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Abstract

The standard version of ¢ theory, in which investment is positively related to
marginal ¢, breaks down in the presence of fixed costs of adjustment. With fixed
costs, investment is a non-monotonic function of q. Therefore its inverse, which is the
traditional investment function, does not exist. Depending upon auxiliary assumptions,
the correlation between investment and marginal ¢ can be either positive or negative.
Given certain homogeneity assumptions, a version of the theory based on average ¢
still holds, although under the same assumptions profits and sales perform as well as

average ¢. More generally, ¢ is no longer a sufficient statistic.

(J.E.L. Classification Number E22)

“In writing this note, I feel at one and the same time as if I were preaching in
the wilderness and belaboring the obvious. For the major conclusions of this
paper are important and widely neglected, yet they seem distressingly obvious.”
Milton Friedman (1953)

1 Introduction

In the sixties, Tobin posited a relationship between a firm’s investment and the ratio of
its stock market value to the replacement cost of its capital, a ratio that has subsequently

become known as Tobin’s ¢ or average ¢. It was a simple arbitrage argument. If the market

*Respectively, MIT and NBER, and Harvard University and NBER. We are grateful to John Campbell,
Avinash Dixit, Greg Mankiw, and Toni Whited for helpful discussions. Caballero thanks the NSF and Leahy
the NSF and the Sloan Foundation for financial support.



valuation of capital held by a firm exceeds the cost of capital on the open market, then the

firm can increase its value by investing.

Subsequent formalizations of Tobin’s insight have downplayed the importance of aver-
age ¢, and instead focused on marginal ¢, defined as the value of a marginal unit of capital
installed in the firm relative to its price outside the firm. In the presence of convex ad-
justment costs, the theory goes, investment decisions are determined on the margin. The
firm weighs the marginal benefit of investment, measured by ¢, against the marginal cost
of investment. Since marginal cost increases with the size of investment, this considera-
tion naturally leads to a positive relationship between investment and ¢. The higher is
g, the greater is the firm’s willingness to incur the cost of adjustment, and the higher is

investment.

The message of this paper is that the elegance of modern marginal-¢ theory comes at
the cost of a serious lack of robustness. While the use of Tobin’s average ¢ as one of the
main explanatory variables of investment remains valid under a wide variety of scenarios,
the validity of marginal ¢, as well as on the sufficiency of such a statistic, rests on very

stringent assumptions concerning markets and adjustment costs.

The attempt to explain movements in investment by movements in marginal ¢ suffers
from a simultaneity problem: in general, marginal ¢ depends not only on the expected
future evolution of exogenous variables, but also on the firm’s current and future investment
decisions. Other things equal, a unit of installed capital is worth more if the firm does
not plan to make large investments in the near future. It turns out that whether or not
investment and ¢ are positively related depends on whether the effect of investment on ¢
is weak or strong. The standard positive relationship between investment and marginal
g arises from one of two sets of assumptions. First, in partial equilibrium, if there are
constant returns to scale and perfect competition, then investment has no effect on the
marginal value of capital. In this case marginal ¢ is independent of investment, and we
are left only with the effect of ¢ on investment. Second, in a world in which adjustment
costs are convex, firms have an incentive to smooth investment over time; an expected need
for capital tomorrow increases the desire to invest today. The negative effect of future

investment on ¢ is therefore weaker than the positive effect of ¢ on current investment.!

In more realistic scenarios, where the firm’s adjustment technology includes fixed costs

Empirically, researchers reduce the impact of this negative effect by using lagged (beginning of period)
as opposed to current ¢ on the right hand side of investment regressions.



and its profit function is concave with respect to capital, the standard formulation of ¢-
theory breaks down.? With fixed costs, investment occurs infrequently and in a lumpy
fashion.® In such cases, events that make investment more likely, such as positive demand
or productivity shocks, may lower rather than increase the value of an installed unit of
capital; very much as the threat of an avalanche of entry into a market may reduce the
value of an incumbent firm. Positive shocks raise the current marginal profitability of
capital, but by increasing the probability of large investments in the near future, may
reduce the expected marginal profitability of capital. Since marginal ¢ is the present value
of the marginal profitability of capital, whether it rises or declines on the face of a positive
shock is ambiguous. Below we argue that marginal ¢ is no longer a monotonic function of

investment, and therefore its inverse —investment as a function of g— no longer ezists.

While the theoretical literature on investment, armed with the convex-adjustment-cost
model, has emphasized marginal ¢, the empirical literature has generally employed average
¢. The primary reason for this divergence between theory and practice is convenience: aver-
age g is easily derived from market data, whereas marginal ¢ is more difficult to measure.*
It turns out that with fixed costs of adjustment, this may not be such a bad practice.
Average q may, in fact, be a better explanatory variable in an investment regression than
marginal g. The reason for this is quite simple and in line with Tobin’s original intuition:
events that make firms valuable (thus raise average ¢) also tend to make them good places
to invest. We show that under certain homogeneity assumptions, average ¢ is a sufficient

statistic for investment in spite of the presence of concave profits and fixed costs.

The superiority of average ¢, however, should not be exaggerated. While there are

2Concavity results when the firm faces either a less than fully elastic demand for its goods or supply of its
factors and inputs, or experiences decreasing returns to its flexible and quasi-flexible factors. Real firms are
likely to suffer from each of these features to some degree. Doms and Dunne (1994), Cooper, Haltiwanger
and Power (1995), and Caballero, Engel, and Haltiwanger (1995) have documented the importance of lumpy-
investment for U.S. manufacturing plants.

3The fixed costs we consider here are —as is standard in the literature— stock fixed costs. This contrasts
with Abel and Eberly’s (1994) flow fixed costs. Intuitively, stock fixed costs are the cost of turning on a tap
independent of how much water flows through it or how long the water flows, whereas flow fixed costs are
the costs of running the tap per unit of time water flows and is independent of how much water flows. Flow
fixed costs do not behave very differently from convex adjustment costs, investments are still infinitesimal,
thus g¢-theory still works. Abel and Eberly (1993), on the other hand, work in discrete time, where the
distinction between flow and stock costs is less meaningful; however, by assuming perfect competition and
constant returns to scale, they eliminate (in partial equilibrium, or with respect to idiosyncratic shocks) the
feedback from investment onto ¢, which is our concern here. The reader should be careful, therefore, when
comparing the apparently contradictory conclusions of these papers with ours.

*See Abel and Blanchard (1986) for an important —although not successful— exception to this practice,
and Hayashi (1982) for conditions under which average and marginal ¢ coincide.



conditions under which average ¢ is a sufficient statistic for investment, these conditions
are quite strong. Moreover, under the same circumstances other variables, such as cash

flows and sales, are also sufficient statistics for investment.

In section 2 we present a model of investment with fixed costs and discuss our main
results concerning marginal ¢, average ¢, and fixed costs. Section 3 concludes and is followed

by an appendix.

2 The Model

Our purpose in this section is to provide a model of a firm’s investment decision in the
presence of fixed costs of adjustment, and to discuss the implications of these costs for
g-theory. Except for isolated comments, we focus on fixed costs and abstract from other
types of frictions that are popular in the investment literature such as differences in the
purchase and sale price of capital, irreversibilities, and adjustment costs that are convex in
investment. We assume the firm away from the unlikely combination of perfect competition
in goods and factor markets, as well as constant returns to scale. The marginal revenue
product of capital is therefore decreasing in the capital stock. We also make a number of
homogeneity assumptions that reduce the model to a single state variable and, therefore,
simplify the analysis. None of the conclusions regarding marginal ¢ depend on these homo-
geneity assumptions, but they play an important role in our discussion of average g later
on.

We now present the model in detail. We consider a firm that uses capital, K, to produce
output. Time is discrete. The firm’s per period revenue function is II(8;, K¢). This revenue
function incorporates the optimal choice of flexible factors, as well as the level of fixed
factors. @ is an index of profitability capturing both demand and productivity conditions, as
well as the cost of factors of production other than capital. We place standard restrictions on
the revenue function to ensure that the firm’s problem is well behaved: revenue is zero when
the capital stock, and hence output, is zero; revenue is strictly increasing in profitability and
strictly increasing and strictly concave in capital; and, for each 8, limg o, Ix (8, K) = 0.

The firm is risk neutral and a price taker in the capital goods market. We fix the real
interest rate so that the firm discounts future profits at a constant rate 3. We assume the
firm rents the capital it employs in production at a constant cost r. This latter assumption

is formally equivalent to assuming that the purchase and sale price of capital are fixed, but



more tractable algebraically.> In addition to the rental cost, the firm incurs a fixed cost
whenever it chooses to invest.®
We make two homogeneity assumptions that ensure the form of the firm’s problem
does not change with the firm’s size. First, we assume that the fixed cost of adjustment is
proportional to the firm’s stock of capital, ¢ - K;. This ensures that the firm cannot grow
out of the fixed cost. Second, we assume that II is homogeneous of degree one in  and K.7
It remains to describe the dynamics of capital and the profitability index. The capital

accumulation equation is the standard one (to save in notation, we assume no depreciation):
Kiy1 = K + I,

where I; denotes investment in period ¢ that becomes productive in period t + 1. The
profitability index follows a random walk in logs. Let,

=0
= 0

The realization of the profitability shock is characterized by the density ¢(n).

2.1 A detour: a two period model

Before continuing with the full model, it is helpful to pause and consider a simpler version
that illustrates some of the intuition behind our main results. Consider a firm that exists
for two periods. It begins the first period endowed with a capital stock Kg and profitability
index 6 and can increase its capital stock in either period.® We slightly modify the timing
assumptions by allowing investment to add to the capital stock immediately instead of with
a one period delay. All other aspects of the model are as before, including the fixed cost of
adjustment and the shock to profitability # that occurs between periods.

How well does marginal g reflect the firm’s incentive to invest in this setting? Or, more
to the point, since it is apparent that given Ky the incentive to invest is increasing with
respect to 0, is it the case that ¢ increases with @ as well? The answer is no. To see this,
we start by describing the firm’s actions in the second period, given the stock of capital

(K1 = Ko + I) inherited from period 1. We then step back and show how marginal ¢ in

%See Harrison, Sellke, and Taylor (1983).

6 Where investment corresponds to a change in the stock of capital under rental agreement.

7 Among other things, this condition implicitly selects #’s normalization.

8Considering only positive investment simplifies the exposition, but has no substantive consequences.



the first period depends on the firm’s expected second period action.
The value of the firm (net of rental cost of capital) in the second period, V2, is the

maximum over net revenue with and without adjustment:
Vi(ne, K,) = max{mlax M(n8, K1+ L)~ 7r-(K1+ ) —c- Ky, (96, Ky) — 7 K, } .
2

Since the size of the adjustment cost is independent of the size of investment, it is apparent

that if the firm adjusts, it chooses I, so that:
VI% =0.

Whether the firm adjusts or not, depends on whether the benefit from adjusting is larger
or smaller than the fixed cost. Since the benefit of adjustment rises with the value of the
profitability index in period 2, it is apparent that there is a level of 78, which we shall
denote by U, above which the firm pays the fixed cost and invests. We can now go back
to the first period and ask the question, what happens to ¢ as we vary the first period’s
profitability index, 87 The economic forces are better illustrated if we focus on a range of
values of 8 for which there is no adjustment in the first period (so K, = Kpy).

We define marginal ¢ as the value of an extra unit of installed capital in period 1:
¢ =7x(6,Ko) = 7+ E[VZ(16, Ko)] .

Note that because we have included the rental cost of capital in V, ¢ is “centered” around

zero. Because V2 = 0 if the firm adjusts in the second period, we may rewrite ¢ as:

q=wx—r+p<n<%)E[Vx(nﬂ,lfo)ln<%J, (1)

where p(-) denotes the probability that the firm does not adjust in period 2. 7x increases
with @, but the last term is ambiguous. As @ rises, the probability of not adjusting in
the second period declines, while Vk conditional on not adjusting generally rises. We will
show below that the effect that dominates depends on how near the firm is to adjustment.
When 6 is low and adjustment is distant, increases in # raise g. Eventually, as @ rises the
probability of adjustment in the second period rises sufficiently that ¢ falls. Moreover, if
rises so far as to prompt investment in the first period, then the first order condition for

first period investment dictates that ¢ must be equal to zero.



The previous discussion reveals that ¢ is a non-monotonic function of #. Since the
firm’s desired capital stock rises monotonically with 8, it follows that ¢ is a non-monotonic
function of desired investment. Therefore, the inverse of this function does not ezist.®

Whereas marginal ¢ bares little relation to the firms incentive to invest, average ¢ be-
haves somewhat better. Average ¢ is equal to the value of the firm per unit of capital,
V(8, Ko, )/ Ko. Since V is monotonically increasing in 6, desired investment will be mono-

tonically related to average ¢ after controlling for Ky.!°

2.2 Back to the infinite horizon model

We now continue with the development of the full intertemporal model and make our claims
more precise. The firm makes its investment decision in order to maximize the present value

of profits. The Bellman equation for the firm’s problem is:
V(0,K) = max TU(0, K) K — ¢ K - 1(150) + ﬁ/V(nO, K+ Dé(m)dn  (2)

where the indicator function 14y is equal to one if the event A occurs and zero otherwise.
It is easy to see that V is homogeneous of degree one in K and 6. Let z = K,/#8,,
v(z) = V(1,2), and 7(z) = II(1, 2). Dividing (2) by 6, we obtain:

o(2) = max 7(z) = (7 + clyrao)z + 8 [ () né{n) dn, 3

where

K+1I = I
=t =214 =),
¢ 0n n(+K>

represents the future value of the state variable z.
Proposition 1 below shows that given the homogeneity assumptions there exists a unique

v(z) that satisfies (3). All propositions are proved in the appendix.

Proposition 1 There ezists a unique solution to the functional equation (3).

®By adding a probabilistic adjustment rule in which the probability of investment is smoothly increasing
with respect to the desire to invest —as opposed to the sharp (S, s) boundaries we study here— one can
transform our statements about the relation between desired investment and ¢ into statements about the
{smooth) relation between actual average investment and g. We avoid this complication here. See Caballero
and Engel (1994) for a probabilistic fixed-costs model relating desired with actual (average) investment.

10Ty see that increases in 8 increase V note that for any given investment plan, an increase in 8 increases
the value of the firm. Choosing the optimal investment plan can only make the firm even better off.



We can now study the implications of fixed costs for marginal ¢ in this model.

2.3 Marginal q

Following Abel and Blanchard (1986), we define marginal ¢; as the present value of a

marginal unit of investment,

0= B [ Vic(nbe, Kipr) ¢(n) d,

which, in terms of z, becomes,

=0 / o'(ze41) #(7) 7.

Since investment becomes productive with a one period delay, marginal ¢ is the expected
value of an additional unit of capital in the next period. Current profits are sunk and do
not enter into the calculation of marginal g.

Once the firm decides to invest and incurs the fixed cost, it faces no further adjustment
costs. The firm therefore chooses the level of investment that maximizes the present value

of profits. The first order condition for investment in period ¢ is, therefore:
gt = 0. (4)

Hence ¢ = 0 whenever the firm invests.!! It follows immediately from (4) that ¢ cannot
be a sufficient statistic for investment. A value of ¢ equal to zero provides no information
about the size or sign of investment. Since ¢ is also equal to zero if the firm happens to
posses a level of capital that maximizes the present value of profits, ¢ does not allow one
to distinguish between a firm with a pressing need to invest and a one that fortuitously
possesses an optimal capital stock. In this setting it is not possible to think of investment
as a function of marginal g.

Adding a convex cost of adjustment on top of our fixed cost does not solve the problem.

Suppose that the cost function were instead ¢ + k() with £(0) = 0 and k”(-) > 0. Then

11pecall that because we have included the current and future cost of capital in V, our measure of marginal
q is centered around zero not one. That is, rather than paying the machines at the time of investment, we
have assumed the firm commits to an infinite stream of flow payments, with present value equal to the value
of the machines.



conditional on investment, we would get a more standard first order condition,

=g,
that would allow us to distinguish between various levels of investment I. The problem
remains, however, that since adjustment with fixed costs is discrete there will be cases in
which a firm that does not invest has the same ¢ as a firm that has just invested. It is still
not possible to write investment as a function of ¢.

Returning to the case of purely fixed costs, the fact that ¢ is equal to zero when invest-

ment occurs, implies that either investment or ¢ is zero at all times. Hence
E(I-¢9=0

and

Cov(l,q) = E(I- q) - E(9)E(I) = - E(q)E(]).

We shall see below that this implication of the theory makes it easy to construct examples in
which the covariance between investment and g is negative. Furthermore, the fact that ¢(z)
is equal to zero more than once (in 2-space), suggests that it is a non-monotonic function.
Unfortunately, without placing more structure on the problem there is little that we can

say about the shape of ¢(z). We therefore turn to a convenient special case.

2.3.1 A special case

One particularly useful restriction is that In 8 follows a simple random walk with drift:

e, with probability p;
= e”", with probability 1 — p.

where v is a positive constant. We call this Assumption (*).

Assumption (*) has two appealing implications. First, if we set v = VoiAL + p?Atl?
and p= 3[1 + 1-‘-1,55], then # approaches a geometric Brownian motion with drift 4 and in-
finitesimal variance 02 as At approaches zero. Hence all of our results using this assumption
will extend to this common class of continuous-time models. Second, with Assumption (*),
the optimal investment policy and the value function take simple forms. We state these

properties in Proposition 2.

Proposition 2 Given Assumption (*), there exists a set of z, Z, with the following prop-



erties:
(a) Z is ergodic.
(b) Z has a finite set of elements and is of the form:

Z ={z,z2¢",...2%e7Y, 2" 2", .. .7},

where 2* is a mazimum of E, v(z/n)n.

(¢) For z € Z the firms optimal policy is a two-sided (S,s) rule: if z < z or z > Z the firm

invests to set the value of z before the realization of n equal to z*.

(d) v(z) is quasiconcave on Z.

With Assumption (*) the optimal policy is an (.5, s) rule. So long as z remains in the
interval (z,%), the benefit of adjustment is not sufficient to justify the fixed cost and the
firm does nothing; 2 rises and falls with the profitability index. As soon as z leaves the
range of inaction, however, the firm incurs the fixed cost and adjusts its capital stock so
that z reaches the level, z*, that maximizes its expected discounted value.

We can use Proposition 2 to study the shape of ¢ given Assumption (*). We know that
¢ is equal to zero when z = 2*, z < z, or z > Z. The quasiconcavity of v(z) on Z, implies
that g is positive for z € (2,2*) N Z and negative for z € (2*,Z) N 2.

The non-zero ¢’s in Z are related to each other by the Bellman equation. Differentiating

equation (3) with respect to z;4; and taking expectations as of period ¢ yields,
q(zt) = BE([n'(2e41) — ] + BE[g(2¢41))- (5)

Repeated substitutions, together with the fact that ¢ = 0 at times of adjustment, yields,

T
q(z) = Ex, 3, B°7'[n'(2,) = 7], (6)
s=t+1
where T' denotes the first (random) time the state of the economy z reaches one of the
investment triggers z or Z.
According to equation (6), ¢ is the present value of marginal profitability up until the
next time of investment. The equation illustrates the two forces that determine the shape

of ¢. Given K, as # rises (i.e., as z falls) the marginal profitability of capital rises. This

10



effect argues that ¢’(z) < 0. Changes in z, however, also alter T, the time of the next
adjustment. For the process in Assumption (*), and for many other standard processes,
the time of the next investment is quasiconcave; it is lowest as z approaches the triggers 2z
and Z and highest when z is in the middle of the range of inaction. Reductions in 7" reduce
the horizon over which g is calculated and push it closer to zero.

Figure 1 illustrates the “natural” shape of ¢ as a function of z. It crosses zero at z*. It
is decreasing near the center of the interval [z,%], reflecting the influence of the declining
marginal profitability of capital. It bends back toward zero as it approaches the edge of the
interval [z, 7], reflecting impending prospect of adjustment. It is zero outside the interval.

Figure 1 resembles the relationship between exchange rates and fundamentals in Flood
and Garber’s (1991) model of a target zone with discrete intervention.'? The similarity is
not a coincidence. Like Flood and Garber’s exchange rate, our ¢ is the price of an asset.
It is a claim to a stream of marginal profits. There is therefore an arbitrage condition
that links the value of ¢ before and after investment. This condition is the source of the
non-monotonicity in g(z).

Not surprisingly the unconventional behavior of ¢ may be attributed to the fixed costs.
In models with convex adjustment costs, a positive profitability shock raises the marginal
profitability of capital, and the incentive to invest. Since investment is “small” due to
the convex costs, the future marginal profitability of capital rises as well. ¢, being the
present value of marginal profits, therefore rises. With fixed costs, on the other hand, it is
still true that a positive profitability shock raises the marginal profitability of capital and
the incentive to invest. It is future marginal profits that do not necessarily rise. Because
investment is lumpy, future marginal profits fall when investment is imminent, so that ¢
falls as investment approaches.

With Assumption (*) it is easy to construct examples in which the covariance between
investment and ¢ is negative. Suppose, for example, that there are only positive profitability
shocks (p = 0), so that 2 only falls in the absence of investment. In this case the firm always
remains in the interval [z,2*]. Both investment and ¢ are non-negative and sometimes
positive, so Cov(/,q) = —E[I]E[g] < 0.13

1214 is also related to Dixit’s (1993, p. 44) depiction of optimal regulation.

13 Aggregation. The possibility of a negative correlation between investment and marginal ¢ arises naturally
from the fact that when investment takes place, g is always zero. While this is true for an individual firm,
there is no reason to expect it to be true for aggregates. The fact that some firms invest does not imply
that ¢ is on average zero across firms. Aggregation, therefore, may alter the correlation between investment
and ¢. To illustrate this possibility consider a market with two identical firms indexed by 1 and ;. Let the

11



2.4 Average q

While marginal ¢ is the appropriate concept in the standard convex-adjustment cost model,
it is rarely used in empirical work. Instead, researchers often appeal to the “theoretically
incorrect” but more measurable, average ¢.!4

Paradoxically, it turns out that with fixed costs of adjustment, average ¢ may do better
than marginal ¢ as a right hand side variable in an investment regression. Indeed, we
showed above that marginal ¢ does not work, while here we describe assumptions under
which average ¢ is a sufficient statistic for investment. Although we also argue that under

these circumstances profits and sales perform as well as average q.

As is standard, we define average ¢, which we denote by @, as the value of the firm per

unit of capital:
_V(0,K) v(z)
Q(Z) - K - 2 M

In the next Proposition, we show that given our homogeneity assumptions @ is strictly
decreasing in z. It follows immediately that observers can recover z from @ and that Q is

a sufficient statistic for investment.!®
Proposition 3 Average @ is strictly decreasing in z.

It is easy to see why @ performs so well. A little algebra shows that:

dQ ,
E ~ —V9(0, K )

Therefore the monotonicity of Q is a reflection of the fact that a positive profitability shock

increases the value of the firm for any given capital stock.

aggregates § and I denote market-wide averages of marginal ¢ and investment respectively. 1t follows that:
1
Cov(g, I} = -2-E{q.- -1,} + Cov{gi, ;).

The second term is exactly as before. It is easy to construct examples in which the first term is positive.

14 As noted earlier, Hayashi (1982) derived the conditions under which marginal and average g coincide.
While illuminating, these assumptions, which include perfect competition in all markets as well as constant
returns to scale, are unlikely to be met in practice, especially by the large firms that are often used in
empirical studies. They are often invoked to theoretically justify what is truly a selection dictated by data
availability rather than by a believe on the underlying assumptions.

50ur homogeneity assumptions differ from those in Hayashi (1982). Hayashi requires that both the flow
profit and the adjustment cost be homogeneous in capital and investment. Our model necessarily violates
both of these. Optimal investment in our model would be infinite if the flow profit were homogeneous in
capital, and a fixed cost is by definition independent of the level of investment. Instead, our model requires
that the flow profit and the adjustment cost be homogeneous in capital and profitability.

12



It is important to realize, however, that sufficiency in our case represents a substantially
simpler and different result from that which makes the standard g¢-theory so appealing. In
the latter, ¢ (and possibly @) is a powerful summary of all the information —possibly many
state variables— about the future that is relevant for current investment. In our context,
on the other hand, we have reduced the problem to the simple case where a single state
variable, z, is all that is needed to plan investment. Any variable monotonically related
to it will serve the role of a sufficient statistic. € is one of them, but so are 7(z) and
7'(z). The statistic that performs better in a simple investment equation will depend on
the non-linearities of the model and the nature of measurement error.

If either the homogeneity conditions fail or the shock does not follow a random walk,
then @ generally will not be a sufficient statistic for investment. The reason is that in such
cases there will be no single statistic that describes the state of the firm. With many state-
variables ¢, and cash flow will convey different information. Cash flow will mostly reflect
immediate factors, while ) will reflect both present and future influences on investment. It
is likely that both would prove to be significant predictors of investment. The significance
of cash flows in this case would therefore not signal the presence of liquidity constraints
or other capital market imperfections. Instead it would reflect the fact that in a world of

many state variables a single variable like () may not capture all available information.'¢

3 Conclusion

The standard formulation of g-theory, which posits a monotonic relationship between
marginal ¢ and investment, is elegant but of limited practical use. It depends critically
on auxiliary assumptions, such as convex adjustment costs or perfect competition and con-
stant returns to scale, that are not likely to hold in practice. We have shown that in a
more realistic model in which these assumptions are violated, this standard formulation of

g-theory breaks down and marginal ¢ ceases to represent a firm’s incentive to invest.

While marginal ¢ performs poorly, we show that average g may still perform quite
well. In a sense, this is not surprising; while marginal ¢ is the construct of a very specific

optimization problem, g-theory as originally conceived by Tobin is closer to a generic ar-

$We are not arguing against liquidity constraints, which we believe affect many firms. Rather, we are
arguing against the claim that by putting Q on the right hand side of investment regressions, the researcher
has controlled for all information relevant for investment when there are no credit constraints. Gilchrist
and Himmelberg (1994) argue similarly, although the source of the problems they highlight is measurement
error in @ rather than misspecification and omitted variables, which is what is behind our argument.

13



bitrage condition, and is therefore more robust to changes in the specifics of the economic

environment.

Our arguments imply that average ¢ should be a useful right hand side variable in
applied investment equations. It is important, however, not to take these arguments too
far. For example, we have shown that average ¢ is more naturally related to investment
than is marginal ¢, but the reason for this also makes other variables, such as cash flows,

good candidates for right hand side variables in investment equations.
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4 Appendix: Proofs of the Propositions

Proof of Proposition 1

It is inconvenient to work with v(z) since neither the current period payoff #(z)—rz nor
the cost of adjustment cz is bounded as z approaches infinity. Instead we analyze #(z) =
v(2)—=(2)+rz+cz. Note that this does not affect the optimization problem since z is fixed
at the time of the investment decision. #(2) is bounded above by T% max, 7(2) — rz < o
which is the maximum possible payoff, and bounded below by i‘% (—c+ max; En(z/n)n) >
—00, which is the value of adjusting each period.

Let V be the space of bounded, continuous functions. Given a function g(z), consider

the mapping ¢ — Mg:

(M)(z) = max{ez+8 [lg(a/m) + w(s/n) - r2/nl n(m)an, 0
max 8 [ [a(z/n)+ w(im) - = - ] notnan}.

It is easy to see that if g € V then Mg € V. #(2) is a fixed point of M should one
exist. Since M satisfies Blackwell’s conditions for a contraction mapping, the existence and
uniqueness of such a fixed point follows from the contraction mapping theorem. Therefore,

9(z) exists and is unique. It follows that v(z) exists and is unique.

Proof of Proposition 2

Let z* maximize E,v(z/n)n. As the firm is indifferent between z* and other potential
adjustment targets, we assume that the firm adjusts to z* each time it adjusts.

Since z follows a log random walk in the absence of adjustment, z will deviate arbi-
trarily far from z* with probability one if the firm does not adjust. Therefore the firm will
eventually adjust its 2z’ to z*. The form of the ergodic set and the optimal policy follow
immediately.

We show that v is quasiconcave on Z by contradiction. Suppose otherwise. Then there
exists a point Z € Z that is a local minimum situated between to local maxima. Now
consider three firms: one begins at z and others begin at Ze” and Ze™". Consider arbitrary
sequences of 77 and compare the firms’ payoffs. Note that in each period prior to adjustment
the firms occupy adjacent states and that their period payoffs are concave. Note also that
the firm that began at z reaches a local maximum before it adjusts, and that at this point

the continuation payoffs are concave. Hence the initial values must have been concave. This

15



contradiction completes the proof.

Proof of Proposition 3
Using the definition of average ¢ and the homogeneity of V:

V(8 K)

Differentiating with respect to 2:
@Q__1,
dz 2"

Note z > 0. A simple argument shows that V3 > 0. Consider two firms. Suppose that
one firm is following an optimal investment strategy given the initial state zo = Ko/6p.
Suppose that the other firm has the same capital stock Ko, but has a higher level of the
profitability index 6 > 6,. Now if the second firm mimics the first firm, the second firm
will incur the same cost of adjustment and will earn strictly higher flow profits. Since
an optimal policy for the second firm must do better than this arbitrary policy, we have
V(éo, Ko) > V (6o, Ko). Hence Vp > 0 and dQ/dz < 0. This completes the proof.
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