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The notion that there are large and persistent transitory fluctuations in real
exchange rates for industrialized countries is commonplace in the theoretical and
empirical literature. One view is that nominal prices adjust slowly to their
equilibrium values, while nominal exchange rates move quickly on financial news, so
that the real exchange rate diverges considerably from its long-run value for long
periods of time.

The behavior of the transitory component of the real exchange rate makes the
detection and examination of the permanen. component extremely difficult. To
understand the behavior of its permanent part, the real exchange rate’s activity over
long periods of time must be studied. But, if the standard view of the transitory
component is correct, then we are confronted with a bewildering variety of short-run
movements.

Consider, for example, the factors influencing the U.S./U.K. real exchange rate
from 1885 to 1995. Over much of the period prior to 1970, the nominal exchange rate
between those two countries was fixed. During the period of fixed nominal exchange
rates, the real exchange rate tended to be very stable (with the exception of a few
periods of rapid price movements following each of the two World Wars and in the very
late 19th century. See Figure 1.) However, during this period, there were
occasionally large jumps in the real exchange rate that correspond to nominal
revaluations.

We offer a new model that can separate the temporary from the permanent
component when there are these types of switches in behavior. We capture the changes
in regime that seem to characterize movements of the real exchange rate.

Specifically, the model we propose for the U.S./U.K. real exchange rate is one where
the permanent component of the real exchange rate follows a simple, homoskedastic

random walk over the entire 111 year period, 1885-1995. But, the transitory component



switches regimes among periods of low, medium and high variance. While our general
method allows for more diverse behavior (switches in regimes for both the permanent
and transitory components, and switches in means as well as variances), this

relatively simple model appears to do an excellent job characterizing the permanent

and transitory components.

In fact, our measure of the two components seems very plausible on economic
grounds, even though it was extracted using a pure time-series model. We find that it
matches fairly well some measures of the long-run real exchange rate as functions of
economic variables that have been proposed in the literature (such as a function of
the relative levels of production in the two countries.) There are economic reasons
for the a priori restrictions we place on the pure time-series model -- restrictions
such as independence of the permanent and transitory shocks, homoskedasticity of the
permanent shocks, heteroskedasticity of the transitory shocks, and a constant speed of
adjustment -- which may contribute to the economic plausibility of our extracted
series.

The model we propose would be quite difficult to estimate using standard
procedures. There are unobserved permanent and transitory components, and the
transitory component switches between unobserved states. However, we extend a
relatively new estimation procedure -- Gibbs sampling -- to estimate our model. It
turns out that Gibbs sampling handles a model such as ours easily. Also, the Gibbs
sampling methodology allows us to perform in a natural way some diagnostics on the
model allowing for our uncertainty about the parameter estimates.

Section 1 lays out the empirical model. Section 2 describes the data and the
estimation technique. (A detailed outline of the estimation procedure is contained in
the Appendix.) Section 3 presents the results of the estimation. In section 4, we
show why we model the real exchange rate as containing a unit root component, even

though standard tests for unit roots (such as the Augmented Dickey-Fuller test) reject



the null hypothesis of a unit root in our data. We extend the argument of Engel

(1996) that these tests are very badly sized in some frequently encountered
circumstances. Then in section 5, we compare the permanent component that our model
extracts from the data to some measures of the permanent component derived from
economic models (such as those in Mark and Choi (1996) and Engel (1995).) We find
that our permanent component behaves similarly to some of the model-based measures

over the 1960-1995 period. Section 6 concludes.

1. The Model

The real exchange rate q, is assumed to be comprised of a permanent component,
Y, and a transitory component, x,:
(1) Q@ =Y * X
Our underlying philosophy in modeling the real exchange rate is that the permanent
component represents the shocks to tastes and technologies that cause permanent
movements in relative price levels. The temporary component mainly captures the slow
movement of nominal prices to economic shocks. The restrictions we place on the
behavior of y, and x, are motivated by this paradigm.

We take y, to be a simple, homoskedastic random walk:
Q) Vo = Yu + v v ~ NQOoD).
We model the permanent component as being driftless. We believe the permanent
component of the real exchange rate captures the economic forces described in
classical optimizing models such as those of Razin (1995), Stockman and Tesar (1995),
Asea and Mendoza (1994), Obstfeld and Rogoff (1995) and Brock and Turnovsky (1994).
In these models, the real exchange rate represents the price of goods produced in one
country relative to the price of goods produced in the other country, and this

relative price changes over time as demand and supply change. It seems unlikely that



there would be taste changes or technological changes that would impart drift to the
relative price over a period as long as 111 years. Thus, one of the identifying
assumptions in our model is that the permanent component has no drift.

The homoskedasticity assumption is not necessitated by either economic reasoning
or econometric methodology. Indeed, initially we allowed for the variance of the real
exchange rate to change over time according to a Markov-switching process. However,
we found that the heteroskedastic version of the model did not significantly improve
on the homoskedastic version, so we have reverted to the simpler model. Note, though,
that while there are obvious economic reasons for believing that the transitory
component has switches in variance regimes (see below), it is not apparent a priori
that such switches should occur in the variance of the permanent component. Hence,
the finding of homoskedasticity of the v, is not surprising.

The transitory component is assumed to follow
3) X, = ¢;X.; + $X, + €, € ~ N(O,of,l).

The AR(2) assumption is based on the data (that is, higher-order autoregressive terms
are statistically insignificant.)

The variance of e, is assumed to be time-varying. In particular, we assume that
it depends on a discrete-valued first-order Markov-switching variable, S,, (S, = 1, 2,
or 3) which evolves independently of v, and e,, according to the following transition
probabilities:!

@ PrS, = jISy = il = py; ij = 1,2,3; jj»’:__lpij = 1.
Thus, we can write the variance of the transitory component as:

2 2 2 2 2 2 2
&) o, = oS, + 035, + 035y, O] < 0, < 03,

T Engel and Hamilton (1990) employed Hamilton’s (1989) Markov-switching model to
examine switckes in variances of exchange rate regimes. Kim (1993) combines variance
switching with the unobserved components moce!.
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where S, = 1if S, = k (k = 1,2,3), and S;; = O otherwise. Note that by definition,
state 1 is the low variance state, state 2 is the medium variance state, and state 3
is the high variance state.

We model the transitory component as switching between these three states
because, under our economic interpretation of the transitory component, the variance
is likely to be closely related to the variance of the nominal exchange rate. (See,
Mussa (1986) and Stockman (1988).) This, in turn, appears to have three states: a

“very quiescent state in which the nominal exchange rate is fixed (or nearly so); an
extremely volatile state during which revaluations and devaluations occur under a
"fixed" regime, or when there are extremely rapid price changes in one of the
countries; and, an intermediate level of volatility during which nominal rates are
floating.

We also assume the shocks v, and e, are independent. This assumption is
important in helping to distinguish the temporary from the permanent component. It is
motivated by our economic interpretation of the two components. Shocks to the
permanent component represent taste and technology changes that favor one sector
relative to another. These cause prices of some goods to change relative to others,
which leads to a change in the relative aggregate price levels of the two countries.

On the other hand, we interpret shocks to the transitory component as coming primarily
from nominal demand sources, such as monetary shocks. To a first approximation, these
aggregate nominal shocks can be thought of as independent of the sectoral real shocks

that drive the permanent component.

2. Data and Estimation

The real exchange rate data is constructed from producer price indexes for the

U.S. and the U.K., and the nominal dollar/pound exchange rate, monthly from January



1885 to November 1995. The data is updated from the data set used by Grilli and
Kaminsky (1991). A complete description of the data sources is available in that
paper.

The model is estimated using the technique of Gibbs sampling. Because this
technique is relatively new, and has not been used much in applications in economics,
we will briefly describe the technique here. More complete introductions to Gibbs
sampling are available in Albert and Chib (1993), Casella and George (1992), and
Gelfand and Smith (1990). Our use of the Gibbs sampler is closely related to that of
Albert and Chib, who use it to estimate Hamilton’s (1989) autoregressive time-series
model with Markov-switching, and to that of Carter and Kohn (1994), who use it to make
inferences on unobserved components in a state-space model. Our application extends
the Gibbs sampling technique to general state-space models such as those estimated by
Kim (1994) using maximum likelihood techniques. (For applications of the unobserved
component model with Markov-switching heteroskedasticity, see Kim (1993) and Kim and
Kim (1996).)

Gibbs sampling is a technique for generating random variables from a
distribution indirectly, without having to calculate the density. For example,
suppose we would like to make inferences about two unobserved random variables, P and
R, given some data, WT, which is a vector of T observations on some random variable
W,. In particular we would like to obtain the densities, f(pI W™) and f(r|W"), because
we are interested in, say, the mean and variance of these densities.

The Gibbs sampling technique allows us to generate a sample from f(pI WT) and
f(rIWT) by sampling from the densities f(pIR,W") and f(rIP,®"). As we shall see,
frequently the latter densities are readily available, while f(p| W™) and f(riW") are
not. Begin with an initial guess for a value of R, call it r,. Then, we can generate
a draw, call it p,, from the density f(p|r, ®"). Take this value of p,, and generate

r; from f(rlpl,WT). Continue this process iteratively to generate the sequence



T9,P1>T1,P2: 125+ - PioT-  These values are realizations of the sequence of random
variables Ry,P,,R,,P,,R,,...,P,,R,. Under fairly general conditions, the density of
P, converges to f(pIW") and R, to f(riW7).

Thus, one might generate K values of p, and r,, Then, if K is large enough, it
might be reasonable to assume for values of i > K, p, and r; are drawn from their true
distributions, f(pIWT) and f(rIWT). So, then, we can generate a sample of P and R
drawn from these distributions by generating an additional N draws. These N draws
then can be used to calculate the moments of f(pIWT) and f(erT) that we are
interested in.

For the model estimated here, we actually would like to find the density of 3T +
12 random variables, conditional on the vector of observed real exchange rates, QT.
There are T values of the permanent component, y, (call this vector ?T); T values of
the transitory component, x, (call this vector XT); T values of the state, S, (call
this vector $7); and twelve parameters, 8 =
{01,62:55,02 1,00 2,02 3,P11,P12:P21,P31,P32}.  Notice that the parameters of the
model are treated as random variables with prior distributions in the Bayesian
context.

While the derivation of 3T + 12 random samples based on appropriate conditional
densities is slightly more complicated than the example above with two random
variables, the principles are the same. The data on real exchange rates, o} play the
role of the observable W' in our example above.

The analogs to f(le,WT) and f(rIP,WT) in our example would be the densities of
each row or element of ZT = [¥T X"}, §7 and & conditional on Q" and on all of the
other values of Z¥, §T and 8. The above example was one of "single-move" Gibbs
sampling. We actually make use of the "multi-move” Gibbs sampling of Carter and Kohn

(1994). In multi-move Gibbs sampling, a Gibbs block can be the whole Z" matrix or §7



vector, as opposed to the single-move Gibbs sampling, in which each row or element of
the Z7 matrix or the §7 vector is generated one at a time.

These conditional densities of each Gibbs block of ZT and $7, and of each
element of &, are easily derived. For example, conditional on S and @, the model
reduces to a standard linear unobserved components model. So f(ZTI1S",5,Q7) can be
generated as in Carter and Kohn (1994). Conditional on Z7, the distribution of §7T is
independent of the data, Q7, and just depend on the values of X*. So, (3T1Z7,5,0") =
f(ST1X",8). The problem of finding f(3T1 X", 8) was solved by Albert and Chib (1993).
The derivation of f(8 127,57, Q") is a straightforward Bayesian exercise. The detailed
derivation of each conditional distribution for our Gibbs sampler is given in the
Appendix.

In our estimation, the Gibbs sampler appears to converge after about two hundred
iterations. We run the Gibbs sampler for eleven thousand observations, and, to be on
the safe side, discard the first one thousand. Our distributions of ¥7, XT and J7 are
based on the last ten thousand iterations. For our distribution of 8, we take every
fifth observation from the final ten thousand observations (because of potential

serial correlation across the iterations.)
3. Estimation Results

Table 1 presents our parameter estimates. The numbers reported are the mean of
our Gibbs samples, and the 95 per cent confidence intervals.
There are several interesting things to note about these parameter estimates.
First, the variance of the permanent component is relatively small in comparison to
the variances of the transitory component in its three states. The y, variance is
about 1.01, which is slightly larger than the variance of the x, component in its low-

variance state (0.81), but much smaller than the variance of the x, component in its



medium-variance (5.93) and high-variance (24.70) states. This indicates that the real
shocks that, according to our paradigm, drive the permanent component tend to be
relatively small compared to the nominal shocks that cause temporary deviations in the
real exchange rate from its permanent component.

It might seem that we "forced" the transitory component to have the shocks with
higher variance, because we allow the transitory component to shift among three
different regimes, while we only allow a single variance regime for the permanent
shock. But, initially we allowed for two variance regimes for the permanent component
(and three for the transitory component). For the permanent component, the variance
of those two regimes would be o-,f.’l, and 0,2,,2. We estimate a-f.,z by estimating the
parameter hy, , defined by o-lz,,2 = c,z,,l(l+hv,2). We found that the 95 per cent
confidence interval on h,,, was very wide and easily contained zero. On the other
hand, examination of Table 1 shows that the confidence intervals for the estimates of
the variances of the transitory component in each state do not overlap. This is a
conservative way of seeing that the variance is significantly different in the three
states. So, the data appear to be telling us that the high-variance regimes for the
real exchange rate correspond to high variance regimes for its transitory component.

Next, we note that the low variance and medium variance regimes are extremely

persistent. The expected duration of the low-variance state, given by T—lp_’ 1s equal
11

to 74.8 months, or over six years. The expected duration of the medium-variance

state, 1_%2;, is 38.7 months. The high-variance state is not as persistent, with an
expected duration (= p_m_-lrﬁz') of 6.4 months. We shall see shortly that the medium-

variance regime generally corresponds to the post-1973 era of floating exchange rates;
the low-variance regime is associated with the periods of fixed nominal exchange rates
prior to 1973; and the high-variance regime generally matches either times of exchange
rate revaluation prior or periods of rapid inflation in one of the two countries prior

to 1973.



The transitory component, x,, itself is highly persistent. The sum of ¢, and ¢,
is 0.987. This implies a half-life of transitory shocks of 55 months. This estimate
of the persistence of transitory shocks is very much consistent with other estimates
in the literature (see Rogoff (1996).) However, it points out the difficulty alluded
to in the introduction to this paper. Because transitory shocks are so persistent,
and at times highly volatile, it is difficult to extract the permanent component.

Figure 2 plots the permanent and transitory components of the log of the real
exchange rate. In figure 2.1, the permanent component is plotted along with its 95
per cent confidence interval.2 The real exchange rate here is defined as the relative
price of U.K. to U.S. producer goods (that is, the product of the dollar/pound nominal
exchange rate and the U.K. producer price index, all divided by the U.S. producer
price index.) The diagram shows that the permanent component evolves gradually (low
innovation variance), and that there has been a tendency for the permanent component
of the relative U.K./U.S. prices to rise since World War II.

Figure 2.2 shows the transitory component, x,, and its 95 per cent confidence
interval. The transitory component is subject to rapid swings, which correspond to
the periods of rapid swings in the real exchange rate itself. There are periods of
high volatility compared to the permanent component, including a sustained period
after 1973.

In figure 3, we plot the probability that the transitory component is in each of
states 1, 2 and 3 at each point in time. (These correspond to the smoothed
probabilities described in Hamilton (1989)). First, consider Figure 3.2, which plots

the probability of being in the medium-variance state. For almost the entire period

2 The obvious method of arriving at the 95 per cent confidence interval would
be to take the central 95 per cent of the draws from the Gibbs sampler for each point
in time. However, this would require saving an enormous amount of data in memory on
the computer. Instead, we calculated the 95% confidence interval as the 1.96 standard

deviation band (which necessitated only saving the cumulative sums of y, and yf.)
Given the assumption of Normal distributions, the two methods are asymptotically
equivalent.
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after 1973, the probability of S, = 2 is near unity. We can associate the medium-
variance state with the period of floating nominal exchange rates. Interestingly, the
other periods in which there is a fairly high probability that S, = 2 also correspond
to times in which the dollar/pound nominal exchange rate was floating. As Grilli and
Kaminsky (1991) summarize it, there was a period of controlled floating from December
1914 to March 1919, and a regime with a more volatile float from April 1919 to April
1925. During this period, our estimates show that the probability that S, = 2 hovers
between 0.25 and 0.70. There is one other period in which the probability that S, = 2
rises above 0.5: in the early 1930s, when the dollar/pound exchange rate returned to
floating.
Figure 3.1 shows that for most of the time prior to 1973 (with the exception of
those periods just discussed), the probability that we are in the low-variance state
(S, = 1) is very nearly one. Those times in which the real exchange rate is in its
low-variance state correspond to times in which the nominal exchange rate was fixed.
Figure 3.3 shows several short periods in which the probability that we are in
the high-variance state is high, while most of the time the probability is near zero.
We can identify each of these high-variance times with specific historical events.
The first occurred in 1898-1899 and again at the end of 1900, when there were large
fluctuations in prices in both the U.S. and U.K. These can be associated with the
period of the Alaskan Gold Rush. There was a great deal of instability in the money
supply during this period, according to to Friedman and Schwartz (1963, p. 145.)
Next, we find that the periods in the early 1920s and the 1930s in which the
nominal exchange rate floated and was very volatile are also periods in which there is
a high probability that S, = 3. Note that the model assigns some probability that
these are periods of S, = 2, but a higher probability that S, = 3. It appears that
during floating nominal exchange rate regimes, when the volatility of nominal exchange

rates is fairly large (as it was after 1973, in the period 1914 to about 1922 and in
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1932), the model assigns the real exchange rate to the medium volatility regime. When
nominal exchange rates are extremely volatile (as in the 1922-1925 period and most of
the period from 1931-1933) the model places a high probability on S, = 3. We should
note that during some of these early periods in which there is a high probability that

S, = 2 or S, = 3, there is not only nominal exchange rate volatility, but also periods
in which nominal prices fluctuate more than they have tended to in the post- World War
II era.

The next period in which there is a high probability of the high variance state
is late 1939, when Britain devalued the pound. Two other periods in which it is
likely that S, = 3 correspond to devaluations of the pound: in 1949 and 1967.

The remaining period of high volatility in the real exchange rate is immediately
following World War II, in which there was -anid inflation in the U.S. after price
controls were removed.

So, all of the periods of medium and high volatility of the real exchange rate
appear to be linked to nominal events -- either periods in which the nominal exchange
rate floated, or periods of extraordinary inflation that can be linked to monetary
events. This pattern is reminiscent of Mussa’s (1986) finding that real exchange rate
volatility increased directly with nominal exchange rate volatility for a large number

of time periods and currencies.

4. Unit Roots

The Augmented Dickey-Fuller (ADF) test estimates the following regression
equation:

6) q = By + P + B(Q1"Q) + B2(Q2Gs) +... +B(Qui Qi) T+ U
We estimate equation (6) for the real exchange rate data, choosing the lag length k by
a data-based method, as advocated by Ng and Perron (1995). We initially estimate the

12



equation with 12 lags, and test the significance of B,,. If it is not significantly
different from zero at the 95 per cent level, we drop the last lag and reestimate the
equation with k = 11, etc. We in fact end up with k = 2,

Our Dickey-Fuller statistic is 3.007, which just exceeds the five per cent
critical value of 2.86. The estimated value of p is 0.9877.

If we can reject a unit root, why do we model the real exchange rate as having a
permanent component as in section 27

Engel (1996) argues that the ADF test has very large size biases when the
variable being tested is, in fact, the sum of a random walk component and a very
persistent and highly volatile transitory component. Engel presents an example in
which the real exchange rate is posited to be the sum of a random walk and an AR(1).
Roth components are as1med to be homoskedastic, but the innovation variance of the
stationary component is assumed to be very large compared to that of the random walk.
He shows that the stationary representation for the real exchange rate is that the
first-differences follow an ARMA(1,1) process. The root of the MA component is near
unity in absolute value. The ADF test, which is designed to test against the null of
stationary AR processes (i.e., with no MA component), has a very large size bias even
when the random walk component accounts for a large fraction of the variance of the
real exchange rate change within the sample.

Engel’s (1996) examples are all for homoskedastic permanent and stationary
components. In this section, we repeat some of Engel’s Monte Carlo exercises to
assess the size bias of the ADF test under the null hypothesis that the real exchange
rate is generated by the model of section 2.

Our first Monte Carlo exercise generates ten thousand draws from the model of
section 2, using the parameter estimates reported in Table 1. The program was run in
Gauss, using the Gauss random number generators. The lag length of each of the 10,000

ADF tests was chosen by the iterative procedure described above.
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The first panel of Table 2 reports the true size of the ADF test for various
nominal sizes. For example, if the nominal size is 0.05, we find the test actually
rejects nearly 30 per cent of the time (29.51 per cent). One exercise in Engel (1996)
is to calibrate his homoskedastic model to one hundred years of U.S./U.K. real
exchange rates.? Depending on the parameter values chosen, the true size of the ADF
test with nominal size of 0.05 ranged from 0.2986 to 0.3566. These numbers are not
far off from our finding.

Since the "5 per cent" ADF test actually rejects nearly 30 per cent of the time
when the model of section 2 is correct, we should not take the evidence that we just
barely reject a unit root at the "5 per cent” level as very strong evidence against
the model.

This first Monte Carlo exercise was undertaken assuming that the parameter
estimates reported in Table 1 are the true values of the parameters. We also assess
the size of the ADF test taking into account our uncertainty about the parameters. To
do this, we generate a draw of the parameters from the Gibbs sampler. We then use
that parameter draw to generate an artificial real exchange rate series. We run the
ADF test on our artificial series. We repeat this procedure ten thousand times.

Thus, our ten thousand ADF tests are on series generated from different parameter
values each time, with the distribution of parameter values corresponding to the
distribution generated by the Gibbs sampler.

The second panel of Table 2 reports those results. It shows that there is still
substantial size bias in the ADF tests, though somewhat less than in the first panel
which assumed parameter certainty. Thus, a nominal five per cent test has a true size
of 19.08 per cent taking into account parameter uncertainty, but 29.51 per cent when

we assume the parameters are known.

3 Engel’s real exchange rates were based on personal consumption deflators,
rather than the PPI real exchange rates used herc,
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5. Interpretation of Permanent Component

In this section we investigate the nature of our generated permanent component,
y.. We ask whether our series, which comes from a univariate time-series model with a
priori restrictions motivated from economic theory, looks like other measures of the
permanent real exchange rate that have been proposed in the literature. Specifically,
we look at other measures which are based on economic models and use data other than
the real exchange rate in their construction.

Five of the alternative permanent series we use for comparison are from Mark and
Choi (1996). The sixth comes from Engel (1995).

The series from Mark and Choi are constructed by first positing models of the
long-run real exchange rate, y,, as functions of economic variables. Call the vector
of economic variables for model i, w,. Then Mark and Choi estimate the cointegrating
vector between q, and w,. The fitted values from the cointegrating regressions are
taken as the measure of the long-run real exchange rate.

The models of the long-run real exchange rate, v, (i = 1,2,...,6), from Mark and
Choi that we consider are:
1) v, is a function of the productivity in U.K. manufacturing relative to
productivity in U.S. manufacturing. The notion here is that if the relative
productivity in the U.K. increases faster than in the U.S., relative U.K./U.S. prices
should decline because the U.K.’s relative costs have declined.
2) v, is a function of the relative productivities and of the difference in the
ratio of government consumption to income in the U.K. and U.S. The government
spending variable enters here following Rogoff’s (1992) analysis which allows for
demand factors to have effects on the long-run real exchange rate under intersectoral

factor immobility and poor international capital market integration.
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3) v, is a function of per capita output in the U.K. relative to the U.S. One
motivation for this might be similar to the motivation for using productivity measures
as in (1) above: the faster growing country might be experiencing declining relative
Ccosts.
4) v, is a function of the real interest differential between the U.K. and the U.S.
Mark and Choi mention that in Dornbusch (1976), the real exchange rate is related to
the real interest differential, though they acknowledge that the relationship is
posited to be a short-run one in Dornbusch.
5) vs is a function of the relative money supplies and relative levels of output in
the UK. and U.S. Here, the motivation is that the effects of monetary shocks on the
real exchange rate might indeed be permanent (or, so long-lasting as to be
indistinguishable from permanent), so that long-run monetary neutrality is rejected.
(6) Our final formulation, v,, comes from Engel (1995), who examines various
measures of the relative price of non-traded goods. Many models of real exchange
rates relate its movement to a relative relative price: the price of non-traded to
traded goods in one country relative to the other country. Here, we take as a measure
of the price of non-traded to traded goods the consumer price index relative to the
producer price index in the U.K. and the U.S. A priori, it seems unlikely that this
model will hold up well. The real exchange rate we are examining in this paper is one
based on producer prices, which generally price goods which are tradable. So, the
relative price of non-traded goods does not seem to be a good candidate for explaining
this real exchange rate.*

The measures of the long-run real exchange rate from Mark and Choi are monthly
from 1960:1 to 1993:11. The relative relative price from Engel is monthly from 1963:1
to 1995:11.

4 In fact, the producer price indexes enter the two relative prices here with
opposite signs. Our measure of the real exchange rate, q,, takes s + ppiuk - ppius,
while v, takes cpiuk - ppiuk - (cpius - ppius), where all these variables are in
logs, and s is the log of the nominal exchange rate.
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We would like to get an idea of how closely our series for the permanent
component, y,, moves with these other measures. It would be inappropriate to look at
something like their correlation coefficient. All series are assumed to be I(1).

Instead, we investigate the hypothesis that the series are cointegrated, with
cointegrating vector (1,-1). That is, we ask whether they move together in the long-
run.

Our series y, is posited to be a pure random walk. The series based on economic
data could have some transitory component as well as the permanent component. So,
movements in y, and these series should not necessarily be closely related in the
short run. But, we can test the long-run hypothesis' of no cointegration with a known
cointegrating vector (1,-1) by implementing the error-correction model test proposed
by Zivot (1995). With v, being the economic measures described above (i =
1,2,...,6), we run the following regressions:

(7)) Av, = o + p(Y-Vi) + Spdy, + §,Ay,, +...+ Ay, + 7Avy, + 718V,
+...+ 1Av,.
The lag length is chosen by an iterative method similar to the one described above for
the ADF test. Zivot demonstrates that the critical values derived in another context
by Hansen (1995) are appropriate for the error-correction model of Kremers, Ericsson
and Dolado (1992) when the cointegrating vector is known.
The first column of Table 3 reports the slope coefficients from regressions of
v, on y,. If we were interested in estimating the cointegrating vector, these
coefficients, B;, would be an estimate of the cointegrating vector (1,-8;). However,
here we present the B, more to give an intuition of how these series move together
over the long run, while we formally test the null that they are not cointegrated with
cointegrating vector (1,-1). We see that v,, v, and v4 do not move with y over the

thirty-plus years of data after 1960. The productivity differential measure, the real
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interest differential measure, and the non-traded goods price rﬁeasure are driven by
some forces other than the ones driving y,.

It is notable that B4 is negative. The relative price of non-traded goods seems
particularly unrelated to our measure of the permanent component of real exchange
rates. This is consistent with Engel’s (1995) observation that this relative price
generally accounts for little of the real exchange rate movement at short, medium and
long horizons.

On the other hand, B,, B; and B85 are not too far away from unity. Indeed, with
B; = 1.132, it appears that relative income movements (v;) and y, move together one-
for-one.

The second column of Table 3 reports the test of the null that the the series
are not cointegrated with cointegrating vector (1,-1). To be clear, the null can be
rejected only when the series are cointegrated and have a cointegrating vector of (1,-
1). The column reports three numbers -- the "t-statistic” on 2 from equation (7), and
the critical values at the 5 per cent and one per cent levels.

We see that we fail to reject the null for all but two series, v, and vs,. The
null that v, is not cointegrated with y, with cointegrating vector [1,-1] is barely
rejected at the five per cent level, while the same null for v; and y, is easily
rejected at the one per cent level.

The v, measure is an unusual one -- we would not expect the long-run real
exchange rate to depend on monetary variables. However, note that v, also
incorporates income variables. Perhaps their inclusion dominates the movement of vy,
over time. Or, perhaps the money supplies are endogenous and respond to some
unmeasured real variables that more plausibly might drive the real exchange rate in
the long run.

In any event, the relation between v, and vy, is clearly the strongest. The two

variables seem to be capturing the same long-run movements. If in fact our measure of
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the permanent component of the real exchange rate is accurate, this finding suggests
that relative output measures may play a role in determining long-run real exchange

rate movements.

6. Conclusions

Typically it is difficult to recover the permanent component of real exchange
rates. The long-run movement of the real exchange rate is masked by the shorter run
movement. To extract the long-run movement, we need a model of the short-run changes
that is sufficiently rich -- particularly in capturing the different variance regimes.
Here, we propose such a model. We overcome the difficulty in estimating the model by
extending the techniques of Gibbs sampling to general state-space models.

We find:
1) The transitory component is highly persistent.
2) The regimes of variance of the transitory component of the real exchange raie are
closely related to monetary phenomena, as Mussa (1986) has claimed.
3) Innovations in the permanent component have relatively low variance.
4) Relative per capita output levels may be important in understanding the behavior
of the long-run real exchange rate.

In addition, we have shown that the size bias in unit roots test of real
exchange rates that Engel (1996) discusses extends to the heteroskedastic model we
consider.

The techniques we employ in this paper will be useful in further studies of real
exchange rates. A next step that likely would be beneficial is to model jointly the
behavior of real exchange rates and output levels. Since the real exchange rate and

relative outputs appear to share a common trend, the data on each would be mutually

reinforcing in detecting that trend.

19



References

Albert, James H., and Siddartha Chib, 1993, Bayes inference via Gibbs sampling of
autoregressive time series subject to Markov mean and variance shifts, Journal of
Business and Economic Statistics 11, 1-15.

Asea, Patrick K., and Enrique G. Mendoza, 1994, The Balassa-Samuelson model: A general
equilibrium appraisal, Review of International Economics 2, 244-267.

Brock, Philip L., and Stephen J. Turnovsky, 1994, The dependent-economy model with
both traded and non-traded capital goods, Review of International Economics 2,
306-325.

Carter, C.K. and P. Kohn, 1994, On Gibbs sampling for state space models, Biometrika,
81, 541-553.

Dornbusch, Rudiger, 1976, Expectations and exchange rate dynamics, Journal of
Political Economy 84, 1161-1176.

Engel, Charles, 1995, Accounting for U.S. real exchange rate changes, National Bureau
of Economics, working paper no. 5394.

Engel, Charles, 1996, Long-run PPP may nct hold after all, National Bureau of
Economics, working paper no.5646.

Engel, Charles and James D. Hamilton, 1990, Long swings in the dollar: Are they in the
data and do markets know it?, American Economic Review 80, 689-713.

Friedman, Milton and Anna J. Schwartz, 1963, A Monetary History of the United States,
1867-1960 (Princeton).

Gelfand, Alan E., and Adrian F.M. Smith, 1990, Sampling-based approaches to
calculating marginal densities, Journal of the American Statistical Association

85, 398-409.

Grilli, Vittorio and Graciela Kaminsky, 1991, Nominal exchange rate regimes and the
real exchange rate: Evidence from the United States and Great Britain, 1885-1986,
Journal of Monetary Economics 27, 191-212.

Hamilton, James D., 1989, A new approach to the economic analysis of nonstationary
time series and the business cycle, Econometrica 57, 357-384.

Hansen, Bruce E., 1995, Rethinking the univariate approach to unit root testing: Using
covariates to increase power, Department of Economics, Boston College.

Kim, Chang-Jin, 1993, Unobserved-component time-series models with Markov-switching
heteroskedasticity: Changes in regime and the link between inflation rates and
inflation uncertainty, Journal of Business and Economic Statistics 11, 341-349.

Kim, Chang-Jin, 1994, Dynamic linear models with Markov-switching, Journal of
Econometrics 60, 1-22.

Kim, Chang-Jin, and Myung-Jig Kim, 1996, Transient fads and the crash of '87, Journal
of Applied Econometrics 11, 41-58.

20



Kim, Chang-Jin; Charles R. Nelson; and Richard Startz, 1996, Testing for mean
reversion in heteroskedastic data based on Gibbs-sampling augmented
randomization, Journal of Empirical Finance, forthcoming.

Kremers, Jeroen J.M.; Neil R. Ericsson; and, Juan J. Dolado, 1992, The power of
cointegration tests, Oxford Bulletin of Economics and Statistics 54, 325-348.

Mark, Nelson C., and Doo-Yull Choi, 1996, Real exchange-rate prediction over long
horizons, Journal of International Economics, forthcoming.

Mussa, Michael, 1986, Nominal exchange rate regimes and the behavior of real exchange
rates: Evidence and implications, in Karl Brunner and Allan Meltzer, eds.,
Camnegie-Rochester Series on Public Policy 25, 117-214.

Ng, Serena and Pierre Perron, 1995, Unit roots tests in ARMA models with data
dependent methods for the truncation lag, Journal of the American Statistical
Association 90, 268-281.

Obstfeld, Maurice, and Kenneth Rogoff, 1995, The intertemporal approach to the current
account, in Gene M. Grossman, and Kenneth Rogoff, eds., Handbook of International
Economics, (Amsterdam: North Holland).

Razin, Assaf, 1995, Ti.c dynamic optimizing approach to the current account: Theory and
evidence, in Peter B. Kenen, ed., Understanding Interdependence: The
Macroeconomics of the Open Economy (Princeton).

Rogoff, Kenneth, 1992, Traded goods consumption smoothing and the random walk behavior
of the real exchange rate, Bank of Japan Monetary and Economic Studies 10, 1-29.

Rogoff, Kenneth, 1996, The purchasing power parity puzzle, Journal of Economic
Literature 34, 647-668.

Stockman, Alan C., 1988, Real exchange-rate fiexibility under pegged and floating
exchange-rate systems, in Karl Brunner and Allan Meltzer, eds., Carnegie-
Rochester Series on Public Policy 29: 259-294.

Stockman, Alan C. and Linda L. Tesar, 1995, Tastes and technology in a two-country
model of the business cycle: Explaining international comovements, American
Economic Review 85, 168-185.

Zivot, Eric, 1995, The power of single equation tests for cointegration when the
cointegrating vector is known, Department of Economics, University of Washington.

21



Table 1

Parameter Estimates and 95% Confidence Bands

Parameter|Mean |Lower Band|Upper Band
Pi 0.9866| 0.9774 0.9935
Pi2 0.0037|  0.0002 0.0101
P 0.0103| 0.0005 0.0309
P 0.9735| 0.9407 0.9934
Psy 0.1037| 0.0408 0.1961
Ps 0.0531| 0.0028 0.1549
¢ 1.1308| 1.0486 1.2115
¢, -0.143| -0.223 -0.064
¢, +¢, |0.9876| 0.9777 0.9917
o2 1.0014| 0.7603 1.2911
o 0.8167 0.6426 1.0057
o 5.9347| 4.4617 7.7379
o3 24.992| 15.920 40.059

Parameters are from the model of equations (1)-(5). "Mean" is the mean of the
estimates from the Gibbs samples. "Lower band" and "Upper band" refer to the 95
per cent confidence interval.
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Table 2

Size Distribution of Augmented-Dickey Fuller Test

Nominal Size 0.01 10.025 (0.05 1{0.10

Parameters Known  10.1079]0.19460.2951{0.4438
Parameter Uncertainty|0.074410.1272]0.1908/0.2791

The two lines give the true size of the ADF test, first when the parameters of
the model (1)-(5) are treated as known; and, second, when a distribution of
parameters is generated by the Gibbs sampler.

Table 3

Test of Cointegration of v, and y,

A

B t-stat 15% |1%

vy,|-0.026]-0.523[2.69[3.28
v,,|0.825 [1.403 |2.75|3.35
vy, |1.132 [4.090 |2.86[3.43
v,[0.140 |1.742 [2.75|3.36
vs,|1.385 [2.917 |2.86[3.43
ve,|-0.571]-0.513|2.86|3.43

"v," refers to measures of the long-run real exchange rate from section 5 of

the paper. "B" is the slope coefficient from a regression of v, on y,. "t-
stat” refers to the Student statistic on p in regression (7). "5%" and "1%" are
the S per cent and 1 per cent critical values, respectively.
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Figure 1. Log of U.S./U.K Real Exchange Rates, 1885-1995.
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Figure 2.1 Permanent Components (Yt) and their 95% Confidence Bands
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Figure 2.2. Transitory Components (Xt) and their 95% Confidence Bands
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Figure 3.3. Pr[St=3]
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Equations (1)-(6) in the text describe the model to be estimated. Writing
the model in state-space form, we have:

Measurement Equation :
(Al) q, = He,

Transition Equation :

(A2) ¢ = Fe, + ¢,
(A3) E(eel) = R,
where
Y. 100 v o 00
H=[110Lc=|x|,F=10¢6]¢c=|ef,andR = |, 2
x(_l 0 1 O 0 0 0et O

Inferences of the model

Denote Q' = {q,,9s,...,q.} as the vector of real exchange rates up to time
t, C' = {c¢,,c5,...,¢,} as the set of state vectors up to time t (here, the first
and second rows of C' can be defined as Z' = {z,,2,...,%}, where z, = [y, x]’),
' = {5,,S,,...,S,} as the vector of Markov-switching variables up to time t, and
finally, & = {¢la¢2»°'nzn°‘z,1,0'3,2,0'2,3,?11,Plzapzhpahpaz} as the vector of all
parameters of the model. Our purpose is to make inferences on CT (more
specifically, Z7, the first two rows of C"), §7, and on & conditional on real
exchange rates, Q7. Maximum likelihood estimation of similar models and ways to
make inferences on C ' conditional on parameter estimates have been proposed by Kim
(1994). (For applications of the maximum likelihood estimation of the unobserved
components model with Markov-switching heteroskedasticity, see Kim (1993) and Kim

and Kim (1996).) However, Kim’s methods are based on approximations. In this
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paper, we adopt the Bayesian Gibbs sampling approach proposed by Carter and Kohn
(1994) in making inferences of the model based on the posterior density,
p(CT,3T 910N of T", §7, and &.

As documented in Gelfand and Smith (1990) and Carter and Kohn (1994), Gibbs
sampling in the present context generates C', S, and & from conditional densities
p(CT187,8,35, p(STITT,5,3M), and p(8 ITT,57, Q") until eventually {C", 37,8} is
generated from the joint posterior density p(C*,8 7,8 1Q7). [Carter and Kohn, p.
542-543.] The following explains how each of §", @, and the first two rows of T’
can be generated from an appropriate conditional distribution, combining ideas in

Carter and Kohn (1994), Albert and Chib (1993), and Kim, Nelson and Startz (1996).
A. Generating Z" = {Y" X"} Conditional on 6 and I, and on Data, Q"

Conditional on ST and &, the state-space model in (A1)-(A3) is linear, and
we can adopt Carter and Kohn’s (1994) multi-move Gibbs sampling to generate the
first two rows of the state vectors C'. What follows is a detailed description of
their algorithm in our context.

Assuming that F and R, in (A1)-(A3) are known, the joint distribution of cT
= {c,,C3,...,C1}, given the data set Q" and the prior distribution of Cp, 1S
written as
(A4) PCTITY = pler QY 1 el Qe
where Q' is information up to time t. Note that the second element of C, is
linked to the third element of c_, as an identity in the transition equation
(A2). Therefore, the above equation suggests we can generate z;, and then
successively generate z, conditional on z,,, and Q' for t = T-1, T-2,...,1. We

can take advantage of the Gaussian Kalman filter to obtain p(c;| QT) and

A2



p(c,1 Q',c,,,), as the state-space model is linear given F and R,. Summarizing

Carter and Kohn’s (1994) algorithm in our context, we have the following steps:

Step 1:

Run the Kalman filter algorithm to calculate ¢,;, = E(c,I Q") and V|, =
cov(c,| QY for t = 1,2,...,T and save them. The last iteration of the Kalman
filter provides us with cy|r and Vyr. The first two elements of cr|y (denoted by
zyj7) and the first 2 x 2 block of Vi (denoted by Vr |7) can be used to generate
the first two elements of ¢; (zy = [y Xg}’) from a joint Normal distribution.
Step 2:

For t = T-1,T-2,...,1, given ¢, and V,,, if we treat z,,; = [Yi1y X4}’
generated from the previous iteration as an additional vector of observations to
the system, the distribution p(c,| Q',z,,,) is easily derived by applying the
updating equations of the Kalman filter. From equation (A2), since z,,, is given
by:

(AS) Ly <= F‘Cx + 5:+1,
where F’ is the first two rows of F and ¢, is the first two elements of €, ,
updating equations are derived as:

o1
(A6) = ¢ + Vi F &,

C
iz

(A7) =V, - VaF 'FV,.

iz
Here, n, = 2, - F'c,h is treated as a vector of forecast errors and is the
difference between z,,, and the forecast of the vector z,,, conditional on
information up to time t; and, 2 = F‘VthF" + Cov(e,,,), is the covariance of

n,. Then the first two elements of AT and the first 2 x 2 block of
4]
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Vd”1 can be used to generate z, from a joint Normal distribution, for t = T-
41

1,T-2,...,1.
B. Generating 0‘3 of the Random Walk Component, Conditional on Y7

Conditional on ¥7 = [y; ¥2 .- yrI’, the only parameter of the random walk,
o2, is independent of the data set, Q7, and is independent of the stationary
component, X,, by assumption. This allows us to focus on equation (2), by
treatihg the generated Y ' as the data set. By choosing the inverse gamma
distribution as the prior (IG(%,%)), one can show that the conditional

distribution from which 03 is generated is given by:

v+(T_1) s + ZT=2(yt-yt-l)2
7 2 )-

We adopt v = 3 = 0 for our application.

21 ¥T1 ~ IG(

C. Generating 3T and Parameters Associated with the Stationary Component,

Conditional on X'

XT = [x, X, ... x;}’, the Markov switching variable S, and other parameters
associated with the stationary component, x,, are independent of the data set, Q"
and of the random walk component, y,, by assumption. This allows us to focus only
on equation (3), by treating generated XT as a data set. The Bayesian Gibbs
sampling approach to a two-state Markov-switching model has been suggested by
Albert and Chib (1993). More recently, Gibbs sampling has been successfully
implemented for a three-state Markov-switching model of stock returns by Kim,
Nelson and Startz (1996). The following is based on Kim, Nelson and Startz’s

extension of Albert and Chib’s algorithm.
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C.1 Generating S', t = 1,2,...T, Conditional on X" and Parameters of the
Stationary Component

Defining @ as a subset of & with the exclusion of o, §7 can be generated
based on the following distribution, similar to that in (A4):
(A8) p(STIRT, T = p(S,I X7, 5‘)Tﬁ:p(s,| %L5°.5.,0).
In order to simulate ST from the above distribution, we first run Hamilton’s
(1989) basic filter for the model to get p(S,I X', 8 ") and p(S,I X*',8"), for t =
1,2,...,T and save them. The last iteration of the filter provides us with
p(S;1 X", ") from which Sy is generated. Then, we can successively generate S,
from p(S,| X',8",S,,,), for t = T-1,T-2,...,1, using:

P(Ss1 1S)P(S,1 X', 8)
PS4+ 1X,8)

(A9) PSR, 8,8, =

The uniform distribution can be used to generate the three-state Markov-
switching variable, S,, t = 1,2,...,T. Conditional on S,,, = k, k = 1,2,3, define
B = P x P(S,=jiX'8), j = 1,2,3, where p, is the transition probability

defined in (3). We first generate a random number from the uniform distribution.

If the generated number is greater than or equal to , weset S, = 1; if it

pP1tpates

P

P we generate another random number from the uniform
1+p2+P3

is less than

distribution. And then, if the generated random number is greater than or equal

p [P P
2 we set S, = 2; if it is less than —2—, we set S, = 3.
P2+P3 pP2+p3

to

C.2 Generating o-f, j = 1,2,3, Conditional on X7, S'T, and on other Parameters of

the Stationary Component

In order to impose the constraint that ¢} < ¢ < o2, we may redefine o5 and

<r§ in the following way:
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(A10) o2 = o2(1+hy) and o = o(1+hy)(1+hy),
where h, > 0 and h; > 0. We first generate o-f, then generate 1+h, and 1+h;.

First, to generate crf, we transform equation (3) as follows:
~ X @1 X 1-¢oX,
t - ~
J(1+85hy)(1+S3h,)(1+S5.hy)

(All) X,

3
By choosing the inverse gamma distribution as the prior (IG(%!,T')), one can show

that the conditional distribution from which of is generated is given by:

2 T T ~»* Ul+(T-2) 61 + Z’{=3x%l
(A12) EHRT,ETE 7 0 ~ 16—y =,

where ‘5,;0% represents a vector of paramenters of the stationary component that
excludes o-f.
Second, to generate h, = 1 + h,, and thus o%, we transform equation (3) to
get:
(A13) Xy = OKerfate
[2a+s,9
Here, we note that the likelihood function of h, depends on the values of x, for

which S, = 2 or 3. By derining T, = {t : S, = 2 or 3} and chosing the inverse
C e . . = v, 3,

gamma distributions for the priors of h, (IG(—2—,7—)I[52>”), one can show that the

complete conditional is given by:

Ty 2
T T ~* v, + N, &2 + L 2 Xy
(A14) h,1X",S 8 ) ~ 16—, >

[Ez>1 I
where 'é'; 4, TEpresents a vector of parameters of the model that excludes h,; I is
2

the indicator function on [h, > 1]; N, are cardinalities of T, and the sum is over

the elements of T,.

Finally, to generate h, = 1 + h;, and thus, o~§, we transform equation (3) to
get:
xl_¢lxl-l-¢2xt-2.

Xy = /—/——
.|o%(1 +S,,h,)

A.6
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Here, we note that the likelihood function of h,; depends only on the values of x,,

for which S, = 3. By defining T, = {t : S, = 3} and choosing the inverse gamma
., . ] - U3 8,

distributions for the priors of h, (IG(T’T)IIE3>11)’ one can show that the

complete conditional is given by

_ _ v +N63+ZTix§t
(A16) [h;1 X", 57,871 ~ 16—

(ﬁ3>||’
where 'é'; «,, Tepresents a vector of parameters of the model that excludes h,; I is
3

the indicator function on [h; > 1]; N are cardinalities of T,, and the sum is
over the elements of T;.
The quantities v, 1 = 1,2,3, represent the strength of the priors of crf, h,

and h;. For our application, we employ v; = 0 and 8, = 0, for i = 1,2,3.

C.3 Generating ¢ = [¢, ¢,]’, Conditional on XT, 37, and on other Parameters of

the Stationary Component

Rewriting equation (3) to have homoskedastic errors, we have:

X Xy X2 .
(A17) L=t P e, t=34,.T,
e,t

a‘c,l et
where e: ~ iid N(0,1). We adopt the multivariate Normal prior distribution for ¢,
? ~ N(«,A"), and denote X to be the vector of left-hand-side variables and W to
be the matrix of right-hand-side variables. The posterior distribution from which
¢ is to be generated is given by:
(A18) ? ~ NA+W W) eA+W' X),(A+W ).

- 25 for our application. In generating ¢ from the

We adopt « = [0 0]’ and A
above posterior distribution, we adopt rejection sampling, so that the roots of

#(L) = 1 - ¢,L - ¢,L.* lie outside the unit circle.
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C.4 Generating Transition Probabilities (p,,,P2,P21,P31,P3;) Conditional on T,

37T, and on other Parameters of the Stationary Component

Conditional on ST, the transition probabilities are independent of X" and
other parameters, as in Albert and Chib (1993). For a two-state Markov-switching
model, Albert and Chib derive the full conditional distributions of the
transitions probabilities as a product of independent beta distributions. For a
three-state Markov-switching model, such as in this paper, Kim, Nelson, and Startz
(1996) adopt a slight modification of their approach.

Given ST and the initial state, let n;, i,j = 1,2,3, be the total number of
transitions from state S,, = i to S, = j, t = 1,2,...,T. Define p; = Pr(S, =
'Sy =dandp; = 7S, = jIS, =148 #1),i=123,j=12
Correspondingly, we have p;j = p;'p; for i # j. Similarly, define n; to be the
number of transitions from state S, = i to S, # i, and ﬁij to be the number of
transitions from state S_; = i to state S, = j, conditional on S, # i.

Then, as in Albert and Chib, by taking the beta family of distributions as
conjugate priors, it can be shown that the posterior distributions of p, are
given by
(A19) ip.l ST ~ beta(uy+n,u,+ny), i = 1,23,
where u; and u; are the hyperparameters of the prior. Once p;, i = 1,2,3, are
generated from the above distribution, generation of the other parameters is
straightforward. For example, given that p; is generated, p; can be calculated
by pj = P;'Pi- P can be generated from the following beta distribution:

(A20) [P;1 71 ~ betau;+nyuu+ny), i=j =k,
where u;; and u;, are the hyperparameters of the prior. The values of the
hyperparameters that we employ are: u; = 9 and ﬁii = l;and y; = 1 and yy = 1

fori=j = k.
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