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ABSTRACT

This paper seeks to develop a structural model that can let data on asset returns and
trading volume speak to whether volatility autocorrelation comes from the fundamental that the
trading process is pricing or, is caused by the trading process, itself. Returns and volume data
argue, in the context of our model, that persistent volatility is caused by traders experimenting
with different belief systems based upon past profit experience and their estimates of future profit
experience.

A major theme of our paper is to introduce adaptive agents in the spirit of Sargent (1993)
but have them adapt their strategies on a time scale that is slower than the time scale on which
the trading process takes place. This will lead to positive autocorrelation in volatility and volume
on the time scale of the trading process which generates the returns and volume data. Positive
autocorrelation of volatility and volume is caused by persistence of strategy patterns that are
associated with high volatility and high volume.

At a rough level, the model is able to qualitatively reproduce the following features seen
in the data: (i) The autocorrelation function of a measure of volatility such as squared returns or
absolute value of returns is positive with a slowly decaying tail. (ii) The autocorrelation function
of a measure of trading activity such as volume or turnover is positive with a slowly decaying
tail. (iii) The cross correlation function of a measure of volatility such as squared returns is
approximately zero for squared returns with past and future volumes and is positive for squared
returns with current volumes. (iv) Abrupt changes in prices and returns occur which are hard to
attach to "news." The last feature is obtained by a version of the model where the Law of Large

Numbers fails in the large economy limit.
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1. Introduction

Our contribution in this paper is twofold. The first contribution is to
take a step towards investigating modifications needed in asymmetric
information asset pricing models so that their simulations are consistent with
stylized time series facts of stock returns, volatility of stock returns, and
trading volume. These facts, many of which are taken from the GARCH
literature (cf. Bollerslev, Chou, and Kroner (1882), Bollerslev, Engle, and
Nelson (1993)), are described in Section 3. The second contribution is to add
adaptive dynamics of belief formation in the context of asymmetric information
models.

To put it another way, this paper seeks to develop a structural model
that can let data on asset returns and trading volume speak to whether
volatility autocorrelation comes from the fundamental that the trading process
is pricing or, 1is caused by the trading process, itself. Returns and volume
data argue, in the context of our model, that persistent volatility is caused
by traders experimenting with different belief systems based upon past profit
experience and their estimates of future profit experience.

A major theme of our paper is to introduce adaptive agents in the spirit
of Sargent (1993) but have them adapt their strategies on a time scale that is
slower than the time scale on which the trading process takes place. This
will lead to positive autocorrelation in volatility and volume on the time
scale of the trading process which generates the returns and volume data.
Positive autocorrelation of volatility and volume is caused by persistence of
strategy patterns that are assocliated with high volatility and high volunme.

Here are some qualitative features seen in the data: (i) The
autocorrelation function of a measure of volatility such as squared returns or
absolute value of returns is positive with a slowly decaying tail for indices
and a faster decaying tail for individual stocks. (ii) The autocorrelation
function of a measure of trading activity such as volume or turnover is
positive with a slowly decaying tail. (iii) The cross correlation function

of a measure of volatility such as squared returns is approximately zero for



squared returns with past and future volumes and 1is positive for squared
returns with current volumes. (1lv) the autocorrelation functlon of returns is
small for indices and is approximately zero for 1ndividual stocks. We want
our model to be able to reproduce as many of these features as possible and
have the potential for useful generalizations.

We shall modify the Lang, Litzenberger, Madrigal (1992), hereafter (LLM),
two period competitive equilibrium model of trading volume by adding a choice
of bellefs based upon past performance using those bellefs. The LLM (1992)
model makes a nice platform for us to build upon because (1) they study both
conditioning on signal alone, and conditioning on both price and signal, (11)
they study both equilibrium returns and equilibrium volume, (iii) they study
and test the implications for data on returns and volume which 1s implied by
different verslions of their "static" model. The last point is especlally
important for us because they emphasize the use of volume of trading around
"event dates", 1.e., earnings announcement dates, to distinguish among four
versions of the asymmetric information model. Since we are Iinterested 1in
asymmetric information models that explain the dynamic facts about returns,
volume, and volatility that were outlined above, the LLM (1892) model makes a
natural platform to launch our study. Because of the extra complexity
introduced by the Iintroduction of adaptive dynamics of belief formation,
unlike LLM (1992), we shall restrict ourselves to the case of conditioning on
signal alone.

We shall follow their notation as much as possible. Denote random
variables by bold face type. There 1ls one risky assef and one risk free asset
with gross return R. Let (vt) be an exogenously given "fundamental value"
stochastic process where vi denotes the end of period t value of the risky
asset. The process {vt} will be assumed to be Independently and Identically
Distributed Normal with mean v and finite variance hﬁcvz (abbreviated as
IIDN(;,GVZ)) unless otherwise noted. Let p, denote the beginning of period t
price of the asset.

We shall model the impact of the trading process in attaching a price
process (pt) to the fundamental process {vt), but we shall ignore, as do LLM
(1992), the feedback from price into v, -

At the beginning of period t, given Informatlion set I1t and beginning of
period t wealth Wit trader i1 chooses ait units of risky asset, and b1t units
of bonds to maximize the conditional expectation of negative exponential

utility of end of period t terminal wealth W to solve the problem

it’



(1.1) Max(E[—exp(-rVit)]llit), s. t., ptait+bit=wit' "1t=(vt—Rpt)ait+Rwit'
Note that Vi is realized at the end of period t, but decisions must be made on
the basis of beginning of period t information Iit' Under standard
assumptions of conditional normality of v, given Iit’ (cf. LIM (1992, p. 321))

this is equivalent to choosing a, to solve

2
]ait-(r/z)a1t Var[vtll ].

it

(1.2) Max(E[(vt—Rpt)lIit

Here Var[vtllit] denotes the conditional variance of vi give the information

set Iit'

The first order conditions for optimum as, yield the mean variance demand

function,
(1.3) ait=D(ptIIit)!E[(vt—Rpt)lIit]/(rVar[vtlIit]).

Note that we use the notation "=" to denote "is defined to be". From now on
we shall always work with mean variance demand functions.

The paper is organized as follows. Section one contains the introduction
and some background on the kind of demand functions we shall use. Section two
is the main body of this paper. It develops the model and the dynamics. It
also gives a brief discussion of a simulation where traders are allowed to
choose their beliefs every T periods.

The model does a fair Jjob of accounting for the contemporaneous
correlation between volatility of returns and trading volume that is seen in
the data. If T is large enough the model does a fair job of accounting for
the persistence and the shape of the autocorrelation functions of volume and
volatility, but it does a poor job of accounting for the persistence of these
autocorrelation functions if T is small.

Section three presents empirical facts on autocorrelation functions and
cross correlations of volume, volatility, and returns that we wish the model
to help explain. Section three also conducts a simulation of a modification
of the model where we allow differences across traders in the conditional
means of the end-of-period value, v. This is done to explore robustness of
the qualitative results to modest changes in model specification. Turn now to
development of the model with adaptive dynamics of endogenous information

collection.



2. Asymmetric Information Model With Dynamics of Endogenous Signal Choice

Let all traders have access to a publically available information set It'
There is a signal available each period for a cost of C per period which adds
more information to It' The mathematical definition of this signal shall be
given shortly. We denote trader i’s information state by uie{—1,+1} where
“-1" denotes "do not buy signal” and "+1" denotes "buy signal." The
information state is chosen every T periods where Tzl1.

All traders are assumed to choose their information states at the same
dates {T,2T,3T,...,NT,...}, T=z1. This is called synchronous adjustment. We
shall call the periods {[NT-T,NT]; N=1,2,...}, epochs.

The information state w is chosen at the beginning of epoch [NT-T,NT]

and held fixed for each pe:;Qd t, t=NT-T+1,...,NT. If +1 is chosen, the
trader pays a cost C for each period, and receives a signal yit=vt+e1t’ where
{eit) is IIDN(O,céz) and is mutually independent across traders i, for all
dates t. The signal is received at the beginning of each period t, before
period t demand is calculated. If -1 is chosen, the trader receives no
signal, i.e., o.° is infinite.

We shall use overbars to denote conditional means based on the
information set It which is publically available to all traders for nothing.
Assume e is independent of It for all i,t. Applying normal distribution

it
theory as in LLM (1992), to equations (1.1)-(1.3) above we obtain,

(2.1) EE[(vt+°it)'It]=E(vt'It)§vt'

Vit
2
o

+02), E(v, 11 =-1)=v, .
v e

_ _= _z 2
(2.2) fit-E(vtlIt,wit—+1)—vt+ﬁ(yit yit)’ B!cb/( AR AN t

Here recall that hEaszVar[vtIIt], and oi denotes the variance of the signal
received by i1 which is the same across all i who purchase the signal.
Furthermore Yit denotes realized date t value of signal Yt

We shall sometimes suppress i, and/or t to lighten notation. At each
date t, follow Hellwig (1980) by treating the risk aversion and information
state of trader i, (ri,wi), as trader’'s characteristics. Follow LLM (1892)
and assume risk aversions lie in a closed bounded interval bounded away from
zero.

Here we will only treat the case where all the risk aversion parameters

are the same so that the characteristics space is the binary space N={-1,+1}.



The straightforward large economy limit calculation of the characteristics
distribution F(w), wefl is given in the unabridged version of this paper (Brock
and LeBaron (1993)).

We now consider equilibrium prices, returns, and volume. When there is
no confusion we shall lighten notation by suppressing w arguments, time
arguments, and i subscripts in what follows. We shall sometimes substitute
"E#" for “f(.)du" to remind the reader of expectational properties w.r.t the
characteristics measure pu.

Let us calculate equilibrium at each period. Let "“Lim" denote
probability limit, and pu(dw)=f(w)dw. For the special case we{-1,+1} which is
treated here, the measure u Jjust attaches mass n_, n,, n_+n+=1, to the
elements -1, +1, respectively. This is done at each date t. We shall
sometimes proceed with a general u in order to indicate routes to easy
generalization of the work reported here. These calculations follow LLM
(1992) closely until we get to the dynamics part which starts at Equation
(2.29).

Let z_ denote outside shares (net supply of "liquidity" traders) per

t

trader at date t and, recall that a, denotes demand by trader i at date t.

it
We state the main assumptions here for convenience:
Assumptions: The stochastic processes (vt}, (eit}’ (zt} are IID Normal with
mean vector (v,0,z), and diagonal covariance matrix with diagonal elements,
2 2 2
h=o °, o “(w), o ".
v e z 2
Let s(w)sh(1-B(w)), B(w)Eh/(aé (w)+h). We shall see how excess returns

depends upon precision of signals and the magnitude of z, in equilibrium. In

t
order to obtain the equilibrium equation at each period, t, as I-->0, we
equate the limiting supply per trader the 1limiting demand per trader.

Suppressing t to ease notation, we obtain,
(2.3) z=Lim((1/I)}a, )=fa,du=S[(f (v, )~Rp)/rs(w,)]du=
Jlv+B(w,) (v+e -v)-Rpl/rs(w, )du=n_{V-Rpl/rh+n [Vv+B (v-v)-Rpl/rs, .

Note that we have dropped the subscript t, and the "“f" 1is w.r.t. the
characteristics measure du(w). The right hand side follows from
specialization of du to two types {-1,+1} with n =du(-1), n _=du(+1).  Here
s+5h(1—B(+1)), B+EB(+1), B_=8(-1)=0. Note that, for the signal, (ei), one can

use the assumed independence of (ei} across traders i, to show that,



(2.4) I[B(wi)ei/rs(wi)]duzLim((l/I)E[B(wi)ei/rs(wi)])=0,
by using Tchebychev’s inequality.

Equilibration of demand per trader, against supply per trader, ylelds in
the large economy limit,
(2.5a) z=I([;+B(wi)(v+ei-;)-Rp)]/rs(wi))du=(;-v)Eu((1-8)/rs)+(V-Rp)Eu(l/rs).
We rewrite (2.5a) for our special case below,
(2.5b) rhz=n_[v-Rpl+n_[v+B_ (v-v)-Rpl/(1-8 ).

Rewrite this as follows,

(2.6a) xEv—Rp=[rzh-(;-v]]/;=rzh/;+(v-;)/;, where

7!1/(1-B)=1+h/aé2§1+signal/noise ratiosl+t, ;-Eu7!1+;, 0s1/ys1. Denote the
precision of the signal by

T =h/o 2(+1).
+ e

Note that t_=0 because céz(—1)=w. Put ;sn_t_+n+t+=n+t+ and rewrite (2.5b) to

obtain,
(2.6b) x=v-Rp=[rzh+(v-v)1/(1+T), Rp=(v-rzh)/(1+T)+vr/(1+T).
Note that ;§n+t+ is a measure of "market precision."
Let x=v-Rp=excess profits per share. Computing the expectation and

variance of x over the v,z distribution, conditional on n,, we have

(2.7a) Ex=E(v-Rp)=rzh/(1+t),

(2.7b) ckz=[rzcizh2+h]/(1+;)2.
(2.8) o 2=[r% 20241721 /(1472
Rp z

Note that, for the case when a§=0, an increase in T increases chi and T=w

implies ah§=h. Hence chi is always less than or equal to the fundamental



variance, h, unless variance is added by outside share varlance or some other
force.

We wish to allow the data to speak to the presence of forces that add
variance to the fundamental without “forcing” the data to push these forces
into z. In order to accomplish this goal, Section three adds a group of
traders that have biased conditional means. We show in Section three that
this modification will allow the model to increase, rather than decrease,
variance, c;p.

Turning to volume, we wish to see how volume measures relate to
equilibrium returns, expected returns, and volatility of returns. In order to
obtain analytical results we calculate the large economy 1limit of the
unconditional mean of volume. Do this by using the formula for the
expectation of the absolute value of a normally distributed random variable

(Equation (2.19) below) and calculating as in (2.9) below.

(2.9) EV=(1/21)IElAa, | -->EV=(1/2) JEI Aa, | du,=(1/2) JEI AL (£, -Rp) /rs ]I d,,
=(1/2)JEIAL (v-Rp)/rs1+A[ (v-v) (1-B)/rs]+AlBe, /rs]ldy,.

Here we denote the types measure by u2(dw',dw)=f(w',w)dw’dw to remind the

reader that one has to take into account potential dependence in the measure

across two consecutive periods.

For simplicity let us assume risk aversion type does not change over
time. In order to ease notation, we recall that hscvz, and put
esv-;E"surprise." We have,

(2.10) 2rEV=fEIA[(fi—Rp)/s]Idu2=fEIA[(fi-Rp)/(h(l—B))]Idu2=
fEIA[x/(h(l—B))]+A[-e/h]+A[Bei/h(1-3))]Idu2=fEIAA+AB+ACIdu2,
where,

(2.11) AA=A(x/(h(1-B))], ABEA[-e/h],ACEA[Bei/(h(l-B))],
AX=X'-X, and X' denotes next period X.

The equilibrium values of AA, AB, AC, are given by,

(2.12a) AA=(1/h)A{(3/7)(rzh+e)}



(2.12b) AA=(1/h)Alx(1+1)]1=(1/h)A[ (1+1) (rzh+(v-v))/(1+T)],
(2.13) AB={-g'/h’+e/h}=A{-g/h},

(2.14) AC=(1/h)A[te1].

The quantity, EV, can be calculated from (2.10) under normality. We wish
to study the impact of an increase in precision T of the signal upon (1)
volatility of excess profits per share as measured by xtz, (1i) volatility of
returns as measured by volatility of price change IR(pt—pt_l)l, and (iii)

trading volume. We also want to illustrate the compression effect on trading
volume that occurs when fundamental variance, hsavz, is increased.

Consider calculation of a sample moment over [NT-T,NT)], for example,

(2.15) W=(1/MDEy .

where } runs over t=1,2,...,T. Since Tchebychev’s inequality implies

(2.16) Pr{IM ~EM Ize}sVar (K )/c°,

and, under weak dependence of {xtz), Var(HT) is of order 1/T, we may

approximate the sample moment MT with the population moment EHT for T large.
This type of approximation will be important for our formulation of dynamics

which appears below.
Compute EV by using the general formula,

(2.17) 2rEV=J{E| AA+AB+AC| }dp, =JEIG(w, w’ )| p,(dw,dw’ ), where,
2 2

(2.18) E(w,w’)=A((w/h)(rzh/;+c/;))+A{—c/h)+A{(l/aé)wi).
=A(rz(1/;))+A{(1-1/;)(-8)/h)+A{(l/aé)wi).

where conditional on (w,w’), Glw,w') is N(a(w,w’).bz(w,w’)).
Here is the formula (cf. LLM (1992)) for the expectation of the absolute
value of a normally distributed variate ¢ which is N(a,bz):

(2.19) EIGI=(1/(21)1/2)2bexpi-(1/2) (a/b)]+a{ 1-28(-a/b)},

where &®(x) is the cumulative distribution function of a N(0,1) variate



evaluated at x.

Assume n_,n_ do not change over the T-slab of time, [NT-T,NT]. Recall
that v and z are independent and use (2.17), and (2.18) to compute EV over
[NT-T,NT] to obtain,

(2.20) 2PEV=n_E(IAA(-1)+AB(-1)+AC(—1)I)+n+E(IAA(+1)+AB(+1)+AC(+1)I)

1/2

=(2/m)"*n_b_+n.b },

(2.21a) b_zsz(rzcéz(w_/§)2+(1-7_/?)2/h+r_/h)
=2(r%_211/(1+1)1%4+[7/((1+0)1°/m},

(2.210) b, %s2(r% 2z, /1) %+ (1-7,/7) % /et /0
=2(r%¢ 21 (1+7,)/(1+7) 12+ (3-7,)/(1+7) 12/heT /h}.

Note three important points that follow from (2.20) and (2.21). First, for
«zz=0, an increase in risk aversion r makes trading volume fall. Second, an
increase in fundamental variance, h, makes trading volume fall. Third, when
céz=0, an increase in signal precision T, makes trading volume rise, provided
n+>0. Also note that when czz=0, we have n =1 implies EV=0, but n+=1 implies
positive trading volume induced by differences in individual signal
realizations.

We are now at a position where we can compute and compare Extz, o 2,

X
Elpt_pt-ll’ EV over the T-slab of time [NT-T,NT] assuming no one revises
beliefs over this T-slab of time. We also recall the assumption that
conditional variance, cvz and conditional mean v do not change. From (2.6b)

we obtain,
(2.22) Ex?=E(v-Rp)2=(r?Ez’h%+h)/(1+n )7,

Note that Exz falls as T increases.

Perhaps the most important result of all is the finding that when
fundamental variance, h, increases, trading volume falls. We have called this
important effect, the compression effectz. It is important because it exposes
a force in asymmetric information models that potentially conflicts with the

well documented contemporaneous correlation between volume and volatility



which is discussed in the empirical part of section 3 below.
-pt_l)l over the T-slab of time, [NT-T,NT]. Assume z, is
constant and nonrandom over [NT-T,NT] in order to isolate out the impact of an

increase in t,. Take A of both sides of (2.6b) to obtain, using Av=0, Az=0,

Compute EIR(pt

(2.23) Ax=Av-RAp=Av/(1+T).

(2.24) RAp=TAV/(1+T).

At this point we must pause to make a parenthetical remark. We may use
(2.24) to compute the autocovariance of Ap’iptﬂ-pt with Apapt-pt_1 across a
string of periods where T does not change. One obtains,
RZCov(Ap’,Ap)=-h[;/(1+;)]2. When {vt} is IIDN(O,h) this autocovariance is
negative due to the "overdifferencing" of v, unless market precision T is
zero. This is counterfactual because the tables in Section three show that
the autocovariance of "simple returns" is near zero (slightly negative) for
individual firms at the daily frequency. One could "fix" this by redoing our
analysis by making {vt} a random walk with IIDN(u,c?) innovations. However,

using Avav =p+n,, M, IIDN(O,az), this leads to

t " Ve-1

(2.24’) Rap=n,_,/(1+T)+(u+n, ) (3/(1+7)), R%Cov(ap’, Ap)=0°[7/(1+7)°].

This is still counterfactual unless T is near zero or infinity. However,
we are not too worried about this discrepancy because (i) the implication of
most versions of the efficient markets hypothesis that "simple returns" {Ap}
should not be autocorrelated is approximately valid only for high frequencies
where effects induced by R and by dividends are small; (ii) our asset lives
only two periods; (iii) de Fontnouvelle (1994b) extends our setup to infinite
lived assets and gets better results, especially for the autocorrelation of
returns. But de Fontnouvelle has to resort to approximation methods to obtain
results for his more complicated model, whereas we obtain some analytical
results. Hence, we shall focus on replication of time series features of
volume and volatility, rather than low autocorrelation of simple returns.
Return now to calculation of volatility and volume measures.

Calculate EIRApl, using (2.19) and EAp=0, to obtain,
(2.25) EIRApI=(2/m) /2[(T/(1+7) 1(2n) 172,
It is obvious, for n+>0, that an increase in T, causes E)RAp) and the

10



variance of Ap to rise. Recall that EV increases with increased T, Finally
a similar argument as that used on Ext2 shows that ckz falls as T, increases.

We may now sum up the discussion up to this point,

Conclusion: Increased signal precision leads to increased trading volume,
increased price change volatility, but decreased expected squared excess
profits per share. The data described in section 3 below shows a strong
contemporaneous correlation between squared returns and trading volume. Hence
the model has the potential to be consistent with this strong contemporaneous

correlation between squared returns and trading volume.

Recall that we have stressed the fact that the absolute value of price
change lpt-pt_ll is positively correlated with volume of trade between period
t-1 and period t (e.g. Gallant, Rossi, Tauchen (1993)). We have shown above
that EIRApl and EV move together as T, changes for a fixed level of
fundamental variance.

Turn now to a brief treatment of dynamics in the choice of signal
quality. Up to now we have simply followed LLM (1992) and calculated
equilibrium returns, trading volume, and measures of volatility for the case
where fraction n_ of the traders have access to a signal of precision t_=0,
and n, have access to a signal of precision T+>O. Now we shall introduce
dynamics of n_,n,. The dynamics will be introduced by “pasting" a sequence of
"static" LLM models together and "grafting" the dynamics onto this sequence.

DYNAMICS

Traders are assumed to know the stochastic structure of the economy
except for ;=1+;, which they must forecast; We assume all risk aversion

parameters r, equal a common value r. We need to calculate some expressions

i
for input into the dynamics (2.42) below.

For type w, profits are defined by,
(2.29) n(w)E[(fl(w)-Rp)/rh(l—B(w))][v—Rp]—c(w),
where c(w)scost of purchase of signal w. All symbols in (2.29) carry the
subscript t. Recall that p is beginning of period t price, v is end of period
t value of the asset, and x=v-Rp is excess profits per share between the

beginning of period t and the end of period t. Assume common knowledge of the

11



structure of the economy and common expectations ;e=1+;e. Recall that the

signal for each trader i is given by yi=v+ei, where ei is independent of wv.

Calculate expected profits (over (v,z,ei). suppressing "i" and Wy arguments to
lighten notation) for type w, to obtain,

(2.30) Eu(w)=s<(G+3(y-3)-np)(v-Rp))/rs-c(w)-suo(w)-c(w)aU(w).
(2.31) U(w)sE{[(v-Rp)+(v-v)(1-B(w))1(v-Rp)}/[rh(1-8(w))]-c(w),
(2.32) v-Rpsirzh+(v-v)1/7°,

(2.33) Euo(w)=(1/rh)(7(w)s{(v—Rp)2+($-v)(v—Rp)))

(2.30)  Er_()=(1/rh N7 (0) [r?E2®h2/7%%+n/7%%1-n/7°) =

(l/r;ez)(7(w)r2Ezzh+7(w)-;e).
(2.35) Eu(w)=(l/r;ez)(7(w)r2Ezzh+7(w)-;e)-c(w).
(2.36) U(w)EEu(w)=(l/r;ez)(7(w)r2Ezzh+7(w)-;e)-c(w).
Specialize to the case where c(~1)=0:
(2.37)  Uw)=(1/r7%2) {7 (0)r°Ez2h+7 (0)-7%) -c(w).

(2.38) dU=U(1)-U(-1)=F(3%)dy-c(1), dymy(1)-7(-1)=t_,

2he1}.

(2.39) F(7%)a(1/r7°2){r2Ez

We are now ready to discuss dynamics. Traders must forecast
P!l/(1+;)221/;2. Think of P as an "implicit price" for information. Every T
periods, traders are allowed to choose whether to buy the signal (w=1) or not
buy the signal (w=-1)""°. At NT they have observed T realizations of trading
profits from trading over time periods in [NT~T,NT]. They construct the
sample analogue to Em(w). We assume that T is large enough that the sample
analogue is a good approximation to the population moment En(w). From now on
we use the population moment as input to the discrete choice model below.

Consider a trader i, whose choice probability is independent of its choice

12



last epoch. Recall that T,2T,3T,...,NT,...are called "epochs." We assume the

resulting measure p(dw) is formed by a discrete choice model

(2.40) U=U(w)+ie(w),

where {€} is IID Extreme Value distributed (IIDEV) across w in O={-1,+1} as in
Manski and McFadden (1981) and Anderson, de Palma, and Thisse (1993), where
p=1/L is choice intensity.

The discrete choice model (2.40) is attractive because it leads to
tractible choice probabilities for the dynamics we develop below.
Furthermore, in the dichotomous case that we examine here, the discrete choice
model (2.40) allows easy extension to include interaction effects which can
pile up in the large economy limit to produce discontinuous reponses to small
changes in the payoffs to the choices. This extension is briefly discussed
and summarized by Equations (2.46a,b) below.

Manski and McFadden (1981) and Anderson, de Palma, and Thisse (1993)

show, (note: use of "2" changes),

(2.41) Pr{choose w £ Q}=u(dw)=explpU(w)1/2, Z=¥explpU(v)].
ved

At time NT, we have, letting tanh(x)=[exp(x)-exp(-x)]/[exp(x)+exp(-x)],
(2.42) mNTEn+—n_=(exp[pU(+l)]-exp[pU(—l)]}/Z=tanh[de/2]
=tanh[p{G(m"){7(1)-7(-1))}-c(1)}/2],
(2.43) G(n®)=(1/r7°%){rPE2he1),
-e e e - e
(2.44) ¥y =((1-m )/2)y(-1)+((1+m )/2)7(1)=7o+(m /2)dy.

Equation (2.42) says that, at date NT, the choice of m which will remain
fixed throughout [NT,NT+T], is determined by expectation of the difference in
profits from trading on the signal over trading without the signal, which in
turn depends upon the point expectation, n°. Equation (S.9) in Appendix 1
below is a more general formulation which includes trading profits over past
epochs as well as Jjust the last epoch.

In fact it is more intuitive to think of P!l/;2 as a "price" which must
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be predicted by the traders before making their choice, using the discrete
choice model. Since traders are assumed to understand the structure of the
model world they live in, they understand that 1/;2 is a function of m given
by (2.42) and (2.43). Hence they must predict m in order to predict 1/';2
which is the "price" they will actually get for their information when they
exploit 1t over the next T periods of trading.

We can graph this dynamics by plotting myT against n®. Note that the RHS
of (2.42) falls with n®. Assume the prediction n° is some function of L past

epoch values of m, i.e., me=H(mNT-T'mNT—2T""’mNT—LT)' such that
m=H(m,m,...,m). That is to say, we ask that H predict m if the system has
converged to m for L epochs in a row. Let us examine the simplest case

me=mNT—T' which we call naive backwards dynamics.
Write Equation (2.42) in the reduced form,

(2.45) m =tanhl(p/2)dU(m )], dU(m)>O, m<m, dU(m)<0, m>m,

vwhere E!ﬁ+—5_, is the Grossman/Stiglitz (1980) equilibrium, 1i.e., the
breakeven level of informed traders relative to uninformed traders where the
equilibrium rent on the signal is zero. I.e., dU(m)=0. Note that R.H.S.
(2.45) converges to +1 for m less than m and converges to -1 for m greater
than m.

The reader can use this property plus a graph of BT against BT-T to
show that the positive fixed point mp becomes unstable and turns into an
attracting 2-cycle as p passes through a "critical" value pc>08;L8.
Furthermore the analysis of Brock (1993) can be adapted to the setup here

to produce limiting large economy dynamics of the form
(2.46a) m=tanh*[(p/2)dU(m. )], dU(m)=0, dU(m)>0, m<m, dU(m)<0, m>m,
(2. 46b) mNT=tanh[(p/Z)dU(mNT—T)+meNT—T]

where J20 measures the degree of dependence across choices of *1 of the set of

traders, and tanh*(x) is the function which picks out the root of the equation
(2.47) m=tanh(x+pJm),
which has the same sign as does X, when there are two nonzero roots. There
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are two nonzero roots for x=0 if and only if pJ>1.

Equation (2.46b) is an "approximation" to dynamics (2.46a) which is
obtained by putting a=mNT—T in the probability expression in Equation (2.48)
below and calculating the probability 1limit of (1/N)£(«)i using this
"approximate"” probability. This notion of approximation is discussed in Brock
(1993). Equation (2.46b) will be part of a system to be simulated in Section
three.

We give a brief sketch of the theory that produces (2.46) here. Let N

now denote the number of traders and let,
(2.48) Pr{w,,...,o=explp(L{Ulw, )-(J/2) (0, -2)?)}1/2,

where the sum § runs over i, and Z is a normalization factor so that the
probabilities given by (2.48) sum to one. Traders get utility U(wi) from
their choices we{-1,+1}, but they dislike deviation from the mean, w, of the
community choices. It is shown in Brock (1993) that

(2.49) w=(1/N)Tp,==>m, N-->w.

where m solves (2.46a), (2.47) and "==>" denotes convergence in distribution.

This modification of the dynamics allows Central Limit Theory for
J-parameterized dependence to produce discontinuous large changes in My to
small changes across zero of dU(mNT_T) as pJ increases past unity. This is
another reason why turning up the dial of rationality, i.e., increasing choice
intensity p, can lead to complicated dynamics.

Since the dynamics of {mNT} determines the dynamics of returns,
volatility of returns and volume, the model suggests that increasing p can
lead to discontinuous changes in returns and volume/volatility bursts. Notice
that a very small amount of "sociology," i.e., very small J, can combine with
high intensity of choice p to produce a product pJ>1.

It was shown by Brock (1993), that pJ>1 implies that tiny changes in sign
of dU lead to discontinuous changes in m in the dynamics (2.46a). This in
turn leads to discontinuous changes in volume, volatility, and returns that no
econometrician will ever be able to explain by attempting to find some "news"
that is associated with the abrupt changes.

This seems consistent with studies which have documented the inability to
associate changes in volatility and returns with "news.” See for example,

Cutler, Poterba, and Summers (1989), and Haugen, Talmor, and Torous (1991).

15



While we believe that a complete explanation of their results is far beyond
such a simple model, our modeling shows how small differences in profit
measures of signal purchase can lead to big differences in "market precision”
TEn T, i

Big differences in <t produce big differences in "local" variance
(variance measured over a period of length T) of price change, and "local"
trading volume as measured by EV. For example an abrupt increase in T causes
an abrupt increase in local variance of price change, an abrupt change in
price itself caused by an abrupt increase in weight on v instead of v (cf.
Equation (2.6b)), and an abrupt increase in local trading volume. If outside
shares z>0, Equation (2.6a) implies that an abrupt increase in market
precision causes an abrupt drop in local expected excess profits per shares.
Ultimately, we hope to estimate a richer model where the data are allowed to
speak to the size of parameters playing roles like p and J. We now turn to a
brief discussion of simulation results for the model of this Section.

Change periods are t=20,40,60,.... No-change periods are periods that
are not multiples of 20. We have I traders in the model where I is large but
finite. Let n(t) denote the fraction of informed traders at date t. This
fraction was determined by (2.41) at the previous change period. At each date
t, we draw v, IIDN(O,1) and independently draw e IIDN(O,.3) for each

t
informed trader. For all dates t, zt=0, x

it
is given by (2.6a), and Rpt is

given by (2.6b). If t is a no-change date} volume is given by (2.9) with I
equal to a large, but finite value. If t is a change date, the new value of
n(t) is given by (2.41) and (2.9) is used to calculate volume as in (3.7b) and
the surrounding exposition. Profits for each type of trader are given by
(2.30) with "E" replaced by the analog estimator, "(1/I)}", are set equal to
zero for all t. Parameter values are h=1, “é2=-3 for informed, T_=O0, r+=1/.3,
v=0, c(+1)=8, c(-1)=0, p=.5, T=20.

The results of the simulation are given in the fourth column of Tables
8-10. These Tables (and the Figures that accompany each) show how the
autocorrelation and cross correlation functions of the models compare with the
data. We are bothered by the negative autocorrelations at long lags in Tables
8 and 9. There is also a problem of large cross correlations in Table 10. We

leave it to future work to improve our understanding of the causes of these

problems. We now turn to Section three.
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3. Univariate Empirical Modelling of Returns

In this section we do two things, (i) we give a brief review of empirical
"stylized" facts about stock returns and (ii) we simulate a slight
modification and simplification of the model treated in Section 2.

Look ahead at the autocorrelations of returns, squared returns, trading
volume, and the cross correlation of squared returns and trading volume shown
for IBM in Tables 8-10 below. The results for IBM are typical for individual
stocks. Look at Tables 2-7 below for a sample of individual stocks.

We do not present “standard errors” in most of the tables of
autocorrelations and cross correlations to be presented below. This 1Is so
because (i) we only present the tables to bring out qualititive features we
wish to explain and (i1) we do not have a bellievable statistical model under
which to bootstrap estimates of the standard errors.

We present two tables of cross correlations of a measure of trading
volume with two measures of volatility of returns. These are taken from
Antoniewicz (1994a, b, and personal communication). Her NYSE dataset is from
the CRSP tapes and has 316 firms that trade every day of the sample (i.e.,
there are no zero volume days for any of these firms). The data are dally
returns from 5/24/77 to 12/31/81. Here is the slze distribution of these
firms in quartiles:

Table 1: Distribution of Stock Market Values of 318 Firms ($ Mill)
Min 1st Quart Med 3rd Quart Max
73.3 601.7 1,289.9 2,782.1 41,852.3

In the tables below, the volume for each firm has been transformed by
taking the number of shares traded each day scaled by the number of shares
outstanding to get the turnover ratio. The daily turnover ratio is scaled by
a 100 day backward moving average and then this ratlo is logged to obtain the
"volume" measure that is used in the cross-correlations.

This "detrending" 1is done because trading volume has grown rapidly in
recent years. Our model does not speak to the general source of growth of
trading volume. This general growth, we believe, has more to do with
institutional changes such as growth of modern risk management techniques,
growth of mutual funds, growth of the use of derivatives and the like. We
view this general growth as a "low frequency" phenomenon which trading models
based upon differential information do not speak to. Hence we attempted to
remove this general growth by detrending the volume series. We believe the

17



information model is designed to speak more to fluctuations around the growth
trend, not to the growth trend itself.

LeBaron (1992) shows that the qualitative features of the time series
properties of the trading volume measure are falrly robust to the method of
detrending--at least at the level of description that we are attempting to
replicate in this paper.

The cross correlations are shown below for volume with absolute return
and volume with squared return. Let r(t) denote return at day t. The returﬁs
are calculated exactly as in the CRSP tapes. These tables show the
cross-sectional distribution of the cross correlations. The reader may Just
use the median if she wishes. The cross correlations are reported for 5§ lags
on each side. As one can see, the use of Ir(t)! or ra(t) doesn’t make much
difference in the value of the cross correlations; except the contemporaneous
correlation for Ir(t)! 1is higher than for r2(t). Note the positive
contemporaneous cross correlation and the asymmetry of cross correlation near
lag =zero. In the tables, V(s) denotes trading volume at time s. The
description of the data for Tables 4 and 5§ is the same as that for Tables 2

and 3.
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Table 2. Correlation of Trading Volume V(t-j) with Squared Returns r3(t)).

t Min ist quart Med 3rd Quart Max
-5 -.037 .017 .030 . 045 . 106
-4 -.020 .022 .035 .049 . 107
-3 -.015 .032 . 047 .064 . 132
-2 . 007 .049 . 066 .090 .164
-1 .028 .091 . 123 .164 .279
0 . 056 . 142 .181 . 223 .381
1 .007 .058 .074 . 092 171
2 -.015 . 036 .049 . 067 . 135
3 -.031 . 027 .041 . 056 . 122
4 -.033 .019 .037 . 053 . 112
5 -.040 .013 .030 .045 .106

Table 3. Correlation of Trading Volume V(t-j) with Absolute Returns Ir(t)l.

J Min 1st quart Med 3rd Quart Max
-5 -.051 .0186 .034 .051 . 108
-4 -.016 . 026 .042 . 057 .112
-3 -.028 .034 .054 .072 .127
-2 -.002 . 057 .078 .099 177
-1 .036 . 120 .160 . 204 .318
0 . 130 . 209 .261 . 306 . 442
1 .007 .058 .075 .082 .171
2 -.015 .036 .049 . 067 . 135
3 -.031 .027 .041 . 056 . 122
4 -.034 .019 .037 .053 .112
5 -.040 .013 .030 .045 .106

Data: The returns data are dally CRSP value weighted returns with dividends
from S/24/77 to 12/31/91. The volume series for each firm comes from the NYSE
turnover ratio, which is the total shares traded divided by the number of
shares outstanding. This ratio is first detrended using a 100 day moving
average and then this ratio is logged to obtain the "volume" measure that is
used in the cross-correlations. See Antoniewicz (1984a,b) for further
properties of this data.
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Table 4. Autocorrelation Function of Squared Returns r2(t)

Lag Min 1st Quart Median 3rd Quart Max

1 0.0048 0.1071 0.1498 0.2212 0.5446
2 0.0009 0.0836 0. 1300 0.1963 0. 4380
3 0.0003 0.0483 0.0774 0.1162 0.2777
4 -0.0004 0.0347 0.0544 0.0806 0.2773
5 -0.0004 0.0475 0.0744 0. 1160 0.3272
6 -0.0045 0.0256 0.0460 0.0731 0.1918
7 -0.0048 0.0224 0.0365 0.08603 0.3484
8 -0.0068 0.0232 0.0458 0.0807 0.2745
9 -0.0017 0.0222 0.0426 0.0732 0.2576
10 -0.0073 0.0138 0.0288 0.0508 0.1256
11 -0.0043 0.0131 0.0257 0.0487 0.1453
12 -0.0114 0.0128 0.0226 0.0411 0.1312
13  -0.0050 0.0131 0.0271 0.0446 0.2328
14 -0.0102 0.0113 0.0216 0.0404 0.2402
15 -0.0108 0.0107 0. 0256 0.0435 0.2622
16 -0.0100 0.0077 0.0222 0.0408 0.2903
17 -0.0105 0.0089 0.01893 0.0352 0.2361
18 -0.0054 0.0087 0.0218 0.0388 0.1558
18 -0.0123 0.0084 0.0197 0.0355 0.1166
20 -0.0121 0.0073 0.0185 0.0348 0.1141

Table 5. Autocorrelation Function of Returns r(t).

Lag Min 1st Quart Median 3rd Quart Max

1 -0.2831 -0.0074 0.0315 0.0733 0.1750
2 -0.0975 -0.0413 -0.0208 -0.0012 0.05853
3 -0.1011 -0.0420 -0.0270 -0.0148 0.0648
4 -0.0853 -0.0327 -0.0210 -0.0058 0.0402
5 -0.0714 -0.0105 0.0041 0.0201 0.0750
6 -0.0671 -0.0163 -0.0044 0.0066 0.0678
7 -0.0626 -0.0226 -0.0087 0.0081 0.0678
8 -0.0553 -0.0237 -0.0107 0.0016 0.0839
9 -0.0599 -0.0183 -0.0060 0. 0056 0.0540
10 -0.0574 -0.0153 -0.0028 0.0083 0.0533
11 -0.07489 -0.0182 -0.0056 0.0046 0.0491
12 -0.0777 -0.0138 -0.0005 0.0125 0.0435
13 -0.0515 -0.0182 -0.0048 0.0057 0.0457
14 -0.0427 -0.0107 0. 0028 0.0156 0.0694
15 -0.0664 -0.0130 0.0010 0.0140 0.0700
16 -0.0821 -0.0078 0.0038 0.0152 0.0544
17 -0.0502 -0.0191 -0.00867 0.0057 0.0597
18 -0.0817 -0.0144 -0.0033 0.0088 0.0431
18 -0.0545 -0.0177 -0.0032 0.0092 0.0471
20 -0.0580 -0.0121 0.0018 0.0160 0.1106
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Note that the median autocorrelation function for these individual firms
is approximately zero as one would expect from the efficient markets
hypothesis. This is approximately consistent with the results of Lo and
MacKinlay (1990). Lo and MacKinlay (1990, pages 180-181) show, for a sample
of 4786 individual CRSP firms, for the period July 6, 1962 to December 31,
1987, that the equal welighted index is strongly positively cross correlated,
the value weighted index is positively autocorrelated and individual stocks
are weakly negatively autocorrelated at daily, weekly, and monthly
frequencies. They show how positive cross auto-correlations across securities
are associated with positively autocorrelated index returns and weakly
negatively autocorrelated individual security returns. For example, they show
how the fact that returns of larger stocks lead the returns of smaller stocks

in the same industry can lead to positive autocorrelation of index returns.
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Table 6. Autocorrelation Function of Trading Volume, V(t)

Lag Min 1st Quart Median 3rd Quart Max

1 0.1751 0.3179 0.3793 0. 4425 0.6072
2 0. 1250 0.2284 0.2757 0. 3258 0.5129
3 0.0949 0. 1896 0.2287 0.2780 0.4708
4 0.0726 0.1727 0.2060 0.2533 0. 4288
-] 0. 0862 0. 1600 0. 1926 0.2332 0.4123
6 0.0444 0.1357 0. 1664 0.2083 0.3891
7 0.0413 0.1158 0.1513 0. 1887 0.3738
8 0.0451 0.1115 0. 1420 0.1758 0. 3668
9 0.0351 0. 1079 0.1361 0.1692 0.3504
10 0.0307 0.1075 0.1366 0. 1669 0. 3655
11 0.0201 0.0958 0.1215 0. 1569 0. 3569
12 0.0180 0.0842 0. 1097 0.1452 0. 3448
13 0.0045 0.0785 0.1034 0.1392 0.3488
14 0.0157 0.0780 0.1028 0.1334 0.3194
15 0.0097 0.0734 0.0992 0.1292 0.3233
16 -0.0134 0.0628 0.0824 0.1105 0.3215
17 -0.0068 0.0535 0. 0806 0. 1099 0.3081
18 -0.0226 0.0545 0.0795 0.1070 0.3063
19 -0.0221 0.0597 0.08089 0.1083 0.2896
20 -0.0049 0.0576 0.0816 0.1044 0.2850

Table 7. Cross Correlation of Volume V(t-j) with Returns r(t)

Lag Min ist Quart Median 3rd Quart Max

-5 -0.0522 -0.001S 0. 0097 0.0255 0.0782
-4 -0.0414 0. 0008 0.0161 0.029%4 0.0854
-3 -0.0401 -0.0019 0.0133 0.0316 0.0884
-2 -0.0392 0.0016 0.0170 0.0354 0.1145
-1 -0.0282 0.0241 0.0472 0.0762 0.1775
0 -0.0156 0.0466 0.0781 0.1124 0.2292
1 -0.0385 0.0034 0.0180 0.0323 0. 0656
2 -0.0412 -0.0006 0.0093 0.0200 0.0486
3 -0.0414 -0.0065 0.0036 0.0135 0.0453
4 -0.0297 -0.0058 0.0053 0.0146 0.0506
5§ -0.0400 -0.0072 0.0033 0.0146 0.0467
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If we measure returns by r!(pt-pt_l). then we showed in Section two that
an increase in signal precision T, leads to an increase in both trading volume
and the variance of (pt-pt_l). Recall that an increase in 7T causes
equilibrium price to "soak"” up some of the variance in v. This causes the
variance of x to fall. But an increase in T, causes p.,P, , to “track” the
actual realizations of vt,vt_1 better. This causes the variance of (pt-pt_l)
to rise. Since returns in many empirical studies are measured as
rtSIOg(pt)-log(pt_l). a rise in the variance of (pt-pt_l) may lead to a rise
in the variance of L

Sorting out whether the "soaking up" effect is stronger than or weaker
than the "tracking" effect requires a model with infinitely lived assets such
as de Fontnouvelle’s (1994). While de Fontnouvelle gets good results with his
model, we wish to stress a source of heterogeneity that leads to robust
contemporaneous covariance of returns volatility with trading volume and

allows the variance ¢r2 to be larger than the fundamental variance h when the

Rp
variance of z is zero.

Therefore, in this section of the paper, we introduce disparity in biases
of conditional means. We do not believe it is unreasonable to introduce
biases of conditional means. First, as discussed by Varian (1992), this type
of heterogeneity provides a way of getting around the no trade theorems
reviewed by Sargent (1993). Second, Varian (1992) quotes a 1982 study by
Cragg and Malkiel as saying, "We found that the best single risk measure
available for each company was the extent to which different forecasters were
not in agreement about that company’s future growth...[These results] suggest
that the variance of analysts’ forecasts may represent the most effective risk
proxy avalilable." Varian quotes a source for abstracts of more recent studies
that tends to support Cragg and Malkiel’s conclusion.

We simulate this extended model and show that it is capable of roughly
replicating features (i) and (ii). In order to produce a minimalist model
consistent with facts (i) and (ii) we replace the traders with access to a
signal with traders whose conditional means may be biased. All traders have
the same conditional variances ovalh.

Put e=v-v. At period t there are n_ potentially biased traders whose
conditional means at date t are given by v+ta, and there are n, unbiased
trgders whose conditional means are given by v. Here (at} is an Independently
and Identically Normally distributed process with mean zero and finite
variance a&z, which is independent of (vt). Furthermore n_+n+=1. Then

equilibrium returns are given, following Section 2,
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(3.1) x=(rhz+v-v-a), where
(3.2) Eln_¢+n+0=n_a;(1-m)a/2, mE=n -n_.

As we sald before two major issues we wish to treat with this model are:
(1) How does the price formation and trading process itself contribute to
inducing GARCH-type behavior of the returns even though the fundamental
innovations and the beliefs themselves are IID. (11) Does GARCH-type
behavior (Bollerslev, Chou, and Kroner (1992), Bollerslev, Engle, and Nelson
(1993)) come through the fundamental innovations process (et} or come through
the “structural” parameters of the model via a. For this article we shall
define GARCH-type behavior to be a slowly decaying autocorrelation function of
squared returns that is positive at all lags.

Parenthetically we remark that we want the informed traders of Section 2
in the ultimate model in order to account for anticipatlion effects before a
release of a packet of information such as an earnings report that |is
partially known to informed (inslider) traders before the rest. Anticipation
effects exist for earnings reports as documented by, for example, Rendleman,
Jones, and Latane’ (1982) who show that the market ”"leaks" the Iinformation
into returns a few days before the release, jumps at the release, and does not
fully adjust until up to ninety days after the release for the biggest
earnings report "surprises.”

But in this section of the paper we are Jjust going to simulate the highly
specialized version of the general model, (3.1), (3.2), but where the time
scale of belief adjustment is slower than the time scale of trading. We
simulate another specialized model where the time scales are the same but
where traders display more diversity of belliefs in our unabridged version,
Brock and LeBaron (1883).

Lighten the notation by putting h=aﬁ, n_=n, « =a. Then (3.1), (3.2) and
calculations of profits, strengths, etc., are summarized in Equations
(3.3)-(3.6) below,

where,

(3.3) x a, +€ sF(It.e)+G(It.9)e

t+1” %41 t+1’

(3.4a) mt=tanh((p/2)ASt), AS =S, . -S

t £ Tt

(3.4b) mt=tanh((p/2)ASt+me )

t-1

24



(3.5a) "+,t!-‘tnt-1at—1/rht—1’ u_’t!xtat_l(l-nt_l)/rht_l,
(3.5b) E, . (x, ,~x_,)=n,_.a 2 /rh
: t-1""+,t -, t t-1t-1 t-1’
(3.6a) l—nt=(1+mt)/2, nt=(1-mt)/2.
(3.6b) Ast’[Et—I(n+,t-n—,t)-C)+"Ast—1‘
The timing and notation convention 1is as follows. Differential

"strength", ASt, depends on a random variable, @4 which was drawn before X,
was drawn. After Xy is realized a new "belief" «, is drawn before X 41 is

realized. The innovation € has a t+1 subscript because it is drawn after

t+1
a, is realized. Here = n denote profits of unbiased and biased

t:aders. Strengths are g;;;; in kg.Sb) where C>0 is the cost to receive an
unbiased conditional expectation v of the end of period value v. Equation
(3.4b) is the analogue to Equation (2.46b) for this model.

Twice trading volume is given by the sum of the absolute values of the
change in equilibrium demands across two consecutive periods. In order to
ease notation in what follows, put Vt=V, n=m,, o=a,, n=nt=(1-m)/2, St=S and
use the convention of dropping time subscripts for current period variables
and using ' to denote next period variables.

In this tidied up notation, the bivariate returns and volume process is

given by,
(3.7a) x’=-na+ec’, n=(1-m)/2, m=tanh[(p/2)AS], AS'=na2/rh-C+nAS,

(3.7b) 2rV=n(+1,+1)I(-a’ )/h’ - (~a)/hi+n(-1, +1) | («’ -’ ) /h’ -(-a) /Al
+n(+1,-1)1 (-’ )/h’ =(a-a)/hl +n(-1,~1) | (a’ -’ ) /h’ - (a-a) /hl,

where a’'=n'a’, a=nz, n(w’,w)=Pr{w’,w}, w,w’ ef={-1,+1}.

Here, the volume equation is obtained by taking the number of traders to
infinity in the definition, ZVi(l/N)EIADi(p)I where the demands are evaluated
at equilibrium p. Here for any belief @, =a_ or « =0, Di(p)=(v+ai—Rp)/rh. For
z=0, we have Di(p)=(ai-a)/rh, in equilibrium. A similar computation gives the
equilibrium values for the other terms in the volume expression. Furthermore,
for change periods, n(w’,w)=Pr{«’,w}=n(w’ )n(w), where n{w’'), n(w) are given by

the choice model (3.4) across the two consecutive periods. To put it another
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way, we compute belief state probabilities using the choice model (3.4) under
the assumption of independence. Computation of n(w’',w) for no-change periods
will be explained below.

Equations (3.7) give some understanding of the forces that act to create
GARCH-type volatility persistence in returns, {rt}. We did a computer search
for parameter combinations consistent with GARCH behavior for returns under
the assumption that (ct} and (at} are mutually independent, IID with mean zero
and finite variance.

Under IID beliefs and IID (ct} this search falled to find parameter
values that generated equilibrium returns and volume that were consistent with
the correlation pattern in the data. The squared returns and volume were not
persistent enough to be consistent with the data. Some kind of mechanism to
induce temporal correlations in belief heterogeneity seems to be necessary.
We believe part of the trouble is due to too much flipping in belief states
between periods. Following the spirit of Section 2, we introduce a "slow"
time scale where changes in beliefs take place on average once every T
periods. Let us explain.

There are two types of time period pairs. Time period pair (t-1,t) is a
change period when, ... =m,_=m _,» mt=tanh[(p/2)ASt], m L =B, B oM.,
until the next change period. All other periods (t-1,t) are no change
periods. Change periods are drawn Independently and Identically Distributed
(IID) with a small probability in what follows.

In the simulations reported below, change times, "t", are drawn IID over
time with the probability of a change time set equal to .05. This gives an
average life of a no change period of twenty periods. While the qualitative
features of the simulation results are robust it is important that the average
life of a no change period be longer than the time scale of trading. This
captures the idea that the time scale of adaptation of the traders is slower
than the “"ticker tape."

In order to see how a mechanism like this could generate persistence in
xtz let (et} be IIDN(O,1), let standard deviation o follow a two state Markov
process with transition probabilities p(Jjli)=Pr{go from i to j in one time

step}. Consider the stochastic process

(3.8) x, =0 e, (xt=02et) with probability p(111i) (p(211)), i=1,2.

Suppose that o, =1, “é=3' p(211)=p(112)=.05, p(1l11)=p(212)=.95. Then it

1
is easy to check that the stationary probabilities p(1)=p(2)=.5, Ex:=Ex:+l=5,
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Ex:x:+1=.5[p(111)+9p(2|1)+p(1!2)+81p(2!2)]=.5[.95+.45+.05+76.95]=39.2>25, s0

2" 2
Cov(xt,xt+1

you are in that state contributes to positivity of Cov(x:.x:+1). Incidentally

)>0. Note how the large probability of staying in any state once

the autocorrelation function of the squares of a sample drawn from the process
(3.8) was positive with a slow decay in the lags.

Introducing a slow time scale is rather like increasing the probability
of staying in a state once you are in that state. We shall see shortly how
slowing down the time scale wupon which beliefs change will produce
autocorrelations of {x°} and {T} that resemble the data even though {a}, {¢}
are IID. Before we do that turn to another empirical issue.

Empirical evidence is strong that IR(p’-p)! is positively associated with
V. Let us examine the ability of (3.7) to replicate this feature of the data.

For (vt} IID, v is constant so Rp=v+na implies
(3.9) chIR(p'—p)I=IA(na)I.

We shall see in a moment that a term like (3.9) will appear in a special
version of the volume formula. Look at a no change period (t-1,t). Here
n(w ,w)=Pr{w’,w}=Pr{w’ lw}Pr{w}=0 if ' not equal to w and equals Pr{w}

otherwise. Then volume over the no change period where n’'=n is given by
(3.10) 2rV=n(+1)I(-n’a’)/h’-(-na)/hl+n(-1)I («’-n'«’ })/h’ -(a-na) /hl .

For the case {¢} IID, h'sh, we have, noting that m=n(+1)-n(-1), m’'=m,

n(+1)=1-n, n=n(-1), n’=n,
(3.11) 2rv=(1/2h){(1-n%)la’ -al}.

Hence, 2rV 1is proportional to abﬁlR(p'—p]l=lA(na)l=nla'—al for no change

periods.

Thus we see for the speclial case of a no change period, the volatility
measure given in (3.9) is positively related to the volume measure given by
(3.11). The case of change periods is much more complicated. But, since
change periods will be infrequent in the computer simulations to follow, we
have done enough to suggest that volume and volatility can Dbe

contemporaneously correlated in this kind of model.
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SOME CALIBRATION RESULTS
We wish to see how well the model does in matching moments of actual

daily CRSP value weighted index returns from July 3, 1962 through September
30, 1987. Take a look at the Tables with parallel Figures below
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Table 8. Autocorrelations of Squared Returns

n = 6534 for all seriles
Bartlett standard error = 1/sqrt(6534) = 0.0124

lLag (1) (2) (3) (4)
1 0.184 0.208 0.188 0.170
2 0.168 0.102 0.180 0.167
3 0.158 0.041 0.157 0.13S
4 0.175 0.043 0.184 0.151
§ 0.173 0.097 0.110 o0.101
6 0.105 0.068 0.123 0.064
7 0.154 0.013 0.100 0.030
8 0.128 0.021 0©0.107 0.075
g 0.131 0.029 0.072 0.031

10 0.134 0.021 0.044 0.003

11 0.135 0.026 0.069 0.011

12 0.136 0.026 0.040 -0.027

13 0.124 0.030 0.046 -0.011
14 0.150 0.037 0.046 -0.035
1 0.125 0.018 0.031 -0.049

16 0.117 0.011 0.041 -0.074

17 0.131 0.023 0.038 -0.0897

18 0.1289 0.021 0.026 -0.091

19 0.110 0.027 0.004 -0.102

20 0.124 0.034 0.000 -0.112

(1)
(2)
(3)
(4)

Value Weighted Index

IBM

Simulated Returns of model in Section 3
Simulated Returns of model in Section 2
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Table 9. Autocorrelations of Trading Volume

Lag (1) (2) (3) (4)
1 0.690 0.594 0.296 0.477
2 0.544 0.435 0.206 0.367
3 0.493 0.383 0.201 0.335
4 0.462 0.351 0.184 0.303
5§ 0.430 0.331 0.176 0.269
6 0.389 0.279 0.155 0.229
7 0.366 0.254 0.166 0.182
8 0.356 0.232 0.163 0.180
9 0.324 0.223 0.152 0.126

10 0.313 0.210 0.155 0.080

11 0.296 0.189 0.153 0.045

12 0.291 0.164 0.153 0.015

13 0.267 0.156 0.174 -0.031

14 0.252 0.151 0.155 -0.059

15 0.239 0.161 0.154 -0.087

16 0.231 0.138 0.154 -0.132

17 0.230 0.141 0.114 -0.176

18 0.216 0.134 0.120 -0.212

19 0.211 0.160 0.119 -0.233

20 0.206 0.189 0.145 -0.211

Value Weighted Index

IBM

Simulated Returns of model in Section 3
Simulated Returns of model in Section 2
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Table 10. Cross Correlation of Squared returns(t) with Trading Volume V(t+]j).

Lag (1) (2) (3) (4)
-10 0.004 0.001 -0.019 0.000
-9 -0.006 0.008 -0.015 0.020
-8 -0.003 0.009 -0.024 0.064
-7 -0.009 0.012 -0.007 0.060
-6 -0.011 0.015 -0.020 0.088
-5 -0.019 0.022 0.006 0.130
-4 0.003 0.036 0.020 O0.164
-3 0.006 0.048 0.026 0.185
-2 0.011 0.067 0.008 0.193
-1 0.009 0.098 0.147 0.208
0 0.212 0.137 0.168 0.414
1 o0.221 0.126 0.035 0.475
2 0.043 0.069 0.032 0.245
3 0.029 0.026 0.003 0.226
4 0.032 0.008 0.000 0.201
5 0.024 0.011 -0.024 0.207
6 0.020 0.007 -0.024 0.155
7 0.009 0.007 -0.012 0.133
8 0.008 -0.001 -0.024 0.097
S 0.004 -0.004 -0.033 0.107
10 -0.023 -0.011 -0.040 0.063

(1)
(2)
(3)
(4)

Value Weighted Index

IBM

Simulated Returns of model in Section 3
Simulated Returns of model in Section 2

Parameter values of model in Section 3: p=0.1, J=1, = 0.75,
var(beliefs)/var(fundamental)=40, risk aversion=l1, cost of signal=8,
Probability of re-evaluation period = 0.0S5.

Parameter values of model in Section 2: h=1, aéz(+1)=.3, v=0, p=.5, c(+1)=8,

c(-1)=0, T=20, t,=1/.3, risk aversion=1.

Data: The returns data are daily CRSP value weighted returns with dividends
from July 3rd, 1862 through September 30th, 1987. The volume series comes
from the NYSE turnover ratio, the total shares traded divided by the number of
shares outstanding. This ratio is first detrended using a 100 day moving
average, and then it is log transformed. Finally, day of the week effects are
removed from this series giving the final volume series wused here. See
LeBaron (1992) for further properties of this series.
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Let us discuss the Tables and Figures. Before we begin note that our
model is a very severe abstraction of diversity of beliefs. But it is good
enough to give the martingale difference sequence property of returns observed
in the data.

The martingale difference property requires Etxt+1=0' To see why this is
true, recall that, n =(i-m )/2, mt=tanh((p/2)(nt_la:_llrht_li-'nASt_l)]. Hence
if E(atlat_l,ht_l,ASt_l,.. }=0, which we assume, we have Etxt+1=_EtEt-1ntat=o'

First, note that Table 8 shows that the autocorrelation function of
squared index returns (IBM individual stock returns) is positive and Table 8
indicates that it dies slower than exponential, (dies exponentially) whereas
the autocorrelation function of squared returns generated by our model is
positive and dies exponentially fast. The Antoniewicz (1994a,b) findings
indicate that this pattern of faster decay is a general property of individual
stock returns compared to the value weighted index returns. Compare the
median of Table 4 to the value weighted index of Table 8. Notice the faster
decay of the median individual autocorrelation function of squared returns.

Hence, at a crude level, we match the qualitative features of the
autocorrelation function of squared returns but not the quantititive features.

Second, Table 9 shows the same type of conclusion for autocorrelations of
trading volume but we do worse on the magnitude. However, note that our
simulated volume autocorrelation decays slowly at large lags. This is a
feature that is consistent with the data.

Third, Table 10 shows the correlation pattern between volume and
volatility is qualitatively matched by our model.

We believe the model has performed well enough in matching moments to
give it enough credibility to make the point that a robust channel for
heteroskedasticity to enter returns is through the trading process itself and
not solely through the fundamental which the trading process is attempting to
price. The mechanism stressed in this Section is adaptation of trading

strategies on a slower time scale than the scale on which trading takes place.
SUMMARY, CONCLUSIONS, FUTURE RESEARCH

The minimalist version of our model does fairly well at replicating
qualitative features of volatility and volume in the data provided belief

adaptation takes place on a slower time scale than the time scale of the
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“ticker tape" or the time scale of collection of data on returns. The
approach taken in this paper has serious problems, however.

First, some mechanism must be present to make large enough masses of
traders to change to similar enough strategies to prevent the cross sectional
law of large numbers from "washing out” the aggregate effects of such strategy
diversity. While the joint probability structures of Brock (18993) which were
sketched in Equation (2.48) and surrounding text present one way of allowing
data to speak to the presence of clumping effects, we are still missing a
microfoundation for such clumping effects.

This same criticism applies to well known important works such as Delong,
Shleifer, Summers, and Waldmann (1990) and the literature on "noise" traders,
sunspots, etc. Perhaps adaptation of "lattice" based methods such as Durlauf
(1993), Brock (1993), Kiefer, Ye, and An (1883) can give us a microfoundation
for aggregative effects that survive the cross sectional law of large numbers.
We do not apologize for this gap in our paper, but it must be pointed out.

Second, there is very little diversity in the model treated in Section
three. Traders simply have the choice of whether to pay a fee to get an

unbiased predictor of v, or not pay the fee and get a biased predictor of Vi

Common sense would sug;est that a trader that has invested in an unbiased
predictor in the past would find it cheaper to acquire an unbiased predictor
later. Such dependence in cost upon past information purchases is not treated
here. This and other sources of diversity must be left for future research.

Third, we have treated only one type of diversity here. In our
unabridged version Brock and LeBaron (1993) we treated another type of model
where each belief type had a countertype whose "blases" were opposite in sign.
Simulations suggest models of this type do not generate enough volatility and
volume persistence to be consistent with the data if fundamentals and beliefs
are IID. But models of this type strongly suggest that GARCH fundamental
processes are inconsistent with the strong contemporaneous correlation between
volume and volatility seen in the data. The mechanism is simple. GARCH
fundamentals lead to small mean variance demands which lead to timid trading
which leads to small volume when volatility of returns is large which is
counterfactual.

Fourth, while information-based models of the type treated in Section two
can generate heteroskedastic returns from IID fundamentals, they generate
returns with smaller variance than the fundamentals and equilibrium volume
gets damped by large fundamental variance. This caused us to move to a model

like that treated in Section three. However, information based models can
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generate the anticipation effects in returns before big "news" events. A nice
extension would be to build models that include both components from Sections
two and three and calibrate them on empirical data.

Fifth, de Fontnouvelle (1994) has extended our model to the case of
infinitely 1llved assets. His model does a good Job of matching the
autocorrelation and cross correlation patterns of the data, even without the
device of two time scales. The long life of the asset creates a pathway for
persistence. A nice extension of both our models and de Fontnouvelle’s model
would be to explore dynamic impulse response functions of the models and
compare these to their empirical counterparts in Gallant, Rossi, and Tauchen
(1993).

Sixth, and finally, we used a combination of analysis interacting with
computer simulations to produce our conclusions. We need more analytic
results to understand the forces that lead to GARCH in returns. By conducting
computer simulations we argued, in the context of our model, that volatility
persistence enters returns through a slower time scale of changes in beliefs
which enter the demand function. This time scale is slow relative to the time
scale of trading. Based on our simulations this channel appears to be
consistent with volatility and volume correlation patterns documented in the

data.
In the context of a model where the time scales of demand change and

trading are the same but where demand diversity is stronger we argued in Brock
and LeBaron (1993) that volatility persistence of returns must be coming
through beliefs rather than the fundamentals that the trading process |is
pricing. This is so because fundamental volatility peristence dampens demands
of risk averse traders too much to be consistent with the cross correlation

pattern of volatility and volume.

The main conclusion 1is this. Combined analysis and simulation of
structural models of trader diversity can help us identify likely causes of
volatility and volume persistence which is seen in the data. In particular it
can shed light on a fundamental question: Does volatility persistence come
from the fundamental that the trading process is pricing or does it come from
the trading process itself? The analysis here shows how the trading process
can contribute to volatility magnification (and contraction) as well as

volatility persistence and persistence in trading volume.
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2. The compression effect suggests that GARCH type behavior may be coming
from the market pricing process itself, rather than the fundamental. This is
so because, if the fundamental (vt} is GARCH, a burst of volatility will decay

slowly. The compression effect compresses trading volume while fundamental
volatility is high. But this is difficult to reconcile with the high
contemporaneous correlation between volume and volatility.

3. We digress for a moment to discuss this prediction problem. The dynamics
of this prediction problem raise the question whether the system will
automatically converge to the Grossman/Stiglitz (1980) equilibrium (cf.
Grossman (19839, Chapter 5), Grossman and Stiglitz (1980)) where the fraction
of informed traders is set by equating net "profits", or a measure of expected
utility, to being informed to “profits” from not being informed.

Brock and Hommes (1994) show the following main result for general
prediction systems where choice over different predictors is governed by
profit measures from using each predictor. In other words the result holds
for dynamics under adaptive learning over the space of predictors. We state
the result here in intuitive terms. Assume: (i) naive, myopic backward
looking, or routinized prediction generates a locally unstable equilibrium;
(ii) rational expectations or other more sophisticated prediction generates a
locally stable equilibrium; (iii) all prediction methods considered by the
agents predict the equilibrium next period if the system has converged to the
equilibrium; (iv) methods of type (i) cost less per period than methods of
type (ii). Conclusion: Convergence to equilibrium is a "hairline” event.

An heuristic proof is simple. If convergence is occuring, profits from
all methods of prediction that are being used are converging to equality.
This 1is before costs are taken into account. After costs are taken into
account only the cheapest prediction methods of type (i) are ultimately being
used. But the dynamics are locally unstable when only these methods are used.
“QE:I)- "

Local instability of equilibrium under short memory backwards looking
prediction is associated with high responsiveness of an analogue to a supply
curve and low responsiveness of an analogue to a demand curve in the usual
cobweb setting. In the information setting to be described below local
instability under short memory backwards looking prediction is associated with
low risk aversion and low marginal cost of production of signal precision.

The point of raising the issues of instability under adaptive learning
over the space of predictors is clear. The theory exposes "far from
equilibrium" stabilizing forces that emerge when the gain to using rational
prediction covers the costs of using it. However, the theory does not give a
strong argument for us to expect the system to settle exactly at a
Grossman/Stiglitz equilibrium. The theory suggests that the system will
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occasionally wander out of a neighborhood of the equilibrium, only to be
pushed back again when it gets too far away from equilibrium. This movement
provides another potential source of persistence of returns volatility and
trading volume as well as a potentlal source of added volatility to returns.

4. The notlon of different scales of time is an old one in economics. Stock
(1987), (1988) has estimated models where the data are allowed to speak to the
speed of passage of the time scale. Writers such as Clark, Tauchen and Pitts,
T. Andersen, and others cited in the ARCH surveys have stressed the importance
of the difference between “economic" time and clock time in finance and how
this difference plays a role in generating heteroskedastic effects in returns
(cf. Bollerslev, Chou, Kroner (1992), Bollerslev, Engle, and Nelson (1993),
Gallant, Rossi, and Tauchen (1993), and their references).

Furthermore the institutions of the market play a role in the production
of conditional heteroskedasticity. See the articles in the book edited by
Friedman and Rust (1993), especially those by Domowitz and Bollerslev and
Domowitz.

Here is another way to think about the idea of two scales of time. The
notion of the two scales of time where the fast clock runs fast enough
relative to the slow clock for its sample averages to approximately converge,
may, perhaps, be thought of as an analytically tractible attempt to apply
ideas stimulated by the theory of Kurz (1982) to our problem.

We like to think of Kurz’s theory as a metaphor for a situation where the
underlying system changes slowly enough so that time averages converge but
fast enough so that their convergence on the same data for each agent does
not lead to common beliefs, i.e., diversity remains, and, hence, volume will
not dry up as in Sargent’s (1993) discussion of the no trade theorems and
attempts to break them.

5. We see the potential to formalize the idea of a fast and a slow time
scale by using something like the Wald sequential probabllity ratio test (e.g.
Basawa and Prakasa Rao (1980)). It 1is far beyond the scope of this paper to
formulize and work out a theory, perhaps along the lines of sequential
probability ratio tests, that endogenously produces the two scales of time.
Here we simply punt and introduce two scales of time.

There is also a related issue of correlatedness of revision times across
agents. We are assuming that all agents entertain switching their information
strategies at the same revision times T,2T,...,NT,...This 1is called
synchronous adjustment and is present in many economic models, but with little
Justification. When one starts Iintroducing two time scales of adjustment,
this related issue is flushed out into bold relief. Why should traders all
entertain switching at the same revision times?.

We could deal with this issue by introducing correlatedness of decisions
along the lines of Brock (1993) and allow the data to speak to the degree of
correlatedness within the context of the model. Any device that causes the
trader heterogeneity to change at a slower time scale than the market time
scale appears able to generate temporal persistence in volume and volatility.
For example, de Fontnouvelle (1994) extends our model to infinitely lived
assets and shows that infinite asset life interacts with trader heterogeneity
to generate enough persistence in volume and volatility to be approximately
compatible with the data.

It is beyond the scope of this paper to deal with these issues of
synchronous adjustment in a serious way. We could assume that across any
period [t,t+1] of fast time, a fraction "q" of the traders consider belief
revision, where 0O=qg=<1, and a fraction, 1-q, do not entertain revision, and
redo all the calculations that appear in this paper. This becomes very messy
and is beyond the scope of this paper. Hence, we must punt on the synchrony
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issue and move on.

The introduction of a slower time scale for changing trader
characteristics such as their information states will increase the temporal
persistence of trading volume which makes the model output more consistent
with the data. The presence of a common or correlated signal component in the
signal purchased by informed traders can lead to an increase in the volatility
of excess returns. Thus the temporal persistence in the fraction of Informed
traders can lead to temporal persistence in volatility of excess returns.

6. If one introduces a cost externality that leads to a dU(m) that is
negative below m,, becomes positive on (m,,m*), and is negative on (m*,) then

the dynamics become more complicated than fixed points and 2-cycles as p tends
to infinity. It is not hard to think of plausible externality structures that
lead to current period differential profit functions that rise and then fall
in the fraction informed last period. The general point to take away from
study of these dynamics is this. An increase in p, i.e., to borrow Frank
Hahn’s phrase, "an increase in the dial of rationality,” can lead to emergence
of complicated dynamics, perhaps even chaos. Since p parameterizes a measure
of rationality, i.e., intensity of choice, therefore one could call, perhaps
facetiously, the emergence of complex dynamics as p increases, a "rational
route to randomness."

7. However, it may be argued that the issues of instability raised by the
dynamics treated above are simply artifacts of the naive expectations,
m =mNT—T' The literature on learning which was surveyed recently by Sargent

(1993) should lead one to be suspicious of results built upon naive, short
memory, backwards dynamics. Many of the learning dynamics schemes treated in
Sargent may lead to convergence to the equilibrium m, which is the Grossman

and Stiglitz (1980) equilibrium. However, if the function
H(mNT—T’mNT-ZT""'mNT-LT)EmNT—T is replaced by any H that satisfies the
"consistency property,” H(m,m,...,m)=m, one may conjecture the following

Proposition: For any consistent H(.), there is a P such that for p>pc, the
fixed point mp for dynamics (2.45) is also a fixed point and is locally
unstable for the dynamics

(D. 1) my =tanh{(p/2)dU(H(my, oMy oo - oo myn 0 )) ],

Furthermore the fixed point mp converges to the Grossman-Stiglitz equilibrium
IT\ as p—->ow.

One can establish this conjecture under modest regularity conditions on H(.)
by simple linearization at mp and increasing p until at least one root of the

characteristic equation of the linearization matrix has modulus greater than
unity. The conjecture is intuitively obvious because if p is very large,
dynamics (D.1) approximately sets moT to the sign of dU which 1is a

discontinuous function. We leave the details to the reader.
8. It might be argued that the above instability was an artifact of lumpiness

of the cost function of production of signal precision since there were only
two choices: zero precision or precision T,- To avoid thls criticism we

sketch below a theory for general cost functions, c(t).
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The sketch below will indicate, as was suggested in the introduction,
that convergence to Grossman-Stiglitz equilibrium should not be taken for
granted. The sketch below gives us the added payoff of a "demand and supply"
analytical apparatus for the production of information. Indeed we believe the
treatment below Is of independent interest.

We describe how a trader chooses signal precision <. We replace the
"lumpy" cost function c(-1)=0 for t_=0, c(+1)>0, for t,>0, which only allowed

production of two levels of T, by a cost function c(t). The cost function
c(t) is assumed to be twice continuously differentiable, convex, increasing,
and c(0)=0. A fixed cost component can be added if desired.

Fix all traders’ choice of signal precision for the "slab" of fast time

contained in [NT-T,NT]. Let fraction rx‘j of the traders have precision TJ and
put ;!thTJ. For a trader with signal precision t, replace c(w) by c(t) in

Equation (2.37) and follow the same calculations leading to Equation (2.37) to
obtain

(2.37b) U(tJ)E(l/rh)[Ex2(1+t)-E(v—;)x]-c(t), Ex?=E[ [rhz+v-v]/(1+7) 12,

(2.37c) E(v-v)x=E[ (v-v) ([rhz+v-v]/(1+T) )=h/(1+T),
(2.37d) Ex2=h[(1+r°hEz2)1/(1+7)°.

In order to map th%s structure into a "supply and demand" analytical
apparatus, let P=1/(1+7)” play the role of the "price" of information which
must be forecasted by agent J before it can intelligently choose TJ. Denote

the forecast of P made by trader j by PS. Rewrite U(t,) thus:

J J
(2.37e) U(tJ)=PA(1+tJ)-P1/ZB-c(tJ), AE(1+r2hEzz)/r, B=1/r.
Let c(t)=w1+(1/2b)12 and maximize over TJ to get the information "“supply

curve",
(2.37f) S(P)=c’ ~1(PA)=b(PA-w).

Hence if each J is using a predictor function H,(P ) to predict P from

3 UNT-T
L-past values PNT-TE(PNT—T,""PNT-LT)’ we have

(2.37g) P!d(Q)=1/(1+Q)2. =D(P)81/P1/2-1, Q=t, which implies,

(2.37h) D(Pt)=EnJ,NT TS(HJ(PNT -T =EnJ,NT Tb(AHJ(PNT T) -w).

Hence, by sultable Iinterpretation of variables we end up with a dynamical
system once we know the rx‘j t-1" But for period [NT-2T,NT-T] agent J can

calculate the actual limiting average trading profits realized during fast

time as T-->w, call this u(HJ(Pt - ) when it chose T, based upon (2.37e)

with expected t-1 price, P= HJ(Pt 2) but P -1/(1+; 1)2 actually was

realized. Easy calculation shows that u(P :P) is given by

(r) w(P%;P)=PA-P"%B+b(P®A-w) [PA-w-(1/2) (P€A-w)].
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The results of Brock and Hommes (1994) may now be applied. For example,
let there be two predictors available: (i) perfect foresight, H(PNT_T)!P .

available at cost C>0; naive expectations H(PNT-T)spNT—T’ avallable at zero

cost. Then Brock and Hommes (1994) show: If the dynamics (2.37h) are
unstable when everyone uses naive prediction and are stable (in this case
instant convergence holds) under perfect foresight, then, there is a critical
value of choice intensity p such that limit cycles of period greater than two,
as well as other "complex" behavior occur. In our context instability of
(2.37h) under naive prediction amounts to locating sufficient
conditions for the difference equation

— 2—
(2.371) T, =blA(1/(1+7, _,))"-wl,

to have an unstable steady state. Obviously this happens if b is large
enough. A large b corresponds to a high responsivity of information "supply."

We may think of A in (2.37e) as an information "productivity" and/or
"level of demand" with the " underlying demand curve" as given in (2.37g). We
are now ready to think of information equilibrium in terms of the conventional
Marshallian scissors of supply and demand. Note that A increases iff the
amount of ‘"outside" risk the system must bear increases. Expected excess
profits per share return, Ex=(rhEz)/(1+t) increases iff, P, the "price" of
information and/or rhEz increases.

Since asset price p moves opposite to Ex we may attempt to use our
dynamic "information demand and supply" apparatus to interpret phenomena such
as (i) blowoffs and crashes; (ii) "bubbles" as in experimental work on asset
markets by Vernon Smith and his co-authors, (iii) ‘"stale prices" and
"portfolio insurance effects" as in Grossman's book (1989) and his references
to Leland, Shiller, and others.

For example, an abrupt rise in information price occurs iff asset price
abruptly drops. If learning by doing occurs to lower the marginal cost
function of information then volatility around the fundamental can be shown to
fall. An increase in portfolio insurance could crudely correspond to a rise
in marginal cost of information because traders cannot observe the information
generated by the trading in the displaced "real" puts (Grossman (1989)).
"Stale prices" could crudely correspond to a rise in the marginal cost
function for information.

For example, Madrigal and Scheinkman (1992) put forth a theory that
embedded information-strategic market mekers into the noisy rational
expectations asymmetric information framework to explain the following
stylized facts: (i) market breaks seem to be preceded by several more gradual
price declines, in response to "bad news", perhaps; (ii) volatility increases
after the break; (i{ii) informational role of prices is severely diminished;
(iv) bid/ask spreads increase, severe order imbalances appear with
market-makers becoming large net buyers of stock.

In Brock and LeBaron (1993), a stripped down version of our apparatus
generates through (2.46b) behavior much 1like (i), (1i). If (iii) 1is
interpreted as less information being produced in our context above, then
something like (iii) emerges. More informed traders end up buying lots of
stock when a crash occurs, so this is something like (iv).

We believe that it will not be téo hard to deal with conditioning upon
price so long as we fix the choices TJ at NT-T and simply apply Hellwig's

formulas (1980) to calculate the equilibrium at each time in [NT-T,NT] and use
this to calculate the analogues to profits, information price, information
quantity, etc. above. We have done some preliminary work on this and have
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produced messy but stralghtforward formulae.

One should eventually use a more appropriate goal measure such as
expected utility of profits as in Grossman’'s book (1989) and to condition on
price as well as on signal as in Grossman's book and Hellwig (1980). The case
sketched here is good enough to show the spirit of results that we can expect
to get.

9. Furthermore one could introduce K components of the fundamental, 1i.e.
v=£vk, with a choice of purchase of a signal yk=vk+ek for each component k.

This model should lead to very rich dynamics. One could code the labels
of these components into bitstrings as in Arthur (1992) and Arthur etal.
(1993) and add J-type cross dependencies for each "slot" of the bitstrings as
in Brock (1993). In this way one could develop a parsimoniously parameterized
probability structure that generalizes (2.46a,b) to multiple component
bitstring labeling and treat abrupt changes in “feature" selection. We leave
this generalization and others to future work.
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APPENDIX ONE: THE SYSTEM EQUATIONS
This Appendix collects all the system equations at one point.

THE SYSTEM EQUATIONS

Here are the system equations.

(s.1) Max{E[-exp(-rHit)lllit), s.t., ptait+bit=wit’ Vit=(vt-Rpt)ait+Ruit.

Recall that Vi is realized at the end of period t, but decisions must be made

on the basis of beginning of period t information Iit' Recall that under

assumptions of conditional normality of v, given Iit' (cf. LLM (1992, p. 321))

(S.1) this is equivalent to choosing a;, to solve

2
(s.2) Max(E[(vt—Rpt)lIit]ait—(r/Z)ait Var[vtllit].

Recall that h20b2§Var[vt|Iit] denotes the conditional variance of Vi give the

t'yit)' Yie=Vi*et and v, denotes the conditional mean

on the publically available and commonly shared information set It' We assume

information set Iiti{l

h and v are constant through time.

The first order conditions for optimum a, yield the mean variance demand

function,

(S.3) a t=D(pt|11t)EE[(vt_Rpt)lIit]/(rvar[vtllit])°

i

Market equilibrium at each time t gives us, assuming no commonly sgPred signal

component, and recalling BEh/(h+cé2), Tihfcéz, B_=1, B+=h/(h+cé+)<1, T_=0,

r+>0,
(S.4) zt=Lim((I/I){hit)=n_t[v—Rpt]/(rh)+n+t[v+B+(v-v)-Rpt]/(rh(1—B+)).

We assume B+ and °é+2 are constant through time.

Rewrite (S.4) to obtain (S.5) and (S.6) below,

- -e
(s.5) vt-Rpt![rzth+(vt-vt)]/7t.

-e_- e _ e
(S.6) 7t—7o+(mt/2)d7—1+((1+mt)/2)r+.

Recall that n_.n,, are only allowed to change for te{T,2T,...,NT,...},
N=1,2,...; T>1; but all other variables can change for t=1,2,...This is our
way of capturing the notion of slow time and fast time. In the simulations T
is a random variable with constant mean bigger than wunity. We assign

"strengths" to each choice we{-1,+1} as follows. The current period profit
measure is given by

(S.7)  U(w)=(1/r7%2) {7 (0) (F2E(z2)h) +7 () -7} ~c(w).
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Define "strength" S(w) by the "distributed lag" difference equation,

(5.8) S, ()=(1/r75 )7 () (FPE IRy (0) =75} -cw)+ns, _, (w), S, (@)=0.

At each time t=NT, we have, letting dStSSt(+1)-St(-1), assuming E(zz) is
constant through time,

(S.9) m,=n

N +t-n_t=tanh[(p/2)dst], and for =0,

(S.10) m =n_

N -n_t=tanh[(p/2)(G(m:)t+-c+)]. c =c(1),

t

(S.11) G(m:)z(1/r§:2)(r2E(z2)h+1).

Volume 1is given by summing the absolute value of the differences in
equilibrium demands,

(S.12) 2rhV=[1A[(f -Rp)/(1-8)]1du=IA[(f -Rp)/(1-8) 1l dp,=

J1A[x(1+7) ]+A[-e]+A['cei] | duz.

where the measure dpz counts the fraction of traders in period t-1, period t

who bought (did not buy) the signal in periods t-1,t. This calculation
depends upon whether t is a revision period or not.

The system evolves as follows. At non revision times t, traders who have
bought (not bought) the signal receive a realization (do not receive a
realization) at the beginning of period t. The fraction n., (n_t) of traders

who bought the signal (did not buy the signal) was fixed by the discrete
choice model, (S.9) at the nearest revision time, call it NIT‘ less than t.

The "strengths" that enter (S.9) were calculated based on realizations of
actual profits at times in [NIT-T,NIT]. The expectation of the sample

analogue of expected profits over [NlT-T.NlT] was used to approximate the

sample analogue. This approximation makes an error proportional to 1/T. We
assume T is large enough so that this error is small.

In the actual simulations, we did not make this approximation. We only
did it to produce analytical results. At revision times t=NT, traders use the
discrete choice model (S.9) to choose whether or not to buy the signal. This
choice is done independently across traders and independently of their choice
at (N-1)T. Of course a form of dependence can work through the strengths, but
there is no other dependence in the choices. At the beginning of revision
period NT, after the choice whether or not to buy the signal is made, the
system proceeds as described for the nonrevision times.

At the beginning of each period, traders maximize their conditional
expected negative exponential utilities of end of period t wealth and send
mean variance demands (S.3) to the clearing house, which clears the demands
against the realization of supply zt. The actual amount paid per share of

risky asset is the equilibrium price P, set by the clearing house. The actual

number of shares bought or sold by trader i is determined by her demand
function evaluated at P;- Nature realizes Vi and excess profit per share
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xt=vt—Rpt and return, L e is realized. Period t 1s ended and period

t+1 begins. The process 1is repeated at period t+l1 with a new realization of

Vt+1.

Simulations of versions of the equation system (S.1)-(S.11) are done in
Section 3. Those simulations assume an IID process (vi} and produce

autocorrelation functions of (i) the equilibrium returns ry (i1) the
volatility measure (rtz). (111) the price volatility measure 'R(pt_pt—l)l’ and

(iv) the volume measure (S.12).
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