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1 Introduction

The study of business cycles necessarily begins with the measurement of business
cycles. The seminal contribution of Burns and Mitchell [1946] was influential because
it provided a comprehensive catalogue of the empirical features of the business cycles
of developed countries, notably, the United States. However, their work was also
important because it developed methods for measuring business cycles that could be
used by other researchers working with other countries or other sample periods.

Contemporary students of the business cycle still face the same basic issue as did
Burns and Mitchell fifty years ago: how should one isolate the cyclical component of
an economic time series? In particular, how should one separate business-cycle ele-
ments from slowly evolving secular trends, and rapidly varying seasonal or irregular
components? The decomposition used by Burns and Mitchell is no longer in common
use, due both to its complexity and its central element of judgment.! In its place,
modern empirical macroecononiists employ a variety of detrending and smoothing
techniques to carry out trend-cycle decompositions. These decompositions are fre-
quently ad hoc in the sense that the researcher only requires that the detrending
procedure produce a stationary business-cycle component, and does not otherwise
specify the statistical characteristics of business cycles. Examples of techniques in
common use are (i) application of two-sided moving averages; (ii) first-differencing;
(iii) removal of linear or quadratic time trends; and (iv) application of the Hodrick-
Prescott [1980] filter. Many recent studies using a battery of such methods to measure
business cycles.

In our view, this proliferation of techniques for measuring business cycles has re-
sulted from a lack of attention to an issue which Burns and Mitchell [1946] viewed
as central: the definition of a business cycle. In this paper, we develop methods for
measuring business cycles which require that the researcher begin by specifying char-
acteristics of these cyclical components. OQur procedures then isolate business cycle
components by simply applying moving averages to macroeconomic data. Technically,
we develop approximate band-pass filters that are constrained to produce stationary
outcomes when applied to growing time series.?

IHowever, it is possible to implement a judgment-free version of the Burns and Mitchell procedure,
using the business cycle dating algorithni of Bry and Boschan [1981]. Two recent examples are King
and Plosser [1994] and Watson [1994].

2In recent work, Englund, Perssou, and Svensson [1992] and Hassler, Lundvik, Persson, and
Soderlind [1992] proceed as we do by first defining a business cycle and then developing methods to
extract business cycle compouents fron time series. They employ a two-step procedure in which they
first detrend the time series using the Hodrick-Prescott [1980] filter, and then extract business-cycle
components by band-pass filtering in the frequency domain. Canova [1993] also uses high-pass and
band-pass filters in the frequency domain in his extensive analysis of detrending and business-cycle
facts. We discuss these methods in more detail later in the paper.



For the empirical applications in this paper, we adopt the definition of the business
cycle suggested by the procedures and findings of NBER researchers like Burns and
Mitchell [1946]. We apply our method to a several quarterly post-war U.S. time series.
Burns and Mitchell specified that business cycles were cyclical components of no less
than six quarters (eighteen months) in duration and they found that U.S. business
cycles typically last fewer than thirty two quarters (eight years). We adopt these
limits as our definition of the business cycle.

Specifying the business cycle as fluctuations with a specified range of periodicities
results in a particular two-sided moving average (a linear filter). In the particular
case of the NBER definition of the business cycle, the desired filter is a band-pass fil-
ter, i.e., a filter which passes through components of the time series with fluctuations
between six and thirty-two quarters, while removing components at higher and lower
frequencies. However, the resulting moving average is of infinite order, so an approx-
imation to this filter is necessary for it to be applicable to finite time series. Thus a
central problem addressed by this paper is how to construct a good approximation to
the optimal filter—i.e., the filter that accomplishes the business cycle decomposition
specified by the researcher.?

In approaching this problem of filter design, we require that our method meet six
objectives.? First, as suggested above, the filter should extract a specified range of pe-
riodicities, and otherwise leave the properties of this extracted component unaffected.
Second, we require that the ideal band-pass filter should not introduce phase shift,
1.e., that it not alter the timing relationships between series at any frequency. These
two objectives define an ideal moving average of the data with symmetric weights on
leads and lags. Third, we require that our method be an optimal approximation to the
ideal band-pass filter; we specify a specific loss function for discrepancies between the
exact and approximate filter. Fourth, we require that the application of an approxi-
mate band-pass result in a stationary time series even when applied to trending data.
Given recent empirical which suggests the presence of stochastic trends in economic
time series, we design our filters so that they will make a filtered time series station-
ary if the underlying time series is integrated of order one or two. (Equivalently, we
impose the requirement that the approximate filter’s frequency response is zero at the
zero frequency). This requirement also means that our band-pass filters will eliminate
quadratic trends from a time series. Fifth, we require that the method yield business
cycle components that are unrelated to the length of the sample period. Sixth, and
finally, we require that our method be operational. In the general filter approxima-
tion problem, there is an important tradeoff involved: the ideal band-pass filter can

3Like many of the ad hoc filters listed above, our approximate filters are moving averages which
can readily be applied to time series. However, our filters have the important advantage that the
researcher can specify the objective of the data transformation explicitly, which in business-cycle
research is presumably to isolate the component of a time series with particular periodicities.

4These requirements are very similar to those that Prescott [1986] discusses in justifying use of
the Hodrick-Prescott [1980] filter.



be better approximated with the longer moving averages, but adding more leads and
lags also means that observations must be dropped at the beginning and end of the
sample thus leaving fewer for analysis. We therefore experiment extensively with the
application of our filter to macroeconomic time series and provide some guidance
about the tradeoffs involved. We recommend that researchers use moving averages
based on six years of data for both quarterly and annual time series.

The organization of the paper is as follows. Section 2 describes the construction
of approximate band-pass filters. In section 3, we define our business cycle filter and
apply it to post-war U.S. data. Further, we investigate the implication of changing the
number of leads and lags used to construct the approximate filter for certain summary
statistics, using both post-war U.S. data and a specified stochastic data generating
process (for which we can compute the influence of the length of the moving average on
population moments). In section 4, we contrast our business cycle filter to the results
of other commonly used procedures. In section 5, we provide a detailed comparison
of two “HP” filters: the cyclical filter of Hodrick and Prescott [1980] and a high pass
filter constructed using our methods. Particular attention is directed to two practical
problems that researchers encounter using the Hodrick-Prescott method: unusual
behavior of cyclical components near the end of the sample, and the choice of the
smoothing parameter for data sampled at other than the quarterly frequency. Section
6 concludes the paper with a brief review of the goals and findings of the paper. Three
appendices provide information on the stochastic and deterministic trend reduction
implications of a class of moving average filters that contains our approximate filters
and many others; details of the derivation of the optimal approximate band-pass filter;
and printouts of the MATLAB programs used to implement the filters developed in
this paper.

2 Band-pass filters for economic time series

This section describes the construction of moving averages that isolate the periodic
components of an economic time series which lie in a specific band of frequencies. In
the jargon of time series analysis, we are interested in constructing band-pass linear
filters. We are particularly interested in designing a business cycle filter, defined as a
linear filter which eliminates very slow moving (“trend”) components and very high
frequency (“irregular”) componenuts while retaining intermediate (“business cycle”)
components.

It has long been understood that moving averages alter the relative importance of
the periodic components in a time series (for a recent presentation, see Harvey [1981,
chapter 3]). If the time series y is stationary, then we can use frequency domain
methods to study the implications of applying moving averages to y;. In this paper,
we employ frequency domain analysis to consider the design of linear filters, but
we ultimately will undertake our filtering entirely in the time domain (i.e., we will
simply apply moving averages to macroeconomic data). Thus, readers who are simply

4



interested in the practical results of our filtering methods may skip ahead to section

3.

2.1 Applying moving averages to time series

Applying a moving average to a time series, y;, produces a new time series y;:

i =) akYek - (1)

For convenience, we will write the moving average as a polynomial in the lag operator
L:a(L)= Zf:-}{ arL*, with L defined so that L*z, = z,_; for positive and negative
values of k. We will further specialize our attention to symmetric moving averages,
i.e., those for which ay = a_; for k =1, ... K.

One traditional use of moving averages has been to isolate or to eliminate trends
in economic time series. If a symmetric moving average has weights that sum to
zero, i.e., Y& .- ap = 0, then we show in appendix A that it has trend reduction
properties. That is, if the weights sum to zero, we can always factor a(L) as:

a(L) = (1= L)1 - L7)%(L) (2)

where (L) is a symmetric moving average with ) — 1 leads and lags. Symmetric
moving averages with weights that sum to zero will thus render stationary series that
contain quadratic deterministic trends; i.e., components of the form 7, = vo+v; t+721°.
Further, these moving averages can also make stationary the stochastic trends which
arise when a time series is a realization of an integrated stochastic process (of the
I(1) or I(2) type in the lexicon of Engle and Granger [1987]).

The Cramer representation of the stationary time series y; is:

vo= [ o (3)

That is, the time series can be expressed as the integral of random periodic compo-
nents, the £(w), which are mutually orthogonal (F&(w;)é(w2) = 0 for wy # w;). In
turn, the filtered time series can be expressed as

m
vi= [ a@)w)de. (4)
where a(w) = ©K _ are™™" is the frequency response function of the linear filter.
That is, a(w) indicates the extent to which y} responds to y; at frequency w, in the
sense that a(w) is the weight attached to the periodic component £(w). Since the
periodic components £(w) are orthogonal, it follows that we can write the variance of
the filtered series as:

var(y) = [ o) fylw)do. (5)



where |a(w)|? is the squared gain or transfer function of the linear filter at frequency
w and fy(w) = var(§(w)) is the spectral density of the series y at frequency w. The
squared gain thus indicates the extent to which a moving average raises or lowers the
contribution to variance in the filtered series from the level in the original series.

In terms of our discussion below, it is important to note that the frequency re-
sponse function a(w) takes on a value of zero at frequency zero if and only if we
require that the sum of the filter weights is zero (a(0) = K. _; are™™* = 0 if and
only if "F . ay =0).

We turn next to the problem of designing filters to isolate specific frequencies in
the data. Our method is to use frequency domain logic to design a moving average
that emphasizes specified frequency bands. But we also require that our business
cycle filter have the trend reduction properties discussed in this section, so that it
can be meaningfully applied to economic time series which are nonstationary. We thus
require that our business-cycle filter has a frequency response function with «(0) = 0.

2.2 The low-pass filter

A basic building block in filter design is the low-pass filter, by which we mean a filter
which retains only slow-moving components of the data. An ideal low-pass filter,
which passes only frequencies —w < w < w, is illustrated in Panel A of Figure 1.°
The ideal low-pass filter we will study thus has a frequency response function given
by f{w) = 1 for |w| € w, and f(w) = 0 for |Jw| > w. Notice that it is symmetric,
Bw) = B(-)

Let b(L) = 72 _ . by L* denote the time-domain representation of this ideal low-
pass filter. The filter weights b, may be found by the inverse Fourier transform of the
frequency response function:

by, = _1; B(w)e™*dw (6)

Evaluating the integral above (see Appendix B for the details), the filter weights b,
for the ideal filter are by = w/x, and b, = sin(hw)/hx for h = 1,2,.... Notice that
an infinite-order moving average is necessary to construct the ideal filter. Hence,
we are led to consider approximation of the ideal filter with a finite moving average
a(L) = ©F _, anL*; this approximating filter has a frequency response function
ag(w) = The_g ane™™*,

5In this Figure, as in others below, we measure frequency w as a fraction of 7, so that the
horizontal axis ranges from -1 to 1. For the figures, this means that periodicity of the frequency
component is simply p = 2/w, so that the most rapid oscillations shown in Figure 1 have period two.
The “cutoff frequency” for the low pass filter corresponds to a period of p = 32 time units (presumed
to be quarters of a year in view of empirical work below) and, hence, w = 2/32 = 1/16 = .07.
However, for the analytical results below, we use the more conventional definition that the frequency
w has as its domain the interval -7 < w < 7.



2.3 Approximation of symmetric filters

If one is considering the general problem of choosing an approximate filter, ax(w), to
approximate a specific filter 3(w), then a natural approximation strategy is to choose
the approximating filter’s weights a, to minimize:

Q= [ 18 de, ™)

where é(w) = A(w) — arx(w) is the discrepancy arising from approximation at fre-
quency w. This loss function thus attaches equal weight to the squared approximation
errors at different frequencies.

There is a remarkable, general result for this class of optimization problems: the
optimal approximating filter for given maximum lag length, K, is constructed by
simply truncating the ideal filter’s weights a), at lag K. This result reflects the
fact that each of the truncated terms in a symmetric linear filter is orthogonal to
the included terms. Thus the optimal approximate low-pass filter sets a, = by for
h=0,1,...,K, and a, = 0 for h > K + 1, where the weights b; are those given in
section 2.2 above.®

2.4 Construction of high-pass and band-pass filters

High-pass and band-pass filters are easily constructed from low-pass filters. Before
defining these additional filters, we establish some notation which we use throughout
the rest of the paper. Since it is more natural for us to think in terms of periodicity of
cycles than frequencies, we let L Px(p) denote the approximate low-pass filter which is
truncated at lag i and which passes components of the data with periodicity greater
than or equal to p. Since the ideal filter involves K = oo, the ideal low-pass filter is
denoted L P (p).

The ideal high-pass filter H P, (p) passes components of the data with periodicity
less than or equal to p, as illustrated in panel B of Figure 1. If the weights of the
low-pass filter in Figure 1 panel A are b, for h = 0 and h = %1, 2,..., then the weights
of the high-pass filter are 1 — by at h = 0 and —b;, at h = £1,2,... Correspondingly,
the optimal approximate high-pass filter, H Pk (p) is simply constructed by truncating
the weights of H P (p) = 1— LPx(p).”

The ideal band-pass filter passes only frequencies in the ranges w < jw| < @ . It
is therefore constructed from the two low-pass filters with cutoff frequencies w and
Z: we denote the frequency response of these filters as #(w) and f(w). Then, to get
the desired frequency response, we form the band-pass filter’s frequency response as

SA classic reference on the approximation of linear filters using K'th order linear filters is Koop-
mans [1974].

"This is implied by the result discussed in section 2.3: that approximation of the ideal low-pass
filter simply involves truncation of the ideal filter’s weights at lag K.



B(w) — B(w) since this will give unit frequency response on the frequency bands w <
|w| < @ and zero elsewhere.

It is then easy to derive the filter weights for a band-pass filter. If we let b, and by,
be the filter weights for the low-pass filters with cutoffs w and @ then the band-pass
filter has weights b,— b,. Panel C of Figure 1 plots an ideal band-pass filter which
passes through cycles of length between 6 and 32 quarters, which corresponds to the
Burns and Mitchell [1946] definition of business-cycle frequencies.

We use a similar notation for the approximate band-pass filters to that developed
above for the high and low pass filters: BPx(p,¢) denotes our approximation band-
pass filter which passes cycles between p and ¢ periods in length, for given truncation
point K ,where p denotes the shortest cycle length passed by the band-pass filter and
q denote the longest cycle length (in Figure 1-C, p = 6 and ¢ = 32). We construct
B Pk (p,q) by truncating the ideal band-pass filter.

2.5 Constraints on specific points

The minimization problem described above may be reformulated to recognize that
certain points are of particular concern to the researcher. In our context, we want to
design a low-pass filter that places unit weight at the zero frequency (ax(w) =1 at
w = 0). If we construct a low-pass filter in this way, then the corresponding high-pass
and band-pass filters will place zero weight at the zero frequency and, as we have seen
above, this will mean that they give rise to stationary time series when applied to a
range of nonstationary time series.

The constraint that ax(0) = 1 may be incorporated as a side condition to the
minimization problem discussed above. Using the results of Appendix C, we find the
following modification of the optimal approximate filter weights, ap, as functions of
the weights of the ideal low-pass filter, by,

an = by + 0, (8)

where 0 is a constant that depends on the specified maximum lag length, K. That is,
since we require that the filter weights sum to one, (XK _, as = 1), the normalizing
constant is § = (1 =%, b,)/(2K +1). Thus the constraint that the low-pass filter
place unit weight at the zero frequency results in a relatively simply adjustment of
the filter weights.

Similar adjustments are necessary when constructing optimal truncated high-pass
and band-pass filters subject to constraints on the frequency-zero value of the fre-
quency response function. As discussed above, the unconstrained band-pass filter
has weights which are the difference between two low-pass filters, i.e., the weights
are b,— b, where by, is the filter weight at lag/lead h for the upper cut-off filter and
by 1s the weight for the lower-cutoff filter. The constrained band-pass filter involves
the requirement that the sum of its weights must be zero. Hence, the weights in the



constrained optimal band-pass filter are adjusted as follows:
(br — by) + (6 — 0) (9)

where 8 is the adjustment coefficient associated with the upper-cutoff filter and § is
the adjustment coefficient associated with the lower cut-off filter (see Appendix C
for additional discussion of this point). That is, the constrained optimal Ktk order
band-pass filter is simply the difference between two constrained optimal Kth order
low-pass filters. Throughout the remainder of the paper, we consider only band-
pass filters with this zero frequency constraint imposed. We use the notation defined
above, BPk(p,q), to denote our approximation to the ideal band-pass filter which
passes cycles between p and q periods.

2.6 The effects of truncation

This section explores the effect of changes in the maximum lag length, K, on the
shape of the constrained low-pass and high-pass filters. If we choose an approximating
moving average with maximum lag length K, implementing the filter means that we
lose 2K observations (i.e., K leads and K lags). There is no “best” value of Kj;
increasing K leads to a better approximation to the ideal filter, but results in more
lost observations. Thus the researcher will have to balance these opposing factors, so
that the best choice of K in a particular instance will depend on the length of the
data period, and the necessity to obtain a good approximation to the ideal filter. The
next section will explore this trade-off in the context of postwar U.S. macroeconomic
time series. In this section, however, we are simply concerned with describing the
effect of variations in /' on the shape of the approximating filters.

Figure 2 illustrates the effect of truncation on the shape of the low-pass filter
which has been constrained to have unit weight at the zero frequency. The ideal filter,
illustrated by the dotted line in each panel, passes frequencies w which corresponds
to cycles in the quarterly data of length greater than or equal to 32 quarters. This
Figure shows that there are important effects on the shape of the approximate low-
pass filter of changes in . When I = 4, so that the moving average covers only the
preceding and subsequent four quarters, there is a major departure from the ideal
filter. In particular, the approximate filter admits substantial components from the
range of frequencies just above the cutoff frequency w = x/16. This phenomenon
is conventionally called “leakage:” this term captures the notion that the filter has
passed through frequencies that the filter was designed to suppress, including them
with those the filter was designed to retain. Correspondingly, the approximating
filter has less than unit frequency response on the range |w| < n/16, which we define
as “compression.” As the value of K increases, the truncated filter more closely
approximates the true filter. With K = 8, the problems of leakage and compression
have been substantially reduced relative to the K = 4 case. Further reductions in
leakage and compression are obtained with K = 16 and K = 32.

9



Figure 3 displays the frequency response function for approximate band-pass fil-
ters. As with the approximate low-pass filters, there is substantial “leakage” and
“compression” for small values of K. However, it is an empirical question whether
improvement in approximating the ideal filter (by use of larger values of K) lead to
important changes in moments computed from the filtered time series. In the next
section we explore the effects of changes in K on the behavior of filtered macroeco-
nomic time series.

2.7 Why filter in the time domain?

One common approach to band-pass filtering is the frequency domain method used
by Hassler, et al. [1992], Canova [1993], and Li, et al. [1994]. This method works as
follows. First, one takes a discrete Fourier transform of the economic data, comput-
ing the periodic components associated with a finite number of “harmonic” frequen-
cies. Second, one “zeros out” the frequencies that lie outside of the band of interest.
Third, one computes the inverse Fourier transform to get the time domain filtered se-
ries, {¥,,,..-fr}- We see two major drawbacks with this explicitly frequency domain
procedure, relative to our time domain method. First, since there are likely to be
stochastic trends (unit root components) in most economic time series, it is necessary
to first detrend the series prior to taking the Fourier transform. That is: in order to
accomplish band-pass filtering, one must first choose a detrending method. Working
with annual data, Hassler et. al. {1992] use the Hodrick-Prescott filter with A = 10
for this initial detrending step. Working with quarterly data, Li, et. al. [1994] argue
for a much larger value, A = 10,000, in the initial detrending step so as to avoid dis-
torting business cycle outcomes. Second, the results of the frequency domain method
at all dates are dependent on the sample length T'. Consider, for example, the “busi-
ness cycle” component of a time series at a particular date t, denoted y;, obtained
from a study of economic data in a study of length 7. When the sample length is
extended to T, the discrete Fourier transform of {y;,y2,...yr} must be recomputed
and each of its elements will change. Consequently, so too will each of the elements
of the inverse Fourier transform of the filtered series, i.e., the cyclical observations,
{#1s5---gr}. Thus, the cyclic component of output at a particular date will change
when the sample period changes. This time variation violates the fifth requirement
that we discussed in section 1 above, which is also one that we share with Prescott

(1986].

3 Measuring business cycles

This section explores several empirical issues raised by the foregoing discussion of
approximate band-pass filters. As discussed earlier, an ideal business cycle filter is
defined to be the BPy(6,32) filter, and its optimal approximation is the B Px(6,32)
filter for 0 < K < co. First, we describe the effect of changes in the truncation point

10



K on moments computed from a specified data generating process. Second, we explore
the effect of variation in K" on moments computed from several macroeconomic time
series.

3.1 Effect of variation in K on an AR(1) process

A useful way to explore the approximation error induced by application of the ap-
proximate band-pass filter is to compute moments for a known stochastic process
using both the ideal and approximate filters. We examine the effect of variation in
K on the autocovariances of the following first-order autoregression:

z: = 0.95z,; + €&

with o, = 1. Table 1 gives the autocovariances of z; for the ideal business-cycle filter
and for several approximations to this filter, i.e., several values of K'.8 Looking first at
the variance of z;, (the autocovariance at lag 0), we see that when K is small, so that
the moving average covers only a few observations, the approximate filter produces a
series whose variance is much smaller than the true or “exact” variance of 1.38. The
approximation error for the filtered variance becomes quite small once K > 12. This
phenomenon can be understood by recalling that the K = 4 approximation to the
ideal filter involved both “leakage” and “compression” near the cutoff frequency (see
Figure 3). For variables possessing Granger’s [1966] typical spectral shape, such as
this highly persistent AR(1) process, the effect of the compression is to filter out large
components of frequencies for which there is substantial power in the original time
series. As K rises and the accuracy of the approximate filter improves, this problem
becomes smaller.

Interestingly, the variance computed from the approximate filter does not con-
verge monotonically to the true variance as K rises. However, the departures from
the true value are small for large values of K. A similar picture emerges for the other
autocovariances: small values of /' generally produce autocovariances smaller, in ab-
solute value, than those produced by the ideal filter. Throughout, the approximation
error 1s small for K > 12.

3.2 Empirical effects of variation in K

This sub-section explores the effect of the length of the moving average on summary
statistics for several post-war U.S. time series. To provide some information about
how one’s view of the macroeconomic “facts” might depend on K, we have computed
a set of summary statistics for several U.S. post-war quarterly macroeconomic time

8These autocovariances were nol generated from Monte Carlo experiments. They are popula-
tion moments, and were computed by applying the approximate bandpass filter’s transfer function,
laK(w)lz, to the spectral density of the first-order autoregression and then numerically integrating
the result.
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series using a range of values for K. Table 2 presents statistics on standard deviations,
serial correlation coefficients, and contemporaneous correlations with GNP for K =
{4,8,12,16,20}. Throughout the table, moments are computed for the time period
associated with the shortest filtered time series (i.e., the K = 20 filter), so differences
in moments are not due to differences in the sample period. Summary statistics are
also presented for three other filters—a centered moving average; the first-difference
filter; and the Hodrick-Prescott [1980] filter, but we defer discussion of these results
until Section 4.

Table 2-A shows that one commonly-used measure of volatility—the standard
deviation—is sensitive to the choice of K. Specifically, the measured volatility of
every time series studied is about half as large for the lowest value of K (K = 4)
compared with the value generated by largest value of K (K = 32).This table shows
that there is little effect of increases in K on the standard deviations of the filtered
time series for K > 12. These results are consistent with the results obtained above
for the AR(1): small values of K yielded low variances, while a good approximation
was obtained for K > 12.

Table 2-B presents serial correlation coefficients. As with the standard deviations,
the serial correlations of the filtered time series depend on K. In particular, this
measure of persistence is uniformly lower for the smallest value of K, compared with
the largest. The reason, once again, can be traced to the effects of leakage and com-
pression for small K on the filtered time series. Since the most persistent components
of economic time series occur at the lower frequencies, the effect of compression in
particular is to reduce the measured persistence of the filtered time series. As with
standard deviations, the problem is most severe for K = 4, and there is little change
for K > 12.

Table 2-C presents results for the contemporaneous correlation of various aggre-
gates with GNP, which is one commonly used measure of the comovement of a variable
with the business cycle. This table shows that there is a tendency for a variable’s
correlation with GNP to increase as K increases, although this is not uniformly true.
As before, there is a tendency for the estimated moments not to change much for
K > 12. Overall, our results suggest that summary statistics computed from the
key macroeconomic time series are largely invariant to further improvements in the
approximate business cycle filter beyond K = 12.

3.3 Inspecting the results for GNP

Figure 4 displays the results of applying five filters to the natural logarithm of gross
national product. Throughout the four graphs, we use the band-pass business-cycle
filter with K = 12 as our reference point: it the dashed line which is present in all of
the graphs. The common sample period for these graphs is 1947-1993, but since we
use I = 12 we lose three years of data at each end of the plots for the band-pass and
high-pass filters.

12



The First Difference Filter: Panel A of Figure 4 shows the quarterly growth rate
of real GNP vs. the band-pass filter. The first-difference filter’s heavy weight on
high-frequency components of the data lead to the very jagged appearance of the
filtered time series. There is little correspondence between the time series produced
by the first-difference and the band-pass filters.

The Hodrick-Prescott Filter: Panel B of Figure 4 plots Hodrick-Prescott filtered
real GNP. There is a very close correspondence between the cycles isolated by this
filter and those generated by the band-pass filter, although the Hodrick-Prescott
filtered series is somewhat less smooth.

The High Pass Filter (H Px(32)): Panel C displays a high-pass filter constructed
using our procedures which isolates periodic components of 32 quarters (eight years).
We have chosen the same K value for this filter as for the reference band-pass filter,
so that the panel simply illustrates the effect of the smoothing of high frequency
components introduced by our band-pass filter. For GNP, the panel makes clear that
this smoothing out of irregular components has little effect on the overall volatility.

The Deviation from 5 year Moving Average Filter: Finally, Panel D displays devi-
ations from a moving average. As with the Hodrick-Prescott filter and the high pass
filter, the correspondence with the band-pass filter is quite close, with the moving
average filter being somewhat more volatile.

3.4 Inspecting the results for inflation

In Figure 5, we present the results of applying the same five filters to the inflation
rate. As before, the solid line in each panel is the B Pk (6,32) business-cycle filter.

The First Difference Filter: Panel A of Figure 5 shows the quarterly growth rate
of inflation vs. the band-pass filter. As before, the first difference filter produces a
highly volatile time series which bears little resemblance to the band-pass filter.

The Hodrick- Prescott Filter: Panel B of Figure 5 plots Hodrick-Prescott filtered
real GNP. In contrast to the results for GNP, there is a notable difference between
the Hodrick-Prescott filter and the band-pass filter. The reason is that inflation
contains important high-frequency components which are passed by the Hodrick-
Prescott filter, but which are removed by the band-pass filter. GNP, by contrast,
does not have important variation at high frequencies.

The High Pass Filter (H Px(32)): Panel C displays results for the H Py,(32) filter.
Like the Hodrick-Prescott filter, this filter passes the high-frequency components of
inflation, leading to a more volatile filtered time series compared with that produced
by the band-pass filter (0.48 for the high-pass filter, versus 0.32 for the band-pass
filter over this sample period).

The Deviation from 5 year Moving Average Filter: Finally, Panel D displays de-
viations from an equally-weighted moving average. As with the Hodrick-Prescott
filter and the high pass filter, the correspondence with the band-pass filter 1s weaker
when we consider inflation compared with GNP. Once again, the reason is that high-
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frequency variation is much more important as a source of overall variation in inflation,
compared with GNP.

4 Detailed Comparison with Other Filters

This section compares the properties of our proposed business cycle filter with other
commonly used filters. We evaluate each filter in terms of its ability to achieve the
following characteristics which we have argued are necessary for a “good” business-
cycle filter: (i) ability to remove unit roots; (ii) absence of phase shift; (iii) ability
to isolate business cycle frequencies without re-weighting components at the desired
frequencies. Further, since model evaluation involves comparison of model moments
with moments computed from the data, it is desirable that a business-cycle filter be
easily (and consistently) applied both to the data and to economic models.

4.1 Removal of linear trends

Although the removal of linear (or log-linear) trends historically was a standard
method for separating trends from cycles, a large and growing body of evidence
suggests that many macroeconomic time series contain unit root (stochastic trend)
components which would not be removed by this procedure. Primarily for this reason,
this approach to detrending has fallen out of favor in empirical macroeconomic inves-
tigations. Although this procedure does not induce phase shift, nor does it re-weight
frequencies, the failure to remove unit root components from the data means that
linear detrending is undesirable for most macroeconomic time series.

4.2 The first-difference filter

The first-difference filter extracts the cyclic component y{ from a time series y; as
follows: y§ = (1 — L)y, It is evident that this filter removes unit root components
from the data; for this reason, use of the first-difference filter has been popular in
recent years. However, there are several problems with this filter with respect to the
criteria listed above. First, because this filter is not symmetric, it alters timing rela-
tionships between variables (i.e., there is phase shift for this filter). Second, this filter
involves a dramatic re-weighting of frequencies. Figure 6-A plots the frequency re-
sponse function for this filter; the first-difference filter re-weights strongly toward the
higher frequencies, while down-weighting lower frequencies. If the goal of a business
cycle filter is to isolate fluctuations in the data which occur between specific period-
icities, without special emphasis on any particular frequency, the first-difference filter
is a poor choice.
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4.3 The Hodrick-Prescott filter

Use of the business cycle filter proposed by Hodrick and Prescott [1980] has grown
dramatically in recent years, especially in investigations involving the quantitative
equilibrium approach to constructing aggregative models The properties of this filter
were previously studied by King and Rebelo [1993], and the following discussion
borrows heavily from their analysis.

The infinite sample version of the Hodrick-Prescott filter defines the cyclic com-
ponent of a time series y; as follows:

e[ AM1=L)*(1 - L")
e = (1+A(1 —L)2(1—L—1)2>y’ (10)

where ) is a parameter which penalizes variation in the growth component (for quar-
terly data, Hodrick and Prescott recommend a value of A = 1600). From this equation
we see that the Hodrick-Prescott filter removes unit root components from the data
(in fact, it will remove nonstationary components that are integrated of order four
or less). Further, the filter is symmetric so there is no phase shift. Expanding equa-
tion (10) gives the following time domain representation of the growth component
extracted by the Hodrick-Prescott filter (see Appendix A to King and Rebelo [1989]
for the derivation):

Y = T > (410 + As8) yes + 3 (A16] + A28]) yus, (11)
j=0 1=0

where A, and A; depend on #; and 6;; the coefficient A10{ + Agag 1s a real number
for each j, and A, and A; are complex conjugates.’?

As noted by King and Rebelo, the Fourier transform of the cyclical component of
the Hodrick-Prescott filter has a particularly simple form:

~ 4X (1 = cos(w))?

Clw) = 1 44X (1 — cos(w))? (12)

Thus the cyclical component of the Hodrick-Prescott filter places zero weight on the
zero frequency (C(0) = 0), and close to unit weight on high frequencies (C(r) =
16A/(1 + 16))). Figure 6-B plots the frequency response function of the Hodrick-
Prescott filter for A = 1600. Visually, this filter looks remarkably like an approximate
high-pass filter with cutoff frequency w = 7/16.

In terms of the objectives that we specified for our filter design problem, the
Hodrick-Prescott cyclical filter has several desirable features. First, it is a symmetric

9Equation (11) makes it clear that the Hodrick-Prescott filter is a two-sided moving average, as
are several of the filters we consider. This equation also shows that the moving average is of infinite
order, so that in empirical applications some approximation to this filter is required. We discuss the
issue of approximation of the Hodrick-Prescott filter in section 5 below; the discussion here focuses
on the exact Hodrick-Prescott filter.
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filter so that no phase shift is introduced. Second, it has trend reduction properties: it
places zero weight at the zero frequency or, equivalently, contains multiple differencing
operations. Third, with A = 1600, it approximates the high pass filter H P, (32)
reasonably well since its gain rise sharply from near zero to near unit in the vicinity
of the cutoff frequency w = x/16. However, since the Hodrick Prescott filter of
equation (10) is an infinite order moving average, some modification is necessary in
order to apply it to data. We return to discussion of this topic in section 5 below.

4.4 Moving averages

Another widely used method of detrending economic time series is to define the
growth or trend component as a two-sided or centered moving average, with the cyclic
component defined in the usual way as the deviation of a particular observation from
the trend line. That is: the growth or trend component is formed as

K
g 1 :

= .. 1
Yi 2K+1]’_§1\-’yt J ( 3)

Thus the cyclic component of y, is generated as y§ = a(L)y; with ap = 1 — ﬁ\,l*_—l,

and a; = a_; = ﬁ for j = 1,2,..., K. This filter places zero weight at the zero
frequency since }_ ax = 0, and is symmetric. Figure 6-C plots the gain for the centered
moving average filter for several values of K. The general shape of this filter is very
similar to that of the approximate high-pass filter, plotted in Figure 6-D, although

the “side-lobes” are more exaggerated for the moving average filter.

4.5 A high-pass filter

We have defined a high-pass business-cycle filter, HPx(32), as a filter which passes
components of the data with periodicity less than or equal to 32 quarters. Figure 6-D
plots the gain for this filter for several values of K. As with the moving average filter,
this filter yields a good approximation to an ideal high-pass filter for sufficiently large
values of K (i.e., K > 12).

4.6 Comparisons across filters

Table 2 shows how application of these alternative filters affects moments computed
from several postwar U.S. time series. We focus on three set of moments of particular
interest to business-cycle analysis: volatility; persistence; and correlation with output.

Volatility. Table 2-A presents volatility statistics. As discussed earlier, the

band-pass filter with K > 12 yields a very good approximation to the ideal band-
pass filter. For this reason, we regard the statistics computed with the X' = 20 band
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pass filter as the best measure of business-cycle volatility, and then compare the other
filters to this benchmark. Except for inflation, which we discuss separately below, a
clear pattern emerges. The Hodrick-Prescott filter produces volatility statistics that
exceed those of the ideal band-pass filter, although in many cases not by a large
amount. The moving average filter produces volatility statistics that are larger still,
although again the changes are not dramatic. The first difference filter, by contrast,
produces volatility statistics that are smaller—in many cases, much smaller—than
those produced by the band-pass filter. Having studied the gain functions of these fil-
ters, these results are easy to understand. The Hodrick-Prescott and moving average
filters are rough approximations to a high-pass filter, which means that retain some
high-frequency volatility which is removed by the band-pass filter. These macroeco-
nomic time series do not have a great deal of power at high frequencies, so including
these components leads to only small increases in the volatility of the filtered time
series. The first difference filter produces smaller measures of volatility because it
_ removes more of the low-frequency components of the time series than the band-pass
filter, while re-weighting the frequencies to emphasize the higher frequencies. For all
the variables studied except inflation, most of the power is at the lower frequencies.

The pattern described above is reversed for inflation: here, the first-difference
filter produces the highest measure of cyclic volatility. As discussed in section 3.4
above, inflation contains sizable high-frequency components—components which are
emphasized by the first-difference filter. This also explains why the moving average
and Hodrick-Prescott filters produce significantly higher volatility measures compared
with the band-pass filter: the band-pass filter removes the high-frequency compo-
nents, while these alternative filters do not.

Persistence. Table 2-B presents statistics on the first-order autocorrelation of fil-
tered macroeconomic time series. As before, we take the band-pass filter (for k' > 12)
as our benchmark. Compared with this benchmark, each of the other filters pro-
duces a lower measure of persistence. Excepting, once again, the inflation series,
the differences are relatively small for the moving average and Hodrick-Prescott fil-
ters. However, the first-difference filter produces dramatically smaller measures of
persistence compared with the other filters. Once again, this is due to the fact that
the first-difference filter removes more of the highly-persistent, low-frequency com-
ponents, and emphasizes the much-less-persistent, high-frequency components. As
before, the inflation series behaves differently than the other time series, because of
its important high-frequency components. With the emphasis on these components
provided by the first-difference filter, the measured persistence of inflation is actually
negative!

Correlation with GNP. Finally, Table 2-C provides statistics on the correlation
between various macro variables and GNP. Once again, we find that the moving av-
erage and Hodrick-Prescott filters produce statistics that are roughly similar to those
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computed using the band-pass filter. The first-difference filter produces correlations
that are, in many cases, significantly smaller (in absolute value). Overall, researchers
using the band-pass filter, the moving average filter, or the Hodrick-Prescott filter on
quarterly postwar U.S. time series are likely to obtain a similar impression of the na-
ture of business cycles. However, use of the first-difference filter will yield a markedly
different view of the central business cycle “facts.”

In general, the first difference procedure produces filtered time series with lower
volatility than those generated by the band-pass filters or the Hodrick-Prescott filter.
This is a direct consequence of the fact that the first-difference filter downweights the
lower frequencies relative to the alternative filters. For the same reason, the first-
difference filter produces time series which exhibit much lower persistence than those
produced by other filters (see Table 2-B), and whose correlation with GNP is also
much lower (Table 2-C).

5 Comparing HP’s

In this section, we undertake a detailed comparison of the Hodrick-Prescott filter with
high pass filters constructed using our approach. For the purposes of many users of
the Hodrick-Prescott filter, we shall conclude that our high-pass filter is better in two
important dimensions: its ease of application to data sampled at frequencies other
than quarterly, and its appropriate treatment of observations near the endpoints of
the sample.

5.1 The quarterly HP filters can be very close

The first observation is that our H P;5(32) filter and the conventional Hodrick-Prescott
filter give essentially similar results for quarterly GNP, thus reinforcing the idea—
discussed in the previous section—that the Hodrick-Prescott filter is a reasonable
approximation to the band-pass filter. This result is suggested by comparison of pan-
els C and D of figure 6, discussed in section 3.2 above: the two series look very much
like each other. In fact, the correlation of the Hodrick-Prescott cyclical component
and the H P,5(32) cyclical component is 0.994 over the common sample period.

5.2 The Hodrick-Prescott filter in finite samples

Many individuals currently use the Hodrick-Prescott filter with A = 1600 to define
cyclical components of quarterly economic time series. One main rationale for this,
suggested by Prescott [1986], is that the filter is approximately a band-pass filter that
passes cyclical components of periodicity greater than eight years (32 quarters). The
results presented above suggested that there is indeed a close correspondence between
alternative HP filters.
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To apply the Hodrick-Prescott cyclical filter to data, one strategy would be to
truncate its weights at some fixed lag K, which would be analogous to our approx-
imation of the ideal band-pass filter. However, in actual practice, an alternative
procedure is typically used. This procedure has the apparently attractive feature
that there is no loss of data from filtering. That is, for a time series y; for t = 1,...7T,
the Hodrick-Prescott procedure produces estimates of the cyclical component, y{, for
t=1,..T.

To understand this result, it is useful to return to the original derivation of the
Hodrick-Prescott filter as the solution to a specific econometric problem, which is es-
sentially to find the optimal estimates of trend and cycle corresponding to a particular
known probability model. If we let y7 denote the trend component and continue to let
y¢ denote the cyclical component, this probability model is that trend and cycle are
driven by independent white noises (7, and ¢; respectively) and that their dynamics
are A?y] = n, and y{ = ¢,. If one knows the relative magnitude of o2 and o2, then it
is possible to extract estimates of y; and yf at each date of a finite sample ¢t = 1,...T".
Further, these estimates are simply weighted averages of the original data, so that
the cyclical component at date ¢ is:

T
yi = Z dniyn-
h=1

While this derivation makes the date t cyclical component a moving average of the
data, the linear filter is not time-invariant: the weights depend on the date ¢ as well as
the lead/lag index h. However, the algorithm that we use for computing the Hodrick-
Prescott filter makes it easy to recover the coefficients dj; so that we can study their
properties. One feature that emerges is that for each date t, S°F_, dy, = 0 so that, in
this fashion, the time-varying linear filter displays trend reduction properties at every
date.!?

To begin our more detailed look at the time-varying filter, Figure 7 plots the gain
of the linear filter d,(L) = Y°F_, dy, L") for a range of dates t = {1,2,3}, {4,6,8},

10We implement the finite sample Hodrick-Prescott filter as follows. First, we stack the data
into a column vector Y. Second, we define a matrix I' that links the corresponding column vector
of “growth components”, Y G to the data: Y = I'Y®. Third, we compute the vector of “cyclical
components” as: Y¢ =Y — Y¢ = (I — I'"!)Y. The matrix [ is implied by the equations that link
the growth components to the data. The general equation is:

Yo = Ayppo — 4Ayf +(1+ 60y —4hyi_ ) + Ay)_,

but this expression must be modified near the endpoints. For example, at the beginning of the

sample, we use
v =1+ Nyl + (=205 + (1 + Nyl

and
y2 = (=20)y) + (1 +50)y8 + (—4\)vd + Ay

and comparable modifications must be made near the end of the sample.
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{12,16,24}, {32,48,60}. These choices are motivated by the idea that we are studying
a quarterly sample period of post-war size, so that there are about 180 observations,
and we want to explore the effects of time variation near the endpoints and in the
middle of the sample. (It is sufficient to look at the initial values because there is a
symmetry property to the weights: dir = dry, etc.) These figures show that the dj,
coefficients at the beginning of the sample period are such that the d¢(L) has very
different properties than an exact high-pass filter: the gain functions differ sharply
from each other for t = 1,2,3 and from the gain of the exact high-pass filter. (There
is also phase shift near the endpoints, since d;(L) is not close to being a symmetric
linear filter for ¢ close to 1 or T'). But as we move toward the middle of the sample
period, the gain of the filter differs less sharply from one observation to the next and
the overall filter looks closer to the ideal band-pass filter.

Another perspective on the extent of time variation in the filter weights is afforded
by considering the effect of d(L) if it is applied to a specific data generating process.
While it is feasible to undertake this for standard macroeconomic models, we opted
for the simpler procedure of evaluating the effects of the filter on population variance
of a first order autoregression, y, = p yi—1 + €; with 62 = 1 and p = 0.95. Table 3
gives the variance by observation with the time-varying weight version of the Hodrick-
Prescott filter (this variance should be viewed as calculated across many realizations
of the time series generated by this first order autoregressive process). Although each
observation has the same variance before filtering, time-variation in the filter applied
to the process leads to different variances across observations. In fact, the change in
the variance is not even monotonic, as suggested by the gain patterns in Figure 7.

This investigation thus suggests that the Hodrick-Prescott filter does not really
generate as many useful estimates of the cyclical component as there are data points.
Since the filter weights settle down after about observation 12, it would seem natural
to drop 12 observations from the beginning and end of the sample period. But, then,
there would be little reason to prefer the Hodrick-Prescott filter to our high-pass filter
for quarterly data. Further, our HP filter embeds a mechanical rule for handling (i.e.,
dropping) endpoints.

5.3 HP Filters at other data frequencies

Is the Hodrick-Prescott filter an adequate approximation to a high-pass filter when
used with data sampled at other frequencies? The answer to this question is important
to researchers concerned with international and public finance questions—very often,
the data used by these researchers are available only at the annual frequency. For our
procedures, it is clear how to move between different data frequencies. For example,
if we are considering results from the high-pass filter HP,2(32) with data at the
quarterly frequency then the natural filter first filter to consider for annual data is
H P5(8): we isolate the same frequencies (periodicities of eight years and higher) and
we lose the same number of years of data at the ends of the sample.
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However, it is much less clear how to proceed with the Hodrick-Prescott method.
The difficulty is that the Hodrick-Prescott filter requires the researcher to specify the
“smoothing parameter,” A. For quarterly data, we found that A = 1600 produces a
reasonable approximation to a high-pass filter. For annual data, current empirical
practice is to use A = 400 or A = 100 (for example, Backus and Kehoe [1992] use
A = 100 in their study of international business cycles). To investigate whether
these values of A yield a good approximation to a band-pass filter for annual data,
figure 8 plots annual GNP filtered with our B P5(2, 8) filter together with data filtered
with the Hodrick-Prescott filter, for several values of A.}' Examining the top two
panels of figure 8 shows that the commonly-used values of A = 400 and A = 100
do not produce a filtered time series for GNP that closely resembles that produced
by the band-pass filter. However, setting A = 10, as in the third panel, produces a
much better correspondence between the Hodrick-Prescott and band-pass filters. The
bottom panel of this figure shows that little improvement is made when the length
of the moving average is increased from K = 3 to K = 6. Figure 9 plots the gain
for the Hodrick-Prescott filter for the three values of A against the ideal filter. This
figure shows why A = 100 and A = 400 produce such different pictures for filtered
GNP compared with the optimal approximate band-pass filter: for these values of A,
the Hodrick-Prescott filter is a poor approximation to the ideal filter. In particular,
these filters contain a great deal of “leakage” from low frequencies. That is: the
A = 100 and A = 400 filters pass through nearly all of the components of the data
with cycles between 9 and 16 years—components that most researchers would not
identify as “business cycle” components. The approximation to the ideal band-pass
filter is significantly better for A = 10. However, even the A = 10 filter contains
significant “leakage” as well as significant “compression.”!?

The foregoing discussion concerned the properties of the exact Hodrick-Prescott
filter. In practice, however, a finite-moving-average approximation to this exact filter
must be used. Figure 10 plots the gain for the finite-sample version of the Hodrick-
Prescott filter for A = 10, by observation number, in a manner comparable with
figure 7 presented earlier. As in the prior case, the finite-sample version of the filter
produces serious departures from the ideal filter for the first three observations, but
improves dramatically from observation 4 onward.

Overall, we find that our approximate band-pass filters are more straightforward
to apply, as they do not require the researcher to choose a new “smoothing parameter”
when changing data frequencies. Second, we find that the commonly-used values of
A =100 and A = 400 for annual versions of the Hodrick-Prescott filter produce very
poor approximations to a business-cycle filter. Third, we find that it is important to

1Gince the shortest detectable cycle in a time series is one that lasts two periods, the annual
business cycle filter passes components with cycle length between two and eight years. Note that,
in this case, the band-pass filter is equivalent to a high-pass filter.

12Hassler et al. [1992] also argue that A = 10 is the appropriate value for the smoothing parameter
when applying the Hodrick-Prescott filter to annual data.
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drop at least three data points from each end of the sample when using the Hodrick-
Prescott filter on annual data, even if one chooses A = 10.

6 Summary and conclusions

This paper develops a set of approximate band-pass filters designed for use in a wide
range of economic applications. The empirical focus of the paper is on isolating
cyclic fluctuations in economic time series, defined as cycles in the data between
specified frequency bands. We make detailed comparisons of our band-pass business-
cycle filter with other commonly used filters, and evaluate these alternative filters
in terms of their ability to isolate business-cycle fluctuations in the data. We found
that linear detrending and first-differencing the data are not desirable business-cycle
filters. On the other hand, deviations from an equally-weighted moving-average and
Hodrick-Prescott filtering can, in some cases, produce reasonable approximations to
an ideal business cycle filter. However, the optimal approximate band-pass filter that
we develop in this paper is more flexible and easier to implement than these filters,
while producing a better approximation to the ideal filter. While the main focus
of our investigation is on construction of a business cycle filter, the results should
be of more general interest since the defining periodicities may be readily specified
by a researcher and applied to data at any observation frequency. Based on the
results of this paper, we recommend three filters for use with quarterly and annual
macroeconomic data. These filters are illustrated in Figure 11 and the weights are
given in Table 4.

For quarterly macroeconomic data, we recommend the “Burns and Mitchell”
band-pass filter, which admits frequency components between 6 and 32 quarters,
with K = 12. This filter removes low-frequency trend variation and smooths high-
frequency irregular variation, while retaining the major features of business cycles.
Some macroeconomists, particularly those who have extensively used the Hodrick-
Prescott filter, may prefer to employ the “high pass” filter, which admits frequency
components between 2 and 32 quarters with K’ = 12. Essentially, this filter removes
the trend variation without removing the higher frequency irregular variation in the
series. Relative to the Hodrick-Prescott method, this filter does involve dropping
three years of data at the beginning and end of the sample; we have seen, however,
that this loss is more apparent than real because the weights in the Hodrick-Prescott
filter are rapidly changing near the ends of the sample, resulting in substantial dis-
tortions of these cyclical observations. Figures 11-A and 11-B provide plots of these
weights, which are also given in the first two columns of Table 4.

For annual macroeconomic data, band-pass and high-pass business-cycle filters
are equivalent. We accordingly recommend a single filter that admits periodic com-
ponents between two and eight years, with K = 3. The filter weights are illustrated
in Figure 11-C and given in table 4.

We have applied the filters constructed in this paper in some recent work, which
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provides an additional demonstration of their flexibility and usefulness. For example,
Baxter [1994] uses the methods of this paper to study the relationship between real ex-
change rate differentials and real interest rates at low frequencies (trend components),
medium frequencies (business cycle components) and high frequencies (irregular com-
ponents). She concludes that prior studies have missed interesting relationships be-
tween these variables because a concern for producing stationary data led researchers
to use the first difference filter. This procedure emphasized irregular (high-frequency)
components where little relationship exists at the expense of the business cycle com-
ponents where a striking, positive relationship emerges. In another application, King
and Watson [1993] show that the “Phillips correlations”, defined as a negative corre-
lation of inflation and unemployment, appear strong at the business cycle frequencies
even though they are hard to see in the original inflation and unemployment time
series. This latter investigation uses monthly data and thus defines the business cycle
periodicities as eighteen months to ninety-six months. It thus highlights one impor-
tant strength of our approach: it is easy to alter the filter construction when the
sampling frequency changes.

In conclusion, the primary goal of this paper was to “build a better mousetrap” —
that is, to develop an approach to filtering of economic time series that is fast, flexible,
and easy to implement. Qur goal in this undertaking is to encourage empirical re-
searchers to adopt a common approach to filtering, which will greatly aid in replication
and comparison of results across researchers.
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A Trend-reduction properties of symmetric mov-
ing average filters

In this appendix, we consider how symmetric moving average filters reduce series
with deterministic and stochastic trends to series that are stationary. In particular,
we consider the filter:

K

a(l)= Y alt (14)

k=—K
where L is the lag operator. We impose two conditions, which are that the filter’s
coeflicients sum to zero and that the filter is symmetric:

a(l)y= > ax=0 (15)
k=—K
ar = a_g. (16)

A.1 Deterministic trends

Consider a quadratic trend specification,

T = Y0 + Nt + 7atl.

We are interested in the effects of applying the two sided moving average to this
trend, 7.e., creating a new variable

K K K

.
ss=a(l)ri= Y amck =% Y, ax+n Y, alt—k)+72 Y, a(t — k)%

k=—K k=-K k=-K k=-K

Writing out (¢ — k)? as t2 — 2tk + &2 and consolidating terms we find that

K K K K

K K
se={7 D a—m Y ak+m1 Y ak’}+{n Y a—m X ak}t+{r Y a}t’

k=-K k=—K k=-K k=-K k=-K k=—K

It follows that the general conditions for trend reduction—elimination of ¢ for all
values of v;, y,—are as follows:

K
S a4k =0 (17)

k=—K
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K

Z akk = 0 (18)
k=-K
The first of these conditions is imposed as eq. (15) above. Further, any symmetric
moving average with Y& _ - ax = 0 implies that there is trend reduction, since

K K
Y axk =) (ak—a-k)k=0
k=-K k=1
directly from the symmetry condition (ax = a_x). Thus, eq. (18} is satisfied under
our assumptions. Hence, the filters defined by eqs. (14)-(16) reduce series containing
quadratic deterministic trends series to ones with no influence of time.3
An Erample: The simplest example arises if X = 1. Then, there is a single free
parameter of the specification a(L). In particular, symmetry implies that ¢y = a_, =
—6. The a(1) = 0 condition then implies that ag = 26. Applying this filter directly
to eq. (14), we find that:

$i =208 7.

Thus, the influence of time is eliminated but there is not necessarily a zero-mean
series as a result of the application of this filter.
Note that this filter may alternatively be written as:

a(L)=0[(-L7" +2 - L)} =0[(1 - L7")(1 - L)],

which indicates that the basic trend reduction filter contains two differencing
operations, a forward and backward difference. It is this property which permits it
to remove the influence of time from eq. (14). We will see next that this “double
difference” property holds for all members of the class.

A.2 Stochastic trends

We now consider the “differencing operations” implicit in more general trend reduc-
tion schemes. We write:

K K K
all)= Y al*= Y alf—a, =Y a(LF+ L% -2)
k=-K k=-K k=1
The first equality follows from assumption (15), "X _ - ax = 0. The second follows
from the symmetry assumption (16), ax = a_x.
Now, consider the individual terms in the preceding sum. We can write:

13]f we also wish to require that there is a zero mean for the series s;, then we must also require
that Zﬁ_K ark? = 0. However, we do not impose this condition in our analysis; means can always
be removed after filtering the series of interest.
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(LF 4+ L% —2) = —(1 = L*)(1 = L7%).
We know that (1— L¥) = (1~ L)[1+ L+ L? + ... L*7']. Further, with a little bit

of algebra, we can show

(k-1)

L+ + L+ + L+ L7+ L2+ L+ L7 = 3 (k- |R)) LM
h:-(k—l)

Hence, we can write:

=

K K
a(l)= Y axlf= ) axlf-ap=- Z [(1-LF)Y1-L7)] = —(1-L)(1=L™ Yo (L)

k=-K k=-K k=1

where Y (L) = {TK | ax Z(’” l)k (k= |h|)L*]} and is a symmetric moving average
with K — 1 leads and lags.
That is, our general moving average filter a(L) contains (at least) two differences,
e., that it has the ability to render stationary I(2) stochastic processes.!® This
accords with the finding on deterministic trend specifications in the prior section.

B Weights for the ideal low-pass filter

The inverse Fourier transform of the ideal low-pass filter implies that

_ _1_ 4 lwh = iwh
bh - 2 [—7{ ﬁ( d - ./ dw

where the second line derives from the fact the ﬂ(w) =1 for |w| € w and B(w) =1
for lw| > w.
Hence, it follows that

3 e

and that

_ Loy iwh _ L [l iwh]g _
b = 27 ./—ﬂ Blw)e™ = or Lih " -w Th sin(wh)

where the last equality follows from 2isin(z) = €'* — e~*2.

"4Gince ¥k (L) is a finite-term moving average, it does not alter the stationarity properties of the
series to which it is applied.
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C Optimal approximation of symmetric linear fil-
ters

In this section, we consider the optimal approximation of an ideal symmetric linear
filter by a K order symmetric moving average. (This filter might be a low-pass
filter, but it is useful to consider the more general case, for reasons that will become
clear below). The problems is to minimize

Q= [ 15 de,

with 6(w) being the discrepancy between the exact and approximating filters at fre-
quency w, §(w) = B(w) — a(w). Some versions of the problem discussed in the text
require that the approximating filter take on a specified value at the zero frequency,
which we represent as a(0) = ¢.

To solve this constrained maximization problem, we form the Lagrangian,

L=0Q+A¢—a(0)

The first order conditions are that:

aL  o0Q

95 _ 9 _ =

aao aao 0
&C_aQ . o ’
—a-zl-;_ a, —2A=0forh =1,..K

aL

-é—/\—_qb—-a(O)—O.

To evaluate Q/0as, it is desirable to proceed as follows. First, we compute 9|6(w)|/das.
Second, we compute the relevant integrals.

C.1 Computation of the partial derivative

The partial derivative of interest is found as follows. We begin by noting that:

KA 06 (w) 06(—w) 06(w)
Jday, Jday, Oap, Oay ’

where the second equality follows from the symmetry of the discrepancy measures,

§(w) = B(w) = a(w) = B(-w) — a(-w) = §(-w).
Further, since the frequency response function of the approximating filter is a(w) =
SR are~™" it follows that:

[6(w)é(-w)] = o(-w) +6(w) 2 §(w)

06(w)/dap = —1
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and that ‘
96(w)/0ay = —(e“* + e=“*) for h = 1,2,..K

These results imply that 0Q/da, = [7, 0|6(w)|/Oardw takes the form

0Q/0an = — [ 2 §(w)dw for h =0

90 /day, = — /_’r 2 §(w)(e"" + e “M)dw for h = 1,2, ...

Our next task is to evaluate these integrals, which it turns out is best done by deriving
a set of intermediate results.

C.2 Intermediate results

If we have a symmetric linear filter g(L) = Y52 _ . gnL" with frequency response
function y(w) = %2 _ . gre~™", then it follows that there are simple expressions for
integrals of the form [7_+(w)dw and [7_y(w)(e™? +€e~*7)dw for integer j. To evaluate
these integrals, we make repeated use of the facts that [”, e™"e~*mdw = 0 for n #
m and ["_e*me~“mdw = 27 for n = m, where n and m are integers.

Using this pair of results in the first integral, we find that:

_/7r Y{w)dw = ) Z grhe “hdw = 27 go .

T h=—o00
since all terms integrate to zero for & # 0. Using them in the second integral, we find
that:

/_ @)™ + e )do = /, S greTMe + €7 )dw = 27(g; +9-;) =4 7 g;.

" 7 h=-c0

C.3 Evaluation of the first order conditions

The K + 1 first order conditions, 8Q/day, — A = 0, then can be expressed as:

—471'[b0 — a()] + A = 0

and as

—8albp—ar]+22=0forh=1,2,..K.

Hence, if there is no constraint on «(0), i.e., A = 0, then it follows that the optimal
approximate filter is simply derived by truncation of the ideal filter’s weights. No-
tice that this result is quite general in that it applies for the approximation of any
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symmetric ideal filter, 7.e., it does not make use of any properties of 3(w) except for
symmetry.

If there is a constraint on a(0), then A must be chosen so that the constraint is
satisfied. For this purpose, it is useful to write the FOCs as:

ap=bp+0and a,=b,+8,for h=1,2,..K,
where 6 = A\/(87). Then, requiring that a(0) = Y _; an = ¢, we find that the

required value adjustment is

_ - Sh_k by
2K +1 ’

Again, the result is a general one. It implies that construction of the optimal
approximating filter contains two steps: first, truncation of the ideal filter’s weights
and, second, addition of correction term # which depends on the extent to which the
truncation disturbs the desired zero frequency behavior.

Further, the form of this correction process makes clear the origins of some of
the observations made in the main text. For example, it is easy to see that the
constrained K order approximate band-pass filter is the difference between two
constrained Kt order approximate low-pass filters. Since the ideal band-pass filter
weights are simply differences between the weights of two low-pass filters, b, — by, ,
it follows that the weights for an optimal truncated band-pass filter are (b, — b,) —
(SR (b —b,)]/[2K +1]. As this may be rearranged as {b, +[1 — Sh_ _ 1 b)/[2K +
1} = {bs + 1 — K _, b,/[2K + 1]}, it follows that the weights of the optimal,
constrained approximate band-pass filter are simply the difference in the weights of
the two constrained K** order low-pass filters.
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D MATLAB programs

Following are the programs used to implement the approximate band-pass filters
developed in this paper. The main program is called BPF.M; this program calls a
second program called FILTK.M. A replication diskette is available from the authors
which contains these and other programs used to produce this paper.

Program name: BPF.M
function yf=bpf(y,up,dn,K);

% bpf.m

% Program to compute band-pass filtered series

% Inputs are

% y: data (rows = observations, columns=series)

% up: period corresponding to highest frequency (e.g., 6)

% dn: period corresponding to lowest frequency (e.g., 32)

% K: number of terms in approximating moving average

% [calls filtk.m (filter with symmetric weights) as subroutine]

x=[up dn];

disp(" ")

disp('bpf(y,up,dn,K): band-pass filtering of series y with symmetric MA(2K+1)")
disp(' ")

disp(’ for additional information see: ')
disp(' )

disp(' M. Baxter and R.GG. King ")
disp('")

disp(' Measuring Business Cycles: ')
disp(’ Approximate Band-Pass Filters')
disp(' for Macroeconomic Time Series')
disp(" ")

disp('Filter extracts components between periods of: ')
disp(' up dn')

disp(x)

% pause(2)

if (up>dn)

disp('Periods reversed: switching indices up & dn')
disp(" )

dn=x(1); up=x(2);

end
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if (up<2)

up=2,

disp('Higher periodicity > max: Setting up=2)
disp('")

end

% convert to column vector

[r c]=size(y);

if (1<c)

Y=Y’

disp('There are more columns than rows: Transposing data matrix')
disp(' )

end

% Implied Frequencies
omubar=2*pi/up;
omlbar=2*pi/dn;

% An approximate low pass filter, with a cutoff frequency of "ombar",
% has a frequency response function

%

% alpha(om) = a0 + 2*al cos(om) + ... 2*aK cos(K om)

%

% and the ak's are given by:

%

% a0 = ombar/(pi) ak = sin(k ombar)/(k pi)

%

% where ombar is the cutoff frequency.

% A band-pass filter is the difference between two

% low-pass filters,

% bp(L)=Dbu(L) - bl(L)

% with bu(L) being the filter with the high cutoff point and bl(L) being
% that with the low cutoff point. Thus, the weights are differences

% of weights for two low-pass filters.

% Construct filter weights for bandpass filter (a(0)....a(K)).
akvec=zeros(1,1:K+1);

akvec(1)=(omubar-omlbar)/(pi),; % weight at k=0



for k=1K;
akvec(k+1)=(sin(k *omubar)-sin(k*omibar))/(k*pi); % weights at k=1,2,.. K
end

% Impose constraint on frequency response at om = 0
% (If high pass filter, this amounts to requiring that weights sum to zero).
% (If low pass filter, this amounts to requiring that weights sum to one).

if (dn>1000)

disp(‘dn > 1000: assuming low pass filter')
phi=1;

else

phi=0;

end

% sum of weights without constraint
theta=akvec(1)+2*sum(akvec(2:K+1));

% amount to add to each nonzero lag/lead to get sum = phi
theta=phi-(theta/(2*K+1));

% adjustment of weights

akvec=akvec+theta;

% filter the time series
yf=filtk(y,akvec);

if (r<c)
yf=yf,

end

-

Program name: FILTK.M

function yf=filtk(y,a);

% Filter data with a filter with symmetric filter with weights
% data is organized (rows=obs, columns=series)

% a=[a0 al ... aK];

K=max(size(a))-1, % max lag;

T=max(size(y)); % number of observations;



% Set vector of weights

avec=zeros(1,2*K+1);,
avec(K+1)=a(1);
fori=1:K;
avec(K+1-1)=a(i+1),
avec(K+1+i)=a(i+1);

end

yf=zeros(y);

for t=K+1:1:T-K
yf(t,.)=avec*y(t-K:t+K,:);
end



Effect of K on moments of an AR(1) process

TABLE 1

Autocovariance at lag:

K 0 1 2 4 8
2 0.02 0.01 -0.01 0.00 0.00
3 0.15 0.09 -0.01 -0.07 0.00
4 0.42 0.32 0.10 -0.21 0.00
6 0.87 0.74 0.42 -0.27 -0.17
8 0.94 0.81 0.49 -0.24 -0.24
12 1.34 1.21 0.86 0.08 -0.35
16 1.29 1.16 0.81 0.03 -0.37
20 1.24 1.10 0.76 -0.03 -0.45
24 1.25 1.11 0.76 -0.03 -0.47
32 1.33 1.20 0.84 0.04 -0.43
48 1.34 1.20 0.85 0.04 -0.46
60 1.33 1.19 0.84 0.03 -0.48
90 1.34 1.20 0.84 0.03 -0.48
exact 1.38 1.23 0.87 0.05 -0.49
no filter 10.26 9.74 9.26 8.35 6.80




TABLE 2

Effect of filtering on moments:
quarterly data, 1947:1 - 1993:1]

A. Standard deviations

K: truncation point for band-pass filter Moving Hodrick- First

Variable 4 g 12 16 20 average Prescott difference

GNP 0.84 1.31 1.63 1.59 1.59 1.97 1.71 1.00
Cons: durables 2.44 391 4.86 4.75 4.80 6.06 5.38 3.81
Cons: nondurables 0.59 0.96 1.10 1.09 1.05 1.32 1.18 0.75
Cons: durables 0.32 0.47 0.60 0.58 0.56 0.75 0.66 0.50
Investment 242 4.10 5.25 5.11 5.25 6.33 5.57 2.72
Hours per person 0.25 0.39 0.40 0.40 0.40 0.46 0.42 0.29
Employment 0.71 1.20 1.46 1.43 1.42 1.72 1.50 0.72
Exports 2.46 4.04 4.98 491 4.96 6.37 5.58 4.57
Imports 2.52 3.97 4.67 4.56 4.53 5.78 5.22 4.10
Net exports* 5.38 9.89 15.41 14.62 13.44 19.51 16.77 8.30
Gov't purchases 0.98 2.03 332 3.16 2.96 4.19 3.31 1.21
GNP deflator 0.34 0.63 0.95 0.90 0.77 1.18 0.90 0.70
Inflation* 0.18 0.25 0.28 0.27 0.28 0.42 0.39 0.50

Notes: Application of these filters involves loss of data points at both ends of the sample. For consistency, the moments reported are for the
truncated sample 1952:1 - 1988:1 (the longest period available for the K=20 band-pass filter). Except for starred variables, natural logs were taken
before filtering.



TABLE 2, cont'd.

B. First-order autocorrelation

K: truncation point for band-pass filter Moving Hodrick- First

Variable 4 8 12 16 20 average Prescott difference

GNP 0.79 0.87 0.91 0.91 0.91 0.87 0.84 0.31
Cons: durables 0.78 0.88 0.92 0.92 0.91 0.80 0.76 -0.05
Cons: nondurables 0.81 0.88 0.91 0.91 0.91 0.85 0.82 0.24
Cons: durables 0.75 0.86 0.91 0.90 0.90 0.79 0.75 0.10
Investment 0.83 0.90 0.93 0.93 0.93 0.91 0.89 0.44
Hours per person 0.80 0.86 0.88 0.88 0.88 0.81 0.78 0.26
Employment 0.84 0.89 0.92 0.92 0.92 0.91 0.90 0.61
Exports 0.78 0.89 0.92 0.91 0.91 0.74 0.67 -0.19
Imports 0.78 0.87 091 0.90 0.90 0.76 0.72 -0.11
Net exports* 0.84 0.93 0.96 0.96 0.94 0.92 0.90 0.31
GovV't purchases 0.85 0.95 0.97 0.97 0.96 0.96 0.94 0.32
GNP deflator 0.86 0.92 0.96 0.95 0.94 0.94 0.90 0.75
Inflation* 0.65 0.82 0.86 0.86 0.85 0.28 0.20 -0.47

Notes: Application of these filters involves loss of data points at both ends of the sample. For consistency, the moments reported are for the
truncated sample 1952:1 - 1988:1 (the longest period available for the K=20 band-pass filter). Except for starred variables, natural logs were taken
before filtering.



TABLE 2, cont'd.

C. Contemporaneous correlation with GNP

K: truncation point for band-pass filter Moving Hodrick- First

Variable 4 3 12 16 20 average Prescott difference

GNP 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
Cons: durables 0.77 0.75 0.68 0.68 0.67 0.64 0.65 0.56
Cons: nondurables 0.72 0.80 0.81 0.81 0.82 0.77 0.77 0.47
Cons: durables 0.50 0.69 0.73 0.72 0.75 0.70 0.70 0.40
Investment 0.88 0.87 0.83 0.83 0.85 0.81 0.82 0.74
Hours per person 0.85 0.84 0.82 0.82 0.83 0.80 0.80 0.68
Employment 0.83 0.85 0.87 0.86 0.87 0.86 0.85 0.71
Exports 0.33 0.28 0.28 0.29 0.33 0.28 0.27 0.21
Imports 0.68 0.76 0.74 0.75 0.78 0.70 0.69 0.29
Net exports* -0.36 -0.41 -0.37 -0.37 -0.42 -0.35 -0.36 -0.13
Gov't purchases 0.15 0.10 0.25 0.24 0.17 0.28 0.23 0.24
GNP deflator 0.09 -0.11 -0.34 -0.32 -0.32 -0.38 -0.38 -0.11
Inflation* 0.32 0.34 0.31 0.30 0.35 0.22 0.23 0.07

Notes: Application of these filters involves loss of data points at both ends of the sample. For consistency, the moments reported are
for the truncated sample 1952:1 - 1988:1 (the longest period available for the K=20 band-pass filter). Except for starred variables,
natural logs were taken before filtering.




TABLE 3

Effect of Hodrick-Prescott filter with time-varying weights

observation variance
1 1.7468
2 1.2320
3 1.0222
4 0.9970
6 1.1831
8 1.4053
12 1.6038
16 1.6167
24 1.6614
32 1.6967
48 1.6985
60 1.6990
90 1.6990




TABLE 4

Moving-average weights for business-cycle filters

lag BP(6,32) BP(2,32) BP(2,8)
0 0.2777 0.9425 0.7741
1 0.2204 -0.0571 -0.2010
2 0.0838 -0.0559 -0.1351
3 -0.0521 -0.0539 -0.0510
4 -0.1184 -0.0513
5 -0.1012 -0.0479
6 -0.0422 -0.0440
7 0.0016 -0.0396
8 0.0015 -0.0348
9 -0.0279 -0.0297
10 -0.0501 -0.0244
11 -0.0423 -0.0190
12 -0.0119 -0.0137




FIGURE 1: Ideal filters

A. Ideal low-pass filter: cutoff frequency = 32 quarters
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FIGURE 2: Constrained approximate low-pass filters
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FIGURE 3: Constrained approximate band-pass filters (6-32 quarters)
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Effects of alternative filters on GNP

FIGURE 4
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FIGURE 6: Alternative filters vs. an ideal high-pass filter (cutoff=32 quarters)
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FIGURE 8: Effects of alternative Hodrick-Prescott filters on GNP

Hodrick-Prescott with lam=400 vs. BP(2,8) with K=3
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Hodrick-Prescott with lam=100 vs. BP(2,8) with K=3




FIGURE 9: Alternative annual Hodrick-Prescott filters

Hodrick-Prescott Filter for lamda = 10, 100, 400
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FIGURE 10: Annual Hodrick-Prescott filters in finite samples
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FIGURE 11: Lag weights for business-cycle filters

A. Lag weights for the BP(6,32) filter with K=12
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