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Deviations of stock index option prices from the benchmark Black-Scholes model have been
extraordinarily pronounced since the stock market crash on October 19, 1987. Out-of-the-money
(OTM) put options that provide explicit portfolio insurance against substantial downward movements
in the market have been trading at high prices (as measured by implicit volatilities) relative to at-the-
money options. The OTM puts have been even more "overpriced" relative to OTM calls that will pay
off only if the market rises substantially. An illustration of the typical post-crash pattern of implicit
volatilities across strike prices for a single day is given in Figure 1. The pronounced implicit volatility
patterns emerged immediately after the stock market crash, and have been a permanent feature of the
S&P 500 futures options market ever since. The stock market crash was a watershed event, with
fundamentally different post-crash patterns of implicit volatilities across strike prices relative to pre-

crash patterns.

The implication is that the distribution perceived by market participants and incorporated into
options prices since the crash of 1987 is substantially negatively skewed, in contrast to the essentially
symmetric and slightly positively skewed lognormal distribution underlying the Black-Scholes model.
Two approaches have been used in attempting to generate option pricing models with negatively
skewed implicit distributions. Stochastic volatility models attribute the moneyness biases to the well-
documented tendency of market volatility to rise as the market falls. A recent prominent example of
this approach is the implied binomial trees approach of Dupire (1994), Derman and Kani (1994) and
Rubinstein (1994), who postulate a flexible but deterministic functional form for instantaneous
conditional volatility in terms of the underlying asset price and time. Jump models by contrast

attribute the biases to fears of a further stock market crash.



The relevance of the stock market crash of 1987 to the emergence of substantial implicit
negative skewness can be rationalized under both models. Grossman and Zhou (1996) point out in
a general equilibrium model that even if underlying fundamentals follow geometric Brownian motion,
the existence of portfolio insurers induces a negative correlation between the level and volatility of
the market. From this viewpoint, the crash of 1987 can be viewed either as revealing the substantial
number of portfolio insurers, or as an event that increased the demand for (explicit) portfolio
insurance. Jump models would, by contrast, interpret the crash as a revelation that jumps can in fact
occur -- a viewpoint somewhat validated by the subsequent 5-8% drops on January 11, 1988 and

October 13, 1989.

This paper seeks to explore which of these alternate explanations better explains the negative
skewness implicit in option prices. Two diagnostics are proposed. First, it is noted that the two
hypotheses have alternate implications for the relationship between option maturity and imphcit
skewness. Stochastic volatility models postulate that the stock market follows a diffusion, with the
implication that the conditional distribution is instantaneously normal. Such models consequently
imply a direct relationship between option maturity and the magnitude of implicit skewness, with little
implicit skewness for extremely short-maturity options. By contrast, jump models such as Merton
(1976) postulate finite-variance shocks that are independent and identically distributed. By the law
of large numbers, such models imply an inverse relationship between option maturity and the
magnitude of implicit skewness, with little implicit skewness for long-dated options. A model fitted

to multiple-maturity option prices should therefore be able to distinguish between the hypotheses.



Second, this paper evaluates the consistency of the distributions implicit in option prices with the

observed time series properties of S&P 500 futures prices and implicit variances.

Section 1 describes the data and conducts preliminary diagnostics. Section 2 describes the
postulated stochastic volatility/jump-diffusion process and the option pricing methodology. Section
3 describes the implicit parameter estimation methodology, and presents estimates. Section 4
examines the consistency of the parameters implicit in options prices with those estimated from the

S&P 500 futures and implicit variances time series. Section 5 concludes.



1. Post-crash option pricing patterns -- Preliminary diagnostics
1.1 Data

Transactions data were obtained for American S&P 500 futures options from their inception
on January 28, 1983 through December 31, 1993 from the Chicago Mercantile Exchange, along with
the underlying futures contracts. Only quarterly options maturing in March, June, September and
December were initially available. Serial options written on the quarterly futures contracts and
maturing the nearest other two months were subsequently introduced in 1987. The quarterly options'
last trading day was initially the third Friday of the month, the expiration date of the underlying
futures contract, but was changed in the second quarter of 1986 to the day before because of "triple
witching hour" problems. Serial options trade up through the third Friday of their terminal month.
All options transactions were matched with the nearest preceding futures price of comparable

maturity, provided the lapsed time was less than 5 minutes and no trading halt was in effect.’

Preliminary diagnostics were run on a subsample of the full 1983-93 data base. All intradaily
transactions for 1- to 4-month quarterly options were selected subject to the selection criteria used
in Bates (1991): at least 4 call strikes and 4 put strikes traded per day, and at least 20 call
transactions and 20 put transactions per day. Data from days not meeting these criteria were not used
in the preliminary diagnostics. Representative daily option prices were then constructed using the
constrained cubic spline methodology of Bates (1991). Cubic splines subject to option-specific no-

arbitrage constraints were fitted daily to pooled intradaily option price/futures price ratios, as a

'In principle all options trading halts when a trading halt in the underlying S&P 500 futures
is declared. However, that declaration is not instantaneous. Option trades were recorded on October
13, 1989 after the S&P 500 futures had hit its first price limit.

4



function of the strike price/futures price ratio. Separate splines were of course fitted to call and put
data. Representative call and put option prices for regularly spaced "moneynesses" (X'F - 1 = 0%,
+1%, +2%, ...) were interpolated using the estimated splines, while associated implicit volatilities
were computed using 3-month Treasury bill rates and the Barone-Adesi and Whaley (1987) American
option pricing formula. Representative put option values for put strike prices X, /F" = 1/(X_,,/F)

were also computed for constructing the skewness premium metric of implicit skewness.

A different subset of the data base was used for the estimates of post-crash stochastic
volatility/jump-diffusion processes in sections 2 and 3 below. Both quarterly and serial options were
used, since serial options were available throughout 1988-93. However, only trades on Wednesday
mornings (9-12) were considered, yielding a weekly frequency panel data set. Using daily data was
ruled out partly because of the resulting extreme demands on computer memory and time, and partly
to avoid modeling day-of-the-week volatility effects. The use of morning trades were reflected a
tradeoff between shortening the intradaily interval for greater option price synchronization, and
lengthening it to get more observations. Options with less than one week to maturity were discarded.
The resulting 1988-93 data set consists of 39,607 transactions (42% calls, 58% puts) in up to 4
options maturities per day on 310 Wednesday mornings over January 6, 1988 to December 29, 1993;
an average of 128 trades per morning. Linear interpolations of 3- and 6-month Treasury bill yields

were used for the corresponding risk-free discount rates.



1.2 Distributional diagnostics

Figure 1 shows the typical post-'87 "volatility smirk" for implicit volatilities across strike
prices: high implicit volatilities for out-of-the-money (OTM) put options relative to the at-the-money
(ATM) implicit volatilities, which are in turn higher than out-of-the-money call options' implicit
volatilities. As shown in Figure 2, this has been the pattern virtually without exception throughout
the 1988-93 period. The implicit volatilities from representative 4% OTM put options were on
average 2.4% higher than ATM implicit volatilities during 1988-93, while 4% OTM call implicit
volatilities were on average 1.6% lower. The magnitudes of the implicit volatility differentials varied
over time, with major shocks (the stock market mini-crashes in January 1988 and October 1989, the

Kuwait crisis of 1990-91) substantially increasing the differentials.

The persistence and magnitudes of the post-crash implicit volatility patterns are in sharp
contrast to those of the pre-crash period. While pre-crash OTM put implicit volatilities were almost
invariably higher than those from ATM options, implicit volatilities from OTM calls were sometimes
below, sometimes above ATM implicit volatilities; see Figure 2. In essence, an asymmetric "volatility
smirk" pattern alternated with a more symmetric "volatility smile" pattern over 1983-87, with patterns
persisting anywhere from 3 months to 1'% years. The substantially smaller magnitudes of the pre-

crash smirks and smiles relative to the post-crash smirks is evident in Figure 2.

An alternate and substantially equivalent measure of moneyness biases is given by the
"skewness premium," or percentage deviation between call and put prices for options comparably

out-of-the-money:
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where X /F = (1+x)', X

ot .an!'F = (1+x),and x>0. Intuitively, since out-of-the money call (put)

options pay off only upon realizations in the upper (lower) tail of the distribution of the underlying
asset, comparing call and put prices is a direct gauge of the relative (risk-neutral) tail distributions,
and therefore assesses implicit skewness. As discussed in Bates (1991, 1997), the skewness premium
SK(x) = x for most standard and slightly positively skewed distributional hypotheses: Black and
Scholes' lognormal model, Merton's (1976) jump-diffusion with mean-zero jumps, and Hull and
White's (1987) stochastic volatility model. "Leverage" models such as the constant elasticity of
variance model with standard parameterization, Geske's (1979) compound option model, and
Rubinstein's (1983) displaced diffusion model imply roughly a [0, x] range for the skewness premium.
Values above (below) the [0, x] range require a distribution more positively (negatively) skewed than

the standard theoretical models.

The 4% OTM skewness premium shown in Figure 3 confirms that the post-crash moneyness
biases have been enormous relative to standard distributional hypotheses. Whereas such hypotheses
imply that 4% OTM American call options on S&P 500 futures should be roughly 0-4% more
expensive than correspondingly OTM put options, these calls have invariably been substantially
cheaper than the puts -- 35% cheaper on average over 1988-93. To put this in perspective: a 2-
month 4% OTM option with a typical implicit volatility of 16% costs roughly 1% of the underlying

asset price. With an average S&P 500 futures price of 362 over 1988-93 and an option tick size of



.05, a 35-39% option pricing error is roughly 25 to 28 price ticks.  Standard distributional
hypotheses, including leverage models, cannot possibly explain the magnitude of the post-'87
moneyness biases, more negatively skewed distributions are required. Dumas, Fleming and Whaley
(1996) show that the comparable biases in the S&P 500 index options market are far too large to be

attributable to bid-ask spreads.

A further interesting observation from Figure 3 is that implicit skewness as measured by the
skewness premium is strongly and directly related to the relative trading activity in calls versus puts
of all strike prices.? Since in-the-money S&P 500 futures options are thinly traded, the relationship
indicates that periods of substantial positive (negative) implicit skewness were typically periods in
which OTM calls were more (less) heavily traded than OTM puts. Throughout 1988-93, puts have

been heavily traded relative to calls, and negative skewness premia have been consistently observed.

“Bates (1996a) finds a similar relationship for DM and yen futures options over 1984-92 and
1986-92, respectively.



2. A proposed stochastic volatility/jump-diffusion model

Given the pronounced and persistent negative skewness implicit in post-'87 S&P 500 futures

options, the following model will be used to nest the two major competing explanations.

Assumption Al: The S&P 500 futures price F is assumed to follow a two-factor geometric jump-

diffusion of the following form:

dFIF = (w - Mk +c,V, +c,V)dt + [V, dZ, + [V, dZ, + kdg;

av, - (al - BlVlt)dt M ow I/I‘tdZvi’ i=1

, 2,

it

(2

Cov(dZ ,dZ)) = p, dt, i=1,2

Cov(dZ,, dZ,) = Cov(dZ,, dZ,,) = 0,

where

Z:and Z,,, i = 1, 2 are Wiener processes with the correlation structure specified above;
A, = Ay + AV, + AV, is the instantaneous conditional jump frequency;,

t

k is the random percentage jump conditional on a jump occurring, with time-invariant
lognormal distribution In(1+k) ~ N[In(1+k) - %% &?%; and

q 1s a Poisson counter with instantaneous intensity A,; Prob(dg = 1) = A, dt.

The postulated process nests both the stochastic volatility and jump explanations of the

strongly negatively skewed distributions implicit in observed S&P 500 futures option prices since the

1987 stock market crash. Negative skewness can arise either because of negative correlations

between stock index and volatility shocks (p<0), or because of non-zero average jumps (k < 0).

Similarly, conditional and unconditional excess kurtosis can arise either from volatile volatility, or



from a substantial jump component. The two explanations differ in maturity effects. Jumps primarily

affect short-maturity options, whereas stochastic volatility primarily affects longer-maturity options.

The postulated process extends the Bates (1996b) model in several directions potentially
consistent with observed S&P 500 futures options. First is the use of a multifactor specification. On
any given day, stock index options with a broad array of strike prices and up to 4 maturities are
trading simultaneously, all of which must be priced by the model. Consequently, it can be important
to have sufficient factors to adequately match time-varying distributional patterns across different
strike prices and maturities. For instance, evidence from currency options (Taylor and Xu (1994),
Bates (1996b)) indicates that one-factor models can do a poor job in capturing the term structures
of implicit volatilities over time, and that two-factor models would do better. Whether comparable

improvement is apparent for the stock index options examined here will be examined below.
Second, the jump frequency A, is time-varying rather than constant. Given that implicit
volatilities ranged from 40% to 10% over 1988-93, assuming constant jump risk throughout the

period is implausible.

Options are of course priced not off the true process, but off the corresponding "risk-neutral"

process that incorporates the appropriate compensation for volatility risk and jump risk:
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dFIF = -MKkd + [V, dz] « [V, dZ] + k'dq’,
v, = (o - BV, +® )dt + OVI\/VHdZV:, i=1,2;
Cov(dZ] ,dZ,;) = p, dt, i=1,2 3)

Cov(dZ,, dZ,) = Cov(dZ,

viz

dz,;) = 0,

Prob(dgq™ = 1) = A, dt

The volatility risk premium B* - P reflects the degree to which innovations in the underlying
volatility factor are correlated with the marginal utility of nominal wealth J,, and consequently
depends upon investors’ preferences. Plausible values for its sign and magnitude can be obtained

under the assumption of log utility:

(B" - Byar = Cov(dV/v, dJ IJ) = Cov(dVIV, -dWIW), @)

see Cox et al (1985). Since volatility shocks are negatively correlated with shocks to the S&P 500
index, which represents a substantial fraction of nominal wealth #, B* - (3 is presumably positive.’
Conversely, an upper bound on the volatility risk premium can be obtained if volatility shocks are

assumed to covary more negatively with the equity than with the non-equity return components of

*Intuitively, volatility-sensitive investments such as straddles are “negative-beta” investments
that typically pay off in adverse states when the marginal utility of wealth is high. They therefore have
a lower conditional mean under the actual than under the risk-neutral distribution. This is of course
in contrast to the positive conditional mean differential, or equity premium, of “positive-beta”
investments such as the S&P 500.

11



nominal wealth returns. This assumption implies that B* - P is less than -Cov(dV /V, dF/F) =

-p o, asmall positive number.

The jump risk premia A, /A, and k" - k similarly reflect the compensation required for

bearing systematic jump risk:

. AJ
A, = A E[1+—
JW
(3)
- - Cov(k, AJ,1J )
k = k +

E[1 +AJ,/1J,]

where AJ  is the jump in the marginal utility of nominal wealth conditional upon a jump occurring.
Under systematic jump risk the cost A, per unit time of Arrow-Debreu crash insurance will diverge
from the actuarial rate A, at which jumps arrive. Assessing this divergence requires an assessment
of how stock market jumps affect other investments. If jumps are assumed to occur only in stock

markets and log utility is again assumed, then AlnJ, = -AlnW = -fAlnF and

A, = A Eexp(~fAlnF) = A (1+k)7 PRGNS
B _ (6)
In(1+k) = In(1+k) - f&?

where fis the fraction of nominal wealth held in equity. When average jumps are negative, the "risk-
neutral" jump frequency and average drop size will tend to exaggerate the downside risk:
A* > A, k* < k. For plausible parameter values such as those estimated below, however, there is
little reason to believe that the jump risk premia introduce a substantial wedge between the "risk-

neutral" parameters implicit in option prices and the actual parameters.
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The above assumptions generate an analytically tractable method of pricing options without
sacrificing accuracy or requiring undesirable restrictions (such as p=0) on parameter values. European
call options that can be exercised only at maturity are priced as the expected value of their terminal
payoffs under the "risk-neutral" probability measure:

c = e"TE*max(FT - X, 0)

= et [f; Fpp'(F,)dF, - Xf;p*(FT)dFT] 7
e T (FP, - XP,)

1

where
E* is the expectation with respect to the risk-neutral probability measure;

F = E*(Fy) is the current futures price;
P, = Prob*(F; > X) is one minus the risk-neutral distribution function; and

P, = f: (F,/F )p*(F,)dF, is also a probability.

The distribution functions can be evaluated by Fourier inversion of the underlying
characteristic functions:

; -i®x
1 - Imag[Fj(ﬂI))e ] y

1
+;f0 3 ® (8)

Prob™(F, > X | Py =

where F, (@) and F,(P) are the associated real-valued moment generating functions. F, and F,
can be solved using the methodology described in Heston (1993) and Bates (1996b), with

straightforward extensions for multiple independent factors and time-varying jump risk:
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WF @V, ¥,, T) = mE[*™7 | p]  (j=1,2)

J

9
= Y0 [4.,T @) + B (T, ®) V)] + MTC,(®)
where
ol
AI,J(T; ®) = ~_0—2' (p,0,® - BI,] ~ Y ,)
20 |-t (10)
- — Il + %(p0,®-B -y, ) ——| .
2 i vi I’,] 1, ]
Oy Y.,
B[®2 + (3-25)@] + A C(®
B (T;®) = -2 ol ( J)]WL’J('),
| o - p oy, Lre 1)
P, 0, i J Yz.jm
CA(D) = (1+k" )7 [+ ) ¥ ¢ 0% _ 1] - I (12)
Y., = {(,0,@ - B, )7 - 202 (4@ + (3-2/)0] + A, C, ()} (13)

and ﬁj,j = B: * pjow’(.j - 2)'

Similar inversions can be used to evaluate transition densities.

The above procedure gives the price of a European call option as a function of state variables

and parameters:
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«F. V. T, X, 0) = ¢ "™ [Fp - xP)] (14)

where A, is the one business day lag in settlement upon terminal exercise of an option, and 6 is the
vector of parameters. Chaudhury and Wei (1994) show that American futures option prices C and
P are bounded above by the future value of the European option price:

max[F - X, c] < C <e’lc

IA
IA

(15)

max[X - F, pl < P <e'p

IA
IA

This implies that the proportional markup of American over European prices is within the narrow
range [1, e”’]. Consequently, accurately evaluating the early-exercise premium is not a major issue
for the 0-6 month options examined here -- especially given that the in-the-money S&P futures
options with maximum potential for approximation error are relatively thinly traded. This article
therefore follows Bates (1996b) in inserting expected average jump frequencies and expected average
variance into the Bates (1991) jump-diffusion early-exercise approximation, and using “smooth-

pasting” conditions based upon the correct European option pricing formula (14).
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3. Implicit Parameter Estimation
3.1 Methodology

Implicit parameters were estimated on the panel data set of 39,607 call and put prices for all
observed strike prices and up to four maturities on Wednesday mornings over January 6, 1988 to

December 29, 1993. The option pricing residual was defined as

R - oLV, T,;|=|.9 (16)
’ (F i [ ' ! F it

o
]

where
t is an index over 310 Wednesday mornings within the specified period,

i is an index over transactions (calls and puts of assorted strike prices and at most
four maturities) on a given Wednesday morning;

(O/F),, 1s the observed call or put option price/futures price ratio for a given
transaction;

O(-) 1s the theoretical American option price/futures price ratio given the contractual

terms of the option (call/put, time to maturity 7, strike price/spot price ratio (X/F), )

and given that Wednesday morning's factor realizations V,, interest rate 7, and the

time-invariant parameters 6 of the model.

For the full two-factor stochastic volatility/jump-diffusion model, 6 was the set of jump and
stochastic volatility parameters: < Ag, A, A,, k', 8, «, B, 0., p,, @, By, O,,, p,> 1-and
2-factor subcases of the general model were also estimated, to see which features of the generalized
model were important in explaining option pricing deviations from benchmark ad hoc Black-Scholes
prices with day-specific implicit variances. The average Wednesday morning factor realizations V,

were estimated for all Wednesdays in the 1988-93 data set. Intradaily movements in implicit factors

were ignored in the estimation procedure.
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A standard econometric method of inferring parameters from option prices is nonlinear
ordinary least squares, used inter alia by Whaley (1986) and Bates (1991). However, the implicit
assumption that option pricing residuals are independent and identically distributed is questionable
on theoretical grounds. George and Longstaff (1993) find that market makers' bid-ask spreads in
the S&P 100 index options market vary by strike price and maturity, suggesting a heteroskedastic
impact from bid-ask bounce. A similar heteroskedastic impact arises from imperfect data
synchronization with the underlying futures price, which affects in-the-money options more than out-
of-the-money options. The pooling error introduced by using a common spot variance for all
transactions on a given Wednesday morning introduces more complex intradaily serial and cross-

correlations in residuals.

The major issue for implicit parameter estimation is, however, specification error. Any
parsimonious time series model imposes a structure on option prices that can capture only some of
the features of the true data generating process. Specification error implies that option pricing
residuals of comparable moneyness and maturity will be contemporaneously correlated, and serially
correlated as well if the conditional "risk-neutral” distribution evolves gradually over time in fashions
not captured by the model. Furthermore, no-arbitrage constraints on option prices imply
contemporaneous correlations across residuals of different strike prices and maturities. For instance,
put-call parity for the European component of American option prices implies positively correlated
residuals between calls and puts of identical moneyness and maturity in the presence of specification
error. Consequently, implicit parameter estimation via nonlinear ordinary least squares (NL-OLS)

would yield misleadingly low estimated standard errors. A further problem when transactions data

17



are used is that NL-OLS can place too much weight on the substantially redundant information

provided by heavily traded options while virtually ignoring less actively traded options.

Consequently, implicit parameters are estimated using a nonlinear generalized least
squares/Kalman filtration methodology that takes into account the heteroskedasticity, contemporane-
ous correlation, and serial correlation properties of option residuals. Option pricing residuals are
sorted by call/put, maturity, and moneyness criteria into 64 groups,* and assumed to include both

group-specific and idiosyncratic shocks:

2]
i

g, + o1, forie G, t)

it It

a17)
e - Pr&e g tOY,
where

G({, t)is the set of observations in group / at date ¢;

Vv, 1s a mean-zero, normally distributed shock term common to all option prices in
group / at time , with E,_,v,v, = Q for positive semidefinite Q,

n.. ~ M0, 1) is an idiosyncratic shock to transaction i at time ¢, uncorrelated with v, ; and

I identifies lagged option residuals of the same moneyness and delivery month for 0-3
month options, and of the same maturity (1* = I') for 3-6 month options.’

*The criteria were
1) whether the transaction involved a call or a put;
2) whether the maturity was 0-1, 1-2, 2-3, or 3-6 months;
3) whether the option was in-the-money by 0-1%, 1%-2%, or >2%, or out-of-the-money by O0-
1%, 1%-2%, 2%-4%, 4%-8%, or >8%.
The asymmetric moneyness criteria reflected the fact that deep in-the-money options were thinly
traded.

*Simpler dynamics could have been generated by assuming /* = I throughout. However,
time decay in option prices suggests a closer relationship between residuals of 8-week (1-2 month)
maturity and the preceding week’s 9-week (2-3 month) maturity option residuals than between 8- and

18



The set of groups represented on any given day was constantly changing, primarily because of the
complicated serial/ quarterly option maturity structure. The average number of groups represented

per day was 27.7, 43% of the 64 groups possible.

Given the above specification, the loss function for implicit parameter estimation is

max In Loptions = —%Zln}gt;r—ll + (e, - E e) Q;llr-l (e, - E  e).
'
AN

(18)

E,_, e, is a Kalman filtration-based forecast of option residuals conditional upon estimated dynamics

(17) and lagged option residuals. The conditional covariance matrix is also estimated using

-1

Kalman filtration methods.

The log likelihood in (18) is optimized by a two-stage procedure. Conditional upon the
Kalman filtration parameters in (17), (18) is optimized via the nonlinear weighted least squares over
the parameters <{¥,}, 0> that directly determine option residuals.® Conditional upon the option
residuals, optimization of (18) over <{p,, o, }?f,, (> involves estimating a high-dimensional /inear

Kalman filtration with day-specific missing information for particular groups. Alternating between

5-week option residuals.

®The Davidon-Fletcher-Powell quadratic hill-climbing algorithm was used (GQOPT
subroutine DFP) for this optimization. The score was computed numerically, exploiting specific
features of the log likelihood function to increase efficiency. For instance, computing dlnL/dV,
required perturbing only date-f options and measuring subsequent propagation effects. Nonnegativity
constraints were enforced through log transformations of parameters and spot variances, while
correlations were constrained via a cumulative normal transformation.

19



the two optimization steps until joint convergence yields estimates of implicit parameters and factor
realizations for a specific model, estimates of the relative importance of idiosyncratic and common
shocks, and a full dynamic description of the specification error (as captured by the vector of
common shocks). A slightly improved variant of the Shumway and Stoffer (1982) and Watson and
Engle (1983) EM algorithm approach to estimating Kalman filtrations is developed in the appendix

for this particular application.’

Optimization yields the estimates of parameters and state variable realizations that best fit
observed option prices. However, such an optimization does not constrain the state variable estimates
to evolve consistently with the underlying option pricing model. For instance, the implicit variances
estimated under the Black-Scholes submodel are not constrained to be identical, contrary to the
assumptions of that model. Consequently, the stochastic volatility and stochastic volatility/jump-

diffusion models were also estimated using the likelihood function

lnL({Vt}’ 67 ﬁl’ B2) = lnLoptions + lnLV] t lnLVZ (19)

where

In L0 ({V,,. V,, }, 0)is the function of option pricing residuals given above in equation
(18), and

InLy,=Znp(InV,| e, B, a,;V,)is the log likelihood of an estimated {}’,} sample path

given the actual (as opposed to risk-neutral) rate of variance mean reversion 3.

"The procedure is superior to that in Bates (1996b) in two regards. First, it copes better with
missing observations. Second, the EM algorithm approach to estimating high-dimensional common
shock vectors is substantially faster.
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The spot variance transition densities are related to the noncentral chi-squared density, with series

representation

p( anv{rAt | LI()

2 e -y + A) y‘/zv it (%yA)j
R A (20)

2'/'2\1 J=0 F(l/ZV +_]) j'

where k = %202 (1 - e PAY)/B, y = 2V, /x, v = 4a/0’, A = 2V,e P4/x, and T'(") is the

t

gamma function ®

The constrained estimates serve three functions. First, since the underlying hypothesis is that
the state variables follow a diffusion, the constrained estimates yield smoothed state variable sample
paths that are useful in assessing major and persistent developments in S&P 500 futures option prices.
The appropriate degree of smoothing is determined endogenously, based upon the estimated volatility
of volatility o,. For instance, optimization of (19) under the Black-Scholes assumption
o = ° = o, = 0 would be equivalent to estimating a single implicit variance over the entire 1988-
93 period. Second, the constrained parameter estimates are of course more plausible relative to the
time series properties of the state variable estimates. Finally, a comparison of the constrained and

unconstrained parameter estimates can be used to test the option pricing models.

¥The transition densities p(In V,) = V, p(V,) were used rather than the transition densities
of V, because the former is strictly finite whereas the latter is infinite at } = 0 when the reflecting
barrier at zero is attainable (20 < 0,), yielding nonsensical results when estimating implicit factors.
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3.2 Results

Model-specific estimates of implicit distributions indicate extremely turbulent conditions in
the S&P 500 futures option market over 1988-93, with somewhat quieter conditions following the
end of the Gulf war. Assorted shocks hitting the stock market provoked substantial movements in
implicit distributions -- not just implicit volatility, but higher moments as well. The evolution of
implicit distributions is especially manifest in the full two-factor stochastic volatility/jump-diffusion
estimates, which indicate a fundamentally different role for the two factors. V| is a "volatility-and-
skewness" factor that heavily affects implicit skewness and leptokurtosis both through its contribution
to jump risk and through a high implicit negative correlation with market shocks. V, by contrast
captures parallel shifts in the term structure of implicit volatilities that do not especially influence
higher moments. Because of the jump risk channel, V', has roughly twice the impact of V, on

instantaneous and longer-maturity expected average conditional variances.

The smoothed estimates of these factors in Figure 4 indicate the major shocks that affected
the options market over 1988-93: an 8% intradaily drop in S&P 500 futures prices on January 8,
1988, the mini-crash of October 13, 1989, and the Kuwait crisis from Iraq's invasion on August 2,
1990 through the conclusion of the Gulf war on March 3, 1991. Smaller shocks also appear, such

as the Clinton tax increase announced on February 17, 1993.

The typical option pricing shift accompanying substantial market drops was higher implicit
downside risk -- not just through increases in implicit volatilities, but through increases in higher

implicit moments as well. By contrast, the substantial run up in the market over 1991-93 was largely
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accompanied by declining assessments of non-jump volatility and correspondingly lower downside
risk. As indicated in Figure 4, however, residual jump fears inferred from the two-factor models
persisted substantially without change at a lower level throughout the post-Kuwait period. Judging
from option prices, market participants did not view the stock market as overvalued and more prone
to crash following the run up; quite the contrary. It appears that crashes begat crash fears in the S&P
500 futures options market, while an absence of crashes reduced crash fears to an assessed biannual

frequency.’

The unconstrained stochastic volatility (SV) and stochastic volatility/jump-diffusion
(SVID) model estimates reported in Table 1 eliminate most of the moneyness- and maturity-related
option pricing biases of the ad hoc Black-Scholes (BS) model. The major improvement clearly
originates in relaxing the conditionally lognormal assumption to capture the "volatility smirk,"
symptomatic of substantially negative implicit skewness. By contrast, relaxing the assumption of
a flat term structure of implicit volatilities (DV1 and DV2 estimates) contributed relatively little
to the improved fit, indicating predominantly flat term structures of implicit volatilities across
different option maturities throughout the 1988-93 period. And while full-model estimates indicate
substantial implicit jump risk, the 1- and 2-factor estimates still attribute much of the negative implicit
skewness (at longer horizons) to substantial volatility shocks that are negatively correlated with

market shocks. The estimates indicate that jumps alone cannot capture the skewed and leptokurtic

°The experience of other countries appears to be quite different from the U.S. experience.
Gemmill (1995) found little change in implicit skewness from British stock index options following
the British stock market crash in 1987, while Beinert and Trautmann (1994) found that German stock
options exhibited increased positive skewness (rebound expectations) following the German 1987
crash.
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implicit distributions evident at both short and longer-maturity horizons -- basically because of too-
rapid convergence towards lognormality at longer maturities. Allowing for time-varying jump risk
is quite important in improving the fit over time of models with jumps. The constant jump risk

component A, is of negligible importance.

The 2-factor models’ ability to distinguish between implicit volatility shifts that accompany
higher implicit moments and those that do not yields substantially improved fits relative to 1-factor
models throughout the 1988-93 period. The downside is that essentially twice as many parameters
and factor realizations must be estimated. The two-factor SV model appears somewhat overfitted,
in that implicit factor realizations become highly volatile relative to the one-factor estimates'® and
frequently hit the nonnegativity constraint. Smoothing the SV estimates using (19) heavily affects
inferred factor realizations at relatively little cost in option-specific log likelihood; another indication
of overfitting. By contrast, implicit factor realizations from the two-factor SVID model are more

stable, hit nonnegativity constraints far less frequently, and are modified less by smoothing.

Estimates of Kalman filtration parameters indicates severe persistence in option( pricing
residuals; see Table 1. The problem is most pronounced for residuals from the conditionally
lognormal models (BS, DV1, DV2) -- not surprising given that the “volatility smirk” was present
throughout 1988-93. The filtration-based serial correlation correction cuts option residuals’ standard

errors in half for those models, implying an associated R? of roughly 75% in “explaining” option

"Estimates of the volatility of volatility o, for implicit factor realizations from constrained
and unconstrained models are reported in Table 2 below.
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residuals. Moving to more complicated models does not especially reduce the autocorrelation

estimates, but the serial correlation correction becomes less important in reducing standard errors."

The relative importance of idiosyncratic and common shocks varies by model, and by group
classification (call/put, maturity, and strike class). For the two-factor SVJD model, idiosyncratic
noise as a percentage of the underlying futures prices ranged from .009% to .067% (0.6 to 4.9 price
ticks)'?, with a tendency to increase for longer-maturity and deeper in-the-money options. Common
shock magnitudes suggestive of specification error were typically comparable and slightly higher:
011% - .079%, or 0.8 - 5.7 price ticks. However, the SVID model had difficulty fitting the longest-
maturity (3-6 month) options and deepest in-the-money 2-3 month put options, with common shock
standard deviations of .113% - .174% (8.2 - 12.6 price ticks). The relative importance of common
shocks was of course substantially more pronounced for the more parsimonious and poorer-fitting

models.

While the 6-tick standard errors achieved by the SV and SVID models eliminates most of the
15-16 tick standard errors of the ad hoc lognormal models (BS, DV1, DV2), there is room for further
improvement. The maturity-specific constrained cubic splines fitted in section 1 to 1-4 month

quarterly options have an overall standard error of about 2 price ticks over 1988-93-- a fit also

"Since the estimation procedure uses a nonlinear generalized least squares approach, equally-
weighted standard errors premised on homoskedasticity are not equivalent to the maximization
criterion. They are reported to provide a broad-based and relatively intuitive measure of model
performance for comparison with other empirical work.

Price ticks in the S&P 500 futures market are .05. The average 1988-93 S&P 500 futures
price level of 362 was used to converting standard errors into price ticks.
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achieved by Bates (1991) on pre-crash S&P 500 futures options using an ad hoc 4-parameter jump-
diffusion model with day- and maturity-specific implicit parameters. A comparable fit could probably
be achieved using implied binomial trees with daily parameter re-estimation. The presence of
idiosyncratic noise from bid-ask bounce, synchronization error, and intradaily pooling error makes

it unlikely that a fit substantially better than two ticks could be achieved on this data set.

While profligately parameterized, such ad hoc methods do impose no-arbitrage constraints
on relative option prices, and are therefore consistent with probability distributions generated by some
deeper, unspecified data generating process. Furthermore, any freely parameterized model that fits
options reasonably well will generate similar implicit distributions at option-specific maturities, and
is therefore as valid as any other model in describing moneyness biases. The choice of model is less
innocuous when extrapolating from monthly/quarterly option maturities to the daily or weekly

frequencies used in festing option models.
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4. Dynamic Implications

The implicit parameter estimates and factor realizations above essentially describe
distributions substantially more consistent with post-1987 S&P 500 futures option prices than the
lognormal distribution underlying Black-Scholes, and how those implicit distributions have varied
over time. While an ability to reduce or eliminate systematic option pricing errors is an important
attribute of any option pricing model, such models are also important for their purported ability to
predict the future evolution of asset and option prices. Indeed, standard implicit parameter-based
tests of option pricing models can be categorized by whether the implicit parameter estimates are
tested for consistency with the evolution of the underlying asset price, with the evolution of option
prices, or with the joint option price/asset price evolution. Examples of the first include the tests of
whether implicit volatilities are unbiased and informationally efficient predictors of the subsequent
realized volatility of the underlying asset.”® The studies of whether the term structure of implicit
volatilities predicts future implicit volatilities fall within the second category.'* As noted by Dumas,
Fleming, and Whaley (1996), “market efficiency” tests of no-arbitrage models such as Black-Scholes
and implied binomial trees are equivalent to comparing first-differenced option prices or option
returns with those predicted by the model conditional on the realized change in the underlying asset

pl’iCC.]s’lﬁ

See Day and Lewis (1992), Canina and Figlewski (1993), and Fleming (1993) for such tests
of S&P 100 index options.

1* See Stein (1989) and Diz and Finucane (1993).
3See Whaley (1986) and Dumas, Fleming, and Whaley (1996).

' Market efficiency tests typically suffer from several problems. First is a severe selection
bias: the typical approach of selling “overvalued” options, buying “undervalued” options and delta-
hedging tends to select those options most severely out-of-sync with the underlying asset price.
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4.1 Tests of the stochastic evolution of option prices

While there is no presumption under jump or stochastic volatility models that a delta-hedged
option position will be riskfree, the models do specify the distribution from which option price
changes should be drawn. For the postulated stochastic volatility/jump-diffusion process, the
stochastic component of call or put option price changes can be roughly decomposed into

"moneyness" and "implicit factor" effects:

AC = [C(F+AF, V, 1+At) - C(F, V, t)] + C, AV + O(AT) @1)

where V' = (V,, V,)and O(AT) captures deterministic terms of order A7 . The "moneyness"
effect reflects the option pricing impact from the option moving deeper in- or out-of-the-money as
the underlying asset price changes. The "implicit factor" effect captures how option prices of a
standardized moneyness and maturity evolve. Models with stationary return distributions such as
Black and Scholes (1973) and Merton (1976) attribute all stochastic option price variation to the

moneyness effect.’’

Second is a focus on average option returns. The fact that the variance of returns to delta-hedged
options positions should be close to zero under Black-Scholes assumptions has been less thoroughly
tested -- perhaps because it is so obviously rejected by random fluctuations in implicit volatilities.
Third, the evidence above of severe persistence in Black-Scholes option residuals reduces the power
of tests based on first-differenced option prices, and may explain Dumas, Fleming and Whaley’s
conclusion that implied binomial trees models do no better than Black-Scholes from a hedging
criterion.

"The constant elasticity of variance and binomial trees models also attribute all stochastic
option price changes to movements in the underlying asset price. These models are not homogeneous
in the asset price and strike price, precluding meaningful use of the strike price/futures price ratio as
the measure of moneyness. They also predict nonstationary implicit volatilities, contrary to fact.
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The unconstrained stochastic volatility (SV) and stochastic volatility/jump-diffusion (SVID)
models examined above fit option prices somewhat comparably. Equivalently, the two models yield
similar predictions regarding the risk-neutral distributions of underlying asset prices and option prices
at option maturation. However, the models yield quite different predictions regarding option price
evolution -- how we get there from here. The SV models attribute the substantial negative skewness
implicit in S&P 500 futures options to highly volatile stochastic volatility factors that typically rise
as the market falls. The SVID models by contrast assigns less weight to implicit factor movements
and more weight to the moneyness impact of occasional large and predominantly downward changes
in the market. Both models predict a substantial correlation between moneyness and implicit factor

shocks.

In contrasting the two models, therefore, it is useful to single out the second component and
examine the models’ predictions for the stochastic evolution of option prices of a standardized
moneyness and maturity.  That evolution is conveniently summarized across options of al/
moneynesses and maturities by the estimates of the stochastic factorsV, andV,. Whether those
estimates evolve consistently with the postulated square-root diffusions and with the parameters
inferred from option prices can be tested. The test is analogous to testing the Black-Scholes model
based upon its prediction that implicit volatilities inferred daily from pooled option prices of all strike

prices and maturities should not change over time.

Maximum likelthood estimates of implicit factor processes under the postulated square root

process strongly reject the hypothesis that standardized option prices evolve as predicted by implicit
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parameter estimates, see Table 2. Within that specification, the major disagreement is over the
volatility of volatility parameter ¢ . Stochastic volatility models require high values of o, to generate
substantial implicit skewness and leptokurtosis; and those values are not justified by the observed
volatility of factor realizations and standardized options prices. Models with jumps yield smaller
values of o that are nonetheless implausible. Constrained estimation using (19) to impose time
series plausibility upon implicit parameter estimates cannot reconcile a model-specific incompatibility

between how options are priced and how option prices evolve.

A useful diagnostic of the misspecification of the factor process under parameters inferred
from option prices is generated by "normalizing" factor transitions using the monotonic transforma-
tion

A

N F 1V 6 Boa,)], =1, ., 309, 22)

(3]
It

t+1

where F(InV, ,

V., ) is the conditional distribution function and N “1(s) is the inverse of the
cumulative normal. If the conditional distribution function is correctly specified with correct
parameters, then the z's should be independent and identically distributed draws from a normal
M0, 1) density -- a testable hypothesis. Conversely, if the conditional distribution is not correctly
specified, analysis of the z’s usefully summarizes the overall misspecification of conditional

distributions.'®

¥ am indebted to Charles Thomas for drawing my attention to "calibration" approach used
by Fackler and King (1990) and Silva and Kahl (1993), which inspired the above transformation.
Those papers work with uniform distributions. The additional transformation into normally
distributed residuals appears preferable for highlighting outliers and for permitting use of standard
normality tests such as Shapiro-Wilks. If V, | were drawn from a conditionally normal distribution,
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The histograms in Figure 5 illustrates the extent of the misspecification of the 1-factor
constrained stochastic volatility (SVC1) model. Factor realizations are substantially less volatile than
predicted by implicit o values, yielding a concentration of probability mass of normalized residuals
well within the standard normal curve. While most pronounced for the SVC1 model, the standard

deviations of normalized residuals in Table 3 indicate comparable problems for other specifications.

Normalizing implicit factor transitions using time series-based parameter estimates reveals that
the postulated square root process is fundamentally misspecified. While maximum likelihood
estimation successfully matches the first two moments, there are far too many outliers. The high
improbability of those outliers relative to the diffusion-based assumptions indicates true conditional
transition distributions are far more leptokurtic than hypothesized, and suggests that the underlying
volatility processes follow a jump process. Qutliers are almost all positive for the one-factor models,
and correspond to sharp increases in implicit volatilities accompanying events such as Kuwait-related
shocks and the mini-crashes of January 8, 1988 and October 13, 1989.” Two-factor models’ outliers
are more complicated, and include substantial shifts in the relative importance of the two factors at

various times.

the transformation (22) would be equivalent to the standard normalization
=W, -EW.D1/ WVar ...

'*The one large negative outlier in Figure 4 occurred on January 16-23, 1989, following the
start of the Gulf war, and reversed the previous week’s increase.
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4.3 Tests of consistency with the time series properties of futures prices

The central empirical question is, of course, whether the substantial negative skewness implicit
in options on S&P 500 stock index futures throughout 1988-1993 was in fact validated by subsequent
developments in S&P 500 futures prices. For instance, implicit risk-neutral jump frequencies from
the 1- and 2-factor models with jumps predict a total of 4 and 6 jumps over 1988-93, respectively.
Those jumps are predicted to be drawn from a distribution with substantial negative mean (-9.5% and
-5.7%, respectively) and standard deviation (10-11%). And while there were four large daily moves
over 1988-93 of 4-6% in magnitude that might be interpreted as jumps, implicit and observed jump
magnitudes are not especially compatible.”® Indeed, the impact of the outliers cannot be discerned
at weekly frequencies; see Table 4. Ex post, all models clearly exaggerate stock market risk. For
instance, no weekly move greater than 10% in magnitude was observed over 1988-93, despite a 97-

99% probability of such a move according to risk-neutral implicit distributions.

To examine the informational content of implicit distributions, the short-maturity (0-3 month)
futures price process was modeled as in (2). The conditional mean p was specified as
E@FIF)dt = ¢, + ¢c;r, + ¢y, + ev, V|, + cev, V), (35)

where 7, is the preceding day’s 3-month Treasury bill yield and y, is the previous day’s implicit

dividend yield from synchronous futures prices of different maturities.”> The last two terms generate

%0n a noon-to-noon basis, the four largest outliers were January 8-11, 1988 (-5.8%), October
13-16, 1989 (-4.8%), August 24-27, 1990 (+5.0%), and September 28 - October 1, 1990 (+4.4%).

n=1

*'The average cost-of-carry was computed as COC = —]%EN In[F"/F fT], where Fns !

was the average of all short-term futures prices observed within a +20 second window around the

corresponding medium-term futures price F nMT. The shortest two futures maturities available were
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instantaneous "GARCH-in-mean" effects, although higher moments are also affected in discrete time.

The futures data were short-maturity (typically 0-3 month) noon quotes on Wednesdays for
which there were options data available. The typical time interval was therefore one week, although
holidays occasionally induced a longer time interval. To avoid maturity shifts, the futures contract
maturity was the shortest maturity such that futures contracts with identical delivery date existed at

the next available Wednesday.

To examine whether implicit variances are biased forecasts of future variance, the
instantaneous conditional variance was modeled as a linear transform of the factor realizations
inferred from option prices:

Var (dFIF) = V, +dV, +d,V,, 36)
where ¥V, d,, and 4, are constants. Similarly, the actual jump frequency was modeled as a linearly

transformed version of the implicit jump frequency:

T

t A Uy + Ao) + (4 A Vie v A) V! (37)

F
ln[ - ) [ Vn‘l
Fn-l

for weekly log-differenced futures prices conditional upon observed factor realization can be

i

The resulting log-likelihood function

InLg = Y Inp : (39)

calculated via Fourier inversion of a slightly modified variant of (10)-(13), and was optimized over

the parameter space </, /, k.6 c,c,c,cC,pCom Vi d, d>. The stochastic variance parameters

used. The implicit dividend yield is r, - COC,.
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<a, B,, 0, p,> were set equal to those inferred from option prices, ignoring the possible

Il

divergence between 3 and B*.

Maximum-likelihood estimates of the parameters are presented in Table 5. Variables
affecting the conditional mean exhibited no significant ability to forecast futures prices, with R*
typically around 1%. By contrast, implicit factor realizations were informative but biased forecasts
of subsequent S&P 500 volatility, with implicit variances typically overstating realized variance. The
biases were most pronounced for implicit variances from the stochastic volatility models, and are
roughly comparable to those in Day and Lewis (1992) and Fleming (1993). Factor realizations
inferred under jump models are less biased in describing realized distributions, suggesting that fears
of “rare events” may be contributing to the implicit volatility forecasting biases typically found for
stock and stock index options.”* Unconstrained estimates of jump parameters from weekly S&P 500
futures returns pick up an infrequent positive jump component that is significantly different from zero

but not significantly different from implicit parameter estimates.

4.4 Correlation tests

While it is possible using Fourier inversion techniques to evaluate and estimate joinf transition
densities of S&P 500 futures prices and factor realizations, the inconsistencies evident above between
implicit and observed marginal densities suggests little to be gained from the exercise. However,
both the stochastic volatility and stochastic volatility/jump-diffusion models attribute some of the

negative implicit skewness to negative correlations between market and volatility shocks. That there

“See Bates (1996) for a survey of the empirical literature.
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exists such a correlation between stock market returns and acfual conditional volatility changes is of
course fundamental to the EGARCH approach, while corresponding negative correlations between
returns and implicit volatility changes have been found for individual stocks (Schmalensee and Trippi
(1978)) and for the British stock market (Franks and Schwartz (1991)). Some simple correlation
computations on weekly data reported in Table 6 confirm that the underlying assumption of
substantial negative correlations between S&P 500 futures returns and implicit factor changes are in
fact observed. In the 2-factor models, the correlation is most pronounced for innovations in the

factor (V) that most influences higher moments, as predicted by implicit parameter estimates.

The two-factor model was premised upon the assumption of independent factors, whereas
innovations in the two unconstrained implicit factor estimates are in fact substantially negatively
correlated. This is symptomatic of overfitting. The correlations between factors are less pronounced
for the constrained (smoothed) estimates, in which the second factor plays more of a “parameter

dnfi” role.
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S. Summary and conclusions

This article has presented evidence that post-’87 distributions implicit in S&P 500 futures
options are strongly negatively skewed, and has examined two competing hypotheses: a stochastic
volatility model with negative correlations between index and volatility shocks, and a stochastic
volatility jump-diffusion model with time-varying jump risk. The fundamental premise underlying the
stochastic volatility model is confirmed: index and implicit volatility shocks are in fact strongly
negatively correlated. However, this negative correlation is not sufficient of itself to generate
sufficiently negative implicit skewness. An extremely high volatility of volatility is also necessary --
implausibly high when judged against the time series properties of option prices. By contrast, the
stochastic volatility/jump-diffusion model explanation is more compatible with plausible stochastic
volatility parameter values. The crash fears explanations is also somewhat more compatible with
observed S&P 500 futures returns over 1988-93 than the stochastic volatility specification, and offers
a partial explanation for previously reported biases in stock and stock index implicit volatility
forecasts of future volatility. All models examined here clearly exaggerated the stock market risk ex
post, given predicted large movements that did not in fact occur over 1988-93. And while the
difference between risk-neutral and actual distributions could conceivably explain the divergence,

enormous volatility and/or jump risk premia would probably be required.

This article has also presented strong evidence against the hypothesized square root diffusion

processes driving instantaneous volatility and jump risk. Such processes possess many desirable

features (nonnegativity, leverage effects, analytic tractability), but cannot account for the substantial

36



and typically positive implicit volatility shocks observed in the S&P 500 futures options market. A

volatility-jump model is clearly necessary, and will be explored in future work.

Finally, neither of the two models quite captures the profile of implicit skewness across
different option maturities. Whereas the jumps hypothesis predicts a strong inverse relationship
between skewness and maturity and the stochastic volatility model predicts a direct relationship at
short horizons, the truth appears to lie somewhere in between: a flat to declining relationship that
declines slower than predicted by the jumps explanation. Within the framework of this article’s
model, the problems are most evident in the difficulties in pricing the longest-maturity (3-6 month)
options in the data set. While it is possible that an alternate volatility-jumps model might do better,
I suspect that the problem originates with the independent and finite-variance shocks assumption,
with the resulting rapid convergence towards lognormal distributions at longer maturities.
Equivalently, the “volatility smirk” remains too pronounced at longer maturities. Alternate infinite-

variance option pricing models such as the stable Paretian model are consequently worth exploring.
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Appendix
Conditional upon particular estimates <{¥,}, 0> of the volatility state realization and implicit
parameters, option pricing residuals are assumed to satisfy

e, = &, * O, forie G(I,1)

(A1)
where
M., ~ N(0, 1) is an idiosyncratic shock to transaction / at time ¢, uncorrelated with all other
shocks;
G(1, t) is the set of residuals in group 7 at time ¢,
g, is the N-dimensional vector of common shocks, with /-th entry € Lo

F, =D, A, is the product of an NxN diagonal matrix D, with serial correlations
p = {p,} along the diagonal, and a permutation matrix 4, that captures the assumed
maturity-related serial dependency of common shocks; and

v, is a mean-zero, normally distributed vector with E,_,v,v, = Q for positive semidefinite

0.

It is useful to orthogonalize option residuals by dividing into group-average and deviation

from group-average components:

€ = €t U, (A.2)

= 1 : o :
where e, = — Y e o~ N (e o0 o} /N fi [) is a reduced-noise signal that summarizes all relevant
It f€ G, t)

date ¢, group / information about the level of the underlying common shocks. The precision of the
signal varies observably with the group-specific number of observations N, ; frequently no

information is available for particular groups. The deviations from group-average u,, collected into
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the vector u, are useful in identifying the magnitudes of idiosyncratic noise o, but are otherwise
orthogonal to the Kalman filtration. The covariance matrix .§, = Fu u ' is block-diagonal, and

depends only upon {o,, N, }.

Let x, represent the n,-dimensional subset of e, observed on date ¢, where the number
n, < N of groups represented changes constantly over time. Estimating the parameters
<{p,, o, }ff], Q> of (A1) is a standard Kalman filtration problem with missing observations. Let E:t's
and P, be the mean and variance of the unobserved vector €, conditional on information through

time s. By linear projection, the observed x, can be used to update the conditional distribution of €, :

~ 2 ex xx xxy -1 oA
St|r - 8:1:—1 * Pt[rfl (Ptlt-l * Rt ) (xz xtjz—l)
(A3)
- _ €x xx xXxy -1 pX¢€
Pllt - Ptlt—l Pt[r—l (Pt|rA1 + Rl ) Ptit*l
where
Pf'f_l = Cov,_\(g,, x,) isan N x n, matrix consisting of columns of P, , , corresponding to
observed x;
sz . » .
i1 18 its transpose;
P, isan n,x n, submatrix of P, | based on selecting rows and columns corresponding

to observed x;
R} is an n, x n,_ diagonal matrix with x-specific diagonal entries 0? /N, ,; and

t

A~ Ax . .
X = &, isthe n x 1 x-specific subvector of €, , .
If there were no idiosyncratic noise (R, = 0), the x-specific components of &, would be known

exactly, and the corresponding rows and columns of Pt|r would be zero. However, it would still be

necessary to estimate unobserved values of €, based on the conditional covariance structure in (A.3).
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The conditional distribution of next period’s €, , is given by
et+1[r = Fr etu
(A.4)
Pm;: = FszF:’

while next period’s observed group-average residuals x, , are conditionally distributed

N[e", - P77, + R7]. The log-likelihood of observed option pricing residuals is consequently

In Loprions = —%E[ln!PtTf-l * fol M (xt - ﬁtlt—l )I(Pt’ic::*l * R:I)Al(xt - xhtlrfl)
: (A.6)
+ In|S,| + ul’Sr_lu,]

where P, ;, the unconditional covariance matrix of €,, depends upon p and Q,” and 5”0 =0.

The log likelihood function could in principle be optimized with regard to the option pricing
parameters <{}/,}, 8> and the parameters <{p,, 01};’?1, (> governing the volatility and dynamics
of option pricing residuals. As discussed in Watson and Engle (1983) in a strictly linear framework,
sequential optimization over subsets of the parameters is convenient and reasonably efficient.
Conditional upon the Kalman filtration parameters, optimization of (A.5) over <{V,}, 6> involves
nonlinear weighted least squares, and can be achieved by quadratic hill-climbing. Conditional on
option parameters and the resulting option residuals {x , u ,}thl, optimization of (A.5) over

<{p,, O I}ffl, Q> could in principle also be optimized by quadratic hill-climbing.

BGiven that serial persistence of common shocks is assumed to depend on delivery month whereas

groups are categorized by maturity (0-1, 1-2, 2-3 and 3-6 months), computing P1|0 is slightly tricky. The
longest-maturity (3-6 month) groups have unconditional covariances gq,,/(1 - p,p,), where gq,, is the
(1, J)-th entry of . Unconditional covariances involving shorter-maturity groups are computed recursively
off longer-maturity covariances based on an assumption of maturity shifts every 4 weeks, with the first shift

occurring (for this data set) 2 weeks prior to January 4, 1988.
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In practice, the high dimensionality of € makes direct optimization of (A.5) with regard to
filtration parameters quite slow. The major problem is estimating (, which has “2(N? + N)= 2080
free parameters in this case. Furthermore, nonlinear parameter transformations (Cholesky
factorization) must be applied to ensure positive semidefinite (, further slowing direct parameter
optimization when the likelihood gradient is evaluated numerically. It is far more efficient in this case

to estimate filtration parameters via an EM algorithm approach.

The EM algorithm of Dempster, Laird and Rubin (1977) proceeds in two alternating steps.
First, the expectation of the joint log likelihood of option residuals and of the (unobserved) €,’s is
computed conditional upon observed residuals and an initial guess of the filtration parameters.
Second, the expected log likelihood is maximized -- or at least increased -- with regard to its direct
dependence upon filtration parameters, yielding new parameter values to be used in the first step.*
The algorithm always increases the true log likelihood of option residuals (A.S), and a (local)
optimum is attained when parameter estimates are no longer revised at the maximization step. For
exponential distributions such as the one considered here, the expectation step is quite tractable and

the steps that increase expected log likelihood can be computed analytically.

In this problem, the joint log likelihood of observed option residuals and common shocks is*

*Ruud (1984) notes that it is sufficient for the new parameter estimates to increase the expected log
likelihood. Maximization is not necessary, and can slow the algorithm.

1t is not necessary to include missing option residuals in the log likelihood, since the relevant

function is the joint log likelihood of observed data and underlying common shocks. Shumway and Stoffer’s
(1982) procedure of including missing observations and zeroing out relevant entries of vectors and matrices

is equivalent to not including those missing data in the first place.
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InL = -%hn|Py| - Ye, Py,

T 2 -
- —llel - %E(st B Ft~ler—1) 0 l(et - thlstzl)
2 =1 (A.6)

where P, is the unconditional covariance matrix of the initial common shocks €, % The expectation

of this conditional upon observed option residuals can be computed using a Kalman smoother:

_1 ~ -~ ’
E,inL = -hn|P| - ‘/ztrace[POIO(smTeOiT + P0|T>]
T T
- ~In|Q@ - %Y rracd QE,(¢, - F, &, )€, - F, £, )]
2 =1 (A7)
-1 i 3 E ln0,2 + e, - el,rIT)2 " Pr|T(LI)
2 t=1 I=1 ieG(], 1) 0?
where
ET(sr B Ft—letfl)(er - Ft—let—l)l
=& - F & 1 )e - F g ) + P, (A.8)

- Cov, (e, e _)F ' - F_Covi(e _,€) + F_ P, F.

1

and P,.(1,1) is the /th diagonal term of P, ;. Smoothed conditional means and variances are

computed by updating filtration-based estimates recursively backwards from the terminal values ém

and Py

%Pom and P, , are related (P, = Fy Py, F,' + Q)but not identical given that the unconditional
covariance matrices have intramonthly seasonals determined by the timing of maturity shifts.
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™M

ar = &yt Jr(enur - et+m)
(A.9)
Pt]T = P, + Jt(PI+lIT - Pt+11r)‘]t'

fe

where J, = P, F, P},

Shumway and Stoffer (1982, p. 263) give a recursion for evaluating the autocovariances in
(A.8), while Watson and Engle (1983) similarly advocate augmenting the state vector to include
lagged variables. However, a simpler expression can be derived. Hamilton (1994, p. 395) shows that
if next period’s vector €, were observed, the conditional expectation FE.[e |¢, ] =
g, + J (g, - ;:M“ ) . Consequently,

Erlee '] = E[E/(ele. )e., ]

A A (A.10)
= ET{[et]r + Jt(sml - enl[r)]srql}
Similarly from (A.9) above,
8r|Tet+1[T/ = [£t|t * Jr(et+1[T - ehl{t)] 8:+1|TI (A-ll)
Subtracting (A.11) from (A.10) yields
Cov,(e,, €,,) = E.[e€ "] - €.¢€.,
= J[Ei(e,. 8.") - émw éhliT,] (A.12)
= Jme;T'

Direct substitution confirms that this solution satisfies Shumway and Stoffer’s recursion.

Apart from the nonlinear dependency of the initial unconditional covariance matrix P, upon

parameter values, optimizing (A.7) with regard to <{p,, o, }?fl, 0> is a relatively straightforward
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linear exercise in estimating a constrained vector autoregression (VAR) using modified moments.

Improved estimates of idiosyncratic noise are generated by
T ~
Y ¥ [ - & ¢ PG, (A.13)

where N, = Z N, . Conditional on earlier Q estimates, improved {p,} estimates (which determine
t

F =D A)are given by the constrained VAR moment conditions in Hamilton (1994, p. 318):
n -1 ‘
HZET(XH lt ql EET(xll nt EZqUET(xltyjr)
tJ

p = ' ' x ' (A.14)

qnl ZET(xnI xlt) qnnZET xnt nt) E E T(xntyjr)
t t toJ

where
qis the (i, j)-th element of Q %,
E.(x, ﬂ) is the (i, j)-th element ofAtAl(f:,;”T;:{“”T’ + P 1]T)A, , > and

E,(x,,) isthe (i, j)-th element of 4, , (£, €., + J, . Pyp).

Conditional upon the {p,} estimates, improved Q estimates are given by

T
;[(erw RS 1|T)(8t|T - F g )

'~1I-

(A.15)
+ P+ P, J 'F ' +F_J_ P,+F_P

1T -1 t- t-1%¢-1 t-1 7 ¢-14T

F|

Each step in the EM algorithm estimation of <{p,, 0, }?f,, Q> therefore consists of the following
steps:

1. applying a Kalman smoother to estimate {em (7 Pm, qu’ J, }and other relevant

moments conditional upon particular parameter values <{p,, g,}, Q>
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2. Revising estimates of {p,, o, }?31 based upon estimated summary statistics from the first step;

3. Revising estimates of () based upon estimated summary statistics and upon revised estimates
of {p,}.

The estimation procedure ensures positive definite estimates for J, while the final parameter estimates

<{p,, 7, 1%, Q> from repeated applications of the algorithm approximately optimize (A.5).>’

Conditional upon fixed-point estimates of <{p,, g, }ff,, Q> from the EM algorithm, option-
specific parameters <{},}, 0> were estimated by optimizing the nonlinear weighted least squares
function (A.5) via the Davidon-Fletcher-Powell (DFP) algorithm, using a numerically computed
gradient. The DFP and EM optimizations were alternated until joint convergence. The bulk of the

computer time was taken up in the DFP stage.

References

Barone-Adesi, Giovanni and Robert E. Whaley (1987). "Efficient Analytic Approximation of
American Option Values," Journal of Finance 42, 301-320.

Bates, David S. (1991). "The Crash of '87: Was It Expected? The Evidence from Options Markets,"
Journal of Finance 46, 1009-1044.

Bates, David S. (1996b). "Dollar Jump Fears, 1984-1992: Distributional Abnormalities Implicit in
Currency Futures Options." Journal of International Money and Finance 15, 65-93.

Bates, David S. (1996a). "Jumps and Stochastic Volatility: Exchange Rate Processes Implicit in
PHLX Deutschemark Options." Review of Financial Studies 9, 69-107.

Bates, David S. (1996¢). "Testing Option Pricing Models." in G. S. Maddala and C.R. Rao, eds,
Handbook of Statistics. Vol. 14, Statistical Methods in Finance. Amsterdam: Elsevier. 567-611.

“’The maximization step ignores the direct dependency of P, , upon p and @, so that the EM
algorithm approach is not exactly equivalent to optimizing (A.5). This difference arises from the difference
between maximum likelihood- and regression-based estimation of VAR’s, and is not an issue in large samples.

45



Bates, David S. (1997). "The Skewness Premium: Option Pricing Under Asymmetric Processes."
Advances in Futures and Options Research, forthcoming.

Black, Fischer (1976). "Studies of Stock Price Volatility Changes," Proceedings of the 1976
Meetings of the American Statistical Association 177-181.

Black, Fischer and Myron Scholes (1973). "The Pricing of Options and Corporate Liabilities."
Journal of Political Economy 81, 637-59.

Canina, Linda and Stephen Figlewski (1993). "The Informational Content of Implied Volatility."
Review of Financial Studies 6, 659-82.

Chaudhury, Mohammed. M. and Jason Wei (1994). “Upper Bounds for American Futures Options:
A Note.” The Journal of Futures Markets 14, 111-116.

Cox, John C., Jonathan E. Ingersoll,Jr. and Stephen A. Ross (1985). "A Theory of the Term
Structure of Interest Rates," Econometrica 53, 385-407.

Day, Theodore E. and Craig M. Lewis (1992). "Stock Market Volatility and the Information Content
of Stock Index Options," Journal of Econometrics 52, 267-287.

Dempster, A. P., N. M. Laird, and D. B. Rubin (1977). "Maximum Likelihood from Incomplete Data
via the EM Algorithm." Journal of the Royal Statistical Society B39, 1-38.

Derman, Emanuel and Iraj Kani (1994). "Riding on a Smile," Risk 7, 32-39.

Diz, Fernando and Thomas J. Finucane (1993). "Do the Options Markets Really Overreact?" Journal
of Futures Markets 13, 298-312.

Dumas, Bernard, Jeff Fleming, and Robert E. Whaley (1996). "Implied Volatility Functions:
Empirical Tests." National Bureau of Economic Research working paper 5500.

Dupire, Bruno (1994). "Pricing with a Smile." Risk 7, 18-20.

Fackler, Paul L. and Robert P. King (1990). "Calibration of Option-Based Probability Assessments
in Agricultural Commodity Markets," American Journal of Agricultural Economics 72, 73-83.

Fleming, Jeff (1993). "The Quality of Market Volatility Forecasts Implied by S&P 100 Index Option
Prices," Duke University working paper, April.

Franks, Julian R. and Eduardo S. Schwartz (1991). "The Stochastic Behaviour of Market Variance
Implied in the Prices of Index Options," The Economic Journal 101, 1460-1475.

46



Gemmill, Gordon (1995). "Did Option Traders Anticipate the Crash? Evidence from the U.K." City
University Business School (London) working paper.

George, Thomas J. and Francis A. Longstaff. (1993) "Bid-Ask Spreads and Trading Activity in the
S&P 100 Index Options Market." Journal of Financial and Quantitative Analysis 28, 381-98.

Geske, Robert. (1979). "The Valuation of Compound Options." Journal of Financial Economics 7,
63-81.

Grossman, Sanford J. and Zhongquan Zhou (1996). "Equilibrium Analysis of Portfolio Insurance,"
Journal of Finance 51, 1379-1403.

Hamilton, James D. (1994). Time Series Analysis. Princeton, NJ: Princeton University Press.

Heston, Steve L. (1993). "A Closed-Form Solution for Options with Stochastic Volatility with
Applications to Bond and Currency Options," Review of Financial Studies 6, 327-344.

Hull, John and Alan White (1987). "The Pricing of Options on Assets with Stochastic Volatility,"
Journal of Finance 42, 281-300.

McCulloch, J. Huston (1987). "Foreign Exchange Option Pricing with Log-Stable Uncertainty,"
Sarkis J. Khoury & Ghosh Alo, eds., Recent Developments in International Banking and Finance.
Lexington, MA: Lexington Books.

Merton, Robert C. (1976). "Option Pricing When Underlying Stock Returns are Discontinuous,"
Journal of Financial Economics 3, 125-144.

Nelson, Daniel B. and Dean P. Foster (1991). "Estimating Conditional Variances with Misspecified
ARCH Models: Asymptotic Theory," University of Chicago working paper August,

Rubinstein, Mark (1983). "Displaced Diffusion Option Pricing," Journal of Finance 38, 213-217.
Rubinstein, Mark (1994). "Implied Binomial Trees," Journal of Finance 49, 771-818.

Ruud, Paul A. (1991). "Extensions of Estimation Methods Using the EM Algorithm." Journal of
Econometrics 49, 305-41.

Schmalensee, Richard and Robert R. Trippi (1978). "Common Stock Volatility Expectations Implied
by Option Premia," Journal of Finance 33, 129-147.

Shumway, R. H. and D. S. Stoffer. (1982). "An Approach to Time Series Smoothing and Forecasting
Using the EM Algorithm." Journal of Time Series Analysis 3,253-64.

47



Silva, Elvira Maria de Sousa and Kandice H. Kahl (1993). "Reliability of Soybean and Corn
Option-Based Probability Assessments," Review of Futures Markets 13, 765-779.

Stein, Jeremy C. (1989). "Overreactions in the Options Market," Journal of Finance 44, 1011-1023.
Taylor, Stephen J. and Xinzhong Xu. (1994). "The Term Structure of Volatility Implied by Foreign
Exchange Options." Journal of Financial and Quantitative Analysis 29, 57-74.

Trautmann, Siegfried and Michaela Beinert. (1995). "Stock Price Jumps and Their Impact on Option
Valuation." University of Mainz (Germany) working paper.

Watson, Mark W. and Robert F. Engle. (1983). "Alternative Algorithms for the Estimation of
Dynamic Factor, MIMIC, and Varying Coefficient Regression Models." Journal of Econometrics 23,
385-400.

Whaley, Robert E. (1986). "Valuation of American Futures Options: Theory and Empirical Tests."
Journal of Finance 41, 127-50.

48



Table 1. S&P S00 futures options, 1988-93: implicit parameter estimates.

Stochastic volatility parameters autocorrelations

SE1* SE2* InlL
Model o B B o, p range med. (x10%) (x10?)

options

One-factor models

BS 0 0 0 0 [35 .791 .55 221 113 249,793.27
DV1 032 .55 0 0 [36,.81] .59 218 106 250,004.64
Sv1 100 1.49 742 -571 [31,.84] .58 110 078 255,335.03
SVJID1 049 2.45 378 -545 [24,.78] 54 098 077 256,483.87

Two-factor models

DV2 112 7.14 0 0 [.26,.80] .56 209 102 250,435.88
010 .00 0 0

SV2 028 .00 1.029 -770 [.20,.76] 52 087 066 256,995.76
130 5.67 669 -385

SVJID2 003 1.07 560 -851 [.15,.77] 50 079 069 258,064.59
033 .02 333 -412

Constrained estimates

SVC1 089 121 345 .693 -584 [.30,.83] .56 110 078 255,137.47

SVIDC1 043 248 225 322 -599 [.23,.78] .54 099 077 256,475.28

SvC2 064 00 431 945 -1.000 [.20,.76] .52 .087 066 256,542.57
.007 .01 110 .152 279

SviDC2 018 1.65 321 485 -1.000 [.11,.75] 49 078 .068 257,713.02
011 01 85 192 -324

Jump parameters

SVIDI: A, = .0000 +27.19V,, k' =-.095,8=109.
SVIDCI: A, = .0000 +31.62V,, k' =-.085,6=.113.
SVID2: A, = .0002 + 8764V, + .06V, , k' =-057,8=.102.
SVIDC2: A, = .0000 + 88.55V, + .00V, k' =-054,8=.102.

2t

*SE1 (SE2) is the overall equally weighted standard error of option residuals as a fraction of the
underlying asset price, ignoring (adjusting for) estimated serial correlation in option residuals.
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Table 2

Maximum likelihood estimates of the process followed by implicit factor realizations.

dv = (a - BV)dt + o \Vaw,

Stochastic volatility parameters

half-life* InL,, Constrained
o B o, JoiB (mths) In L,
. (P-value)®
Unconstrained models
SV1 121 (.030) 4.64 (1.21) .268 (.011) .162(011) 1.8(0.5) 18.80 -175.91 (0)
SVID1 .093 (.024) 435(1.17) .215(009) .146 (.010) 19(0.5) 5862 -19.17(0)
SV2 031 (.005) 1.98 (1.65) .502 (.021) .125(.051) 4.2 (3.5) -425.07 -603.44 (0)
047 (.008) 4.89(2.09) .569 (.023) .098 (.020) 1.7(0.7) -416.80 -438.12 (6e-10)
SVID2 061 (.012) 6.08 (1.50) .237(.010) .100(.008) 1.4(0.3) -119.26 -313.33 (0)
013 (.005) 1.79(1.17) .301 (.012) .085(.027) 4.6(3.0) -170.26 -175.65
Contrained models
SVC1 .119(.030) 4.58(1.19) .261(.011) .161(011) 1.8(0.5) 25.10 -157.19(0)
SVJIDC1 .090 (.024) 4.32(1.16) .209 (.009) .144 (010) 1.9(0.5) 6361 +12.78(0)
SVC2 .010(.006) .98 (1.00) .333(.013) .099 (.051) 8.4(8.6) -193.64 -414.41 (0)
.071 (.016) 5.97 (1.30) .139(.006) .109 (.005) 1.4(0.3) 116.16 103.14 (9e-6)
SVIDC2 057 (.012) 5.42(1.38) .215(.009) .102(.008) 1.5(04) -75.17 -231.35(0)
.001 (.001) 70 (.66) .174 (.007) .045(.025) 11.8(11.2) -738 -11.56(le-4)

*The half-life 12In2/( is in months. All other parameters are in annualized units.

*Constrained log likelihood reflects the imposition of implicit parameter estimates from Table 1. P-

values are from corresponding x§ (xg) likelihood ratio tests for the SV/SVID (SVC/SVIDC)
models.
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Table 3
Implicit factor evolution: summary statistics of normalized residuals.

Skew- Excess SwW
Model Mean SD ness Kurtosis range P-value®
Normalization using parameters inferred from option prices
SVC1 066 370 54 432 [-1.64,1.88] 4* 107
SVIDC1 074 635 66 4.40 [-2.78, 3.11] 2%
10° 12
SvVC2 319 399 -.60 19.05 [-2.91, 2.82]
.055 .870 -22 15.17 [-6.00, 6.00] 0
SVIDC2 221 433 .99 6.98 [-1.69, 2.62] 0
.019 .879 -1.15 11.67 [-6.00, 4.39] 0
0
Normalization using maximum likelihood time series estimates
SVC1 -.007 1.002 956 4.47 [-4.12, 4.90] 0
SVIDC1 -.006 1.002 .883 436 [-4.19, 4.75] 0
SvC2 097 1.005 79 9.01 [-5.40, 6.00] 0
.000 952 153 10.25 [-6.00, 6.00] 0
SVJDC2 -.019 1.001 1.48 7.44 [-3.85, 5.64] 0
074 967 -.76 10.87 [-6.00, 5.47] 0

*Shapiro-Wilks test of normality.
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Table 4
Summary statistics for log-differenced noon S&P 500 futures prices, 1988-93

Daily Weekly
observations 1515 307
mean .0003 0011
standard deviation .0089 0183
skewness -316 -.381
Excess kurtosis 3.52 696
minimum -.058 -.062
maximim +.050 +.055
H,: normal .000 702

(P-value)
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Table §
Maximum likelihood estimates of the S& P 500 futures price process conditional on stochastic
variance parameters and weekly factor realizations inferred from options prices.’

Jump frequency: A, =1+ LA,
Instantaneous variance: V.=V, +d V"« d v
Jump parameters Variance parameters
Model I, I k 5 v, d, d, InLy,
SV1 00360 465 813.91
(.00188) (.105)
SVID1 0 1 -.096* 108" 00120 671 812.47
(00227) (.139)
SVIDI 291  .000 .064  .000° .00000° 707 815.11
(.300) (002) (.023) (.072)
SV2 03207 455 469  815.58
(114) (.164)
SVID2 0 1 -057°  .102° .00000° 719 772 815.06
(217) (131)
SVID2 368 .05 063 .000° .00000° 679 656  817.71
(297) (1.02) (.017) (152) (117)

*Wednesday noon log-differenced future prices, 1988-93, 309 observations. Asymptotic standard
errors are in parentheses.

®Parameter set equal to value inferred from option prices.

‘Nonnegativity constraint binding.
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Table 6
Correlation estimates for weekly S&P S00 futures returns and implicit factor shocks

1 p, Py

Corr(AlnF, AV,, AV,) =|p, 1 p,

Py P, 1

One-factor Two-factor models
Model models

(p) P P2 Py
SV -.614 -.518 .004 -.580
SVJID -615 -.559 035 -.515
SvC -.616 -.561 -179 -.152
SVIDC -615 -.612 037 -.324
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Figure 1

Figure 2

Implicit volatilities

implied volatilities (percent per annum)

10/22/93: Implicit volatilities versus moneyness
S&P 500 futures options, Nov. & Dec. maturities
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Figure 3

Call price/put price - 1

4% OTM skewness premia and relative trading activity
S&P 500 futures options, 1-4 month maturities, 1983-93

50%

4%
0%

-50%

l
i
(¥ | |
gnlnlj.l.’ﬂMI I‘m JM'J ’ " Tl | T
i I ST
830131 850314 861029 :880712 900515 920701

100%

50%

®

(%) papen sjeH



0.06

15
>
0.05- >
44 *
0.04- <
0.03- 13 e
) =]
0.02- z
~
0.01- 11 @
Q
>
0 0
008 V2
0.04-
0.03-
0.02-
0.01-

0
880106 881012 890719 900425 910206 911113 920902 930609

Figure 4. Implicit factor estimates from constrained (smoothed) stochastic volatility/jump-
diffusion model (SVIDC2).
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Figure S. Distribution of “normalized” implicit spot variance innovations: 1- factor
constrained stochastic volatility model (SVC1).



