect to the mixing density. Hence IE,q(6,u) is log

convex in . The result then follows from the differentiability of convex functions. "
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The following two Lemma are needed to establish the asymptotic properties of the MLE,

Lemma 2 provides a suitable law of large numbers.

LeEMMA 2 If {X;} are independent random variables with IEX, = 0 and EX? < oo and

TX2/T? — 0, then 1/T ©F., X, — 0 in probability.

Proof : See Rao (1973). .

Lemma 3 provides a Lyapunov form of the central limit theorem.

LEMMA 3 Let {X;} be independent d-dimensional random vectors such that IEX, = 0,

CO’U(Xt = It) If
(a) Iy — I for a positive definite matriz I
(b) For some a > 2Y.L E|luX:|*/T*? — 0 for any row vector v € R%  Then

T-125T X, — N(0,1) in distribution.

Proof : See Hoadley (1971). .
The next theorem establishes conditions under which a consistent root of the likelihood

equations exists

THEOREM 7 If:
(i) A(u,8) > 0 for all 6 and u and Ai(u,f) is continuous in 6.

(11) up to third order partial derivatives of A\(u,0) exist and are continuous for all 6 € O.
(i)
2

flu;9)du < oo,

2
(—/\t(u 8)| f(u;d)du < oo, / ,0)

00,

2

2 52
f(u;9)du < oo,

/Iaeiao o, 0)| f (s 9)du < oo, / 5005 108 M(w.0)

63 63
— O\ (w.0) f(u:0)du ¥ | s o
/‘39159J89k t(ua ) f(?l,ﬁ)du < o0, /‘86169600,(: IOgAt(’U,G)!f('u,ﬂ)du < 00
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(iv) The information matriz I;(8) = lE[lt(H)/ltT(())] is well defined and there exists a positive

definite matriz 1() such that 1/T Y, It() — I(8) in probability, where

g‘g;log f(ne;8)
i(nt;ﬂ) =

i 3%108 f(nt;e)

(v)

>1LE (& log f(ns;0))’
T2

— 0.

(vi) For some a > 2 and for all row vectors v € R?

Ei Elvi(ng; 6)|
Te/?

— 0.

Then there ezists a consistent root, 6 of the likelihood equations, such that
TYV4(§ - 6,) — N(0,171(4,)),
in distribution.

Proof : Conditions (i) (ii) (iii) insure that a Taylor series expansion of the likelihood function
exists and that the operations of integration and differentiation can be interchanged. A

Taylor series expansion yields

d 1 d
Hi(0) = Hi(8,) + > 6;Hii(60) + 2 D 6i6kHjx,
j=1 jk=1
where
8§ = 0;— 6o,
1@ = 252 1og fny0)
i - Tt:I 01 Og Ny,
1 L 52
A(8) = —= 1 -9
Hol0) = ~ 53 gg o8 (i)
M@ = 25— 2L log f(nis8)
1 = - = 8] )
ik T 2 00,00,08, ="



and €’ is a point on the line segment connecting 6 and 6,.

The result follows by applying Lemma 1 and 2 to

0
3 5510 £(ni;9).

With condition (v),
> % log f(n:;8)
T

in probability . Condition (iv) and the Lyapunov condition (vi) give ¥ I(ny;6,)/T"2 —

— 0

N(0,1(8,)) in distribution. .

4.1 Approximate Likelihood

In practice, the integral in the likelihood cannot be evaluated numerically so some kind
of numerical integration procedure such as Gaussian quadrature has to be employed. We
therefore turn to consider the approximate likelihood.

Suppose that an approximation for the probability element is available in the following

form:
M
f(u)du = ijAu_uj,
j=1
where
1 fu=0
if u#0.

The accuracy of the approximation depends on the nodes u;, the weights 7;, the number
of nodes M and the form of the function f. With this approximation, we have as an

approximation for the marginal probability function,

f ntae 19 Zf(nt|ujy 7['], (44)
leading to
~ 0
Lm(8) = 6_010gf(nta0 9)
_ Z%l[nt - /\t(uj§ 9)]% log /\t(u]-;0)f(nt|uj; 9)7Tj (45)
f(ntv 07 ’19)
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In the DSPP case

—)\t(u-;g)/\ 9\
Fneluy;0) = € el O

Nt

Note that (44) can be seen as a probability function of a finite mixture with mass points
{m;} when Zjﬁil 7n; = 1 and m; > 0. The approximate likelihood equations for # have the

following simple form

T M R
S0 = M5 8)] @ = 0, (46)

t=1j=

—

where

_ %log /\t(uj;é)f(nduj;é)wj

= f(nt;e,ﬁ)

Equation (46) can now be seen to be equivalent to weighted least squares normal equations.
An important problem that arises with numerical methods is truncation error due to
using the discrete sums instead of the desired integrals. Let R be the truncation error in the

numerical integration such that

The error term depends on the nodes, the weights, the number of nodes and the integrand.
In the Gaussian quadrature formulas it involves the 2M’th derivative of the Poisson term
with respect to the mixing variable.

The asymptotic behavior of the approximate MLE has to be considered in terms of M as
well as T'.> To consider the convergence of the approximate likelihood we make the following
three assumptions: (A) © is compact, (B) A(u, #) for all u is uniformly continuous on ©, and

(C) for all n; with probability one

0 0 -
%Ing(nt;H)—églogf(nt;ﬁ)l — 0 as M — o0,

sup
)

for some 8 € ©. And

2 2

1 .0) —
a6.00; 8/ (" 0) ~ 5o

sup

logf(nt;())‘ — 0as M — oo.
(S]

SWe are grateful to a referee for pointing this out.
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Then with probability tending to one

l~,,,M(()) — [;(8) as M — oo, uniformly in 6,

%it,M(H) — 59—&(()) as M — oo, uniformly in 4,

since under the conditions given above if a sequence of derivatives of functions converges
uniformly, then so does a sequence of functions themselves, Rudin (1976).
Furthermore, note that if

0
5 08 Ae(u, 0) = h(6),

that is there is no dependence on u then since all the partials can be expressed in terms of
the probability functions as suggested in (43) we only need convergence of f (n¢; @) in 8 for
each n;.
Let
supsup | f(y; ) - Fy:0) = raey
Here 7, depends on the particular numerical integration used. Then we can state the

following theorem.

THEOREM 8 Under the conditions of Theorem 7, conditions (A), (B), (C) and if

0
%/\t(u, 0) < Cl,

and

é)
6—9At(ﬂ,, 0) < CQ,

for all w and @ where C1 and Cy are constants and if rpr, — 0 as T — oo.

Then the approximate MLE 8 is consistent as T — oo and
VT (6 - 8,) —» N(0,17%(8,)),

in distribution as T — oo.
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Proof : Let

, s} d -
R = é—éf(ntae) a_ef(nt’9)7
and
7r0) = £ 3 2 log fmes0)
= — — n
T T it 66 g t,
First, note that
0 0 - 8
= f(n0) - 5= F(n530) ‘ ’ [ e = Mg 0 5108 (o5 0) (g 6)F ()

0
Z[ /\t(uj,(})]a—glog Miuj; ) f(ne|uj; 0)m;
5+l
< ?’LtCQIRl + CllRll, (47)

so that |R’| < 2C|R| where C = max[C}, n;C,} and

1 - 1 K| &f(nusi6.) & i 6o
—Z[lt,M(ao) _ lt("t,eo)] — _Z 89~f(7?t|u] ) _ 80f(nt|?1.] )
T = T | f(nguy;8o) f(neluj; 6o)
KT
< ?Z[lt(ﬁosupﬂu +sup|R|] < K'rpy,  (48)

where K and K' are constants as T — oo. If r,,, — 0 as T — oo, then by the law of large

numbers following condition (v) of Theorem 7 as T — oo,
HT(go) - Oa (49)

in probability.

Taking a neighborhood, Us, of © containing 6, of radius § > 0, from (49) we see that
0 € Hr(Us) with probability tending to one as T — oo. With the assumption of uniform
continuity (B), uniform convergence (C), condition (iv) of Theorem 7 and by the inverse
function theorem; Hr(6,) is one-to-one on Us, and the inverse function H7! : Hp(Us — Us)
exists for sufficiently large T'.

Since 6 is arbitrary, letting 6 tend to 0, § = H;!(0) converges to 8, in probability as

T — 00.
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For asymptotic normality, observe that

[Fr(85) = H(0,)

— 0,

in probability.
The result follows from Slutsky’s Theorem, the Lyapunov condition of Theorem 7 and
the asymptotic behavior of the score functions, H(6,), Rao (1973). .

Suppose {u,} are iid normal with mean zero and variance ¢ so that

oo g~ M)y (1 g)™ 1
foude) = 7 Dz

0 ng! 2o

Then a suitable numerical integration procedure is given by the Gauss-Hermite formula,

Davis and Rabinowitz (1984)

M
o0 —u? M!\/ﬂ' 2M
[ tn = 3wt + el @) o< < oo
—00 i=1 :

with

1 gy ~
gt(U) = WE—M( ‘2au,0)/\'£n(v 20?1,, 9),
(2M)

and with g;”" ’(u) denoting the 2M’th derivative of g;(u).
In this case since g;(u) is analytic (provided that A(u,#) is analytic in ) all the deriva-
tives of any order are bounded above so that there exists some constant K such that

supg gt(2M)(19)| < K. Using Stirling’s formula for factorials we have

R| < =2

- 22M—1 K’

if M - oo as T — oo thery,, — 0asT — oo. As can be seen from the form of the error
term , the approximation error is small for a large number of nodes. Also we see that the
derivative in the error term involves powers of o, so it is small for ¢ but otherwise the error

term persists.
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5 Simulation Results

In this section we present some Monte Carlo simulation results for a simple parameterized

mean function
)‘(¢17¢27H) = €xp {¢1M[t - 1’t] + ¢2M[t - 27t - 1) - H} ) (50)

where H is the history of the process and M is generated as a doubly stochastic Poisson
process. For generating the counting process we use the fact that conditional on M, ), is
piecewise constant and the counting process behaves as a Poisson process on the intervals of
constancy of \(:).5

Each simulation cycle consists of picking values of ¢;, ¢2, H and generating 1000 samples,
each of a given length T and then estimating ¢1, ¢2, H by maximum likelihood. The method

used for finding the solution to the approximate MLE is described above.

The results in Tables 1, 2, 3 indicate an apparent bias in the maximum likelihood es-
timates. This bias seems to be of order O(1/T), approximately equal to (7,4,16)/T even
for the relatively small interval length used for Table 3. However the bias is small when
compared with the random variations: about one half of a standard deviation.

The variance covariance estimates also appear as being somewhat biased. They consis-
tently tend to underestimate the variability of the MLEs, but this underestimation error
never goes beyond 10 % of the true value. Their variability , however, is somewhat large
especially for the small interval lengths used for the simulations in Table 3. It is likely that
this variability can be reduced by using more exact approximations.

Panel D in each table, shows the cumulative distribution function (cdf) of two variates

6For processes not having piecewise constant intensity functions, the more general method of simulation
by thinning can be used, Lewis & Shedler (1979).
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that can be used for setting up confidence limits. These two variates are approximately y
squared distributed with three degrees of freedom.

For various cut-off values, Panel D shows the theoretical percentile (based on the chi-
square distribution) and the empirical percentile obtained from 1000 simulations. In Table
1, the empirical cdf’s follow their theoretical values well within the expected random varia-
tions. This is not the case for Table 2 and 3 where probably due to the bias of the MLE the
two variates seem to have stochastically higher values than those predicted by the asymp-
totic approximations. The disagreement although statistically significant is not as big as to
invalidate most practical inference used of the confidence regions that could be built using
the asymptotic distributions. We should also notice the fact that variate 1 seems to show
a distribution closer to the chi-squared approximation that displayed by variate 2. Table 1,
2, 3 show the effects of changes in the length of the observation interval. Table 4, in turn,
corresponds to T= 200, as does Table 1, but the parameter values are now doubled.

The general qualitative conclusions we draw from Tables 1, 2, 3 are still valid for Table 4.
We notice higher values of bias and standard deviation than those observed in Table 1 but
these do no more than keep their magnitudes in proportion with the true parameter values.
variate 1 still shows a reasonable agreement with its true parameter values. Variate 1 still
shows a reasonable agreement with its true asymptotic distribution, specially in the higher
percentage points (those most used for setting confidence bounds). The behavior of variate

2 is more erratic.

Taken together these results are encouraging because they show that the asymptotic
distributions yield reasonable approximations even for relatively small observation intervals
(notice that Table 3 refers to simulations having on average on 16 information arrivals) . Of
course these results are incomplete as they refer only to given model and to a very restricted

range of parameter values for that model.
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6 Conclusion

This paper makes two contributions. First, we develop an equilibrium formulation of op-
tion pricing based on mixed diffusion-doubly stochastic Poisson processes. Qur formulation
enables us to explore the consequences of heterogeneous information arrival on the value of
several derivative securities. This model has potential for application in a broad variety of
economic settings where jump risk exists and where the rate of occurrence of jumps may be
random.

Second, we present a maximum likelihood estimator of the parameters of a DSPP and
derive its asymptotic properties. The MLE enables us to empirically evaluate the assumption
that information arrival is well characterized by a DSPP and in a more general study can be
used to evaluate the importance of different covariates on the information flow process. A
simulation study verifies the adequacy of the asymptotic approximations in finite samples.
A companion paper, Asea & Ncube (1996a) models the information arrival process as a
Markov—-modulated Poisson process. The Markov-modulated Poisson process (MMPP) is a
doubly stochastic Poisson process in which the arrival rate varies according to a finite state
irreducible Markov process.” Further work along these lines will improve our understanding

of the relationship between information arrival and asset pricing,.

Appendix A

PrRoOF OoF THEOREM 3: Following Rubinstein (1976) and Ahn (1992), we know that if x

and y are two random variables which are bivariate normal, then

1 - xz 3
[Ei(e’|z > a) = exp [uy + —03] o [ a+ iz + cov(z,y) , (A. 1)

2 Oy

"See also Asea and Ncube (1996b, 1996¢) for additional implications of heterogeneous information arrival
for pricing derivative securities.
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and

1 _ 2
Ei(e"Y|z > a) = exp [uﬁwgvar(ﬁm]q’[ P d Tt VY ()

Og

where a is a constant, ®(-) is the standard normal cumulative distribution, x, and px, are
means of z and y, respectively. Let Z, = o(Z(T) - Z(t)) and Z, = 0 (Z(T) — Z(t)). Then,
B(Z,(7)) = j(im — 1/208), var(Z,(§) = 047 + j6&, (Z3(5) = j(u — 1/20%), var(Zz(5)) =
0?7 + j62%, and cov(Zz(5), Zy(j)) = cowT + j66m.

Then using (Al) and (A2), the value of the option is an expectation conditional on

(N(T)— N(t)) = j. From (27) the value of the option is

O(S(t),7) = IEexp[(a — Akpm — aw + 02 + thpy — woow)T + (A. 3)

J(B = pm + 6 — P68m)]  Kexp[—(a — ob, — thin)T = j(ptm — 62,)19(d2(5),

where
dy(7) = In(S(t)/K) + (a — tk —woow)T

dg(]) = dl - \10'27 +]52

Using (18) and (19) we can rewrite (A3) as

O(S(t),7) = exp[(—er(exp(p ~ fm + 02 — p66m) — L+ j(p — pim + 62, — p8ém)]

S(t)®(d1(5)) — exp[(—e7(exp(p — pm + T — p66m) — L+ (1 — pm + 82 — p86m)]

Kexp[—(rn7)®(d2(5), A 4
where
di(j) = In(S(t)/K) + v + 5(0?1 + j&°)
107) = m ’
do(j) = di — \/02—7+—j6'2,

‘ 066
P =7 = Mef - exp(—pm + 0%) + j6%) + 2= — I,

€=~ pim +6° = pbim.
Then, unconditioning on the negative-binomial distribution of jumps we obtain expression

(28) where dy, dy, T, 7, and & are defined above. "
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Appendix B

PROOF OF PROPOSITION 3:
The conditional Poisson distribution of the number jumps, 7, is

e=(tz(t)yi

fG(t2(t)) = J=12,...,v(t=z(t)) > 0. (B. 1)

!
Given that (¢, z(t)) = zv(t), where z follows a gamma distribution given in (1), from Bayes

Theorem, the unconditional distribution of j jumps in the underlying asset price, is

16) = [ G aO) O @)t =)
R t I3 e £
= il z’exp (—:c/o v(s)ds) F(f_)e ¢t dz,
Then by noticing that
D) = [ et dw = (6 - 1),

letting
b

(b+ ffu(s)ds’

and manipulating terms we obtain the negative-binomial distribution given by expression

(31). .
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TABLE 1
SIMULATION RESULTS @

A: Summary Statistics

Mean S.D. of mean S.D. of estimates
61 2.03 .005 152
b2 1.01 .007 224
H 4.07 012 371

B. Empirical Var—Cov Matrix of Estimates

023 011 .050
011 .050 044
.050 044 138

C. Average (S.D.) of Var-Cov Estimates

.022 (.005) .009 (.005) .049 (.011)
.009 (.005) .049 (.010) .040 (.012)
.049 (.011) .040 (.012) .130 (.030)
D. Chi-squared variates
Theoretical Percentile Empirical Percentile
Variate 1 Variate 2
0.5% 0.6% 0.6%
1.0% 1.1% 1.1%
2.5% 2.3% 2.3%
5.0% 4.3% 4.5%
50.0% 47.5% 48.8%
95.0% 95.0% 94.7%
97.5% 98.1% 97.5%
99.0% 99.2% 98.6%
99.5% 99.6% 99.7%

%As detailed in Section 5.1 the following was done: 1000 simula-
tions each of length 200 was generated where the input process is Pois-
son with unit intensity and the output process is generated accord-
ing to equation (50), with parameters ¢1 = 2, ¢2 = 1 and H = 4.
The average input intensity of the generated process is 1.000 (200
points/simulation). The average output intensity of the generated pro-
cess is .325 (65 points/simulation). The figures reported in this table
are from the 1000 estimates obtained.



TABLE 2
SiMULATION REsSULTS ¢

A: Summary Statistics

Mean S.D. of mean S.D. of estimates
é1 2.07 0.007 0.226
b2 1.05 0.011 0.341
H 4.16 0.017 0.542
B. Empirical Var-Cov Matrix of Estimates
0561 .022 .109
.022 .116 .097
109 097 294
C. Average (5.D.) of Var-Cov Estimates
.050 (.017) .020 (.016) .107 (.039)
.020 (.016) .106 (.037) .087 (.042)
.107 (.039) .087 (.042) .285 (.103)
D. Chi-squared variates
Theoretical Percentile Empirical Percentile
Variate 1 Variate 2
0.5% 2% 3%
1.0% 7% 8%
2.5% 2.6% 2.8%
5.0% 4.3% 4.6%
50.0% 49.0% 48.6%
95.0% 94.6% 93.9%
97.5% 97.1% 96.0%
99.0% 98.2% 97.9%
99.5% 99.0% 98.4%

?As detailed in Section 5 the following was done: 1000 simulations
each of length 200 was generated where the input process is Poisson with
unit intensity and the output process is generated according to equation
(50), with parameters ¢, = 2, ¢2 = 1 and H = 4. The average in-
put intensity of the generated process is .998 (100 points/simulation).
The average output intensity of the generated process is .322 (32
points/simulation). The figures reported in this table are from the 1000
estimates obtained.



TABLE 3
SIMULATION RESULTS ¢

A: Summary Statistics

Mean S.D. of mean S.D. of estimates
b1 2.15 011 .363
b2 1.11 016 .505
H 4.33 027 862

B. Empirical Var—-Cov Matrix of Estimates

132 .056 284
.056 255 219
.284 219 743

C. Average (S.D.) of Var-Cov Estimates

124 (.081) 052 (.068) 271 (.186)
.052 (.068) 252 (.133) 211 (.179)
.271 (.186) 211 (.179) .708 (.489)
D. Chi-squared variates
Theoretical Percentile Empirical Percentile
Variate 1 Variate 2
0.5% 2% 4%
1.0% 7% .8%
2.5% 1.5% 1.7%
5.0% 4.3% 4.5%
50.0% 52.1% 51.3%
95.0% 94.4% 92.1%
97.5% 96.7% 94.3%
99.0% 98.5% 96.8%
99.5% 99.5% 98.0%

“As detailed in Section 5 the following was done: 1000 simulations
each of length 50 as generated where the input process is Poisson with
unit intensity and the output process is generated according to equation
(50), with parameters ¢, = 2, ¢2 = 1 and H = 4. The average in-
put intensity of the generated process is .997 (50 points/simulation).
The average output intensity of the generated process is .322 (16
points/simulation). The figures reported in this table are from the 1000
estimates obtained.



TABLE 4
SIMULATION RESULTS 2

A: Summary Statistics

Mean S.D. of mean S.D. of estimates
é1 4.06 .008 263
b2 2.05 .009 270
H 8.15 021 667

B. Empirical Var-Cov Matrix of Estimates

.069 034 .169
034 073 .109
.169 .109 445

C. Average (S.D.) of Var-Cov Estimates

.065 (.016) .032 (.011) .160 (.040)
032 (.011) .072 (.016) .104 (.032)
.160 (.040) .104 (.032) 422 (.105)
D. Chi-squared variates
Theoretical Percentile Empirical Percentile
Variate 1 Variate 2
0.5% 4% 4%
1.0% 6% 6%
2.5% 1.7% 1.6%
5.0% 3.8% 3.9%
50.0% 46.3% 46.5%
95.0% 94.5% 93.9%
97.5% 97.1% 96.0%
99.0% 98.8% 98.6%
99.5% 99.4% 98.8%

“As detailed in Section 5 the following was done: 1000 simulations
each of length 200 was generated where the input process is Poisson with
unit intensity and the output process is generated according to equation
(50), with parameters ¢ = 4, ¢2 = 2 and H = 8. The average in-
put intensity of the generated process is .998 (200 points/simulation).
The average output intensity of the generated process is .322 (57
points/simulation). The figures reported in this table are from the 1000
estimates obtained.



