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I. INTRODUCTION

Positive comovement between different sectors of the economy is a
salient feature of business cycles. Over the period 1959-1986, for
instance, the average pairwise correlation of annual employment growth for
the 126 three-digit US manufacturing industries listed in the Appendix 1is
0.341. For gross output and value added, the corresponding figures over
1960-1986 are 0.284 and 0.228. Similar evidence is presented in Long and
Plosser {1987), Murphy, Shleifer and Vishny (1989 a), and Cooper and
Haltiwanger (1990).

Interindustry comovement is essential to aggregate output and
employment volatility. To see this, suppose we approximate the growth
rate of some aggregate activity measure, denoted q, as a weighted average

of disaggregated industry growth rates:

(1) q, =

i SHARE, q;

1 t

X

where M is the number of sectors and SHARE.l equals sector 1i’'s

steady-state share of aggregate activity. Then the wvariance of gq 1is
approximately
(2) SHARE * ¥ * SHARE’,

where SHARE is a 1-by-M vector of industry shares and ¥ is the M-by-M
variance-covariance matrix of disaggregated industry activity.

From (2), one can decompose the approximate variance of g into a term
due to the diagonal elements of ¥, and a "comovement” term due to the
off-diagonal elements of V. Table 1 presents this decomposition for

manufacturing employment, gross output and value added growth, using



annual data over 1959-86 for employment and over 1960-86 for output and
value added. The matrix ¥ and the vector SHARE are estimated using 126
three-digit manufacturing industries; the data are described 1in the
appendix.

The results suggest that most aggregate volatility is due to
interindustry comovement. For instance, the actual standard deviation of
annual manufacturing employment growth over the sample period is 4.31
percent. The approximate standard deviation implied by (2) is 4.42
percent. The standard deviation implied by the diagonal elements of V¥ is
just 0.99 percent, while the standard deviation implied by the
off-diagonal elements of ¥ is 4.31 percent; comovement thus accounts for
almost 95 percent of the variance of manufacturing employment.
Qualitatively similar results hold for output and value added.

In principle, interindustry comovement could be due entirely to the
direct effects of common shocks. For 1instance, monetary policy may
iirectly affect the demand for all durable goods. However, comovement may
also be caused by complementarities that propagate shocks across sectors.
For instance, monetary policy may generate comovement between cars and
steel not because money affects steel directly, but because money affects
cars and because shocks to cars are transmitted to steel. Recent research
has suggested several potential sources of interindustry linkage,
including the input-output table (Long and Plosser (1983)), trading
externalities (Diamond (1982)), and aggregate demand spillovers (Murphy,
Shleifer and Vishny (1989 b)). Some of these linkages, such as
input-output, are consistent with frictionless models; others inherently
rely on frictions such as imperfect competition or externalities.1 The

common implication of such theories is that the interindustry pattern of



comovement depends on the interindustry pattern of linkage.
Complementarities do not merely imply that A should comove with B; they
imply that the amount of comovement between A and B should depend on the
strength of the linkages between A and B.

This paper assesses the importance of complementarities for short-run
comovement. Using postwar US data for disaggregated industries, I examine
the relationship between the observed pattern of comovement and observable
measures of complementarity suggested by three simple models. In Model
One, shocks are propagated by factor demand linkages. The model implies
that the effect of a shock to industry A on industry B depends on the
strength of upstream and downstream linkages between A and B. In Model
Two, shocks are propagated by an aggregate spillover, as in Baxter and
King (1991); increases in aggregate output raise optimal output in each
industry. The model implies that the effect of a shock to A on B depends
on A’'s size: shocks to large industries have a larger aggregate impact
than shocks to small industries, and are thus transmitted more strongly to
other sectors. In Model Three, shocks are propagated by a local
spillover; increases in overall city output raise optimal output in each
local industry. The model implies that at the national level, the effect
of a shock to industry A on industry B depends both on A’'s size and on
whether A and B cluster in the same cities. Industries with a strong
"spatial correlation" should exhibit strong temporal comovement.

The models imply that industry fluctuations result from the
propagation of shocks through a matrix whose elements depend on observable
measures of potential complementarity and on parameters governing the
strength of different linkage mechanisms. Given sufficient restrictions

on the covariance matrix of underlying shocks, I can estimate the



complementarity parameters using data on disaggregated industry
fluctuations. My empirical work examines the pattern of comovement among
126 disaggregated US manufacturing industries, using annual data covering
1958-1986. I assess the importance of complementarities in two ways:
first, I examine whether the complementarity parameters are statistically
significant and of the correct sign; second, I measure the contributions
of complementarities to aggregrate volatility.

The rest of this paper proceeds as follows, Section II outlines the
three models. Section III describes data sources and presents empirical
results. Section IV compares my work to previous literature, and Section
V concludes. My main results are as follows. I find that input-output
linkages are important to short-run comovement, with significant linkages
running both from downstream users to upstream suppliers and vice-versa.
I find little support for aggregate activity spillovers. However, I find
strong support for local activity spillovers; even after controlling for
input-output linkages, industries clustered in the same cities tend to
comove over the business cycle. I find that complementarities are
important to aggregate wvolatility, even after removing observable
aggregate shocks from the data. Local spillovers are especially
important; for instance, I estimate that local spillovers are responsible
for between 15 and 36 percent of employment volatility in manufacturing,

depending on my treatment of aggregate shocks.

II. THREE MODELS OF INTERINDUSTRY COMPLEMENTARITY

This section presents three models of interindustry linkage. The
models are simple, for the sake of analytic and empirical tractability.

Nevertheless, I believe the models capture the essential implications of



their respective linkage mechanisms for the pattern of interindustry
comovement, and that the models’ qualitative predictions would thus remain

true in richer models; exceptions are duly noted.

Model One: Factor Demand Linkages

This subsection presents a multisectoral general equilibrium model in
which shocks are propagated by input-output linkages, as 1in Long and

Plosser (1983). There is a representative agent with preferences

(3) us=

N
. ailog(Ci) - L ; @, = aiexp(di) ; E a, = 1.

1 i

nepM =

Utility depends on consumption C.1 of N goods, and on hours worked L.
The goods have stochastic preference weights a, - Some goods receive more
weight than others on average; this 1is reflected in the fixed a;
parameters. The d.l are mean-zero taste (demand) shocks.

Each good is produced using both labor and intermediate inputs, where

each of the N goods is potentially used as an input by every other good:

ki i N
(4) ©oQ, =, LW, 1 *L, ;7 * LB, =1

Here, Q.1 is output of good i; in represents the amount of k used as

an input for i; and
(5) Ai = exp(si),

where the 85 are mean-zero technology (supply} shocks. Finally,

market clearing requires

(6)
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A log-linear approximation to the competitive equilibrium yields



N N
(7) q, = K. + Y COST.. s + Y DEM, d ,
i i k=1 ik"k k=1 ik 'k
where Ki is a constant. According to (7), fluctuations in industry i
depend on technology and taste shocks in every industry. The effect of

equal to the ultimate

the technology shock s, on q; depends on COSTi

k k’
dollar requirement of good k per dollar sold of good i, incorporating
direct and indirect linkages. For instance, COSTik could be high because
i uses k as an input, or because i uses h while h uses k, and so on. The
effect of the taste shock dk on qi, meanwhile, depends on DEMik’ equal to
the steady-state share of demand for 1 wultimately embodied 1in final
purchases of k. DEM and COST are in turn functions of the taste and
production parameters; details are provided in the appendix.

Notice that this model is oversimplified in that supply and demand
shocks propagate in only one direction each. Technology shocks to
industry A propagate downstream, affecting costs in sectcrs using A as an
input, but do not affect upstream sectors supplying inputs to A. This is
because utility and production functions are Cobb-Douglas. In general,
(neutral) technology shocks have two competing effects on upstream demand:
they reduce the amount of input needed to produce any given level of
industry output, but they also raise industry output. Under Cobb-Douglas,
these two effects cancel exactly; wunder alternative specifications,
technology shocks could have upstream effects. Conversely, in this model
taste shocks to industry A shift upstream demand curves, but do not affect
downstream sectors using A as an lnput. This is because supply curves are
flat. If A’s supply curve sloped up, then favorable taste shocks would
raise A’'s price, raising costs to downstream sectors. On the other hand,

if A's supply curve sloped down, then taste shocks would lower costs to



downstream sectors.

In the empirical work below, I assess the roles of upstream versus
downstream linkages for comovement, using input-output matrices modelled
on DEM and COST. While it 1is sometimes useful to refer to upstream
propagation of shocks from users to suppliers as a "demand-side linkage",
and downstream propagation from suppliers to users as a "supply-side
linkage", the reader should keep in mind that the empirical results will
reveal only the direction in which shocks propagate; the results will not
in general reveal whether the fundamental shocks driving the economy are

demand or supply shocks.

Model Two: Aggregate Activity Spillovers

This subsection presents a model in which shocks are propagated by an

aggregate activity spillover. The representative agent’s utility is

(8)

N
ailog(Qi] -L @, = 1.
1 i=1

C
]
W=

i
As in Model One, utility depends on consumption Q.1 of N final goods,
and on hours worked L. The goods have nonstochastic preference weights;

sectors with a high « are larger on average than sectors with low «.

Final goods are produced according to

B . -
Ai L.1 (QA) ; Ai = exp(si],

(9) Q
where

N
(10) Q, = rQ

Qutput of good 1 depends on labor, on productivity Ai, and on

aggregate activity QA’ where 3 lies in the interval [0,1). Assume that QA



is an externality; firms make decisions taking QA as given. Then a
log-linear approximation to the competitive equilibrium yields

(11) q, = log(a.l) + s, +u Zazs,

where pu equals (B/1-8). From (11), fluctuations in industry i depend
on i’'s technology shock and on the aggregate activity index, which is a
size-weighted average of all technology shocks. For simplicity, I have
assumed that the aggregate spillover is an external economy of scale, as
in Baxter and King (1991}. However, an equation similar to (11) would
presumably hold under other types of aggregate spillovers; the key feature
of (11) is that shocks to large sectors have larger aggregate impacts, and
thus larger effects on other sectors, than shocks to small sectors.
Notice that the effect of size on comovement in this model does not merely
follow from the fact that large industries comprise a higher fraction of
aggregate output than small industries. While it is true that the effect
of industry shocks on aggregate output would trivially tend to increase
with size in virtually any model, the effect of industry shocks on other

industries increases with size only if aggregate spillovers are present.

Model Three: Local Activity Spillovers

This subsection presents a model in which goods are produced in a
large number of spatially distinct locations. Shocks are propagated by a
symmetric local spillover, in which productivity in a particular
industry-city depends on overall city output. The chief implication of
the model is that the interindustry patterns of temporal comovement and
spatial location should be similar.

The representative agent’s utility at time t is



N
(12) u = YC., -L

Utility depends on the consumption Cit of N final goods, and on hours
worked. FEach final good, in turn, can be produced in a large number M of
cities. In order to avoid complete concentration of industries in one
city, I assume that different cities produce differentiated versions of

each final good, which are imperfect substitutes in utility. Thus,

M
(13) Cit = .Z log(QijtJ,
J=1
where Qijt i1s production of good i in city j at time t, given by
(14) Q... = uw. *L. *(@, P
ijt ijt ijt Jto
where
= *
(15) uijt exp(sit] exp(wij)
and
N
(16) th = ingijt'

Production in an industry-city depends on labor; on the overall level

of city activity th; and on the productivity shifter uijt' which in turn
depends on two terms: Sitr which varies over industries and time but not
cities; and wij' which varies across industry-cities but not time. One

can think of s as an industry-specific technology shock and w as a
Ricardian parameter reflecting long-run attributes that give particular
cities a comparative advantage in hosting certain industries.

Assume that agents regard local activity spillovers as an

externality. Let Qit denote industry i’s total output at time t, equal to



the sum of Qijt over M cities. Then a log-linear approximation to this

economy’s competitive equilibrium yields

N

(17) q;, = Ki * St pk§1CITYikskt,

where the K's are constants, u equals {(B/1-8), and

(18) CITYik =

SHARE1 .. * SHARE2, .,
; Jji kj

M x

1

where SHAREIJ.i equals city j's steady-state share of industry 1i’s
activity, and where SHAREij equals 1industry k’s steady-state share of
city j's activity; SHAREl and SHARE2 in turn depend on the w parameters.

According to (17), fluctuations in industry i depend on technology
shocks in all industries. The effect of a shock to industry k on industry
i is proportional to CITYik' which is an average of k's share of
steady-state activity in the M cities, weighted according to each city’'s
steady-state share of i's activity. CITYik thus measures the extent to
which i 1s concentrated in cities where k 1is important. Intuitively, if
CITYik is large, then shocks to k have a large impact on activity in
cities where 1 1is clustered, and therefore propagate to 1.

Notice that this model predicts that industries that cluster together
in space should also comove through time. From (17), comovement between i
and k increases in CITYik, which in turn increases in k's size and in the
degree to which i and k cluster in the same cities. The predictions of
this model are thus at odds with a Marshallian "labor market pooling"
story, in which industries with negatively correlated fluctations
optimally cluster together to stabilize local labor demand.

I must point out that symmetric local spillovers are not the only

mechanism that could generate a correspondance between the interindustry
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patterns of spatial and temporal comovement. For instance, if
city-specific shocks such as weather or taxes are important to
fluctuations, then industries clustered in the same cities will tend to
comove over time by virtue of experiencing a similar mix of local shocks.
Alternatively, there may be asymmetric local spillovers, in which the
degree of synergy varies across industry pairs; in this case, pairs with
particularly strong linkages will comove over time and will optimally
cluster together in space to maximize the synergy. Thus, while I frame
the empirical findings below as evidence for symmetric local spillovers,
one could also interpret the results as evidence for asymmetric spillovers
or local shocks. These stories are difficult to distinguish using
national data alone. However, in Shea (1995), I show that the three
stories have sharply different 1implications for the pattern of
interindustry comovement within cities, and can thus be distinguished

using data on fluctuations at the city-industry level.

III1. EMPIRICAL EVIDENCE

The models presented above imply that comovement results from the
propagation of industry shocks through complementarities. This section
presents empirical evidence on complementarities. I first describe my

empirical framework. [ assume that fluctuations obey
- »
(19) a, L o+ A €,

where q, is an observable N-by-1 vector of industry fluctuations at
time t; u is an N-by-1 vector of constants; €, is a vector of mean-zero

industry-level shocks, with covariance matrix Q, and A is an N-by-N matrix

governing how shocks are propagated across sectors. The models outlined

11



in Section II suggest that A depends on observable measures of
interindustry 1linkage and on parameters governing the strength of

different propagation mechanisms. 1 specify A as follows:

(20) A = {31 * COST + 3, * DEM + 83 * SIZE + B, * CITY.

2 4

Here, COST is an N-by-N matrix whose [(i,k] element equals the
ultimate dollar requirement of good k per dollar sold of good i; DEM is a
matrix whose [i,k] element equals the share of demand for i ultimately
embodied in final purchases of k; SIZE is a matrix whose [i,k] element is
proportional to k'’s size; and CITY is a matrix whose [i,k] element equals
a weighted average of k’'s steady-state share of activity over a group of
cities, weighted by each city’s steady-state share of i’s activity. From
Section II, COST represents downstream propagation of shocks, from
suppliers to users, while DEM represents upstream propagation of shocks,
from users to suppliers; SIZE represents aggregate activity spillovers,
while CITY represents local spillovers. COST and DEM are meausured using
1977 US input-output data; SIZE 1is measured using industries’ long-run
average share of nominal manufacturing value added; and CITY is measured
using 1977 disaggregated employment data for 273 cities.5 Details on data
construction are provided in the appendix.

I estimate (19)-(20) using annual data from 1958-1986 on 126 US
three-digit manufacturing industries. [ experiment with three measures of
q: the growth rate of employment, the growth rate of real gross output,
and the growth rate of real value added. These series are constructed
using the Penn-Census-SRI Productivity Database used 1in Bartlesman,

Caballero and Lyons (1994); details are provided in the appendix.
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Identification and Estimation

My objective is to use the pattern of interindustry comovement to
identify the B parameters, along with the elements of the shock covariance
matrix Q. However, I cannot from (19}-(20) estimate both the B’s and an
unrestricted Q matrix. My identifying assumption in this paper 1is that
industry shocks consist of two orthogonal components: an unobserved
industry-specific component, assumed orthogonal across industries, and a
component driven by observable aggregate disturbances. Specifically, 1

assume that
(21) € = v + F * a,.

Here, Ve is an N-by-1 vector of industry shocks, with diagonal
covariance matrix Z; a, is a P-by-1 vector of observable aggregate shocks
orthogonal to Vi and F is an N-by-P matrix of factor loadings, indexing
each industry’s sensitivity to aggregate shocks. I assume that a,
consists of two elements: the growth rate of the real Producer Price
Index for fuels and power (OIL} and the spread between the commercial

paper and Treasury-Bill interest rates (SPREAD), intended to proxy for

monetary policy.6 Under these assumptions, I can rewrite (19) as

= * *
(22) a4, u + G a, + A Vi

where
(23) G =A*F.

In addition to these identifying restrictions, I must choose a
normalization; as currently specified, the absolute levels of B and Q are

not separately identified. One possible normalization would be to set Bl
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and/or BZ = 1; this is unappealing because it imposes a restriction that
either upstream or downstream input-output linkages must be important to
comovement. I instead normalize the own effect of an industry shock to
one, and let Bl through 34 govern only the cross-industry effects of

shocks. In other words, I assume

(24) A=1ID + B, * COST + 8

* * »*
1 DEM + 33 SIZE + B4 CITY,

2

where ID is an N-by~N identity matrix and the diagonals of COST, DEM,
SIZE and CITY are set to zero.

I estimate the model using a two-step procedure. First, I estimate p
and G by running industry-by-industry OLS regressions of q, on a constant,
OIL and SPREAD; these regressions fit best when I lag OIL and SPREAD one

year.7 These estimates are consistent under the assumption that a, is

8

orthogonal to Vi I then use the residuals from these regressions to
estimate B and £ using Gaussian maximum likelihood. Details on the log
likelihood function and its gradient are given in the appendix. Given

estimates of G and B, I can use (23) to back out estimates of the factor
loading matrix F, which allows me to distinguish the direct effects of
aggregate shocks on comovement from the indirect effects resulting from
the propagation of aggregate shocks through complementarities. Of course,
this decomposition depends on the assumption that aggregate and
industry-specific shocks are propagated through the same matrix A.

Before proceeding to the results, I must must acknowledge two
important gaps between the models outlined in Section II and the empirical
framework described above. First, while Section II consists of three
separate models, [ estimate a single system which nests all three models’

implications. Allowing for all three linkages simultaneously is essential
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for proper inference; for instance, if 1 tested Model Two without
controlling for input-output linkages, ! might find a positive association
between industry size and comovement even if aggregate spillovers did not
exist, because large industries have stronger input-output links to other
sectors than small industries. Unfortunately, nesting the three models
limits the structural interpretability of the estimates. For instance,
the estimated coefficients on SIZE and CITY can be used to test the null
that aggregate and local spillovers do not exist, but cannot be used to
infer the aggregate and local spillover parameters in Models Two and
Three. Ideally, Section II would consist of a single model nesting all
three linkages, so that the empirical estimates would have unambiguous
structural interpretations. Unfortunately, I have been unable to find a
tractable model incorporating all three linkages.

Second, while Model One shows that demand and supply shocks may have
different propagation mechanisms, the empirical work assumes that all
shocks propagate in the same way. Attempts to estimate models allowing
for both supply and demand shocks proved unsuccesful, although perhaps
future work could have more success by incorporating price data. As
mentioned above, the empirical work thus cannot answer the question of
whether supply or demand shocks are more important to business cycles; the
estimates reveal only the relative importance of upstream versus

downstream propagation of shocks.

Estimates of 3

Table 2 presents estimates of B for the three measures of industry
activity. Estimates of G and ¥ are omitted to save space, but are
available from the author. Standard errors are in parentheses and are

estimated by numerical computation of the Hessian at the maximum
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likelihood estimates.

Results are as follows. First, input-output linkages are significant
sources of short-run comovement. The coefficients on DEM and COST are
positive and significant in all cases, suggesting that shocks propagate
both upstream (from users to suppliers) and downstream (from suppliers to
users). Second, aggregate activity spillovers receive little support; the
coefficient on SIZE 1is positive in all cases, but statistically
insignificant. Third, local activity spillovers receive strong support;
the coefficient on CITY 1is positive and highly significant 1in all
specifications. Finally, the results for employment and output are
similar to each other, but different from the results for value added,
which show smaller coefficients on DEM and COST and larger coefficients on
SIZE and CITY. Since measuring value added requires both more information
and more assumptions about the production function than measuring
employment or output, value added is likely to contain more measurement
error than employment or output; therefore, the employment and output
results should perhaps carry more weight than the value added results.

Table 3 presents statistics describing the fit of the models. For
each activity measure, the column "Implied Volatility" presents the

standard deviation of manufacturing activity implied by the formula
(25) Var{q) = SHARE’ * ¥ * SHARE.

Here, SHARE is a 126-by-1 vector of steady-state industry activity
shares, estimated as described in the appendix. In rows labelled "Data",
¥ is set equal to the covariance matrix of the original data; in rows
labelled "Residuals", ¥ is the covariance matrix of the residuals from
projecting the data on aggregate shocks. In the remaining rows, ¥ equals

the fitted covariance matrix, either including or excluding the effects of

16



aggregate shocks. In the former case, ¥ equals ; * % * ;' plus 6 * é *
é', where é is the estimated covariance matrix of aggregate shocks; in the
latter case, ¥ equals ; * é » A'. The last three columns, meanwhile,
report statistics for the pairwise correlations implied by the data and
the empirical estimates; the fourth and fifth columns show the mean and
standard deviation of the pairwise correlations over the 7875 possible
pairs of sample industries, while the sixth column presents the
correlation between the fitted and observed pairwise correlations.

The results of Table 3 suggest that the fitted model can account for
most of the wvolatility and comovement features of the data. For
employment, the fitted model including the effects of aggregate shocks
explains 96 percent of the variance and 89 percent of the mean pairwise
correlation found in the data; for gross output, the model explains over
100 percent of aggregate variance and 99 percent of average comovement;
for value added, the model explains over 100 percent of both aggregate
variance and average comovement. Removing aggregate shocks from both the
model and the data has little effect on these results. For all three
activity measures, the pairwise correlations 1in the original data
themselves exhibit a correlation of around 0.78 with the correlations
implied by the fitted model including aggregate shocks; this suggests that
the model including aggregate shocks can account for why some pairs of
industries comove more strongly than others. The model without aggregate
shocks is not as successful at explaining cross-sectional variation in the
degree of comovement; the correlation between the residual correlations
and the fitted correlations excluding aggregate shocks ranges from 0.286
for employment to 0.386 for gross output. The fitted models tend to

understate somewhat the standard deviation of observed pairwise
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correlations, especially when aggregate shocks are excluded; the fitted
models thus do not account especially well for the magnitude of variation

in the degree of comovement across industry pairs.

Variance Decompositions

While the estimates of the B’s are interesting, they do not prove
that complementarities are economically important. Table 4 assesses
economic significance by decomposing the aggregate variance implied by the
fitted model into components due to aggregate shocks, input-output
linkages, local spillovers, and other factors. The variance decomposition
results depend crucially on how one measures the impact of aggregate
shocks. The third column measures this impact as é, the matrix of
coefficients from projecting y on aggregate shocks industry-by-industry.
This measure assigns to aggregate shocks both their direct effects and the
indirect effects resulting from their propagation through
complementarities. The final c»>lumn measures the impact of aggregate

"l G. This measure includes only direct effects, and is

~

shocks as F = A

based on the assumption that aggregate shocks are propagated by the same
complementarities as idiosyncratic shocks. For each activity measure, the
first row presents the fraction of fitted variance attributable to

aggregate shocks, setting ¥ either to G * & * G’ (third column) or F * ¢ *

~

F’ (fourth column). The row "Diagonals" presents the fraction of fitted
variance due to 1idiosyncratic shocks, setting ¥ to Z. The row COST

presents the fraction of volatility due to cost-side linkages; this row is
. . - - = - - = - * ”.
constructed by first defining ACOST ID + 31COST and GCOST ACOST F,

~ ~

. . N » * ’ 3
then setting ¢ equal to either ACOST z ACOST {third column), or to

* T ¥ *  * GCOST (fourth column); one can think of

AcosT Acost * Scost

18
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GCOST as an estimate of what the overall impact of aggregate shocks would
be if cost linkages were the only complementarity in the economy. The
third column of row COST subtracts the variance due to 1idiosyncratic
shocks, while the fourth column subtracts the variance due to
idiosyncratic shocks and to the direct impact of aggregate shocks. The
rows DEM, SIZE, and CITY are constructed in the same way as COST, while
the row “Interactions" reports the fraction of variance due to
interactions between COST, DEM, SIZE and CITY.

The results of Table 4 suggest that both aggregate shocks and
complementarities are important to aggregate volatility. If we measure
the impact of common shocks using 6, then aggregate shocks explain over
half of manufacturing employment volatility, 45 percent of output
volatility, and almost 40 percent of value added volatility. The
importance of aggregate shocks falls substantially, however, if we measure
their impact using ﬁ instead of 6; for each activity measure, the share of
volatility attributable to the direct effects of aggregate shocks is less
than five percent. This suggests that complementarities play an important
role in transmitting oil and monetary shocks across sectors, provided one
assumes that aggregate and idiosyncratic shocks are propagated through the
same channels. Interestingly, local spillovers appear to be the most
economically important complementarity. If we ignore the role of
complementarities in propagating common shocks, local spillovers explain
between 15 and 19 percent of aggregate volatility, depending on the
measure of activity; these figures rise to around 35 percent if we allow
local spillovers to propagate aggregate as well as idiosyncratic shocks.

Regardless of the treatement of aggregate shocks, then, local spillovers

have non-trivial consequences for volatility in manufacturing.
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Input-output linkages are nearly as important as local spillovers for

gross output volatility, but are not as important for employment or value

added volatility.

IV. COMPARISON WITH PREVIOUS WORK

In contrast to the large theoretical literature, there is relatively
little existing empirical work on complementarities.10 There 1is a
literature that analyzes comovements among disaggregated industries using
latent factor models; examples include Long and Plosser (1987), Cooper and
Haltiwanger (1990) and Norrbin and Schlagenhauf (1990). Papers in this
tradition typically focus on questions concerning the economy’s underlying
shocks, such as the number of common factors or the relative importance of
aggregate and sectoral disturbances. In terms of my notation, this
literature is thus interested primarily in Q rather than A.
Complementarities are usually assumed to operate only with lags; these

papers thus typically decompose fluctuations into predictable and

unpredictable componenets, and assume that the unpredictable component

depends only on the underlying shocks. Moreover, complementarities are
usually not modelled in terms of observable variables.11
My work differs from this literature in several respects. First, I

do not decompose fluctuations 1into predictable and wunpredictable
components. This is because I do not agree with the assumption that
complementarities operate only with lags; this assumption seems especially
unrealistic when applied to annual data. Second, I focus primarily on the
structure of interindustry complementarities rather than the structure of
common shocks. Finally, I model both complementarities and aggregate

shocks in terms of observable wvariables, rather than relying on
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unobservable common factors or principal components to explain the data.
Bartlesman, Caballero and Lyons (1994) 1is perhaps the closest
antecedant of the present paper. These authors find that a demand-share
weighted aggregate of other sectors’ activity raises an industry’s
productivity in the short run, while a cost-share weighted aggregate is
unimportant to short-run productivity but important to long-run
productivity growth. My work differs from Bartlesman et al in the
following ways. First, I estimate a model of the interindustry covariance
matrix, rather than a system of production function regressions; my
framework is harder to estimate, but is perhaps more readily adaptable to
alternative specifications of spillovers or common shocks. Second, 1
examine output and employment rather than productivity; I believe that
productivity data is too clouded by factor utilization to be useful for
measuring short-run fluctuations in true productivity. Finally, I analyze

a richer set of complementarity measures, including local spillovers.

IV. CONCLUSION

This paper has investigated the role of complementarities 1in the
short-run propagation of shocks. Using data on disaggregated
manufacturing industries in the postwar United States, I find that
input-output linkages are important to short-run comovement, with
significant links running both from users to upstream suppliers and from
suppliers to downstream users. I also find that aggregate activity
spillovers are not important to short-run comovement.

The most important finding of this paper is that industries that
cluster together in space also tend to comove through time, and that the

comovement associated with this correspondance accounts for a large
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fraction of aggregate volatility. In this paper, I interpret this
phenomenon as evidence for symmetric local activity spillovers. However,
as mentioned 1in Section II, a 1link between spatial and temporal
correlation could also result from city-specific shocks or asymmetric
local spillovers that vary across industry pairs. Distinguishing among
these stories using national-level data alone would be difficult, since
all three stories have broadly similar implications for interindustry
comovement at the national level. In parallel work (Shea (1995)},
however, I show that city-specific shocks, symmetric local activity
spillovers and asymmetric local spillovers have sharply different
implications for the pattern of interindustry comovement within cities. 1
test these implications using time-series employment data for 387
city-industries taken from seven large US metropolitan areas, and find
evidence for both symmetric and asymmetric local spillovers.

There are a number of ways in which this paper could be extended.
First, one could examine higher-frequency data and allow shocks to
propagate dynamically; for instance, it might be interesting to know how
quickly shocks travel through the input-output table, or whether direct
linkages are realized more quickly than indirect linkages. Second, one
could examine other linkage mechansisms, by adding additional elements to
the matrices A or 2. Third, one could apply this paper’s methodology to
analyze comovements among other vector time series, such as international
outputs or asset prices. With suitable modifications, the framework
employed here should be applicable to any problem where one wants to test
competing theories of how shocks are propagated across agents, provided

theory expresses linkages as a function of observable data and a small

number of parameters.
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APPENDIX
Maximum Likelihood Estimation

Let a denote the residuals from projecting industry growth rates on a

constant and aggregate shocks. Then from (22), we have
(A. 1) q, = A*v

where A 1is given by (24} in the text, and where £ = Var(v) is
diagonal. Assuming that v 1s Gaussian, the log likelihood function for T

observations on the vector at is given by

T

(A.2) log L = -(T * 126)/2 - (1/2) * logl¥l - (1/2) } (at' g ! &t),
t=1
where ¥ = A * Z * A’. From Greene (1990, p. 517-18), one can rewrite
the log likelihood function (A.2)} as
(A.3)  log L = ~(T *126)/2 - (1/2) * logl¥| = (T/2) * tr(¥ 's),

where tr denotes trace, and where

T
(A.4) s = (/)Y q, *q,’
t t
t=1
is the moment matrix of the data. From Greene (1990, p. 518), one

can show that

(A.5) 8(log L)/d¥ = B = =-(T/2) * [¢°F - ¢t sg=yl
Furthermore, one can show that

(A.6) 8\Il/d[31 = C1 = A* EZ ¥ COST" + COST * £ * A’
It thus follows that the gradient of log(L) with respect to Bl is

(A.7) d(log L)/dB1 = tr(B * Ci);

in other words, the effect of Bl on the log likelihood is equal to



the effect of Bl on the [1,1] element of ¥ times the effect of the [1,1]
element of ¥ on log(L), plus the effect of Bl on the [1,2] element of V¥
times the effect of the [1,2] element of ¥ on log(L), and so on. One can
similarly compute the gradient of log(L) with respect to BZ through 34.

Next, for the covariance matrix X, one can show that

(A.8) 8¥/dz,, = D, = A[.,i] * Al.,1]’,
ii i

where A[.,i] is the ith column of A. Combining (A.5) and (A.8), one
can show that the gradient of the log likelihood with respect to the

the element [i,i] of the diagonal matrix £ is given by

(A.9) d(log L)/dZ.li = tr(B * D;).

Data Description

I estimate the model wusing annual data on 126 disaggregated
manufacturing industries. These industries cover the entire manufacturing
sector, and generally correspond to the three-digit Standard Industrial
Classification; in some cases, I combine two or more industries to conform
to available input-output data. A complete list of sample industries can
be found at the end of this appendix.

I use three measures of industry activity: the growth rate of
employment; the growth rate of gross output, defined as real shipments
plus the change in real inventories; and the growth rate of real value
added. Following Basu and Fernald (1993). I measure value added growth as
the Tornquist approximation to a divisia index; real value added growth

between t-1 and t is thus
(A.10) 1/SVA * GOUTt ~ (1-SVA)/SVA * GMATt,

where GOUT equals the growth rate of gross output, GMAT equals the



growth rate of materials, and SVA is the average share of nominal value
added in nominal gross output over t-1 and t.

All three measures of qt are constructed by aggregating annual
four-digit data from the Penn-SRI-Census Productivity Database (described
in Bartlesman, Caballero and Lyons (1994)) to the three-digit level. Real
output and real materials are expressed in 1972 dollars. The data cover
the period 1958-1986; after converting to growth rates and measuring
inventory change, the employment measure runs from 1959-1986 while the
output and value added measures run from 1960-1986. These are the sample
periods for subsequent estimation.

Equation (5) in Model One expresses output fluctuations as a function
of taste shocks, technology shocks, and elements of the matrices COST and

DEM. In terms of model parameters, these matrices in turn satisfy

1

(A.11) COST = ([(ID - B) 1’
and
N
(A.12) DEM,, = COST, a / ;EICOSTziaZ),

where ID is an N-by-N identity matrix; 3 is an N-by-N matrix whose
[k,i] element equals Bki; and ay, is the steady-state share of good k in
overall consumption.

I construct the matrices COST and DEM using data from the 1977
detailed US input-output study. To begin, I construct a 158-by-158 matrix
B, whose [k,i] element equals the share of industry i's cost directly
attributable to good k. I construct g8 from raw input-output data using
methods described in Shea (1991 and 1993); in terms of terminology
introduced in these papers, B, ., is the Direct Cost Share of k in i. As in

ki

this previous work, Bki includes both i’s purchases of k as a material



input and an imputed service flow from i’s use of k as capital. The 158
industries consist of the 126 sample manufacturing industries, plus 32
nonmanufacturing industries listed below. Next, following (A.11), 1
construct a 158-by-158 "total requirements" matrix TOTAL by computing the
transpose of the Leontief inverse of f3. I then construct COST by taking
the rows and columns of TOTAL corresponding to the 126 sample industries.
Given COST, I construct DEM following (A.12). I define industry k’s final
demand a, as the sum of purchases from consumption, government, and the 32

k

nonmanufacturing industries.

Following Model Two, I construct the matrix SIZE wusing the
Penn-Census~SRI database described above. I define industry size as the
industry’s share of nominal value added in manufacturing in year t,
averaged over the period 1959-1986.

Following Model Three, I construct the matrix CITY using County
Business Patterns (CBP) data from the Department of Commerce. The CBP
provides employment by disaggregated industry for every county in the
United States. I aggregate counties into the 273 standard metropolitan
statistical areas (SMSAs) defined by the 1980 Census of Population. While
CBP data is available annually since 1958, I use 1977 data only; this is
reasonable provided the spatial distribution of industries is stable over
time. To preserve confidentiality, employment in county-industries with a
small number of establishments is reported in the CBP as a range (e.g.
100-250; 250-499); in these cases, [ take midpoints. I construct the
elements of CITY following (18), where SHARElji is defined as the share of
industry i’s total 1977 employment in the 273 SMSAs accounted for by SMSA

j, while SHAREZkJ is defined as the share of SMSA j's total manufacturing

employment in 1977 accounted for by industry k.



Finally, I construct the vector SHARE for employment as the mean over
1958-1986 of annual industry shares of manufacturing employment; for value
added, SHARE is the mean over 1959-1986 of annual industry shares of
double deflated real value added in 1972 dollars; for gross output, SHARE
is the mean over 1959-86 of annual industry shares of real gross output in

1972 dollars.

Manufacturing Industries Used In Estimation:

SIC 201: Meat Products

SIC 202: Dairy Products

SIC 203: Prepared Foods

SIC 204: Grain Mill Products

SIC 205: Baked Goods

"SIC 206: Confectionary

SIC 207: Fats and Oils

SIC 208: Beverages

SIC 209: Miscellaneous Food

10. SIC 21: Tobacco Products

11. SIC 221-223 and 226: Broadwoven Fabrics
12. SIC 224: Narrow Fabrics

13. SIC 225: Knit Goods

14. SIC 227: Floor Coverings

15. SIC 228: Yarn and Thread

16. SIC 229: Miscellaneous Textiles
17. SIC 231-238: Clothing

18. SIC 239: Miscellaneous Apparel
19. SIC 241: Logging

20. SIC 242: Sawmills

21. SIC 243: Millwork and Plywood

22. SIC 244: Wood Containers

23. SIC 245: Manufactured Homes

24. SIC 249: Miscellaneous Wood

25. SIC 251: Household Furniture

26. SIC 252: O0Office Furniture

27. SIC 253: Public Building Furniture
28. SIC 254: Partitions

29. SIC 259: Miscellaneous Furniture
30. SIC 261: Pulp Mills

31. SIC 262: Paper Mills

32. SIC 263: Paperboard Mills

33. SIC 264: Converted Paper Products
34. SIC 265: Paperboard Boxes

35. SIC 266: Building Paper and Board
36. SIC 271: Newspapers

37. SIC 272: Periodicals

38. SIC 273: Books

39. SIC 274: Miscellaneous Publishing
40. SIC 275: Commercial Printing

VOO~ WN =



41.
42.
43:
44.
45,
46.
47.
48.
49.
50.
51.
52.
53.
54.
55.
56.
57.
58.
59.
60.
61.
62.
63.
64.
65.
66.
67.
68.
69.
70.
71.
72:
73:
74:
75.
76.
77.
78.
79.
80.
81.
82.
83.
84.
85.
86.
87.
88.
89.
90.
91.
92.
93.
94.

SIC
SIC
SIC
SIC
SIC
SIC
SIC
SIC
SIC
SIC
SIC
SIC
SIC
SIC
SIC
SIC
SIC
SIC
SIC
SIC
SIC
SIC
SIC
SIC
SIC
SIC
SIC
SIC
SIC
SIC
SIC
SIC
SIC
SIC
SIC
SIC
SIC
SIC
SIC
SIC
SIC
SIC
SIC
SIC
SIC
SIC
SIC
SIC
SIC
SIC
SIC
SIC
SIC
SIC

276:
277:
278:
279:

Manifold Business Forms

Greeting Cards

Bookbinding and Related Services
Printing Trade Services

281, 286: Industrial Chemicals

282:
283:
284:
285:
287:
289:
291:
295:
299:
301:
302:
303:
304:
306:
307:
311:
313:
314:
315:
316:
317:
319:
321-3:
324:
325:
326:
327:
328:
329:
331:
332:
333:
334:
335:
336:
339:
341:
342:
343:
344:
345:
346:
347:
348:
349:
351:
352:
353:
354:

Synthetic Materials

Drugs

Toiletries

Paints

Agricultural Chemicals

Miscellaneous Chemicals

Refined Petroleum

Building Materials

Miscellaneous Petroleum Products

Tires

Rubber Footwear

Reclaimed Rubber

Rubber and Plastic Hose

Miscellaneous Rubber Products

Miscellaneous Plastic Products

Leather Tanning and Finishing

Boot and Shoe Cut Stock

Leather Footwear

Gloves

Luggage

Personal Leather Goods

Miscellaneous Leather Goods
Glass Products

Cement

Clay Products

Pottery Products

Concrete

Cut Stone Products

Miscellaneous Nonmetallic Mineral Products

iron and Steel Mills

Iron and Steel Foundries

Primary Nonferrous Metals

Secondary Nonferrous Metals

Nonferrous Metal Mills

Nonferrous Metal Foundries

Primary Metals Services

Metal Containers

Cutlery and Hand Tools

Plumbing and Heating Equipment

Structural Metal

Screw Machine Products

Forgings and Stampings

Fabricated Metals Services

Ordnance

Miscellaneous Fabricated Metals

Engines and Turbines

Agricultural Machinery

Construction and Mining Machinery

Metalworking Machinery



95.
96.
97.
98.
99.

100.
101.
102.
103.
104.
105.
106.
107.
108.
109.
110.
111.
112.
113.
114.
115.
116.
117.
118.
119.
120.
121.
122.
123.
124.
125.
126.

SIC
SIC
SIC
SIC
SIC
SIC
SIC
SIC
SIC
SIC
SIC
SIC
SIC
SIC
SIC
SIC
SIC
SIC
SIC
SIC
SIC
SIC
SIC
SIC
SIC
SIC
SIC
SIC
sIC
SIC
SIC
SIC

355:
356:
357:
358:
359:
361:
362:
363:
364:
365:
366:
367:
369:
371:
372,
373:
374:
375:
379:
381:
382:
383:
384:
385:
386:
387:
391:
392:
393:
394:
395:
399:

Special Industrial Machinery
General Industrial Machinery
Office Machinery and Computers
Service Industry Machinery
Miscellaneous Nonelectric Machinery
Electrical Distribution Equipment
Electrical Industrial Machinery
Household Appliances

Lighting and Wiring Fixtures
Household Radio and TV Equipment
Communications Equipment
Electronic Components
Miscellaneous Electrical Equipment
Motor Vehicles

376: Aerospace Equipment

Ships and Boats

Railroad Equipment

Bicycles and Motorcycles
Miscellaneous Transportation Equipment
Scientific Instruments

Measuring Instruments

Optical Instruments

Medical Instruments

Opthalmic Instruments
Photographic Equipment

Watches and Clocks

Jewelry

Musical Instruments

Games and Toys

Office Supplies

Clothing Accessories
Miscellaneous Manufacturing Not Elsewhere Classified

Additional Nonmanufacturing Sectors Used to Compute DEM and COST

127.
128.
129.
130.
131.
132.
133.
134.
135.
136.
137.
138.
139.
140.
141.
142.
143.
144.
145.

Various SIC 01-09: Livestock Farming

Various SIC 01-09: Other Agriculture

SIC 10-14: Mining

Various SIC 15-17: Residential Construction
Various SIC 15-17: Nonresidential Construction
Various SIC 15-17: Maintenance Construction

SIC
SIC
SIC
SIC
SIC
SIC

40:
42 :
44
45:
411,

483:

Railroads
Trucking
Shipping
Airlines

43, 46-7: Other Transportation

Radio and TV Communication

Other SIC 48: Other Communications

SIC 491:
SIC 492:

Electric Utilities
Gas Utilities

Other SIC 49: Other Utilities
SIC 50, 51: Wholesale Trade
SIC 52-57, 59: Retail Trade

SIC

58:

Bars and Restaurants



146.
147.
148.
149:;
150:
151:
152:
153:
154:
155:
156:
157:
158:

SIC
SIC
SIC
SIC
SIC
SIC
SIC
SIC
SIC
SIC
SIC
SIC

60-66: Finance, Insurance, Real Estate
70: Hotels

72: Personal Services

73: Business Services

75: Automotive Services

76: Repair Services

78-79: Amusements

80: Health Care

81, 89: Legal and Professional Services
82: Education

83: Social Services

84, 86: Membership Organizations

Various SIC: Government Enterprise
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FOOTNOTES

1Cooper and John {1988) use the phrase "strategic complementarity" to

refer to linkages that inherently depend on market imperfections.

2Miller (1992) adopts a similar strategy in a different context; he
tests whether international activity spillovers are an important source of
endogenous growth by examining whether large countries have more
persistent income innovations than small countries, exploiting the fact
that transitory shocks to large countries should have more impact on

international activity than transitory shocks to small countries.

3Notice that even if aggregate activity spillovers are present,
industry size will be an economically important determinant of comovement
variation across industry pairs only to the extent that the available data
classification system divides economic activity into meaningful
aggregates. Suppose, for instance, that the underlying economy consists
of a large number of equally-sized independent sectors, and that the data
authority arbitrarily groups these sectors into industries of varying
size. Then a given-sized shock to a "large" industry will still propagate
more strongly than a similar-sized shock to a "small" industry; however,
the large industry will have a smaller standard deviation of shocks than
the smaller industry, since the large industry’s shock will be the average

over a larger number of uncorrelated shocks.

4Marshall (1949, p.273) writes: "A district which 1is dependent

chiefly on one industry is liable to extreme depression, in case of a



falling-off in the demand for its produce, or of a failure in the supply
of the raw material which it uses. This evil again is in a great measure
avoided by those large towns...in which several distinct industries are
strongly developed. If one of them fails for a time, the others are
likely to support it indirectly..." Neumann and Topel (1991) find that
cities with a poorly diversified employment base indeed have higher
average rates of unemployment than cities with a well-diversified base.

5I also experimented with measuring SIZE using the period average
shares of employment, real gross output, and real value added. Estimates
of Bl and 82 {cost and demand linkages) were not sensitive to the choice
of SIZE. Using employment shares tended to raise the estimates of 33
{(aggregate spillovers), to the point of statistical significance in some
cases, and reduce the estimates of 84 {local spillovers), although local
spillovers were still statistically significant. Using real gross output
or real value added shares tended to make estimates of 33 negative, and

tended to increase the estimates of 84.

6Friedman and Kuttner (1992) and others have found the paper-bill
spread to be a highly informative indicator of monetary policy, with more
predictive power for aggregate output than other commonly used indicators

such as M1 or the T-bill rate alone.

7For output, the average R-squared from these regressions is 0.34.

For employment and value added, the average R-squared is 0.30 and 0.31.

8Notice that these industry-by-industry estimates of p and G, while



consistent, are not efficient due to the correlation of shocks across

industries.

9For the fitted model including the effects of aggregate shocks, the
sixth column reports the correlation between the pairwise correlations in
the original data and the correlations implied by the fitted ¥ matrix
including 6 * & * 6'. For the fitted model excluding aggregate shocks,
the sixth column reports the correlation between the pairwise correlation
in the data residuals and the correlations implied by the fitted ¥ matrix

excluding G * ¢ * G’.
10Cooper and Haltiwanger (1993) survey evidence on complementarities.

11Norrbin and Schlagenhauf (1990) allow for lagged averages of other
industries’ outputs to affect current industry output. However, their
weighting scheme is not based on any underlying theory of

complementarities, and they do not allow for any contemporaneous

propagation of shocks across sectors.

12In Shea (1995) I also attempt to put some structure on the concept

of "local spillovers" by examining one of the most promising microeconomic
foundations for local spillovers: limited intercity tradeability of
certain goods due to high transpotration costs. Empirically, nontraded
goods do not seem capable of explaining the phenomenon of local

spillovers.



TABLE 1

Comovement and Aggregate Volatility

Var(q) = SHARE * ¢ * SHARE'

off- % Due To
Activity Measure Actual Implied Diagonal Diagonal Comovement
Employment 4.31 4.42 0.99 4.31 94.9
Gross Output 5.61 5.42 2.08 5.00 85.4
Value Added 7.37 6.67 2.99 5.97 80.0
NOTES: the second column presents the standard deviation of annual

employment, gross output, and value added growth in US manufacturing over
1959-86 for employment and 1960-86 for output and value added. The third
column presents the standard deviation implied by equation (2) in the
text, where SHARE and V¥ are constructed using 126 three-digit
manufacturing Industries. The fourth and fifth columns report the
standard deviation implied by the diagonal and off-diagonal elements of V¥,
while the sixth column reports the share of aggregate variance due to
the off-diagonal "comovement" term.



TABLE 2

Empirical Estimates

= » -
qt p o+ G a; + A Ve

A=1D + B,COST + B,DEM + BSIZE + B, CITY

Var(vt) = Z

Activity Measure Bl BZ B3 84
Employment 0.325 0.857 0.385 1.451
**(0.104) **(0.103) (0.401) **(0.282)

Zross Output 0.402 1.029 0.043 1.274
**(0.090) **(0.101) (0.358) **(0.273)

Yalue Added 0.304 0.242 0.655 1.582
**(0.055) **(0.090) (0.487) **(0.295)

NOTES: this table presents maximum 1likelihood estimates of the f

parameters. Standard errors are in parentheses and are estimated by
numerical computation of the Hessian matrix at the maximum likelihood
estimates. A (**) denotes significance at 5 percent. See text for
further details.



TABLE 3

Goodness of Fit

-Pairwise Correlations-

Activity Implied
Measure Case Volatility Mean Stan Dev Corr
Employment Data 4.42 0.341 0.423 1
Fitted, including 4.32 0.305 0.353 0.782
aggregate shocks
Residuals 3.09 0.254 0.350 1
Fitted, excluding 2.95 0.198 0.226 0.286

aggregate shocks

Qutput Data 5.42 0.284 0.3%4 1
Fitted, including 5.83 0.280 0.338 0.779
aggregate shocks
Residuals 3.70 0.185 0.316 1
Fitted, excluding 4.33 0.177 0.207 0.386

aggregate shocks

Value Added Data 6.67 0.228 0.364 1
Fitted, including 7.81 0.263 0.323 0.782
aggregate shocks
Residuals 4.45 0.142 0.292 1
Fitted, excluding 6.08 0.194 0.219 0.358

aggregate shocks

NOTES: This table presents goodness-of-fit statistics for the fitted
model. For each activity measure, the column "Implied Volatility"
presents the standard deviation of aggregate manufacturing activity
implied by the formula Var(q) = SHARE’ * ¥ * SHARE, setting ¥ either to
the observed covariance matrix of the original data, the covariance matrix
of the residuals from projecting the data on aggregate shocks, or to
fitted ¥ including or exluding the effects of aggregate shocks. The
remaining three columns present statistics for the pairwise correlations
implied by each case. See the text for further discussion.



TABLE 4

Variance Decomposition

Impact of Agg Shocks

Activity “ .
Measure Component G F
Employment Agg Shocks 53.4 .6
Diagonals 3.5 .5
COST 2.5 .9
DEM 6.5 10.1
SIZE 3.3 6.8
CITY 15.1 35.9
Interactions 15.7 32.1
Gross Output Agg Shocks 44.8 3.7
Diagonals 10.9 10.9
COST 5.3 12.1
DEM 10.6 13.4
SIZE 0.5 0.9
CITY 16.4 34.5
Interactions 11.5 24.5
Value Added Agg Shocks 39.3 2.9
Diagonals 13.2 13.2
COST 4.0 1
DEM 1.9 .3
SIZE 8.1 13.0
CITY 18.6 34.3
Interactions 14.8 27.1

NOTES: This table presents the decomposition of the variance implied by
the fitted model into components attributable to aggregate shocks, shock
variances, individual complementaritlies, and interactions among
complementarities. The third column reports results using the OLS
estimates from regressing activity on OIL and SPREAD to measure the impact
of aggregate shocks. The fourth column reports results using the
estimated direct effects matrix F to measure the impact of aggregate
shocks. See the text for further information.



