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This paper addresses the issue of hedging option positions when the underlying asset
exhibits stochastic volatility. By parameterizing the volatility process as GARCH, and utilizing
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I. Introduction

Constructing a hedge for an options position involves minimizing exposure to factors
that influence the option price. The primary risk factors for an option are changes in
the price and volatility of the underlying asset. This paper explores the issue of hedging
options when trading occurs in discrete time and volatility follows a stochastic process
in which the magnitude of recent price changes provides information about future
volatility. Transactions costs are assumed to be zero, interest rates are assumed constant

over the life of the option, and dividends are assumed to be known.

Initially, consider the problem of hedging options under the Black and Scholes (1973)
assumptions of continuous trading and constant volatility over the life of the option. In
deriving their option pricing formula, Black and Scholes utilize the linear relationship
between the change in the option price and the change in the underlying price over an
infinitesimal unit of time. This means that a perfect dynamic hedge for an options
position can be formed by selling short a given number (delta) shares of the underlying.
If volatility is deterministic, but not constant, Merton (1973) shows that a perfect hedge

can be formed if average volatility is used for the underlying asset's volatility.

Assuming that hedging occurs in discrete time complicates the hedging process. Boyle
(1980) shows that if continuous trading is possible, but hedging occurs in discrete time,
option and underlying price behavior are no longer perfectly correlated. The option
price response to large underlying price changes is convex, so that a delta hedge is no
longer riskless. The second derivative of the Black-Scholes formula with respect to the

underlying price, gamma, measures this characteristic.

In this case, in addition to the underlying asset, hedging an option position requires a

hedging instrument correlated with convexity. Possible candidates for additional



hedging instruments are options on the same underlying asset with a different strike, or

with a different maturity.

Relaxing the assumption of deterministic volatility presents additional challenges. Under
stochastic volatility, the option price will respond to random changes in volatility as
well as random changes in the underlying price. Thus, an option hedge requires a
hedging instrument correlated with the random change in volatility. Again, the natural
hedging instrument is an option on the same underlying with some other difference in

contract specification.

It is now clear that hedging an options position in discrete time under stochastic
volatility will require the underlying and at least one additional option. However, since
the Black-Scholes assumptions have been relaxed, the problem of option pricing must be

re-examined.

There has been a substantial literature concerning pricing options under stochastic
volatility in continuous time. Johnson and Shanno (1987), Scott (1987), Wiggins (1987),
and Hull and White (1987a) derive option pricing formulas when the underlying asset
follows a diffusion with stochastic variance. Except for Wiggins, they all make
assumptions in order to invoke risk-neutral pricing, and estimate option prices using
Monte-Carlo techniques. More recently, Ball and Roma (1994), Stein and Stein (1991),
and Heston (1993) find closed form solutions for option prices in continuous time for

various stochastic volatility processes.

Option pricing in discrete time has received substantial attention as well. Rubinstein
(1976) shows that the Black-Scholes formula can be derived in discrete time, with the
standard BS assumptions, assuming that the underlying price and consumption are
jointly lognormal. Brennan (1979), Lee, Rao, and Auchmuty (1981), and Stapleton and

Subrahmanyam (1984) derive option pricing results in discrete time in a more general
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framework. Amin and Ng (1993) and Duan (1995) address the issue of option pricing
in discrete time under stochastic volatility. Duan finds an equivalent martingale measure
that can be used for risk-neutral pricing in the GARCH-in-mean model under certain
restrictions on preferences and distributions. Amin and Ng derive an option pricing

formula under systematic stochastic volatility.

As trading intervals shrink, we could view our discrete time problem as an
approximation to continuous time, and invoke the assumptions given in previous papers
for risk-neutral valuation in continuous time. Alternatively, we could apply the discrete
time results under the assumption that there is no risk premium for volatility, and the
preference and distribution restrictions given in Duan. In either case, we assume that if
there is a leverage effect, it is small enough so that risk-neutral pricing is an acceptable

approximation.

Since there is generally not a closed form solution to the option pricing problem under
stochastic volatility, we use Monte-Carlo simulation to price options, and finite
differences to estimate hedge ratios. Polynomial functions are fitted to estimated hedge

ratios to give a closed form.

We select the GARCH-t components with leverage model developed by Engle and Lee
(1993) as a particularly appealing representation of the volatility process. The GARCH
components with leverage model nests the GARCH(1,1) and GARCH-t models
developed by Bollerslev (1986,1987). It explicitly accounts for the relationship between
the magnitude of recent price changes and volatility, incorporates relatively complex
dynamics in mean reversion, and allows for an asymmetric effect of "bad news"on
volatility. The leverage effect follows the model developed by Glosten, Jagannathan,
and Runkle (1993).



The GARCH hedging parameters we estimate differ from Black-Scholes hedging
parameters, because GARCH parameters incorporate the interrelationship between
underlying price changes, volatility, and the option price. For instance, Engle and
Rosenberg (1994) show that for at-the-money options, GARCH gamma is weighted
average of Black-Scholes gamma and vega. Under GARCH, a large price shock affects
the option price through convexity and through an increase in volatility. In addition,
GARCH delta incorporates the direct effect on the option price due to its direct
correlation with the underlying, and the indirect effect of an increase in volatility that

follows "bad news."

The paper is organized as follows. The second section discusses previous theoretical and
empirical results concerning options hedging. The third section of the paper describes
the methodology of our study. In the fourth section, we report and analyze the results
from estimation of the GARCH volatility models for the Standard and Poor's 500 index,
a bond futures index, a weighted foreign exchange index, and an oil futures index. In
the fifth section, we present the GARCH estimated hedging parameters and discuss their

implications for hedge portfolio formation. We summarize our results in section six.

II. Option hedging tests

The issue of hedging options positions has been previously examined in several contexts.
Galai (1983) analyzes the returns from delta hedged positions for options on individual
stocks traded on the CBOE. The Black-Scholes model, with volatility held constant, is
found to be unable to explain the observed average option returns. This suggests that

there may be missing factors that drive the option price, such as stochastic volatility.

Hull and White (1987b) consider the problem of hedging non-exchange traded foreign
currency options with exchange traded options and the underlying currency. They

derive a general model in continuous time with delta, gamma, and vega hedge
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parameters. In simulations and tests of hedging currency options on the Philadelphia
Stock Exchange, they find that delta-gamma hedging works best under "fairly constant
implied standard deviation” (p. 147) and short times to maturity, while delta-vega
hedging works best in the opposite situation.

The primary problem with their empirical tests is pricing of the non-exchange traded
options. They price these options by Black-Scholes evaluated at the implied standard
deviation of the exchange traded option. Observed differences between quoted and
Black-Scholes prices, especially for away-from-the-money options, make this a tenuous
assumption. It is also unclear that the implied volatilities are substitutable between
options with a different maturity and strike prices, since the implied volatilities may
reflect option specific mispricing as well as volatility information. In addition, the
simulations which agree with these empirical results rely on a volatility process that is

independent of underlying prices.

Engle and Rosenberg (1994) test the effectiveness of GARCH gammas in hedging
medium term at-the-money S&P500 index options with short term at-the-money
options. GARCH gammas differ from those in this study, because they are derived
analytically from an approximate stochastic volatility option pricing formula, using a
GARCH components model with no leverage. However, the analytic gammas are shown
to be close to the Monte-Carlo simulated gammas for at-the-money options. This paper
also models in and out-of-the-money hedge parameters, for which simulation is

essential.

In Engle and Rosenberg (1994), delta-GARCH gamma hedges outperform Black-
Scholes delta hedges and delta-vega hedges derived from an autoregressive volatility
model. But, delta-GARCH gamma hedges are less successful than Black-Scholes delta-
gamma hedges. On average, GARCH gamma hedge ratios are found to be too high over

the sample period, possibly implying overreaction of short term options to volatility
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news. Mispricing is also suggested as a possible explanation for Black-Scholes delta-

gamma hedging success.

Problems with using option pricing formulas derived from arbitrage-based arguments
are examined by Figlewski (1989). He finds evidence from simulations that transactions
costs, market imperfections, and discrete rebalancing make it possible only to establish
bounds, rather than uniquely determine an option price. In this case, options hedge
ratios are not well defined. In addition, in a study of the 30 most actively traded
individual stock options on the CBOE, Figlewski and Freund (1994) find evidence that
gamma and theta risk are priced. This suggests that risk-neutral pricing may be an

inadequate approximation for deriving hedge parameters.

Discretely rebalanced as opposed to continuously rebalanced hedges present additional
complications. Robins and Schachter (1994) show that a Black-Scholes delta-hedge is
not a variance minimizing hedge over a non-instantaneous time interval. Gilster (1990)
shows that hedges rebalanced over a long period of time may exhibit systematic risk.
Chen and Johnson (1985) as well as Wolf, Castelino, and Francis (1987) derive hedging

parameters for mispriced options.

III. Methodology

The basic approach of this paper is to estimate an underlying asset price process as
GARCH-t components with leverage, and then estimate hedging parameters for options
on this asset using Monte-Carlo simulation. Initially, it is useful to discuss the
specification of the GARCH model. The GARCH model reflects many of the observed
dynamics of asset returns volatility including short and long run mean reversion and
asymmetric effects of underlying price movements on volatility. It is specified as

follows:
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In this model, log prices follow a random walk with time-varying volatility, and
volatility is related to its own lags as well as lag returns. At time t, z is the random
shock, o is the conditional standard deviation, q is the conditional volatility trend, and r

is the underlying return.

Of the parameters, o reflects the effect of a shock on the temporary component of
volatility, & captures the asymmetric effect of "bad news" on volatility, f reflects the
influence of the prior day's volatility forecast, p measures the persistence of the long
term component, and ¢ represents the effect of a shock on the permanent component.
Shocks are selected from a standardized Student's-t distribution with v degrees of
freedom where v is estimated to emulate the observed leptokurtosis in many financial

returns time-series.

Engle and Lee (1993) show that the GARCH components model is equivalent to a
GARCH(2,2) model. In fact, with rho and phi equal to zero, the components model
simplifies to a GARCH(1,1) model. We take advantage of this simplification in our

estimation process, when the components parameters are statistically insignificant.

Several simplifying assumptions are made for option valuation purposes. We suppose
that conditions necessary to invoke risk-neutral valuation are satisfied. Sufficient
conditions are discussed in Section 11. Options are all assumed to be European. We also

assume that futures prices are unaffected marking to market, uncertain delivery dates,



and the quality option. Finally, interest rates are assumed to be constant, while

dividends are assumed to be known.

We then apply risk-neutral valuation in a straightforward way for the different types of
options. Merton (1973) generalizes BS to options on assets with a known dividend yield.
This methodology is used to price S&P500 index options. Black (1976) shows that
options on futures can be valued as standard options with the dividend yield set equal to
the risk-free rate. This method is applied for options on oil and bond futures indices.
Garman and Kohlhagan (1983) and Grabbe (1983) show that foreign exchange options
can be valued as standard options with the dividend yield replaced by the foreign risk-

free rate. We utilize this result as well.

We estimate hedging parameters by simulating the effect of an underlying return shock
on the option price. The option price is evaluated using risk-neutral valuation as given
by equation (5). That is, the option price is the present value of the expected payoff of
the option, where the expectation is taken with respect to the probability distribution of
terminal prices given by the GARCH components process, with drift equal to the risk-
free rate. The distribution of the terminal underlying price is estimated using Monte-
Carlo simulation of the asset price path under the GARCH volatility process as given by
equation (6). 50,000 terminal prices are generated, and the antithetic variate technique

is used to improve the efficiency of the option price estimate.
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€;~ standardized Student's—t (v), j = 1...50,000, t = 1...T
The initial volatility forecasts, 621 and q; are set equal to the unconditional variance, as

a default case. The implication is that volatility is currently at its long run level.
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Changing the initial variance will affect the hedging parameters, since average volatility

will depend on the maturity of the option.

The hedging problem in discrete time involves neutralizing the option portfolio to a
change in today's underlying price. The first derivative of today's option price with
respect to today's underlying price does not depend on yesterday's price in a Black-
Scholes world, since returns carry no information about volatility. However, in a

discrete time hedging problem with time-varying volatility, the price yesterday does

have useful information.

In equations (7) and (8), the finite difference estimate of the first and second derivatives

of option prices at time 1 are given, and both Sg and S; are listed as arguments.
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0.GARCH — ) = 2
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Equations (7) and (8) are estimated using an initial index price of 10000 with € set to a
one-tenth standard deviation price shock. The polynomial function in (9) is fitted to the
simulated hedge ratios using least squares, with one function for each moneyness. The
final hedge ratios are given by the fitted values from the estimated function in equation
(10).

1 1

(9) log(T(S,,T,K)) = a+bT+eT? +dT * +eT'+ T+ gT > + ¢, ,

1 1
(10) I(S,,T.K) =exp(& +bT +2T? +dT *+eT' + T +§T“3]
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As mentioned in the introduction, under GARCH volatility, the response of the option
price to volatility changes is incorporated directly in GARCH delta and gamma. Thus,

we do not estimate a separate vega parameter.
IV. Estimation of GARCH models

GARCH models are estimated for four underlying assets: the S&P500 index, a Treasury
bond futures index, a weighted exchange rate index, and a crude oil futures index. For
each underlying asset, we have a daily returns time-series of 2114 observations over the
period from June 1983 through mid-May 1994 from the Datastream database. The data
was provided by Salomon Brothers. The oil and bond futures index prices are taken
from contracts rolled on the first of the month. The weighted foreign exchange index
prices are from an index developed by the Bank of England. Table 1 lists the sample

statistics for the index log returns.

As expected, all of the series exhibit substantial departures from normality. In
particular, normality is rejected for all series at the .001 level using the Kolmogorov D
test. All the series exhibit excess kurtosis, while the oil futures and S&P500 index
exhibit substantial negative skewness. All mean log returns are within 4 basis points of
zero, while there are large differences in volatility. The oil futures series is the most
volatile with a daily standard deviation of 2.8%, more than 5 times greater than the

foreign exchange index standard deviation of .5%.

There is evidence for autocorrelation in the log returns of the S&P500, the oil futures
index, and marginal evidence in the bond futures index. However, using the
standardized log returns, no series exhibits autocorrelation. All of the series show
strong autocorrelation in their squared returns, which is an indication of GARCH-type

heteroskedasticity.
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We use maximum likelihood estimation to estimate one GARCH model for each log-
return series, where the log-returns are assumed to be Student's-t with v degrees of
freedom. Table 2 reports the parameter estimates for each model along with Ljung-Box
statistics. In some models, insignificant variables are excluded in the final estimation.
When components parameters are not significant, the model is estimated as a

GARCH(1,1) and the parameters should be interpreted accordingly.

GARCH-t components models provide the best fit for the S&P500 and oil futures index
volatility, while a GARCH(1,1)-t model is best for the bond futures and exchange rate
index volatility. The leverage effect is marginally significant in the bond futures model
using robust t-statistics. It is insignificant in the S&P500 model. However, Engle and
Lee (1993) find the S&P500 leverage effect to be significant in a model estimated over
a longer time period, so we include it in our model. There is strong evidence that the

underlying shocks are non-normal, since 1/v is significantly greater than zero for all
models.

V. Estimation of hedge parameters

Using the Monte-Carlo techniques described in section III and IV, we estimate GARCH
delta and gamma for options on the Standard and Poor's 500 index, a bond futures
index, a weighted foreign exchange rate index, and an oil futures index. Hedge
parameters are estimated for moneynesses ranging from .8 to 1.2, and for maturities of

1 to 250 days. GARCH deltas are not reported, but are discussed below.

There are several notable characteristics of GARCH deltas. First, GARCH deltas are
very close to BS deltas for at-the-money options, except when there is strong leverage
effect. Second, out-of-the-money options have higher GARCH deltas and in-the-money
options have lower GARCH deltas than BS. However, all GARCH deltas are close to BS

deltas, with the maximum difference being .12 for the oil futures options. For foreign
12



exchange, bond futures, and S&P500 index options, the maximum differences are .02,

.07, and .03 respectively.

GARCH gammas are reported for options on each index in Table 3. The formulas in
each table can be used for either calls or puts, for any risk-free or dividend rate, and
various combinations of index levels and strike prices. Each table corresponds to an
underlying index, and each column corresponds to an option's moneyness (S'/K"). The
column gives the coefficients for the hedge parameter equation, so that the hedge

parameters can be calculated using equation (10).

There are substantial differences between BS and GARCH gammas. These result in even
larger differences in gamma hedge ratios. Figures 1 and 2 display gammas for out-of-
the money options on the S&P500 derived from BS and GARCH. GARCH gammas are
higher than BS gammas, because they reflect the dual impact of the second order effects
of an underlying price shock. First, as in Black-Scholes, the underlying price shock has
a positive second-order effect on the options price; and, second, the underlying price
shock increases future volatility which further increases the option price. GARCH
gammas also decay more slowly, since the decline of convexity as maturity increases is
partly offset by the increase in the sensitivity of the option price to a volatility shock as
maturity increases. For substantially away-from-the-money options, both BS and

GARCH gammas approach zero.

Table 4 reports the BS and GARCH gamma hedge ratios for hedging a near-the-money
long term option on the S&PS00 index with a short term option having the same strike
price, assuming no dividends and a risk-free rate of zero. For near-the-money hedges,
GARCH gamma hedge ratios are significantly higher than BS hedge ratios due to the

slower decay of GARCH gamma. For instance, under BS assumptions, gamma hedging

one 60 day at-the-money option contract requires .58 20 day contracts. In contrast,
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using GARCH gammas, .69 20 day contracts are needed. In contrast, for away-from-

the-money options, GARCH hedge ratios are lower than BS hedge ratios.

As with Black-Scholes gammas, GARCH gammas are sensitive to the level of volatility.
Figure 3 compares GARCH gamma for S&P500 index options with different maturities
and three different levels for the initial variance. The initial variance is set equal to the
unconditional variance which indicates a flat expected term structure of volatility, fifty
percent below the unconditional variance which indicates an upward sloping expected
term structure of volatility, and fifty percent above the unconditional variance which
indicates a downward sloping expected term structure of volatility. Figure 3 indicates
that changing the term structure shapes affects the gammas less than moneyness, but it
does have an important impact. This indicates that new GARCH gammas should be

estimated at the current volatility level, if volatility is away from its long-term mean.

V1. Conclusion

This paper develops a methodology for estimating option hedge parameters when the
underlying asset exhibits stochastic volatility. We find substantial evidence for GARCH-
type stochastic volatility in four index returns time-series and estimate GARCH delta
and gamma using Monte-Carlo simulation. GARCH deltas are similar to Black-Scholes
deltas, while GARCH gammas and gamma hedge ratios are quite different. This
suggests that there is potential for more effective option gamma hedging by accounting
for the relationship between price changes and volatility. In particular, it is possible that
incorporating GARCH volatility into option models will enhance hedge performance.
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Table 1 - Data Summary
Sample Statistics for daily log returns

Ljung-Box
Kolmogorov  [Ljung-Box (15) on
Number of Standard normality test [(15) onlog |squared log
observations |[Mean deviation Skewness |Kurtosis p-value returns returns
S&P500 index 2114 0.0003 0.0109 -6.34 145.60 0.001 36.33 80.19
Bond futures index 2114 0.0001 0.0070 -0.07 5.25 0.001 25.78 553.88
Exchange rate index 2114 -0.0002 0.0051 0.11 4.45 0.001 23.54 108.87
Oil futures index 2114 -0.0005 0.0283 -3.30 58.14 0.001 58.32 59.50
Sample Statistics for daily standardized log returns (using estimated GARCH model)
Ljung-Box
Mean (in Ljung-Box (15) on
units of Kolmogorov  {(15) on squared
Number of standard Standard normality test |standardized |standardized
observations |deviations) |deviation Skewness IKurtosis p-value log returns log returns
S&P500 index 2114 0.04 1.06 -1.12 12.22 0.001 14.21 5.06
Bond futures index 2114 0.01 1.00 -0.19 4.46 0.001 22.75 14.96]
Exchange rate index 2114 -0.03 0.99 0.06 4.35 0.001 20.99 9.32
Qil futures index 2114 -0.02 1.00 -0.68 8.84 0.001 9.91 12.23

*Ljung-Box (15) 5% critical value = 25




Table 2 - Estimation of GARCH models

Maximum likelihood estimation with t-distribution as the underlying density

2114 observations (June 7, 1986 - May 12, 1994)

S&P500 index log returns
GARCH-t Components Model

Robust
Standard standard Robust
Coefficient error t-stat |error t-stat
o 6.00E-07| 2.00E-07 3.00 1.13E-06 0.53
o 0.0000 0.0221 0.00 0.0255 0.00
i) 0.7615 0.0615] 12.39 0.2267 3.36
3 0.1236 0.0347 3.56 0.1916 0.65
b 0.0154 0.0059 2.62 0.0137 1.12
p 0.9891 0.0031] 315.57 0.0046] 213.65
v 0.1935 0.0177} 10.95
T-bond futures index log returns
GARCH (1,1)-t model
Robust
Standard standard Robust
Coefficient error t-stat |error t-stat
o 3.56E-07] 1.69E-07 2.10 2.43E-06 0.15
o 0.0236 0.0088 2.67 0.0095 2.49
B 0.9574 0.0092| 103.68 0.0092} 104.50
5 0.0245 0.0116 2.10 0.0127 1.92
v 0.1626 0.0240 6.77
Weighted foreign exchange rate index log returns
GARCH (1,1)-t model
Robust
Standard standard Robust
Coefficient error t-stat |error t-stat
o 8.61E-07| 3.58E-07 2.40 1.18E-06 0.73
a 0.0495 0.0122 4.05 0.0124 3.99
B 0.9190 0.0221| 41.67 0.0197f 46.72
v 0.1550 0.0248 6.25
Crude oil futures index log returns
GARCH-t Components Model
Robust
Standard standard Robust
Coefficient error t-stat jerror t-stat
o 7.21E-06f 2.40E-06 3.01 2.88E-05 0.25
o 0.0787 0.0321 2.45 0.0348 2.26
B 0.7149 0.1314 5.44 0.1460 4.90
o 0.0985 0.0226 436 0.0331 2.97
p 0.9953 0.0082] 121.73 0.0142| 70.31
v 0.2311 0.0232

9.95




Table 3 - GARCH gammas

GARCH gamma for options on the S&P500 index
(estimated for one $100 option)

GARCH gamma = 100/(current index level) * exp(-g*T) * [exp(a + b*T + c*sqrt(T) + d/sqrt(T) + e/T + f/TA2 + g /TA3)]
T=number of trading days until maturity, r=domestic risk-free rate of interest, q = dividend yield
Coefficients are chosen from table below using column S'/K'
S' = exp(-g*T) * Current index level
K' = exp(-r*T) * Strike price

S'/K'
Coeff. 1.20 1.15 1.10 1.05 1.02 1.00 0.98 0.95 0.90 0.85 0.80
a 1.943 -2.164 -2.985 0.853 -2.845] -2.805 -2.492 -4.151 18.558] -11.346] -52.025
b 0.000 -0.009 -0.007 0.006 -0.003| -0.002 -0.001 -0.005 0.034 -0.053 -0.122
c -0.119 0.188 0.159 -0.250 0.047 0.033 0.003 0.135 -1.423 1.440 4.344
d -67.212| -29.966 -6.7351 -13.697 6.260 6.562 5.795 15.806| -126.824| -33.888) 165.451
e 115.481 31.437] -21.193 8.070f -11.456] -7.106] -11.899| -61.808] 185.480 96.339| -237.589
f -110.942 -5.342 49.192| -14.229 4.989 4.989 6.215 94.303| -145.829] -133.325] 200.393
g 51.641 -3.356| -27.637 10.727 -0.993} -1.942 -1.786] -53.490 60.790 71.642| -89.671
GARCH gamma for options on a T-bond futures index
(estimated for 1 $100 option)
GARCH gamma = 100/(current index level) * exp(-r*T) * [exp(a + b*T + c*sqrt(T) + d/sqrt(T) + /T + f/TA2 + g /TA3)]
T=number of trading days until maturity, r=domestic risk-free rate of interest
Coefficients are chosen from table below using column S'/K'
S' = Current index level - present value of expected coupon payments
K' = Strike price

S'/K'
Coeff. 1.20 1.15 1.10 1.05 1.02 1.00 0.98 0.95 0.90 0.85 0.80
a -46.694| -16.195 26.575 1.183 -1.142| -1.703 -1.042 11.406 -2.159| -57.295| -50.400
b -0.130 -0.071 0.036 0.002 -0.001} -0.003 -0.001 0.024 -0.043 -0.142 -0.079
c 4.330 2.035 -1.693 -0.156 -0.004 0.050 -0.010 -0.955 0.959 5.008 3.517
d 125.029] -20.132] -193.330| -13.264 -0.063 1.867 -0.276| -66.033| -84.679| 180.888] 182.390
e -155.280 83.541| 330.044| -31.732 -9.133 1.100 -9.320 53.109] 186.247| -253.696{ -290.170
f 102.560{ -131.416| -326.586 86.591 2.046| -2.739 2.113 15.277| -227.343| 206.868| 278.062
g -39.018 73.052} 155.761]{ -51.837 2.177 1.604 2.461| -22.049| 117.836]f -90.846| -132.555




Table 3 - GARCH gammas (continued)

GARCH gamma for options on a weighted foreign exchange rate index
(estimated for one $100 option)

GARCH gamma = 100/(current index level) * exp(-rf*T) * [exp(a + b*T + c*sqrt(T) + d/sqrt(T) + e/T + f/TA2 + g /TA3)]

T=number of trading days until maturity, rf=foreign risk-free rate of interest, rd=domestic risk-free rate of interest

Coefficients are chosen from table below using column S'/K’
S' =exp(-rf*T) * Current index level
K' = exp(-rd*T) * Strike price

S'/K'
Coeff 1.20 1.15 1.10 1.05 1.02 1.00 0.98 0.95 0.90 0.85 0.80
a -46.386] -12.319 28.112 3.388 -0.169 0.155 -0.171 3.935 18.128| -26.078] -37.319
b -0.108 -0.049 0.050 0.009 0.002 0.003 0.002 0.010 0.025 -0.074 -0.061
c 3.826 1.402 -2.062 -0.409 -0.145| -0.175 -0.146 -0.444 -1.198 2.406 2.548
d 140.928] -26.898| -188.507| -23.898 -3.052] -4.531 -2.704] -26.888| -147.028 38.563| 118.743
e -198.426 83.759| 308.590 1.999 -2.857 8.837 -4.474 4.012| 247.956| -22.996{ -182.620
f 162.141| -120.971| -290.759 20.997 -1.343| -8.010 2.794 25.086| -240.657] -18.158| 168.180
g -71.189 65.885| 135.378] -11.294 2.067 3.720 -0.822| -14.920] 113.576 17.139] -78.694
GARCH gamma for options on a crude oil futures index
(estimated for one $100 option)
GARCH gamma = 100/(current index level) * exp(-r*T) * [exp(a + b*T + c*sqrt(T) + d/sqrt(T) + e/T + f/TA2 + g /TA3)]
T=number of trading days until maturity, r=domestic risk-free rate of interest
Coefficients are chosen from table below using column S'/K’
S' = Current index level
K' = Strike price

S'/K'
Coeff. 1.20 1.15 1.10 1.05 1.02 1.00 0.98 0.95 0.90 0.85 0.80
a 1.181 -0.238 -0.235 -0.537 -0.273] -0.415 -0.534 -0.918 -0.705 0.019 0.724
b 0.009 0.005 0.005 0.004 0.004 0.004 0.004 0.003 0.003 0.005 0.006
c -0.330 -0.212 -0.201 -0.168 -0.185{ -0.174 -0.160 -0.127 -0.150 -0.207 -0.255
d -18.977| -10.974] -11.141 -9.797| -11.156| -10.337 -9.915 -7.900 -8.4311 -12.430| -17.323
e 18.028 7.931 14.165 16.062 19.921] 18.562 17.840 12.769 8.149 9.171 12.424
f -16.519 -6.639| -16.882] -17.116 -20.228| -18.092| -18.026] -13.931 -9.293 -8.156 -6.804
g 8.497 3.316 8.972 8.215 9.794 8.689 8.647 6.654 4.714 4.469 2.711




Table 4 - Comparison of gamma hedge ratios
Hedging longer term contract with shorter term contract (same strike)

Black-Scholes gamma hedge ratios

(risk-free rate=0, sigma = .74% daily, dividends = 0)

Moneyness (S/Ke(-rt))

Contract
Maturities 1.20 1.15 1.10 1.05 1.02 1.00 0.98 0.95 0.90 0.85 0.80
40:20 >1000 59.16 5.39 1.29 0.78 0.71 0.77 1.22 '8.49] 367.50[>1000
60:20 >1000 | 211.27 8.65 1.29 0.65 0.58 0.65 1.19} 15.88{>1000 {>1000
80:20 >1000 | 382.60{ 10.51 1.23 0.57 0.50 0.57 1.13] 20.81|>1000 [>1000
100:20 |>1000 | 532.71} 11.51 117 0.52 0.45 0.52 1.07] 23.87|>1000 |>1000
120:20 |>1000 | 653.16] 12.03 .11 0.48 0.41 0.47 1.01] 25.71|>1000 |>1000
140:20 {>1000 | 746.51| 12.27 1.06 0.44 0.38 0.44 0.96| 26.79|>1000 |{>1000
160:20 |>1000 | 817.80f 12.33 1.01 0.42 0.35 0.41 0.91| 27.38{>1000 {>1000
180:20 |>1000 | 871.80] 12.30 0.97 0.39 0.33 0.39 0.87| 27.66/>1000 [>1000
200:20 [>1000 | 912.44| 12.21 0.93 0.37 0.32 0.37 0.84| 27.73}>1000 {>1000
220:20 |>1000 | 942.77f 12.08 0.90 0.36 0.30 0.35 0.81| 27.66|>1000 |>1000
240:20 |>1000 | 965.13| 11.92 0.87 0.34 0.29 0.34 0.78] 27.49|>1000 |>1000
GARCH simulated gamma hedge ratios estimated for the S&P500 index
(risk-free rate=0, h1=q1=.74% daily, dividends = 0)

Moneyness (S/Ke(-rt))
Contract
Maturities 1.20 1.15 1.10 1.05 1.02 1.00 0.98 0.95 0.90 0.85 0.80
40:20 4.47 3.87 2.80 1.45 0.90 0.79 0.90 1.63 7.24 5.26 1.41
60:20 10.52 7.75 431 1.59 0.84 0.69 0.82 1.84 16.80] 17.70 3.29
80:20 18.27f 11.94 5.49 1.62 0.79 0.64 0.76 1.91| 25.39f 42.08 7.85
100:20 26.86] 15.98 6.37 1.61 0.75 0.60 0.72 1.92] 31.61} 7876} 17.05
120:20 35.64| 19.65 7.02 1.58 0.71 0.57 0.68 1.91] 35.71] 123.92] 32.80
140:20 4421 22.80 7.46 1.55 0.68 0.54 0.65 1.88] 38.37| 170.84| 55.81
160:20 52.29| 25.38 7.74 1.51 0.66 0.52 0.63 1.84] 40.17| 212.23] 84.56
180:20 59.74] 27.38 7.89 1.48 0.63 0.50 0.60 1.80f 41.56] 242.26] 115.11
200:20 66.50{ 28.83 7.92 1.45 0.61 0.48 0.58 1.75| 42.83} 257.73]| 142.08
220:20 72.551 29.78 7.87 1.43 0.58 0.46 0.56 1.70f 44.20| 258.32] 160.38
240:20 77.89] 30.26 7.74 1.41 0.56 0.45 0.55 1.65{ 45.80| 245.95| 166.84




Figure 1 - Black-Scholes gamma
Out-of-the-money options
(risk-free rate=0, dividends=0, sigma=.74% daily)
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Figure 2 - GARCH gamma (smoothed), out-of-the-money options
Estimated for options on the S&P500 index
(risk-free rate=0, dividends=0, sigma1=Sqrt(q1)=.74% daily)
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Figure 3 - GARCH gamma
Estimated for near-the-money options on the S&P500 index
At initial volatility = .52% (Upward sloping TS),
.74% (Flat TS), .91% (Downward sloping TS)
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