NBER WORKING PAPER SERIES

DO FIRMS SMOOTH THE
SEASONAL IN PRODUCTION IN
A BOOM? THEORY AND EVIDENCE

Stephen G. Cecchetti
Anil K. Kashyap
David W. Wilcox

Working Paper No. 5011

NATIONAL BUREAU OF ECONOMIC RESEARCH
1050 Massachusetts Avenue
Cambridge, MA 02138
February 1995

We would like to thank Michael Woodford for very useful conversations, as well as Andrew
Abel, William Bell, Mark Bils, William Cleveland, Stephen Cosslett, Spencer Krane, Pok-sang
Lam, Jeffrey Miron, Nelson Mark, Mark Watson, Alan Viard, and participants at numerous
seminars for comments and suggestions. Donald Andrews generously supplied the GAUSS
programs used to perform some of the reported calculations. Cecchetti and Kashyap
acknowledge the financial support of the National Science Foundation, and research support of
the Federal Reserve Banks of Cleveland and Chicago respectively. This paper is part of NBER’s
research programs in Economic Fluctuations and Monetary Economics. Any opinions expressed
are those of the authors and not those of the National Bureau of Economic Research.

© 1995 by Stephen G. Cecchetti, Anil K. Kashyap and David W. Wilcox. All rights reserved.
Short sections of text, not to exceed two paragraphs, may be quoted without explicit permission
provided that full credit, including © notice, is given to the source.



NBER Working Paper #5011
February 1995
DO FIRMS SMOOTH THE
SEASONAL IN PRODUCTION IN
A BOOM? THEORY AND EVIDENCE

ABSTRACT

Using disaggregated production data we show that the size of seasonal cycles changes
significantly over the course of the business cycle. In particular, during periods of high
economy-wide activity, some industries smooth seasonal fluctuations while others exaggerate
them. We interpret this finding using a simple analytical model that describes the conditions
under which seasonal and cyclical fluctuations can be separated. Our model implies that seasonal
fluctuations can safely be disentangled from cyclical fluctuations only when the marginal cost
of production is linear, and the variation in demand and cost satisfy certain (restrictive)
conditions. The model also suggests that inventory movements can be used to isolate the role
of demand shifts in generating any interaction between seasonal cycles and business cycles.

Thus, the empirical analysis involves studying the variation in seasonally unadjusted
patterns of production and inventory accumulation over different phases of the business cycle.
Our finding that seasonals shrink during booms and that firms carry more inventories into high
sales seasons during a boom leads us to conclude that for several industries, marginal cost slopes
up at an increasing rate. Conversely, in a couple of industries we find that seasonal swings in
production are exaggerated during booms and that inventories are drawn down prior to high sales
seasons, suggesting that marginal costs curves flatten as production increases. Overall, we find

considerable evidence that there are non-linear interactions between business cycles and seasonal

cycles.
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1 Introduction and Motivation

A growing literature examines the shape of the aggregate production function.
Recently, the orthodox view that marginal cost curves are upward-sloping has been
attacked by Hall (1991) and Ramey (1991), who argue that a number of important
macroeconomic phenomena are consistent with declining marginal costs, i.e. increas-
ing returns to scale or agglomeration economies. This paper develops new evidence
on the shape of the production function based on changes in the seasonal pattern of
production over the business cycle.

We find that in several industries, the seasonal in production is smaller during
booms and that firms carry more inventories into high sales seasons during a boom. In
a few other industries, however, we find that the seasonal in production is exaggerated
during booms and that inventories are drawn down more prior to high sales seasons,
suggesting that marginal cost curves flatten, creating incentives to bunch production.
Overall, we find considerable evidence that there are non-linear interactions between
business cycles and seasonal cycles.

To help interpret this evidence, we present a simple analytical model of production
decisions in the face of demand and costs that fluctuate both seasonally and cyclically.
The model suggests that inventory movements of the type we observe are revealing
for the shape of the cost function. The model also has implications for seasonal
adjustment. In particular, seasonal fluctuations can be disentangled from cyclical
fluctuations only when the marginal cost of production is linear and the variations in
demand and cost satisfy certain (restrictive) conditions.

This work builds on that of Barsky and Miron (1989), Beaulieu and Miron (1991
and 1992), Krane (1993), and Miron and Zeldes (1988 and 1989) all of whom use
information on seasonal cycles to provide insights into economic behavior; Blan-
chard (1983), West (1986), Krane and Braun (1991), Fair (1989) and Kashyap and
Wilcox (1993) who analyze the cost structure of production; Ghysels (1991), who
documents the statistical asymmetries in seasonal fluctuations; and Blinder (1986),

and Blinder and Maccini (1991), who study inventories and production smoothing.!

West’s (1990) work using inventory fluctuations to distinguish supply from demand shocks is
also related.



Our work is closest to that of Beaulieu, Mackie-Mason and Miron (1992), who suggest
that capacity constraints can change the nature of the seasonal variation in output.
We view their finding as complementary to ours. An important distinguishing fea-
ture of our effort is that our model allows us to catalogue the conditions under which
cyclical and seasonal variation are related, and shows how to use these interactions
to learn about the shape of industry cost curves.

The remainder of this paper is divided into four sections. The next section es-
tablishes the basic stylized facts that we seek to explain. Section 3 presents a model
of the production decisions of monopolistically competitive firms that can be used to
interpret these facts. Section 4 presents a more focused investigation of the data, and

the final section contains our conclusions.

2 Basic Facts About the Links Between Business

and Seasonal Cycles

Real-time analysis of the detailed components of industrial production suggests
that interactions between seasonal and cyclical shifts are quite common. One example
of such an interaction comes from the recent experience of firms in the paper and
pulp industry. Near the end of the expansion of the 1980s, not seasonally adjusted
(NSA) data showed that the industry was operating continuously at very high rates
of capacity utilization. But, because production had fluctuated seasonally in the
past, the reported seasonally adjusted (SA) numbers showed variation in output.
In particular, there were reported declines in SA output during the typically-high-
production months.?

To demonstrate the impact of cycles on seasonals, we calculate the differences in
the seasonal component of production between high and low points of the business

cycle. Define three indicator variables: I} for ‘high’ levels of activity, If for ‘low’

2This example is consistent with Beaulieu, Mackie-Mason and Miron’s (1992) observation that
capacity constraints could affect seasonality.



levels of activity, and I* for ‘normal’ levels of activity, such that

1 if Ay> A 1 if Ay < A
Ih _ t h ’ Ite _ t £ (1)
0 otherwise 0 otherwise
and I? = 1 — I} — If, where ) is a (stationary) measure of aggregate economic

activity, and Ay and )\, are the high and low threshold levels for A,.
Now consider regressing production on seasonal dummy variables interacted with

each of the indicator variables:

12 12 12
qt— G = Zb?sitlth + ) bPsall + besitff + uy (2)
in1 =1 im1

where ¢ is the log of industry output, s;; is a dummy variable that takes on the value 1
in season i and 0 otherwise, and 7, is a measure of trend output in the industry —
we use the twelve-month centered moving average of ¢;.2 If b = b? = bf, then (2)
simplifies to the standard model of fixed seasonality. We, of course, are interested in
the possibility that the b’s differ across states of the business cycle.

As a crude method of assessing the importance of any such differences, we compute

the ratio of the variance of the b's to the variance of the b%'s:

Var(b})

R(Ae, Ah) = W .

3)

We interpret values of R that are less than 1 as indicating that the amplitude of
seasonal variations in output is less when aggregate activity is high. We measure
the state of the business cycle, )\;, using seasonally adjusted capacity utilization in

manufacturing lagged one month with its seasonal means removed.*

3The use of a twelve-month moving average has the advantages that the estimated g, will not have
any fixed seasonal component in it, and that even if ¢; has a unit root, (g — 7,) will be stationary.
While we could choose any moving average with span equal to a multiple of the seasonal frequency
of the data, choices longer than twelve tend to de-emphasize the movements in the seasonals relative
to movements away from the ‘trend.’

4We use lagged capacity utilization to emphasize that it is responses to predictable aggregate
fluctuations that are important for these measurements. This point is discussed in more detail in
Section 3 below. But since the series is so highly autocorrelated, the use of contemporaneous values
has virtually no impact on the results.



Table 1: Ratio of the Variance of Seasonal Means During Periods of High Levels of Activity to the Variance of Seasonal
Means During Low Levels of Activity, Monthly 2-Digit Industrial Production, 1956:01 to 1994:01

0 ) ®) @ 5 ©) @ ) ) (10)
Test for Variance Test for Variance
Industry R(50,50) | R(15,85) | equality of due to Industry R(50,50) | R(15,85) | equality of due to
b* and b* | Seasonality b* and b* | Seasonality

20 Foods 0.83 0.74 0.08 0.91 30 Rubber 1.25 0.98 0.01 0.48
(—1.50) (—1.98) (0.70) (—0.09)

21 Tobacco 0.75 0.73 0.01 0.84 31 Leather 1.24 1.07 0.00 0.67
(—2.57) (—1.28) (0.83) (0.46)

22 Textiles 0.97 0.87 0.00 0.76 32 Clay, Glass 0.99 0.79 0.00 0.81
(—0.19) | (—0.81) and Stone (—0.06) | (—0.82)

23 Apparel 1.43 1.25 0.00 0.82 33 Primary 1.25 0.71 0.11 0.32
(2.07) (1.05) Metals (0.53) (—1.08)

24 Lumber 0.87 0.55 0.00 0.76 34 Fabricated 0.66 0.58 0.00 0.40
(—0.68) (—2.33) Metals (—1.42) (—-1.18)

25 Furniture 1.18 1.22 0.00 0.57 35 Nonelectrical 0.73 1.23 0.00 0.32
(0.82) (0.93) Machinery (~0.80) (0.60)

26 Paper 1.06 0.69 0.00 0.78 36 Electrical 1.78 1.97 0.00 0.61
(0.32) (—2.65) Machinery (2.06) (1.82)

27 Printing 1.07 1.35 0.00 0.77 37 Transportation 1.89 3.59 0.06 0.47
(0.29) | (1.03) (2.23) (4.14)

28 Chemicals 0.80 0.70 0.00 0.56 38 Instruments 0.88 0.97 0.00 0.50
(—0.87) (—2.19) (—0.52) (—0.11)

29 Petroleum 0.78 0.59 0.03 0.72 39 Miscellaneous 1.10 0.79 0.00 0.73
(=1.19) | (~1.60) (0.49) | (—1.31)

Columns 2,3,7 and 8 report estimates of R(Az, An). The numbers in parentheses are t-ratios for the hypothesis that Var(b}) = Var(bf), where the
standard error of the ratio is calculated using the delta method and the Newey-West covariance matrix (with 24 lags) for the vector of the b*’s and the
b®’s. Columns 4 and 9 report the p-value for the test that all of the b?’s equal all of the #¢’s, when A* = A¢ equal the 50th percentile of the data. Columns
5 and 10 of the table report to R? of the regression of g; — 7, on seasonal dummy variables. For SIC #37, Transportation, September through December
of 1970 are omitted from the sample to avoid any contamination of the seasonal from the UAW strike. The Apparel series suffered a discontinuity in the
source data at the end of 1976; therefore, for that industry we use only the data up through 1976:12.




Table 1 reports estimates of R for the 20 two-digit manufacturing industries. We
report results for two (Ap, A¢) pairs. The first sets An and Ay both equal to the median
value for A; in the data, so I{* = 0; these results are reported in the column labeled
‘R(50,50).” The second sets Ap equal to the 85th percentile of A; and A, equal to the
15th percentile; these results are reported in the column labeled ‘R(15,85)." For the
former contrast, we also test for the equality of the b?’s and b%’s. The significance
level for the x? test for equality is reported in the column labelled ‘Test for equality of
b" and b¢.’ 5 Finally, we also report the t-ratios for the tests that Var(b}) = Var(b?),
which is equivalent to the test for R equal 1; these are the numbers in parentheses.®

In almost all cases, we strongly reject the hypothesis that »* = b%. Interestingly,
there are rejections on both sides of the null. In some industries, including food,
lumber, paper, chemicals, petroleum, and fabricated metals, the estimated value of
R is less than 1, suggesting that the variance of the seasonals is smaller near a
peak than near a trough. In other industries, including apparel, furniture, printing,
nonelectrical and electrical machinery, and especially transportation, R exceeds 1
implying a positive correlation between the cycle and the variance of the seasonals.
Finally, there is the case of rubber, leather, and instruments, where R = 1, indicating
no apparent correlation between the amplitude of the seasonals and the state of the
business cycle.

To determine whether the interactions are economically meaningful, the Table
also shows the fraction of the total variance that is due to seasonality — i.e. the R?
from a regression of ¢; — @, on seasonal dummies alone. As emphasized by Barsky and
Miron (1989), these series are very seasonal, implying that the interactions could lead
to important shifts in the overall variability of the series. For example, an average
of 91 percent of the variance of (detrended) food production can be explained by
seasonal shifts. During a boom, however, seasonal swings are 26 percent smaller than
during a recession.

Overall, we read Table 1 as providing substantial prima facie evidence for asser-

5We only report results for the test corresponding to the ‘(50,50)’ case. For the ‘(15,85) case, all
of the p-values are 0.00, with the exception of Tobacco which rises to 0.26.

6We calculate the asymptotic standard error for the difference in the estimated variances from
the covariance matrix of the estimated s and b¥s using the delta method. The covariance matrix
is computed using the Newey and West (1987) procedure with 24 lags.



tion that there are important interactions between seasonal and cyclical variation in
production. More importantly, these interactions suggest that standard seasonal ad-
justment procedures may miss certain systematic patterns in the data. For instance,
the results imply that in some cases, faulty seasonal adjustment could lead policy-
makers to misread the strength of an expansion. Given the potential importance of
this finding, the remainder of the paper attempts to explain why seasonal cycles and

business cycles might be connected.

3 Modeling Seasonal and Cyclical Interactions

We develop a two-period model that describes the production problem faced by
a set of monopolistically competitive firms in a particular industry.” In this industry,
both demand and the cost of production may fluctuate cyclically and seasonally.

An important feature of the model is that the representative firm may want to
take advantage of the capacity that is idle during some seasons to help satisfy the
demand in other seasons. In particular, during a business cycle boom a producer may
smooth out seasonal variation in production by accumulating enough goods in low-
demand periods to satisfy part of the seasonal upswing in the high-demand periods.
An essential predicate of the model is that cyclical influences on demand and cost
persist across the seasons; in addition, capacity is costly to adjust at the cyclical

frequency.

3.1 The General Model

Our treatment follows that of Rotemberg and Woodford (1993),% in that we exam-
ine an industry that is composed of a large number of monopolistically competitive
firms, indexed by i. This specification allows us to highlight the channels through
which demand and cost interact. However, as we will show, many of the convenient

assumptions used in solving the model could be relaxed. For instance, we could just

"We ignore the case of perfect competition throughout the analysis in order to allow for the
possibility of increasing returns to scale in production.
8See the initial setup in Section 1 of their paper.



as easily solve the production scheduling problem for a monopolist facing any smooth
downward sloping demand function.

Firm i produces output @ in period t; output of the industry as a whole is
measured in terms of a composite good, whose quantity we denote Q,.° The cost of
producing @;; is C(Q; St, At), where S; indexes the state of the season and X indexes
the state of the business cycle.!’ The form of this cost function is quite general. In
particular, we allow the marginal cost curve to be either upward sloping or downward
sloping, and we allow the cost function to shift both seasonally and cyclically.

Firms may carry inventories from one period to the next; we denote sales of firm
i as X4 and inventories as [;.

Firm ¢ faces the following inverse demand function:

Py Xt

L G A 4
Pt D(Xt’St’ t) ) ()

where P;, is the price of firms ¢’s production in period t, P; is the price of the composite
good in period t, and X; is aggregate sales of the composite good in period t.!! Aside
from assuming that it is monotonically decreasing in the relative quantity, we place
no restrictions on the shape of D.

Finally, we assume that firms pay a storage cost h(I;) to carry inventories from
period ¢t into period t + 1. We allow I; to take on negative values (interpreted as
backlogged orders), in which case h(I;) should be thought of as the cost of stocking
out. The storage/stockout cost is assumed to be increasing in the absolute value of
the level of inventories, so that A’ > 0 for I > 0, and A’ < 0 for I < 0. It is also

convenient to assume that A(0) = 0.

9Formally, we could assume that there are a continuum of firms defined on a unit interval, and
that the total quantity of the composite good produced in the industry is the integral over i of
individual firm production.

10This cost function can be derived using a variety of assumptions about the labor market. For
instance, if, while making employment decisions, firms face a wage setting curve given by w(Li:),
where L;; is labor hired, and the labor requirement to produce Q;; units of output is L(Q;:), then the
cost function is C(Qit) = w[L(Qit)]L(Qit). Inasmuch as there are many ways to interpret w{(L;:),
we do not need to commit ourselves to one particular model of the labor market, and instead work
with C(Qi¢) directly.

1The function D can be derived from a number of different assumptions about market structure
— e.g. Dixit and Stiglitz (1977).



The firm chooses production, sales and inventories to solve:

2
Xit
max D( ;S,,\)Xi—C S8 A) = h(T 5
{Xit},{fu}; X t t (Qit; Se, A) (Ti—1) (5)

subject to

Iy = Lioa+ Qi — Xut

Ijp and I;» given ,

where [,g is the initial level of inventories and I;» is the terminal level of inventories.

By convention, we assume that the second period is the high output season, so
Qi2 > Qi;'? and that X is a positive measure of the business cycle, implying that
L > 0.

At the optimum, marginal revenue must equal marginal cost in each period. In
addition, the marginal cost of storage must equal the difference between the marginal
cost of production in the two periods. Defining h’ as the slope of the storage cost
function, Cq as marginal cost, and g as marginal revenue, we write these first-order

conditions as

X
g (X_ll’ S1, /\) ~ Co(Qa;81,A) = 0 (6)

Xi
0 (X;,sz, A) — Co(QniSp, ) = 0 (7)
_CQ(Qil;SI) A) + CQ(QiQ;SQ) A) - h,(Iil) =0 ) (8)

where the marginal revenue function is defined by

Xt Xit Xt /(Xit )
—  Sp, A =D —,S5;, A —D' [ —, 8, A 9
g(Xtv t; ) (Xt) t) )+Xt Xt) t) ) ( )

and D’ is the derivative of demand with respect to sales.

12We could just as easily define the season with reference to the shift in demand and/or cost.



An alternative way to write equation (8) (using the continuous time approxima-
tion) is:
dg(Xit/Xta S) A)

< — W(1). (10)

This reorganization of the equation emphasizes the fact that if marginal revenue
differs across seasons, firms will keep accumulating inventories to sell in the expensive
season until the cost of storage becomes prohibitive. Since we have thus far placed no
significant restrictions on the nature of fluctuations in marginal revenue, this insight
is helpful because it tells us that we can infer some things about marginal revenue
shifts by looking at how inventories are adjusted.

The model’s predictions about how seasonal patterns change over the course of
the business cycle are derived by totally differentiating either equation (6) or (7) with
respect to both S and A:

Qsr = Lo/ X5 _ Cosx — CaasQx — Qs(Cage@x + Cag)
Coq

) (11)

where (}s and @ are the seasonal and cyclical changes in production respectively.
Equation (11) describes the conditions under which seasonal fluctuations will vary
with the state of the business cycle. The first term in the numerator of the right
hand side of equation (11) measures the change in marginal revenue across seasons
over the course of the business cycle. The remaining terms describe the curvature
of the marginal cost function. Thus, in principle, variation in the seasonal pattern
of production over the course of the business cycle could be due to either cost or
demand factors. For instance, if demand is spread differently across seasons in booms
and busts, then the seasonality of production should change over the business cycle.
Alternatively, to see why costs can matter, imagine a cyclical boom that increases
demand across all seasons by an equal amount. In this case the demand shifts are not
directly responsible for any connection between seasonal cycles and business cycles.
Furthermore, if the marginal cost curve is linear, then the marginal cost of producing
in the high demand state relative to producing in the low demand state will not be
affected by expansion, so that the seasonality in production will not change. But,

with a non-linear marginal cost curve, the relative cost will vary according to the



state of demand, and hence, will depend on the location of the producer on the cost
curve. Indeed, if the marginal cost curve is convex, then the relative cost of producing
in the high demand season will be greater during a boom and the firm will smooth
the seasonal in production by shifting more production into the low-demand season.

The preceding discussion describes the identification problem that one faces in
trying to explain the interactions between business cycles and seasonal cycles ~ with-
out some information about the nature of demand variation, @ s) alone does not allow
us to infer the shape of the cost function.

There are two ways to resolve this identification problem. One is to rely completely
on additional theoretical restrictions to simplify equation (11). While this can be
done in many ways, the easiest is to both adopt the standard convention of imposing a
symmetric equilibrium and to be more specific about the source of seasonal or cyclical
fluctuations. For instance, if marginal revenue is assumed to vary only seasonally
or cyclically, but not both seasonally and cyclically, then ?1%%\' = ( and demand
shifts cannot be responsible for the interactions between the seasonal cycle and the
business cycle.!® Similarly, if the marginal cost curve does not shift both seasonally
and cyclically, some of the cost terms on the right hand side of (11) will be zero.

The alternative to using these sorts of theoretical restrictions is to estimate some
of the terms on the right hand side of (11). At first glance, this appears not to have
any advantages, since estimating demand or cost curves is notoriously difficult. But
here we can exploit the connection between shifts in marginal revenue and changes

in inventories. In particular, differentiating equation (8 ) with respect to A implies:

d%9(Xit/ X1, S, )
dSdA

= h"(D)I,, (12)

In other words, because inventories are used to arbitrage seasonal differences in the

13In a symmetric equilibrium, d(X:;){X,) = d(x;g/x.) = 0, which implies that da—-"‘%‘gg}ﬂl = gsa
-— the derivative of marginal revenue with respect to the season and the cycle is independent of
the level of demand. This means that, if we are willing to maintain that cyclical and seasonal
shifts have no distributional consequences, then the channels through which demand shocks can
affect production are limited considerably. In particular, since gg will be zero unless both seasonal
cycles and business cycles are caused by demand shocks, the symmetry assumption, along with
the assumption that either business cycles or seasonal cycles are cost based, would be enough to
guarantee that the sign of Qs could be used to infer information about firms’ cost functions.

10



return to selling goods, equation (12) tells us how shifts in seasonal differences in
marginal revenue over the business cycle will be reflected in inventory policy. Thus,
we can bound the importance of demand factors without having to estimate the
marginal revenue function directly.

Ultimately, we propose to resolve the identification problem by using both ad-
ditional theoretical restrictions and empirical estimates. On theoretical grounds we
assume that A” > 0. We are unaware of any work suggesting that marginal storage
costs are declining, so this assumption should not be controversial. If, as a bench-
mark, one further assumes that storage costs are linear, then A" is zero and the model
tells us that shifts in marginal revenue cannot be responsible for any interactions be-
tween business cycles and seasonal cycles! In other words, if storage costs are linear,
changes in the seasonal in production over the course of the business cycle must be
due to the non-linearity of the marginal cost curve.

Assuming that h” is strictly greater than zero, we must estimate of I to infer the
effects of shifts in marginal revenue. If we observe that firms’ inventory holdings do
not shift with the business cycle, I, = 0, this is a signal that the business cycle has not
shifted the difference in marginal revenue across seasons, so any changes in production
seasonals over the course of the business cycle must be due to non-linearities in the
marginal cost curve.

Overall, we propose to reorganize (11) as:

; Year (13)

— — Qs
Cqq Coq Cqo Cqq

[h” I ] Cqoee@s@x | Caosx | Cqqs
+ +
Caq

Provided we can sign the left hand side of (13), we can learn about the sign of the
sum of the four cost terms in (13). Surprisingly, the sign alone this tells us quite a
bit about the shape of firms’ cost curves.

For instance, suppose that the numerator and denominator had the same sign and
Cqq is also positive. In this case, one of the four terms in the numerator must be
sufficiently positive to be the dominant factor. By definition Qs and @ are positive,
so if Cgqq is the dominant positive term, the marginal cost curve would be convex —
it would look like a smooth version of the classic backward shaped ‘L’. Alternatively,

if the term involving Cggs is positive, this implies that the slope of marginal cost is

11



increasing with the seasonal cycle. Similarly, a finding that the term involving Cgga
is non-negative implies that the slope of marginal cost is increasing with the business
cycle. Both of these descriptions of the cost curve also amount to saying that the
firm faces a certain type of capacity constraint.

Finally the sign of the right hand side of equation (13) could be determined by the
term involving Cgsa. If Cqsy is positive, then the change in slope of marginal cost
across the seasons is bigger during a boom. Although this sort of shift may seem less
intuitive or plausible than the other three explanations for why the right hand side of
(13) could be positive, it still implies that the cost curve gets steeper in a particular
way — l.e., that marginal cost is ‘convex’. Thus, provided that Cgq is positive, if
right hand side of (13) is positive then firms face a marginal cost curve that becomes
steeper as output expands — capacity constraints.

Logically it is also possible that (13) is positive because the numerator and denom-
inator of the right hand side of (13) are both be negative. But, if both the numerator
and denominator are negative, then firms would face returns that are increasing at
any increasing rate. On theoretical grounds we find this description of technology
to be highly implausible. Therefore, simply by establishing that the right hand side
of (13) is positive we can determine both the shape and slope of the marginal cost
curve.

The same sort of reasoning can be used to understand the implications of the right
hand side of (13) being negative. In this case, if Cgq is positive, then firms would
be operating with a concave marginal cost function — i.e. the marginal cost function
rises but is becoming less steep as output increases. Loosely speaking, this sort of
flattening out of the marginal cost curve might be due to learning. But, regardless of
the reason for the flattening out, this sort of technology will give firms an incentive
to try to bunch their production.

Alternatively, the right hand side of (13) could be negative because the numerator
is positive and the denominator is negative (Cgg < 0, but Cggg > 0). In this case,
marginal cost is downward sloping, but at a decreasing rate. Again, marginal costs
flatten out in a way that gives firms an incentive to bunch production.

To summarize, the model shows precisely why decoding information contained in

12



the sign of Qg requires information on which shocks generate seasonal cycles and
business cycles. Fortunately, the importance of marginal revenue shocks can always
be inferred from inventory patterns. (In some cases, determining the relevance of
marginal revenue shocks might not even depend on using data on inventories.)

If we infer that demand shocks are not important, then the sign of Q g, will identify
the shape of the cost function. If Qg) is positive, then the ratio of the second to the
‘third’ derivative of the cost function is negative and firms’ marginal cost curves will
be flattening out at higher levels of production. If Qg is negative, seasonal cycles
would be smoothed in booms because firms face capacity constraints.

Conversely, if demand shifts are important then the sign of @gx will not identify
the shape of the cost function. Instead, it becomes necessary to consider the signs
of both I, and @Qg) and in some cases it may not be possible to pin down the shape
of the cost function. For instance, if firms hold fewer inventories going into a high
demand season during a boom, i.e. I, < 0, then finding that Qg» is also negative
does not unambiguously give us information about firms’ cost functions. On the
other hand, if firms bring more inventories into a high demand season during a boom,
i.e. Iy > 0, then finding that Qg is also negative strongly suggests that firms face

capacity constraints.

4 Empirical Results

The objective of this section is to measure the extent of the interactions between
seasonal and cyclical fluctuations using 2-digit industry-level data on industrial pro-

duction.

4.1 The Estimating Equation and the Inference Issue

Equations (6) and (7) can be used to derive an expression for production in each

period as a function of the season and the stage of the business cycle:

Q=0Q(S5 ). (14)

13



Taking a second-order Taylor series approximation of Q(,-) about @ = Q(S,}), we

have

Q-T = Qs(S-F)+Q0 N+ 38 ~HO-N)

+%QSS(S -5+ %QM()\ — 2. (15)

Since S = S?% we can, without loss of generality, assume that Qgg = 0. Strictly
speaking, equation (15) applies to the level of production; in line with previous work,
however, we blur the distinction between levels and logs, and apply the equation to
the logarithmic (rather than arithmetic) difference between @; and Q,.'*
Interpreting ln@t as a linear time trend plus a possibly nonstationary random

variable, and reverting to the notation of Section 2 we have:

12 12
q: = at + ZU,‘S“ + Zp,—s,-t)\t + 5Af + €t (16)

i=1 i=1
where s; and \; are as defined in Section 2; «, 0, p and § are parameters; and ¢;
is the random element of g,.1° (Notice that by including a seasonal dummy variable
for all twelve months it is not necessary to explicitly include either a constant or the

level of X in (16), since these are just the averages of the o;’s and p;’s respectively.)

Defining & and p as the seasonal means of the o;’s and p;’s we can rewrite (16) as

12 12
@ = at+z 0i = T)(sit — s121) + D_(04 — T)s12t + T ) sae

i=1 i=1
12

+Z ) (55 — s12¢ At"l"Z(Pz P)sizehe + B Y sithe + 6A] + €
i=1 i=1
12

= at+2ﬁzszt+z¢1 1tAt‘*‘6A +6t, (17)

=1 i=1

where

ﬁi = U,'—ff—, Z=1,,11

4This can be justified by use of the approximation that (Q/Q) —1~InQ —InQ.
15Modeling the error in (16) as nonstationary is a more robust way of removing the trend from ¢,
than the moving average estimates of §, used in Section 2.
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Pz = T
¢’i = p’l:_ﬁv z:17111
b2 = P

S’i = Si — 812 2211)11

12
Sir = Zsit:l Vvt .
i=1

The fact that ¢, may be nonstationary leads us to estimate the first-difference of

(17):

1 11
Ag = a+ Y Bi(Sit — Su-1) + D ¢i(MeSit — M—18it-1)

i=1 i=1

+PAN + 6AN + Ag, (18)

where @ = o + Eg(A¢;) and A& = Aer — Eo(Ae;). Eo(Ag) is the drift in e;.
Most of the hypotheses of interest can be addressed by considering the quantity:

1
D= E(ﬁi +¢:M)? .

This is analogous to the square of the b;’s in equation (2) that are used in the com-
putation of R. If D; shrinks as X increases, then we can conclude that seasonals are
smaller in booms, i.e. @gx < 0. To study this, we calculate

4D,

d; = | s = (Bi + M) s

which simplifies to d; = §¢; since A is mean zero.

We examine three properties of d, the vector of d;.!® First, we count the number
of elements of d that are negative. Second, we test H, : d = 0 against H, : d # 0.
And, finally, we use Andrews (1994) directed Wald statistic to examine the test of
H, : d = 0 versus the restricted alternatives that H, : d < 0. The first accords with

@ sx negative suggesting capacity constraints — steepening marginal cost, while the

16Using the fact that the 8;’s and ¢,’s are deviations from means, we can calculate ;2 = — Yoty 6
and ¢13 = — E:; ¢;. This means that we can treat d as having twelve elements.
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Table 2: Results of the OLS Regression of Log Output on Seasonals and
Seasonal/Cyclical Interactions
Monthly 2-Digit Industrial Production, 1956:01 to 1994:01

Number of | p-value for | p-value for
Industry dis <0 H,:d#0 | H,:d <0
20 Foods 7 0.00 0.00
21 Tobacco 9 0.25 0.05
22 Textiles 7 0.00 0.11
23 Apparel 4 0.04 0.90
24 Lumber 8 0.01 0.21
25 Furniture 6 0.01 0.01
26 Paper 5 0.00 0.02
27 Printing 5 0.13 0.61
28 Chemicals 7 0.00 0.01
29 Petroleum 8 0.01 0.00
30 Rubber 5 0.03 0.46
31 Leather 6 0.00 0.10
32 Clay, Glass and Stone 4 0.00 0.11
33 Primary Metals 4 0.08 0.31
34 Fabricated Metals 8 0.00 0.01
35 Nonelectrical Machinery 7 0.01 0.12
36 Electrical Machinery 2 0.00 0.98
37 Transportation 3 0.00 0.74
38 Instruments 6 0.00 0.00
39 Miscellaneous 6 0.02 0.71

Results refer to estimation of equation (18). See the text for definitions and descriptions and Table 1
for a description of the data.

second implies Qg positive, suggesting that marginal cost flattens out.

4.2 Ordinary Least Squares Results

We estimate equation (18) using monthly two-digit industrial production data.
Our first set of estimates, reported in Table 2, are based on defining A; to be capacity
utilization in total manufacturing, lagged one month, and estimating the covariance
matrix of the coefficient estimates using the Newey and West (1987) procedure with

24 lags.!” For each industry except apparel, the sample runs from January 1956

17The use of aggregate capacity utilization as a regressor is valid if we assume that it accurately
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through January 1994. The seasonal in the apparel series changed dramatically in
1977, so we truncate the sample for that industry in December 1976. The regression
for the transportation industry includes dummy variables from September through
December of 1970 to account for the auto strike.

The table reports results for the three hypotheses of interest. In the second col-
umn, we simply report the number of d;’s that are negative. In the third column
of Table 2 we report the p-value for the test that all of the d;'s are zero. By and
large, this hypothesis is overwhelmingly rejected, implying that virtually all of the
industries’ seasonals vary over the cycle. The fourth column presents the results for
the p-value for the Andrews directed Wald test.!® In eight of the twenty cases we
can reject at the five-percent level or better the hypothesis of no interaction in favor
of the hypothesis that seasonals contract in a boom. But again, transportation is an
outlier, in that its seasonals do not systematically shrink.

Figure 1 plots the estimated seasonal coefficients from equation (18) for four in-
dustries: Food, Petroleum, Electrical Machinery and Transportation Equipment. The
bars represent the 3;’s, the average seasonals; the solid line is 3; + ¢;Ap, the seasonal
of a typically high point of the business cycle; and the dashed line plots 3; + @i\,
the seasonal in at a typically low point of the cycle. A\, and A, are, respectively, the
means of \; above the 85th percentile and below the 15th percentile of A;.

Food and Petroleum provide striking examples of smoothing at the seasonal fre-
quency when output is high. By contrast, production of Transportation Equipment
and Electrical Machinery provide examples of the opposite phenomenon. For Trans-
portation, the added variability is due to the exaggerated reduction in production
during July, August and September — perhaps reflecting a tendency of automakers
to concentrate their annual shutdown more tightly around the end of the model year

when demand is strong. Interestingly, the same sort of bunching seems to occur in

measures the entirety of the common movement in production across industries. When this is true,
the error in the regression is uncorrelated with the aggregate indicator. The use of a virtually
contemporaneous measure of activity is consistent with our attempt to calculate responses that take
capacity as fixed.

18Calculations of Andrews test requires several choices. We set the weighting factor ¢ equal to
plus infinity, the number of repetitions for the Geweke-Hajivassiliou-Keane algorithm to 2500 and
the number of quantile repetitions to 5000.

17



Figure 1: Comparison of Seasonals over the Cycle for Selected Industries
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The bars are average seasonals, the solid lines are the seasonals during a peak, defined as average
capacity utilization conditional on utilization being in the top fifteen percent of the distribution, and
the dashed lines are the seasonals during a trough, defined as average capacity utilization conditional
on utilization being in the bottom fifteen percent of the distribution.
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Table 3: OLS Regression Implied Variance of Seasonal Means During High and Low
Levels of Aggregate Activity
Monthly 2-Digit Industrial Production, 1956:01 to 1994:01

Industry R(50,50) | R(15,85) Industry R(50,50) [ R(15,85)
20 Foods 0.90 0.81 30 Rubber 1.24 1.42
(—1.33) | (~1.53) (1.00) (0.814)
21 Tobacco 0.81 0.67 31 Leather 1.20 1.39
(—-2.11) | (—2.83) (1.15) (0.91)
22 Textiles 1.02 1.03 32 Clay, Glass 0.97 0.95
(0.19) (0.15) and Stone (-0.21) | (—0.22)
23 Apparel 1.16 1.32 33 Primary 1.25 1.51
(0.91) (0.72) Metals (0.58) (0.50)
24 Lumber 0.85 0.73 34 Fabricated 0.79 0.66
(—1.28) | (—1.55) Metals (-1.07) | (—1.58)
25 Furniture 1.08 1.13 35 Nonelectrical 0.91 0.84
(0.61) (0.56) Machinery (-0.33) | (—~0.43)
26 Paper 0.95 0.91 36 Electrical 1.96 3.63
(—0.39) | (-0.44) Machinery (4.09) (1.83)
27 Printing 1.08 1.16 37 Transportation 1.89 2.89
(0.46) (0.41) (3.13) (2.08)
28 Chemicals 0.77 0.61 38 Instruments 1.02 1.02
(—1.46) | (—2.02) (0.06) (0.05)
29 Petroleum 0.67 0.47 39 Miscellaneous 1.05 1.09
(-2.32) | (-3.52) (0.30) (0.27)

The table reports the ratio of the variance of the (8; + ¢:An)’s to the (8; + ¢:Ae)’s, where A, and A,
are the means of the aggregate indicator from the percentage of the distribution at the top of the
column. Values in parentheses are t-ratios for the test that the variance ratio equals one.

Electrical Machinery, another industry where short product life cycles might make
learning considerations important.

We can use the regression results to compute the ratio of the variance of the
seasonals during high and low points of the cycle, and quantify the differences shown
in Figure 1. The column labeled ‘(50,50)’ in Table 3 reports the results for the case in
which Aj, and A, are the means of the upper and lower 50 percent of the distribution
of )¢, while the column labeled ‘(15,85)’ reports the results for the case in which A,
and A; are defined using the 85th and 15th percentiles.

The results are very similar to those in Table 1. In fact, the correlation between
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the Table 1 and Table 3 point estimates is 0.95 for the (50,50) case and 0.79 for the
(15,85) case. There are a few cases, however, including Paper and ‘Miscellaneous,’
where the regressions suggest that there is no distinct decrease in the variability of
the seasonals but the simple calculations do; and Nonelectrical Machinery, in which

the opposite occurs.!®

4.3 Two-Stage Least Squares Results

Thus far, we have used total manufacturing capacity utilization as the measure of
the cycle. But both the intuition of Section 2 and the model of Section 3 suggest that
it is not aggregate activity that is important for seasonals, but whether an industry is
experiencing a boom. While we feel (reasonably) comfortable assuming that aggregate
manufacturing capacity utilization is exogenous to any given 2-digit industry, the
same cannot be said for own-industry utilization. Therefore, when we substitute
own-industry capacity utilization for aggregate manufacturing capacity in estimating
equation (18), we instrument for it using aggregate capacity utilization.

Table 4 reports results based on this procedure, using aggregate and squared
aggregate capacity utilization as instruments. As we did in producing Table 2, we
lag all measures of capacity by one month. It is comforting to see that, with the
exception of Petroleum where the p-values have suddenly grown, the results are very
similar to those in Table 2.2° The results in Table 3 are also robust to estimating the

regression by two-stage least squares.

4.4 Inventories

Finally, we return to the question of whether the seasonal and cyclical interactions
are more likely to be due to shifts in demand or to the shape of the cost function.
Recall, from Section 3, that firms could choose to damp the seasonal in production

when the economy is strong solely because marginal revenue increases by less in the

19A gain, the importance of the cyclical variation in seasonals can be gauged by noting that the
output series have substantial seasonality. The R?s of the regressions of Ag; on seasonals alone are
roughly equal to those reported in Columns 2 and 6 of Table 1.

2The results for Petroleum confirm those in the OLS case when the A? term is omitted.
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Table 4: Results of the 2SLS Regression of Log Output on Seasonals and
Seasonal/Cyclical Interactions
Monthly 2-Digit Industrial Production, 1956:01 to 1994:01

Number of | p-value for | p-value for
Industry dis<0 |[Hy:d#0| He:d<0
20 Foods 8 0.02 0.01
21 Tobacco 9 1.00 0.28
22 Textiles 7 0.05 0.37
23 Apparel 7 0.00 0.00
24 Lumber 9 0.02 0.03
25 Furniture 6 0.00 0.01
26 Paper 5 0.00 0.00
27 Printing 6 0.13 0.23
28 Chemicals 7 0.01 0.09
29 Petroleum 3 1.00 0.89
30 Rubber 5 0.00 0.01
31 Leather 7 0.44 0.27
32 Clay, Glass and Stone 4 0.01 0.24
33 Primary Metals 8 0.00 0.00
34 Fabricated Metals 8 0.00 0.09
35 Nonelectrical Machinery 8 0.00 0.01
36 Electrical Machinery 4 0.00 0.65
37 Transportation 6 0.00 0.80
38 Instruments 6 0.05 0.12
39 Miscellaneous 6 0.05 0.88

Results refer to estimation of equation (18). See the text for definitions and descriptions and Table 1
for a description of the data.
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high-demand season during a boom — i.e., because dz—g(-%%z is negative. As
shown by equation (12), the sign of this demand effect can be inferred from inventory
behavior. Intuitively, if shifts in marginal revenue are important, then firms will use
inventories to exploit differences in demand elasticities across periods. Therefore, we
can ascertain the importance of demand fluctuations by studying the sensitivity of
seasonal inventory patterns to the stage of the business cycle, I,.

In the model of Section 3, inventories are used to shift output from low to high
production periods. As a result, I, measures the impact of a boom on the level of
inventories that are carried into a high production season. So, I, is positive when a
boom causes an abnormal buildup of inventories prior to a high production season.

Using a Taylor-series expansion for inventories that is analogous to the one de-

scribed in our study of production seasonals suggests the following equation:

11 11
AL = v+ > uilSi — Sie—1) + D _wil MeSit — M—18i-1)
im1

i=1

+TAN + VAN + Ad, (19)

The coefficients w; measure the extent to which inventory seasonals are influenced by
the business cycle. Since inventories are typically measured at the end of a period, our
interest is in the correlation between w; A and the production seasonal in the following
month, (8;11 + ¢i+1)), evaluated at a typical measure of A. We equate the sign of I,
with the sign of this correlation.

Table 5 presents the results obtained by jointly estimating (19) and (18), using
NSA real inventory data calculated by summing final goods and work-in-process in-
ventories [see Blinder (1986, pg. 434)].2! The estimates of the correlation reported in
the Tables are calculated for X\ set equal to 3.7 over its sample mean of 81.6 — the
mean of the top half of the capacity utilization data. Our results show that seven of
the twenty correlations have t-ratios greater than 1.65 in absolute value, with three
of these positive and four negative. For the remaining thirteen industries, the corre-

lation is statistically indistinguishable from zero. Consequently, in only four of the

21Gince the BEA does not produce NSA real inventory data, we follow Miron and Zeldes (1988)
and construct them by calculating the seasonal factors from ratio of the NSA to the SA nominal
inventory data and then applying these ratios to the SA real inventory data.
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Table 5: Cyclical Change in Inventory Seasonals
Monthly 2-Digit Industry Data, 1958:01 to 1993:04

Industry Sign of I || Industry Sign of I
20 Foods 0.38 30 Rubber -0.71
(2.01) (4.71)
21 Tobacco 0.43 31 Leather 0.00
(2.96) (0.02)
22 Textiles 0.29 32 Clay,Glass —0.56
(1.38) and Stone (1.20)
23 Apparel 0.25 33 Primary —0.09
(1.07) Metals (0.46)
24 Lumber 0.45 34 Fabricated —0.64
(1.75) Metals (3.02)
25 Furniture 0.13 35 Nonelectrical 0.30
(0.41) Machinery (0.58)
26 Paper —0.09 36 Electrical -0.59
(0.37) Machinery (2.38)
27 Printing 0.42 37 Transportation 0.15
(1.00) (1.51)
28 Chemicals —0.48 38 Instruments 0.02
(2.35) (0.05)
29 Petroleum —0.36 39 Miscellaneous 0.13
(1.53) (0.27)

The table reports the estimated correlation between w;A and 3+ ¢;), with A equal to the mean of the
top 15 percent of the capacity utilization data, along with the t-ratio of the correlation. Standard
errors are computed by stacking equations (18) and (19), with the covariance matrix of the estimated
coefficients calculated using Newey and West (1987) with 24 lags.
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cases is it possible that demand shifts might be responsible for seasonals shrinking in
a boom.

Combining the information in Tables 2 through 5 it is possible to classify indus-
tries according to what our tests suggest about the shape of their cost curves. For
one set industries, including Food, Tobacco, Lumber, and Petroleum, the evidence
suggest that firms face capacity constraints. In these industries the seasonality in
production falls during a boom. Conversely, in the Electrical Machinery, Transporta-
tion and Rubber industries, production and inventory patterns suggest that marginal
production costs flatten out as output rises. In these industries, the seasonality in
production increases during booms. For a third set of industries, including Printing,
Chemicals and Fabricated Metals, our estimates indicate that demand shocks alone
could account for any interactions between business cycles and seasonal cycles. Fi-
nally, in the remaining industries we find that seasonal cycles and business cycles
interact, but not in a way that can be neatly summarized. For these industries, we
can detect a non-linearity but cannot be sure whether it comes because of cost or

demand shifts.

5 Conclusion

In this paper we uncover several new facts about the business cycle. In particular,
we show that there are significant interactions between the seasonal and cyclical
variation in production for many industries. To interpret these findings we develop
a model showing that the existence of an interaction depends on either nonlinearity
in marginal cost, or specific combinations of seasonal and cyclical movements in cost
and marginal revenue. More precisely, we show that seasonals will be smaller during
booms, all else equal, if firms face marginal cost curves that are convex upward (i.e.
their cost function have positive third derivatives).

Overall, our regression results suggest that industries fall into roughly four cate-
gories. For one group of industries, including Food, Tobacco, Lumber, and Petroleum,
the evidence suggest that firms face capacity constraints. In these industries the sea-

sonality in production falls during a boom. Conversely, in the Electrical Machinery,
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Transportation and Rubber industries, production and inventory patterns suggest
that they may benefit from some form of learning-by-doing which results in marginal
costs flattening out as production increases. In these industries, the seasonality in pro-
duction rises during booms. Interestingly, in Transportation, most of the increased
variability comes around the traditional time of annual model change-over, and so
may reflect the non-convexities of the sort studied by Ramey (1991) or Bresnahan
and Ramey (1992). Although the richness of the transportation industry data has
led many researchers to focus on this industry, our results suggest that it is some-
what atypical and we caution against extrapolating from results regarding this single
industry to the likely behavior of the economy as a whole.

For the other manufacturing industries, our results are less clear-cut. For one
set, including Printing, Chemicals and Fabricated Metals, our estimates indicate that
demand shocks alone could account for any interactions between business cycles and
seasonal cycles. Thus, there is no way to learn anything about these industries’ cost
functions from our tests. Finally, for the remaining industries we find that seasonal
cycles and business cycles interact, but not in a way that can be neatly summarized.
For these industries, we can detect a non- linearity but cannot be sure whether it
comes because of cost or demand shifts.

A number of questions warrant further study. First, how does one conduct sea-
sonal adjustment when seasonals interact with the business cycle? Standard sea-
sonal adjustment procedures are not appropriate in such circumstances. Krane and
Wascher (1991), building on work of Stock and Watson (1989,1991), develop a frame-
work that addresses some of the statistical difficulties involved in dealing with such
interactions, though in a multivariate framework. But there still remains the basic
issue of whether the interaction term should be treated as ‘seasonal’ or ‘cyclical,’ and,
at a more fundamental level, whether seasonal adjustment makes sense at all when
seasonals and cycles do not neatly decompose.

Second, how can we test more directly our assertion that sluggish adjustment of
capacity is the key element of the mechanism producing the seasonal/cyclical inter-
actions? One approach (that we plan to pursue) would be to study intensively a few

carefully chosen industries. In particular, by focusing on cross-industry differences
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in lead times for expanding plant size, as well as differences in the size of seasonal

and cyclical swings, we hope to design more powerful tests of the capacity constraint

hypothesis.
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