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ABSTRACT

This paper will propose a new statistical model for the analysis of data that does not
arrive in equal time intervals such as financial transactions data, telephone calls, or sales data on
commodities that are tracked electronically. In contrast to fixed interval analysis, the model
treats the time between observation arrivals as a stochastic time varying process and therefore
is in the spirit of the models of time deformation initially proposed by Tauchen and Pitts (1983),
Clark (1973) and more recently discussed by Stock (1988), Lamoureux and Lastrapes (1992),
Muller et al. (1990) and Ghysels and Jasiak (1994) but does not require auxiliary data or
assumptions on the causes of time flow. Strong evidence is provided for duration clustering
beyond a deterministic component for the financial transactions data analyzed. We will show
that a very simple version of the model can successfully account for the significant
autocorrelations in the observed durations between trades of IBM stock on the consolidated

market. A simple transformation of the duration data allows us to include volume in the model.
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1. Introduction

With the increasing power and memory of computers it is natural to collect and analyze
data at ever higher frequencies. The ultimate in high frequency data collection records every
transaction. This limit has now been reached for many financial data sets as well as for various
microeconomic transactions such as telephone calls, purchases of items on credit cards and other
types of transactions which are automatically recorded by computers. Generally the objective is
to model and forecast the frequency and distribution of transactions possibly as a function of
other determinants.

The analysis of such data sets presents new and interesting econometric challenges. In
particular, most transactions data arrive at irregular intervals. Because our standard methods of
analysis are based upon equally spaced data, there is a natural inclination by the econometrician
to choose some time interval and aggregate the transactions occurring within that interval. This
is a potentially important part of the analysis since the appropriate interval will depend upon the
transaction frequency. For purchases of consumer durables by an individual, a natural interval
might be months or even years. On the other extreme, stock transactions for frequently traded
stocks will have transactions every few seconds, hence a much shorter interval is appropriate. If
too short an interval is selected, most cells will be zero, but if too long an interval is chosen, then
there will be a dramatic loss of information which mitigates the advantages of moving to
transactions data in the first place.

The problem is even more important when it is recognized that the frequencies of
transactions may vary over time. For stocks, transactions are more frequent near the open and
the close than in the middle of the day. For currencies which are traded twenty four hours per
day there are definite periods of slow activity and weekends are typically slow. Even more
intriguing is the case of transactions which are generally infrequent but which may suddenly see
very high rates of activity. This may be due to some unobservable event such as a news release
or to an unobservable event which may best be thought of as a stochastic process. In these cases,



the choice of a fixed interval for data analysis is very perilous as it may leave the investigator
with many uninformative data points or disguise the periods of most interest.

This paper will propose an alternative to fixed interval analysis. The proposed method is
called Autoregressive Conditional Duration. This procedure models the time intervals directly
and therefore is in the spirit of the models of time deformation' initially proposed by Tauchen
and Pitts (1983), Clark (1973) and more recently discussed by Stock (1988), Muller et al. (1990)
and Ghysels and Jasiak (1994) but does not require auxiliary data or assumptions on the causes
of time flow.

Instead of selecting a fixed interval for analyzing the data, it is proposed to let the
interval between transactions be a random variable to be analyzed. Thus the data set becomes a
list of durations and characteristics of each transaction. That is, there is some probability of a
transaction in each instant of time and this probability could vary with the type of transaction,
the length of time since the previous transaction and any other outside influences. As each
interval is naturally thought of as a duration, it is clear that the vast body of research on duration
models is immediately potentially relevant.

To illustrate the model and provide an example, transactions data from financial markets
will be analyzed. Financial transactions data is particularly interesting to examine because of the
recent rekindling of interest in the micro theory surrounding financial transactions data. As
proposed by Kyle (1985) Admati and Pfleiderer (1988) and more recently by Easly and O'Hara
(1992) the durations between transactions may carry information about the state of the market.
These models suggest clustering of trading. Clustering of trading is precisely what we find when
we examine IBM transactions data. Even after the time of day effects are partialed out, large
autocorrelations in no-trade durations exist.

In the following section the autoregressive duration (ACD) model will be developed.
Section 3 will discuss properties of the ACD model. Section 4 will present the likelihood function
associated with the ACD model. Section 5 will briefly discuss specification testing with the ACD
model. Section 6 will discuss estimation and present examples using the IBM time series
discussed above. Section 7 will present some LM tests for the IBM transactions data. Section 8
will present an alternative model to include quantity effects in the ACD model. Section 9 will
discuss forecasting using an ACD model. Section 10 will draw conclusions and discuss future
research directions.



2. Model Formulation

Consider the stochastic process which is simply a sequence of times {t;, t5, ..., t,, ...}. As
these are points distributed in time, this is called a "point process" and the times are called "arrival
times" of the point process. Corresponding to these arrival times is a counting process, N(t)
which is the number of events which have occurred by the time t. Obviously, N(t) is a non-
decreasing function of time that increases in unit steps. Define the unconditional expectation of
N(t) as:

(1)  A(t)=E(N(1)

The counting function representation of the point process is illustrated in figure 1. In the top of
the figure we have illustrated the number of events that have occurred by time t. Each vertical
jump on this step function represents an event.

Before describing this stochastic process it is useful to define some terms as in for example
Todorovic (1992).
This process is said to be "stochastically continuous” if at any point t, and for any >0,

(2) Iim P{N®)-N(,)>0}=0

1oty

The process is defined to have "independent increments” if for any finite number of tmes
to<t;<t,<,...,<t, the random variables,

N(to), N(t,)-N(tp), ..., N(t)-N(t,.))

are independent. A process that has both of these characteristics is called a "Poisson Process.” A
particularly convenient type of Poisson Process is the "time homogeneous" process in which A(t)=
At. In fact, any Poisson Process can be transformed into a time homogenous process by what
might be called a deterministic time deformation.

But, is the class of Poisson Processes appropriate for the types of transaction data to be
examined? The assumption of stochastic continuity seems innocuous, but the assumption of
independent increments is clearly questionable for most transactions processes. In particular, it



implies that the distribution of the number of transactions in a future time period is independent of
the transaction rate in the past. This is a very unattractive assumption for a process which seeks
to model the frequency of transactions. Essentially, it says there is nothing to model except
perhaps a deterministic function of time. The bottom of figure 1 illustrates the implications of this
assumption. In particular, if N,(t) and N,(t) are two realizations of the counting process, the
expected value of the counting function at time t might be the line labeled A(t). The slope is the
expected rate of arrival of events which is constant under the assumption of independent
increments.

In particular, the assumption implies that intervals or durations should not be
autocorrelated, at least after any deterministic components are removed. For the IBM stock
transactons to be discussed below, there is clear evidence of autocorrelation in the durations,
with or without elimination of deterministic functions of time.

In order to introduce generalizations of the Poisson Process, it is useful to write the
probability density function of the durations. Let the i* duration be x; = t-t,; and define f(x,) as
the density of x,. The cumulative density function of x for a time homogeneous Poisson Process
has the form:

@) Plx,<1)= Fiy =1—exp(~A1)
where all x; are independent and identically distributed. Note that:

(4) x~Aexp(-Ax), an exponential random variable
E(x)=A"
V(x)=A"

L(x,A) =Nlog(A)- ?\.i X,

i=1
In the last expression L is the log likelihood of the sample of N durations under the assumption

N
that they are a homogeneous Poisson Process. The MLE of A is N/ Zx-, .

i=1



It is natural to extend this model to allow A to vary over spells. The most popular
approach suggested by Cox (1972) is to introduce covariates which are treated as exogenous (or
"weakly" exogenous as in Engle Hendry and Richard (1983)). In labor econometric studies
variables are introduced for observable heterogeneity. See for example Kiefer (1988) or
Lancaster (1990) for surveys. The model is called the Proportional hazard model and is written as

(5) A, =Aexpf’z

where z is a vector of attributes appropriate to the it spell. This correction does not break the
assumption that durations are independent at least conditional on the z's, and will therefore not be
successful for these transactions data.

There are at least two suggestions in the literature for introducing time dependence into A
without simply making it a deterministic function of time. The first is the doubly stochastic
Poisson Process of Cox (1972a) as studied by Grandell(1976). In this case A, is replaced by an
independent Poisson Process. While this seems a reasonable model, it is very difficult to deal with
and is complex to estimate and forecast. Furthermore, the independence assumption is
unmotivated. A second suggestion in Cox (1972a) is to incorporate lagged durations into the z
vector of the proportional hazard model. This allows recent experience to influence the current
hazard. Models of this type were introduced into econometrics by Heckman and Borjas (1980)
and Heckman (1981) among others, to examine the impact of past unemployment on current
durations. In these models, the data are typically short time series on many individuals so that the
question of whether this truly reflects state dependence or merely unmeasured heterogeneity
becomes very important.

These models and many others can of course be expressed in terms of the joint likelihood
function

6) L(x,,Xy....,X,;0) = 21, = ZIngi(xei_,,...,xl;B)

i=1 i=l

It is here proposed to parameterize these conditional likelihoods directly. Clearly, in the
Poisson case, each conditional likelihood is an exponential as in (5). A rather weak assumption is
that the time dependence can be summarized by a function y which maps the past information set



into a scalar with the property that x,/\y; are independent and identically distributed with a mean of
unity. That is , the density of these "standardized durations" satisfy:

€))] g(xi/Wi'xi-l"“’xl;e)=g(xi/\|’i;e)
)] E[xilxi-l’”"xl;e]:\l’i = W(xi—l’xi-2""’xi-p’“’i-l’wi-z""’\l’i'q;e)

and y can be called the conditional duration and since it depends upon past durations, it is natural
to call the model Autoregressive Conditional Duration or ACD.

A simple version of this with exponential durations and parameterized in terms of y=A1,

1s:

N N X.
9 Lx,y)=D 1, =-) logy, +;V’—_

=1 i=1 1

(10) y,=o+ax,_, +Py,, fora,p20, w>0, Vi,i=1L..N

This model is convenient because it allows various moments to be calculated by expectation. For
example, the conditional mean of x; is \,, the conditional duration, but the unconditional mean is

w/(1-o-B)=p. This is most easily seen by taking expectations of both sides of equation (10)
although the dynamic analysis in the proof of lemma 1 is needed to insure that it exist when a+f
<1. Similarly, the conditional variance of x is y’ but the unconditional variance is given by o’

where
(11) o2 =p*(1-p?-2ap)/(1-p* -2aB-2a?)

Thus whenever a>0 the unconditional standard deviation will exceed the mean exhibiting "excess
dispersion" as so often noticed in duration data sets. From taking repeated expectations multistep
forecasts of durations can be computed directly. That is, the expected duration of the nth
transaction can be computed directly from (9) and (10). This model has only one lag of x and one
lag of y and is therefore conveniently labeled ACD(1,1).

Readers who are familiar with the ARCH class of models will immediately recognize the
relationship to models of conditional variance. This ACD(1,1) is analogous to the GARCH(1,1)
and will have many of the same properties. Just as the GARCH(1,1) is often a good starting



point, the ACD(1,1) seems like a natural starting point. However, as there are very many
alternative models for volatilities, there are lots of interesting possibilities here. For recent
surveys on ARCH models and lists of different classes, see Bollerslev, Engle and Nelson(1994),
Bollerslev Chou and Kroner(1992) and Bera and Higgins (1992). The ARCH model was
originally introduced by Engle(1982).

The specifications in (9) and (10) can be generalized in many ways. The conditional
density in (9) is assumed to be exponential but there are countless ways to relax this restriction.
The most popular is to assume that the conditional distribution is Weibull. In this case, a useful

way to describe this assumption is that (x;/¢,)Y is exponential for ¢, a measurable function of the
past. Thus the conditional density of x; is

Y Y
(12) g(xi)=%(§) exp{-[%f-) }for x; >0

The conditonal density is now a two parameter family which can exhibit either increasing or
decreasing hazard functions. This makes especially long durations more or less likely than for the
exponential depending on whether 7y is greater or less that unity respectively.

For this model

(13) E(xil:ﬁ") - r(l*—%)q)i =Y,

where I['(:) is the gamma function. If the function ¢ is parameterized analogously to (10), then
(14) ¢, =d+ax,, +Po,,

and substituting

1s) ¢,= Vi gives
I‘(1+—;—)

(16) y, =o+oax;, +Bv,



where

W= GJI“[H-I—J
Y

a=&r‘(1+i)
Y

which is exactly the same as (10).

Many other parametric specifications are possible. An attractive alternative is to
estimate a non-parametric hazard. While this has been proposed and used in many studies, there
are no examples known to these authors in which the hazard varies over time stochastically.
Nevertheless, it would not be difficult to extend the ACD model to this case. The needed
assumption is that when the correct specification for v, is found, then x/y; will be independent
and the distribudon of such random variables can be estimated by some form of histograrr'1
estimator such as a spline or kernel. This estimated histogram can then be used as the likelihood
function to re-estimate the parameters in . The procedure is closely related to the semi-
parametric ARCH model estimated by Engle and Gonzalez-Rivera(1991).

The dynamic specification of the conditional duration can also be easily generalized. A
(p,q) linear specification would be:

(17) vy, =wHoyX +0,X, ,+.+aXx,  + BiWia Byt BV
More generally, this could be a non-linear function and it could include other variables as in

(18) Vi S Y (X Xy X Wicts Wiczee s Wings Zis Ziyseer 2y, 6)

Such a specification includes models analogous to the EGARCH, AGARCH, NGARCH,
TGARCH and many others as possibilities. More interestingly, it allows economic variables to
enter the equation which determines the frequency of transactions. From this version of the
model one can test hypothesis on economic determinants of the rates of transactions. This is
probably the main reason why the analysis is being undertaken and thus, it is potentially very
important to consider how such variables should be specified and estimated.



3. Distribution of the ACD Models

In this section we develop properties of the unconditional moments of an ACD process. These
will be convenient for data analysis.

Lemma 1: If E(x/#_,) exists and equals y,,

where W, = W+ 0X, +0,X, 4. +0 X + By, + 52wi_2+...+5q\yi_q

and if all the roots of the equations

max {p,q}

(19) 1- > (a;+B,)z' =0

i=l

lie outside the unit circle, then x has a constant unconditional mean given by

20) p= @

max {p.q}

1= (o +B)

i=l
A necessary condition that all the roots lie outside the unit circle is

ey e, +p) <1

i=1
Proof : See Appendix

Similar results can be obtained for higher moments although we establish these only for
the first order case in the following lemma.

Lemma 2: Under the conditions of lemma 1 and when V(x/% ) exists and equals ky} and when

p=q=1, and (a+ﬁ)2 +o0’k <1, then



1-(a+B)’ -’k

— —R2
Proof: See Appendix
This result shows that the unconditional standard deviation exceeds the mean by more
than does the conditional standard deviation. This model therefore is consistent with the excess
dispersion that is typically observed in duration data. For the exponential model, x=1 so there is

no excess dispersion in the standard deviations even though there is in the unconditional
durations. For the Weibull with parameter ¥, it can be shown that

I‘(1+2)
23) x={—T12
I‘(1+l)
Y

Similar but increasingly complicated expressions can be obtained for the higher moments and for
higher order models.

4. The Likelihood Function of an ACD Model

This section will develop the likelihood functions for the ACD models described above. In
general, x, will not be independently distributed. The joint likelihood function can always be

written as the product of the conditional likelihood.

Hence the joint log likelihood function for the exponential version can be written as

24) L(6) =—i[m(wi)+ﬂ

Differentiating with respect to 6



oL _(xi .19y
o 3-{-

O | x| 10w 0y | X | 1 9W; 9y,
20 3959’_[ \vi]w? 26’ 29 +[1 ]

where

i\l’__i_ C g YL,
@n = —z,-+§lﬁi—-ae

and
(28) zi:[l’xi-l’xi—2’“"xi-p’Wi-l’Wi—Z"“’Bq‘vi-q]

This recursive score function is analogous to that of Bollerslev's (1986) GARCH model.

Vi
distribution and expectation of one. It is easy to see that the score will have expectation of zero

Under correct specification, the standardized series (—’—] is iid with an exponental

and the information matrix can be estimated by.

15| Lav ov,
@ 3w

i=1

For the WACD the log likelihood function 1s

< L)eym(2)-(%]
(30) 1,(8,7) ln[xi)”l“(q)i) (¢i)

Differentiating with respect to y and 6

ol _ 1 X; k xi]
3])) —t=d_ 12| —1jm| =
GD oy v ((Q),) ) (¢i

3, _((x) _ |xde
° 59'[(4») 1}% 56



(36) aa— Z+3B, a¢_l
i=l

and 0 is defined as above.

i+l

1
Noting that the conditional expectation of [zﬁ) is one, it can be shown that the expectation of

the score is zero. The Hessian can be estimated by

06 e
RO Ok

The expectation of the Hessian is

37




ek i

Y ¢. &0
38) LY - '
0 NZ 18 (1) sase
¢, 80 v,/ 06 68’

where! { = E[e In(e, )2] = Iy in(y)® exp(~y)dy =.8237

and v = E[e; In(e, )= Iy In(y) exp(~y)dy =1-e =.4227.

where e 1s Euler's constant.

Because the off diagonal element will not be zero, efficient estimation requires the joint
estimation of the parameters 6 and y. Furthermore, if the model were truly Weibull and oné
estimated an Exponential, the parameters 6 will be biased.

5. Specification Testing Using Lagrange Multiplier Tests.

The Lagrange Multiplier test has proven to be a useful diagnostic tool. See for example
Breusch and Pagan(1978, 1980), Godfrey(1978, 1985), and Engle(1979). Many possible tests
come to mind. A test of primary interest is a test for misspecification in the form of omitted
variables. In the context of financial data sets, we might like to test for the omission of weakly
exogenous variables such as volume, price, or spread in the context of financial data. A second
test for a more general form of misspecification will look at deviations from moment conditions
implied by the model specification. The latter tests are known as tests for unexplained
heterogeneity, or excess dispersion in the duration literature.

For the Exponential model, the LM test can be reduced to examining NR? where R? is the
R-squared obtained from regressing a vector of generalized errors defined as

! Calculated numerically using Mathematica.



I

o )]

on the vector of partial derivatives

1 vy, 1 Oy,
40) | L= L Z¥N
@) [wl 80wy 89]

where both are evaluated at the null.

For both the Weibull and the Exponential, it is well known that the LM statistic can be
calculated by N*R2 where R? is the R-squared from regressing a vector of ones on the scores
evaluated at the null. The R-squared can be obtained from the first iteration of the BHHH
algorithm taken from the maximum likelihood estimates under the null. The test statistic will have
the usual chi-squared distribution.

It is easily shown that just as for GARCH models and ARMA models, we can not derive a
general LM test for the alternative of an ACD(p,q) process.

Under correct specification, the mean of the generalized errors should be equal to the
variance which should be equal to one. In the duration literature, tests of this condition are
known as tests for excess dispersion or unexplained heterogeneity. There is a simple form of this
test based on the LM test initially proposed by Lancaster(1985). The test looks for multplicative
excess heterogeneity in the hazard specification.

The generalized likelihood function can be approximated by

(41) P(xi;e,y,oz)=1og(g(xi))+log(1+%2-(ef—Zei))

Under the null 6% = 0 the Hessian is block diagonal with respect to the additional parameter.



6. Application to Duration Between Successive Trades of IBM Stock.

The data examined are the wading times, measured in seconds after midnight, of IBM
stock through the consolidated transaction system. These data were abstracted from the Trades,
Orders, Reports, and Quotes (TORQ) data set compiled by Joel Hasbrouck and the NYSE.
There are over 50,000 transactions of IBM stock over the 3 monthly period of November 1990
through January 1991. We examine the durations between successive transactions. These
durations are measured in seconds. The duration between the close of the market one day and
opening the following day is deleted. The execution of a limit order was not treated any
differently from market orders. Estimation was performed on two sub samples of the data both
containing 15,000 observations. The first is approximately the month of November, and the
second sample is approximately the month of December. Estimating parameters for two data sets
will allow us to compare results. Furthermore, the first data set contains days surrounding
Thanksgiving day. The Friday following Thanksgiving day exhibited a lull in activity. In
particular, the 3 most extreme durations were observed on this day, the longest of which is almost
200 tmes the mean. These extreme values could potentially be modeled by including other
explanatory variables.

The first sample has an average time interval between trades of 26.2 seconds, the
minimum interval is 0 seconds, and the maximum interval is 4592 seconds or just over 1 hour and
15 minutes. The standard deviation is 53.9 seconds and the skewness is 42.3. The top portion of
Figure 2 presents a histogram of the durations. The second sample has an average of 27.07
seconds with a minimum of 0 seconds and a maximum of 426 seconds or just over 7 minutes.
The standard deviation is 37.69 seconds. A histogram for these durations is on the bottom of
figure 2. For a Poisson process, the mean should be equal to the standard deviation. Both of
these data sets clearly exhibit excess variance in durations.

The autocorrelations and partial autocorrelations of the duration between trades are
presented in figure 3. Both of the Ljung-Box statistics are very large. The first data set has a
Lung-Box statistic of 1058 and the second of 2413. The null hypothesis of white noise is easily
rejected for both data sets based on the critical value of 24.99 at the 5% level. These long sets of
positive autocorrelations are precisely what one finds for autocorrelations of squared returns. The
cause is volatility clustering in that case and interval or duration clustering in this case.



These samples exhibit the well known property of high activity in the moming and just
prior to close2. This can be seen by the very different means for different hours of the day
presented in figure 4. The mean duration is twice as high at mid day than that of the morning.
These deterministic components were partialed out using a linear spline as a function of time of
day. For both data sets the spline exhibits the expected inverted "U" shape. The graphs for each
sub sample are presented in figure 5. Durations are longest in the middle of the day and shorter
just after opening, and just prior to close. The durations are 4 times longer on average in the
middle of the day than in the morning and the end of the trading day has trading averages twice as
long as in the morning. In particular, the average duration ranges from 10 seconds in the
morning to almost 40 seconds around noon.

We shall consider modeling the transformed series

42) x; = ‘

where ®(r) is an estimate of E[xilti_,]. Both the new series X; have a mean of approximately 1.

As expected, the first data set (containing the outliers) has a higher standard deviation of 1.98
compared to 1.37 in the second. The new Ljung-Box statistic associated with the series is 1271
for the first data set and 1169 for the second data set. The Lung-Box statistic actually increased
for the first-data set after partialing out the time of day effects. In both cases, the Lung-Box
statistic remains very high relative to the critical value.

Several models were estimated using maximum likelihood. Due to the non linearity of the
model, the BHHH algorithm was used with numerical derivatives. The algorithm has no trouble
converging for these samples and the results appear robust to initial values imposed. To allow for
inter day effects, a dummy variable was included taking the value one if it is the first observation
of the day and O otherwise.

2 For example, see Jain and Joh (1986)



6.1 Estimation of the Exponential ACD (EACD) Model.

The simplest model examined was the EACD(1,1). Estimates for both sample periods and
the results are presented in figure 6. There is a significant negative inter day effect. For a
constant unconditional mean to exist, lemma 1 requires the condition (¢ +B)<1. Both models
are close to being integrated with the sum of o and f§ equal to .9960 and .9895 for the first and
second samples respectively. The implied unconditional means for the two samples, calculated
using results of lemma 1, are 1.80 and 1.11 respectively. Both of these values are much larger
than the expected value of 1 under correct specification. To further examine the fit of the model,
we examine the standardized series

>

(43) g =—

2|

Because the distribution of €; does not depend on past observations, the €; should b¢
independent. Furthermore, because ¢ is distributed as a unit exponential, the mean and variance?
of € should be 1. To examine the intertemporal dependence of the new series, the Ljung-Box
statistic for 15 lags was examined. The first sample has a Ljung-Box statistic of 51.56 (remember
the critical value is 24.99 at 5%) which is double the critical value at 5%. The second sample has
a Ljung-Box statistic of 17.32. This is easily less than the critical value at 5% and the null
hypothesis of white noise is not rejected. It is likely that the outliers previously discussed in the
first sample have posed a more difficult modeling problem.

First order conditions imply that the mean of €; is 1. The standard deviation is 1.35 for the
first sample and 1.26 for the second sample. Tests for excess dispersion easily reject the null. It
is therefore not likely that this model will provide a good representation of the data generating
process.

Two conclusions may be drawn at this point. First, a very simple version of the ACD
model is able to capture observed autocorrelations in the data. For the second sample, the Ljung-
Box statistic is reduced from levels far in excess of the critical value to levels easily below the
critical value at 5%. Second, the large implied unconditional means and large standard deviations
in the standardized series suggest that the EACD(1,1) is not able to account for the large

3 Higher order restictions could easily be examined as well.



observed dispersion. It is possible that a more extensive version of the EACD will. To examine
this possibility, an EACD(2,2) was estimated.

Results for the EACD(2,2) are presented in figure 7. All of the included vanables are
significant at the 5% level for the first sample and all but B, are significant for the second sample.
The greatly reduced t-ratios are probably due to multicollinearity among the explanatory
variables. The sum of the o and B; is 0.9985 for the first data set and .9926 for the second data
set. Again, both models are close to being integrated. The implied unconditional mean is 2.1 and
1.11 for the first and second samples respectively. The implied unconditional means remain very
large.

The Ljung-Box statistic associated with the two transformed series are 27.32 and 14.42
respectively. The first is very close to the critical value at 5% and the second is easily less than
the critical value. The standard deviation of g; is 1.34 for the first data set and 1.26 for the
second. The two added terms have helped account for the intertemporal correlations observed in
the first data set. However, the remaining excess dispersion and the large implied unconditionai
mean indicate poor model specification. We could expand the model further for the first data set
in hope of attaining a better fit or we could try an alternative model specification.

While the EACD models are capable of capwring the intertemporal correlations, this
model does not look like a good candidate for the data generating process. As mentioned before,
the exponential is a very tractable model specification but it is also very inflexible. The single
parameter in the distribution yields the well known property of a constant proportional hazard.
One might expect that the probability of a trade at time t conditioned on no trade up to time t may
not be constant. This is precisely what we find when the WACD model is estimated.

6.2 Estimation of the Weibull ACD (WACD) Model.

The results of the WACD(1,1) for both samples are presented in figure §. All t-ratios are
significant at the 5% level. ¥ is estimated to be near .8 for both data sets and associated standard
errors of 0.00560 and 0.00593. Hence the null hypothesis of a conditional exponential
distribution (y=1) is easily rejected for both data sets. y<1 implies that the hazard is decreasing in
t. Equivalently, the longer the observed duration of no trade, the less likely a trade will occur at
that time.



This sum o+P is 0.9955 and 0.9895 for the first and second data set respectively. The
implied unconditional mean is 1.48 for the first data set, and 1.03 for the second. The effects of
outliers remain a modeling problem for the first data set. The unconditional mean for the first
data set is almost 1.5 times what it should be if the model were correctly specified while the
second sample has an unconditional mean very close to the sample value of 1. We next examine
the generalized errors associated with the Weibull model. Examining the standardized series for
the Weibull

~ \7
44) e =2
@) e (tb)

we find the standard deviations are 1.060 and 1.024. This is a great improvement over the EACD
models. In both samples, we still reject the null of no excess dispersion. The associated Ljung-
Box statistics are 46.85 and 16.91 . The Ljung-Box statistic for the second sample is far below
the critical value at the 5% level.

The Ljung-Box statistic is very small, the implied unconditional mean is acceptably close
to 1, and the standard deviations are close to the expected value under the null of a conditional
Weibull distribution. This is an improvement over the EACD model specification and this model
appears to be a good choice for the second sample. A final model estimated was the WACD(2,2).

The estimates for the WACD(2,2) models are in figure 9. As for the EACD models, the t-
ratios have been reduced due to the multicollinearity. The sum of a;'s and Bys is 0.9968 and
0.9809 for the first and second data set respectively. The implied unconditional mean is 1.59 for
the first data set, and 1.05 for the second.

The resulting standard deviation of the new g; series are 1.06 and 1.02 for the first and
second data sets respectively. Although reduced, we still find evidence of excess dispersion for
the both samples. The new Ljung-Box statistics are 24.62 and 16.07 . With the exception of the
reduced Ljung-Box statistic for the first sample, the WACD(2,2) model offers little improvement
over the WACD(1,1).

The EACD is able to capture the intertemporal correlations, but the restrictive constant
proportional hazard is not appropriate for this data. A WACD(1,1) is a good choice for the
second sample. A high enough order WACD is capable of accounting for the observed
autocorrelations for either data set. Although the models reduce the excess dispersion, we stll



reject the null of no excess dispersion. A more detailed model is probably necessary to fully
account for the dispersion.

7. LM Tests and the Autoregressive Conditional Duration Models.

Two immediate uses of the ACD model are forecasting transactions rates and gaining
insight into how markets work and evolve. The former will be examined in the next section. This
section will provide some simple examples of the Lagrange Multiplier test for the ACD. The LM
test provides a simple framework for testing not only the autoregressive structure of the model
but also possible omission of covariates. The LM statistic is easily calculated as T*R? of the
regression of a vector of ones on the numerical evaluations of the score vector evaluated at the
null.

From the growing literature surrounding transactions data, one might expect to find
correlations between price changes, volume, and no-trade durations. This idea has been examined
by, among others, Kyle(1985), Admati and Pfleiderer(1988) and more recently, Easly and O'Hara
(1992). In particular these papers theorize that no-trade durations should be correlated with price
changes and volume. The nature of the correlation is ambiguous depending on the model
examined. These theoretical models, therefore, suggest formulating a test for omission of these
variables from our model specification. In addition to these variables, some recent empirical
studies in foreign exchange markets have suggested that the difference between the bid and the
ask (the spread) would also be an interesting variable to examine. See for example,
Madhavan(1992) or Bollerslev and Domowitz(1993). Another interesting test might be of a more
general autoregressive specification of y ;. A simple alternative would be to introduce squares of
lagged durations to the model.

To formulate these tests we first created summary statistics for the state of the market
with respect to each of these variables. This was done by taking a moving average of 10 equally
weighted lags for each series. The idea is that a single transaction does not carry much
information, rather, an average provides a better measure of the current state of volume, volatility,
and the percent spread. Ten transactions corresponds to less than 5 minutes of trading on
average. Just as the durations exhibited a deterministic component, it is a stylized fact that
volume and price changes exhibit a similar deterministic component. We therefore partialed these
effects out just as we did for the durations. The tests were performed on the second data set
using a WACD(1,1) as the null hypothesis.



The following table contains the LM statistics for the omission of each of the variables

individually. Current values of the variables were not used due to the potential endogeneity. Gp,

is the normalized moving average of volatility, V,y; is the normalized moving average of volume,

S,; is the normalized moving average of the percent difference in ask and bid, and X7 is the

square of lagged normalized durations. The critical value for a chi-squared statistic with 1 degree
of freedom at the 5% level is 3.84. Lagged squared durations and the measures of lagged
volatility and volume easily reject the null hypothesis that the coefficients are zero. The lagged
spread measure is marginally not rejected..

varlable -6l20.i—l -\_,lo.i-l §10.i-l iiz‘l
LM -Statistic 8.61 16.73 3.77 415.35
x3(1)=3.84

The LM tests suggest that shorter durations follow high volatility, large volume, and large
spreads. The lagged squared duration is very significant suggesting that the linear specification of
¢, might be an oversimplification. These tests provide evidence for correlation between durations
and several other measures of the state of the market. This might be indicative of comovement
between these market variables. The simple extensions of the ACD model specifications examined
here bring to mind many other possible extensions and tests.

8. An Alternative Model Specification to Introduce Quantity Effects

For most of the examples of processes that arrive at irregular intervals there is some
notion of a quantity associated with the observation. For credit card purchases, it is the dollars
spent in the transaction, for telephone calls it might be the minutes associated with the call. For
the stock market transactions data, it is the quantity of shares traded. This section of the paper
will propose an alternative model specification that incorporates the idea of volume into the

measure of duration.

A straight forward way to introduce volume affects into the ACD model is to redefine our
durations. Previously we defined a duration as the time between two successive transactions. We



could alternatively examine the time it takes for a given volume to be traded. The result will be a
model of the flow of shares rather than the rate of arrival of traders.

Although the notion of liquidity is not easily defined see Black(1971), it would seem likely
that the notion of the rate at which shares are traded is a more meaningful measure than the rate
of arrival of traders. Therefore, in equity markets, it is particularly interesting to examine volume
based durations.

Another reason we might want to allow for volume affects when examining the financial
data sets is to implicitly account for large transactions that have been broken up into several
smaller ones executed over a short ime. More information might be contained in the flow of
shares rather than the arrival of traders.

The average volume traded over both samples is 1775 with a standard deviation of 4118.
The minimum number of shares traded was 100 and the maximum was 125,000. We chose
20,000 shares to define a duration. This implied an average of just over 10 trades per duratiom.
Given the maximum volume observed, zero second durations were still present. From the original
30,000 observations, 2764 observations are generated.

The deterministic ime of day effects were still present so these effects were partaled out
as before. The partial autocorrelation coefficients are presented in figure 10. The intertemporal
correlations are still very large. The Ljung-Box statistic has been slightly decreased to 931 but is
still very significant. As one might expect, the standard deviation has been reduced substantially
by this aggregation. The standard deviation is actually less than one now (.95). The EACD
model is marginally rejected in favor of the WACD. For both models, a (2,2) is necessary to
account for the large intertemporal autocorrelations. The results for the WACD(2,2) volume
based duration model are presented in figure 11. The exponent on the Weibull is now greater
than one. This was expected due to the small observed variance. The Ljung-Box statistic of
15.44 has, again, been greatly reduced to well below the critical value.

Large autocorrelations are observed in the volume duration data. The WACD is capable
of capturing the intertemporal correlations. The large autocorrelations in the volume data
indicates that the observed correlations are not likely due to broken up trades.



9. Forecasting Using the EACD and WACD Models.

This section will discuss forecasting trading rates using the EACD and the WACD model.
The ACD models provide a framework for forecasting the time between future events, in our
example, it is the time between IBM stock transactions. This section will demonstrate one step
and muld step forecasts for the ACD model. As noted in section 1, the one step forecast for the
ACD(p,q) takes the form of

P
45) Ex,1d)=vy,, =w+ iajxi-j + ZBk\Vi-k
j=1 k=1

Hence v ,,, is the one step duration forecast at time t; and it will be denoted by x;. The k-step

forecast for an ACD(p,q) can be evaluated recursively as follows

5) w+2aE ., iBE\ymP

=1

@6) E(x,,

In particular, the k step forecast for the ACD(1,1) takes the simple form of

@n xf=Ex,,1% )= W[%}(M B Wi

Substituting in p simplifies the expression to

@8) x*=(1-(a+p)* Ju+(a+p) v,

This representation provides some insight to the properties of the k-step forecast. In
particular, for the ACD(1,1), the forecast of the expected duration is simply a weighted average
of the unconditional implied mean and the one step forecast. When a+f is close to one, which



means the process is close to being integrated, the effects of the one step forecast will dominate
the forecast longer. When o+f is small, the forecasts will quickly return to the unconditional
mean. The estimates performed in this paper sum to close to one and therefore k-step forecasts of
the durations between trades for this particular asset will be affected by the current conditional
mean for many steps ahead.

The implied means are much larger than the observed means for the EACD models. From
equation (48) we see that, for the data analyzed, the EACD models will have undesirable
forecasting properties. In particular, the forecast will not converge to the unconditional mean as
the forecast horizon increases. Forecasts will therefore be presented for the WACD(1,1) using
the second data set.

Forecasts of x,,,, require evaluation of the deterministic component. That s,
49)  Exff) = E(% 1 (ti %)

which, by independence, is

(50)  E(%iif#)E(0(t,)f%)

Hence the one step forecast x;, is

(51)  E(%,,%)o(t,).

Figure 12 presents the one step forecast of the WACD(1,1) model for an arbitrary day in
the second sample. The dotted line is observed durations. The two solid lines are the
deterministic spline and the one-step forecast. It is apparent from the graph that the one step
forecast of x;,, is substantially more variable than the deterministic part. The lowest forecasts are
about half the expected value conditioned on time of day and the highest are near double.

The top of figure 13 presents the multi-step forecasts of x,,, for the WACD model under
two scenarios, high and low arrival rates. We will say the market has high activity if the rate of
arrival is high (durations are short) and low activity if the rate of arrival is low (durations are



long). The horizontal axis is the k* future transaction and the vertical axis is the expected
duration between trades. The upper convex curve represents the low activity multi-step forecast
when current durations begin at 1.5 times the unconditional average duration. The lower concave
curve represents the high activity multi-step forecast when current durations begin at half the
unconditional average duration. They are symmetric about the unconditional mean of 1. Because
the sum of the a's and JB's is near one, the forecasts converge slowly to the unconditional mean.

An alternative forecast is of the expected time until k transactions take place. This is
easily calculated by

5,)

k
(52) E(t,,)-t= E[wa
1

5:,]= ) E(x'nj

=

The bottom of figure 13 presents these forecasts for the same two "high" "low" scenarios.
These forecasts are analogous to the example in the bottom of figure 1. We see that the forecasts
generated by the ACD are, as expected, non-linear reflecting the dependence in durations. These
forecasts will become parallel as the forecast horizon increases. The slope will converge to the
unconditional mean as observed in equation (48). The bottom of figure 13 forecasts the expected
time for a set number of events n. The top of figure 13 measures the rate of transactions.

10. Conclusions/Discussion

This paper has introduced a model for data that does not arrive at regular time intervals.
Rather than relying on an exogenous variables to drive time deformation or assumptions on the
causes of time deformation, ime flow is modeled directly via an autoregressive process. The
model is easily generalized to include other exogenous variables and for the financial transactions
data used in this paper. LM tests suggest the inclusion of other measures of the state of the
market.

For the financial transaction data used in this paper, it was shown that very simple model
formulations were successful in reducing excessively large Ljung-Box statistics of well over 1000
in the observed no-trade durations to values less than the critical value of 24.99 for the
standardized series. While the exponential version of the ACD model is capable of accounting for
the intertemporal correlations, the large implied means and the large standardized standard



deviations imply that the conditional exponential assumption may not be a good one. A simple
extension from the conditional exponential distribution of durations to the Weibull distribution,
further improves the Ljung-Box statistic for the standardized durations and reduces the standard
deviations to values very close to those implied under correct model specification. The additional
parameter of the Weibull is very significant and changes the constant hazard implied by the
exponential assumption to a decreasing hazard. The Weibull distribution also reduces the implied
unconditional mean to values much closer to the observed mean. The WACD appears to be a
good model choice for this data. In particular a relatively simple specification of WACD(1,1)
does a good job of modeling for the second sample.

LM tests proved to be simple and valuable for the data analyzed. The LM tests for
omitted measures of lagged volume and volatility easily rejected the null hypothesis. The percent
difference between bid and ask was marginally not rejected. The rejection of the null hypothesis
for lagged squared durations suggested that more complex models might be considered. The tests
indicated that shorter durations follow periods of high volatility, large volume per transaction, and
larger spreads. These tests suggest the possibility of comovement between durations, volatility,
volume, and spread.

An alternative use of the data allowed us to associate a measure of quantity with the
durations. For the financial data set we used the time for a set number of shares to be traded.
This provided the interpretation of modeling the rate that shares are traded rather than the rate of
arrival of traders. For financial transaction data, this might provide a better way of measuring
and forecasting liquidity. The amount of time necessary for 20,000 shares to take place still
exhibits large intertemporal autocorrelations that were successfully modeled by a WACD(2,2).

Forecasts were developed for expected durations. The one-step forecasts of the
conditional mean exhibited significant volatility. The muld-step forecasts of duration did not
return to the unconditional mean very rapidly. A period of sustained high (low) activity will, in
expectation, be followed by sustained high (low) activity.

Clearly, there are numerous generalizations of the model that come to mind. The LM
tests indicated that there are several other variables that could have entered our model. If
spreads, prices, volume, and durations are moving together then a natural generalization of the
mode! would jointly model all these variables. Perhaps this is the most interesting extension of the
model.



The linearity hypothesis in the specification of y(-) is also suspect. While linearity is a
convenient property, the models could easily be misspecified. We will in general have abundant
data when working with these transactons data hence a natural extension of the model would be
to consider a semi-parametric estimation procedure. While these methods are very common in the
duration literature, we do not know of any applications to stochastically time varying hazards.



Figure 1. Counting Process
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Figure 3. Autocorrelations and Partial Autocorrelations of Trading Intervals

Sample 1 Sample 2

acf pacf acf pacf
lag 1 .168 .168 129 129
lag2 .090 .064 120 .106
lag 3 068 .044 106 .081
lag 4 .074 .053 119 .089
lag 5 .059 .034 107 068
lag 6 .069 .046 .096 .053
lag 7 .051 .023 .100 .055
lag 8 046 021 .099 051
lag 9 .035 011 123 074
lag 10 042 021 085 .029
lag 11 .043 022 .105 051
lag 12 .045 022 087 .029
lag 13 .047 .029 .089 .030
lag 14 .037 .013 .089 .031
lag 15 025 .003 .083 .024

Ljung-Box(15) = 1271.62 Ljung-Box(15) = 2423.12



Hour
9:30-10
10-11
11-12
12-1
1-2

3-4

Freq.
1905
2769
2360
1928
1962
2350
2612

Freq.
1957
2365
2238
1895
1640
2127
2778

Figure 4. Mean Duration by Hour

Sample 1

Mean
15.57
22.02
29.03
33.48
33.06
27.62
2491

Sample 2

Mean
15.32
27.22
27.38
32.47
37.46
29.12
23.58

Std.

20.39
32.09
101.0
44.79
52.16
37.76
34.12

Std.

21.50
34.66
37.33
42.53
52.67
38.09
32.01
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Figure 5. Mean Conditioned on Time of Day
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Figure 6. Maximum Likelihood Estimates of EACD(1,1) Model after Removing

®
o]

B1

new day dummy

o
o1

B1

new day dummy

Coefficient
00713
.0816
9143
-.1140

Coefficient
0116
.0584

9311
-.2860

Time of Day Effects

Sample 1

Std. Error
.000687
.00219
.00230
.0239

Sample 2

Std. Error
001175
.002399
.002934
.04599

t-Ratio
10.36
37.159
396.48
-4.75

t-Ratio
9.91
24.38
317.34
-6.21



Figure 7. Maximum Likelihood Estimates of EACD(2,2) Model After Removing

Time of Day Effects.
Sample 1
Coefficient Std. Error t-Ratio
) .00315 .000601 522
o 130 00613 21.32
03] -.0854 00694 -12.30
B1 1.218 .0847 14.38
Bo -.265 0784 -3.38
new day dummy -.0453 0174 -2.60
Sample 2
Coefficient Std. Error t-Ratio
® 00827 .00258 3.20
o1 0779 .00634 12.28
(v3y) -.0329 0137 -2.40
B1 1.06 233 4.55
B2 -.115 218 -52
new day dummy -.207 .070 -2.93



Figure 8. Maximum Likelihood Estimates of WACD(1,1) Model After Removing

Time of Day Effects.
Sample 1
Coefficient Std. Error t-Ratio
® 00693 .00096 6.34
o 08129 .00317 22.60
B1 9143 .00373 244.92
¥ 8019 00560 -35.36"
new day dummy -.1942 .00374 -4.58
Sample 2
Coefficient Std. Error t-Ratio
® 0113 00156 6.40
o 0578 .00317 16.20
B1 9317 .00438 212.62
Y 8110 .00593 -31.86*
new day dummy -.3031 .06099 -4.57

*H : y=1



Figure 9. Maximum Likelihood Estimates of WACD(2,2) Model After Removing

Time of Day Effects.
Sample 1
Coefficient Std. Error t-Ratio
[0) 005406 .001176 4.59
o .13006 .008753 14.85
(v%) -.05839 01287 -4.53
B1 .90987 13769 6.61
$53 -.01536 12609 -.12
Y 8030 005672 -34.73%
new day dummy -.2265 .04796 -4.72
Sample 2
Coefficient Std. Error t-Ratio
© .02057 003112 5.89
o .05889 .005302 9.90
) -.04498 .008566 4.68
B1 11072 12506 .88
B 76632 116636 6.57
Y 8113 .005931 -31.81%
new day dummy -.3728 112123 -3.32

*Ho: =1



Figure 10. Autocorrelations and Partial Autocorrelations of Volume Durations

Both Samples

acf pacf

lag 1 282 282

lag 2 192 123

lag 3 182 110

lag 4 151 .066

lag 5 133 051

lag 6 .164 .090

lag 7 121 026

lag 8 137 .058

lag 9 127 .037

lag 10 Jd15 .029
lag 11 107 023
lag 12 091 .007
lag 13 143 079
lag 14 a13 018
lag 15 .103 .018

Ljung-Box(15) = 931.29



Figure 11. Estimated Coefficients for Volume Based Durations

()]
)
a2
B1
B2
Y

new day dummy

Coefficient
.01070
2913
-.2201
1.1195
-.1938
1.025
1476

Std. Error

.00542
.03537
03423
13056
.109918
01173
07172

*Ho: v=1

t-Ratio
2.001
8.350
-6.784
8.574
-1.763
2.131%
2.088



Figure 12.

Observed Durations, the Deterministic Spline, and the One-Step

Forecasts for the WACD(1,1) Model.
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Figure 13. Multi-Step Forecasting Using the WACD(1,1) Model.
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Appendix

Proof of Lemma 1

Without loss of generality let p=q.
Define z; = ( .+,|5 ) Then taking expectations of z; w.r.t. ¥ gives

( | ,_p_l) w+o,E ( ,,lF,_p_ )+ .+0 E( ,p|F,_p ,)+[3l (\pl_,l ,_p_,)+ .+B E(\p‘_ ‘ ,_p_l)

Z,, =0+ 0z, +. 0z +Bz 4. +B,2,

=0+ i(ai + Bi)zp-i+l

i=l

So, for j>p,

z,= (1)+i(0t-I + B;)Zj-;

i=]

If all the roots of this difference equation lie outside the unit circle then

QED
max {p.q}

The condition that (OLi +B j) <1 is necessary for all the roots to be outside the unit circle.

i=1

Proof of Lemma 2

Yy, =0+ox,_, +By,
v, —p=alx, —p)+Blyi, —1)
= ox,, — ;) + o+ B)(w,, 1)
E(y, -1)’ = oE(x,, -v,.,) + (a+B) E(y,., —1)°



asz(\Vx 1 )+(G.+B (\V,-l “)2
o2kE(y,_,? )+ o+ o+ B) By, — )’

= oxp? +((o+ B)? + o2k E(y,, — 1)’

ik’
1-(o+B)’ —a’x

E(Wi - H)z =

Now,

E(x, —1) = E(x,— ;)" +E(w; — 1)’
= KEy;? +E(y, —p)’
= xE[(v; -1’ +u*|+E(y, - )’
= xp? + (1+0E(y, -n)’

i’
1-(a+PB)’ —alx

=xu’ +(1+x)

=xpu’| 1+

o (1+x)a’
L 1-(a+B)’ -a’x

[ 1-(208+B?) )

\1-(a+[3)2 -’k

QED
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