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In this paper, we consider a policymaker who pegs the nominal exchange rate and adjusts
the peg periodically so as to minimize a set of costs. The control problem is made difficult by
the fact that the future times for devaluations are currently unknown stochastic variables.
Characterizing the real exchange rate as regulated Brownian motion permits the cost minimization
problem to be solved explicitly. The size and timing of devaluations are jointly determined
outcomes of optimizing behavior.

The framework yields insights into how changes in the stochastic environment affect both
the size and timing of devaluation. These insights provide guidance about the determinants of
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countries over the 1957-1990 period, we find empirical support for the model’s main predictions.
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1. Introduction

A developing country often pegs its exchange rate to a single currency, such as the
U.S. dollar, even though it faces a higher inflation rate than the country to which it is
pegged. As a consequence, it experiences real exchange-rate misalignments and a series
of easily-anticipated devaluations. It is typically the case in such a developing country that
the chaotic capital market events surrounding anticipated devaluations are avoided through
quantitative capital controls.! The country is left, however, with the classic devaluation
problem: When is the optimal time to readjust the peg and what is the optimal size of the
adjustment? It is generally believed that there is a trade-off between the size and timing of
devaluations, with the country choosing a series of small and frequent devaluations or a set
of large and infrequent ones.

This paper is motivated by the considerable dispersion seen in the size and timing of
devaluations across developing countries. The top panel of Figure 1 illustrates this
dispersion for a sample of dollar pegs in Latin America over the 1957-1990 period. The
bottom panel of Figure 1 shows the dispersion only for the pegs that lasted three years or
less. In each panel, the size of devaluation is measured by the percentage change in the
nominal exchange rate on the day the peg is abandoned. The time of devaluation is
measured by the number of months spent on a particular peg. The scatterplots reveal a
variety of outcomes for the size and timing of devaluations. How does a policy authority
go about choosing the optimal mix of devaluation size and frequency, given a set of costs
attached to the devaluation decision?

Our purpose is to develop a simple framework that identifies and tests for some key
determinants of the size and timing of devaluations. Section 2 develops a model of the

policymaker responsible for devaluation and presents some empirical predictions implied

IThe consequences of anticipated realignments in economies with relatively free capital
movements are discussed in Goldstein er al (1993). Capital controls are discussed in
Edwards (1989).
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by the model. An attractive feature of the model is that the size and timing of devaluations
are jointly determined outcomes of optimizing behavior. Previous work has taken the size
of devaluation as exogenous when calculating the time that a fixed exchange rate ends.
Another interesting feature of the model is that the policymaker faces a problem in which
the future times for devaluations are currently unknown stochastic variables. Typical
maximization methods are not helpful for such control problems. By characterizing the real
exchange rate as "regulated Brownian motion," we are able to use methods developed by
Harrison (1985) to solve the policymaker's control problem despite the stochastic timing
issue.

Section 3 presents some empirical evidence in support of the model, using data on
exchange-rate pegs in Latin America. One interesting finding is that higher variance of the
real exchange rate does not mean that devaluations, on average, must occur more
frequently. For our sample of Latin American pegs, higher variance of the real exchange
rate actually increases the time spent on the peg. This outcome is consistent with the theory
we develop, because when size and timing of devaluations are jointly determined, the effect
of increased variance on timing can go in either direction. Higher variance reduces time
spent on a peg for a given devaluation size. But higher variance also increases the amount
of devaluation the policymaker is willing to undertake at the end of the peg and so may
delay the actual devaluation time. Section 4 offers some conclusions and directions for

further research.

2. Theoretical model

In order to proceed with the analysis, we start with a simplified case and examine
to what extent it can shed light on the factors that influence the size and timing of
devaluations. We consider the case of a developing country with capital controls, where

the decisions about the peg rest with the authorities. We also identify the deviation of the



real exchange rate from its desired level--what is often termed "exchange-rate
misalignment"--as the single distortion that influences the exchange-rate decision.

When a developing country fixes the value of its currency to that of another
country, its real exchange rate nevertheless changes over time. The movement in the real
exchange rate comes about because the two countries usually experience different trend
inflation rates and because domestic and foreign prices are subject to random shocks. At
some point the real exchange rate may depart so much from its desired level that an
adjustment in the peg is appropriate.

Figure 2 illustrates the stochastic path of the real exchange rate for a typical
developing country that pegs its currency to that of the U.S. dollar. The real exchange rate
1s qt, where qt = et + p*¢ - pt. In the notation, e is the log of the nominal exchange rate
(home currency/foreign currency), p* is the log of the foreign price level and p is the log of

the domestic price level. When the peg starts at time zero, the real exchange rate is set at o

q'l-

time
FIGURE 2



by fixing the nominal exchange rate at eo. The desired, or equilibrium, real exchange rate
is the variable, q*. It is taken as exogenous with respect to the devaluation decision.

The real exchange rate follows a stochastic process. We assume the policymaker
can only influence its behavior by adjusting the nominal exchange rate. In light of the data
set we study in the next section, we assume that the real exchange rate process has a
negative trend.

Given this trend, the real exchange rate eventually will hit some policy-determined
lower barrier q¢ at which time the peg is abandoned. A devaluation of the home currency
instantaneously moves the real exchange rate back above the lower barrier.2

The policymaker can determine the optimal amount of real appreciation to incur over
the peg spell by optimally setting the initial value of the real exchange and the lower barrier.
If the real exchange rate continues to be characterized by a single stochastic process, then
the exchange-rate band bounded by qo and q¢ represents the optimal size of devaluation.
With this band optimally set, the stochastic process characterizing the real exchange rate
gives a distribution of times when the real exchange rate will hit the lower barrier. The
expected time when the real exchange rate hits the lower barrier can then be determined.
This gives the expected time of devaluation.

To keep the problem comparable to the stochz{stic flow problems analyzed in

Harrison (1985), we normalize by setting the lower barrier at zero. We set:

O=qs-q¢ X* =q* -4
(D

Xo=qo-q¢ Xt=qe- W/

20ne can extend the problem to the case where there is both a lower barrier q¢ and an upper
barrier qy, with q¢ < qo < qu. The home currency is devalued when qy hits q¢ and it is
upvalued when qt hits qu. In the data set we study, pegs always end with devaluations, so
we focus on the case of a single, lower barrier.



Now zero is the normalized lower barrier, Xg is the normalized starting state for the real
exchange rate, x* is the normalized equilibrium real exchange rate, and x¢ is the normalized
real exchange rate at time t.

In the absence of intervention by the policymaker, let the real exchange rate follow

(1, ) Brownian motion:
(2) Xt = Xg + Ht + Oyt

where y is a Wiener process with independent incremental shocks that are normally
distributed with mean zero and unit variance. It follows that u and o2 are the non-
stochastic drift and the variance of x, respectively.

Letting xo > 0, we consider the processes (£, z) which are obtained from x by
imposing a lower control barrier at zero. The variables £ and z have the following

properties:

(3) £ isincreasing and continuous with g =0,
(4) zt =xt+4 20forallt 20, and

(5) £increases only whenz =0.

In the terminology of Harrison (1985), zt is a regulated Brownian motion while xt is
unregulated Brownian motion. We can interpret 4t as the cumulative increase in the real
exchange rate effected by the policymaker up to time t.

In fixing the nominal exchange rate, the policymaker is concerned with a trade-off
between the cost of real exchange-rate misalignment and the cost associated with adjusting
the peg. The policymaker's problem can be characterized by means of a loss function. The
policymaker's objective is to minimize the expected present value of costs incurred over an

infinite planning horizon by fixing the nominal exchange rate and periodically readjusting



it. We consider two types of costs, a flow cost and a fixed cost. The flow cost of pegging
is the misalignment cost, and it is measured by the square of the deviation of the actual real
exchange rate from its desired level, (z;- x*)2. The fixed cost of pegging is incurred
whenever the peg is readjusted. It is measured by a fixed transaction cost, 8, times the
size of the readjustment, d. When discounting is continuous at interest rate A, the

policymaker's problem amounts to the minimization of:

(6) k(x,) = Exu{Ie"“[(zt—x*)zdt +38de1); x,>0

In terms of notation, k(-) is the expected present value of costs and Exg is the
expectations operator conditional on setting the real exchange rate at xg at the start of the
peg, where xg is above the lower barrier of zero. The policymaker can at any time
increase the real exchange rate by any amount desired but is obliged to keep z¢ 2 O.

The policymaker has rational expectations and minimizes (6) with respect to x* and
Xo. Recalling the normalization in (1), this means that the policymaker chooses an initial
value for the real exchange rate (qo) and a lower barrier (q¢) so as to minimize expected
discounted costs, given the equilibrium real exchange rate q*. The chosen exchange-rate
band (xo = qo - q¢) represents the optimal real appreciation over a peg spell. If the real
exchange rate follows the same stochastic process over the infinite planning horizon of the
policymaker, the band xq represents the optimal size of devaluation at the end of each peg
episode. We shall see that the optimal band width will depend on the characteristics of the
path of the real exchange rate, the fixed cost of adjustment and the interest rate.

To calculate the expected discounted cost in (6), it suffices to solve the differential
equation Ak(xg) - Hk'(xo) - (]/2)62k"(x0) subject to the boundary requirement that

k'(0) = -3. The solution is:



7 k(x,) = g(x,) + k(0)e™*®*

where
T
(8) gx,) = E, {[e™(x,~x)dt} ,
0 .
_ 80+ 3
© kO = S

10)  ah) = (é)[(uhzozu% +ul o,

and T is the first time the real exchange rate hits the lower boundary.3
If T were known with certainty, the calculation of g(xp) in (8) and hence the
calculation of expected discounted costs in (7) would be straightforward. The difficulty
arises from the fact that T is stochastic. Fortunately, the Ito stochastic calculus provides a
solution strategy for calculating g(xp). (See the appendix for details.) We can use our
solution for g(xp) to rewrite the expected discounted costs as:
(x,=x)" 20 2x,-xJp+o’ 1 2u

A N A2 o(A) [ A

Ix*t s
(11) k(xo) = _%+6]e-a(/.)xo

The policymaker minimizes (11) with respect to x* and xo. The first-order

conditions are:

3See Harrison (1985), pp. 36-48, 92-93.
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The second-order conditions confirm that these solutions for x* and xo minimize expected

discounted costs.4

The optimal band width (the optimal amount of real appreciation over a peg spell, or

the optimal size of devaluation) is given by xp = qo - q¢. From (10) and (15), we see that

4The second-order conditions for a global minimum require that o > 0. The second-order

conditions are:

I’k _ 2
— = =>0
ox" 8
2
;kz = (%)[1—e‘“"°]>0 if >0 since x,>0
X

0



the optimal band width depends in a nonlinear way on the drift and variance of the real
exchange rate path, the interest rate and the cost of peg adjustment. Note that band width
does not depend on the level of the equilibrium real exchange rate. An anticipated change
in the equilibrium real exchange rate causes an identical change in qop and qy, leaving the
band width unchanged.

We next calculate the expected time of devaluation. Let T(0) denote the first time

t > 0 at which x¢ = 0, that is, the first time that the real exchange rate hits the lower barrier,

triggering a devaluation.

Calculating the Laplace transform  E, [e™"] yields:5

(16) E, [eP] = ™, x,>0 ,

where o(A) is defined in (10) and xq is given in (15). Note that the expected time of
devaluation is conditional on the optimal band width. In the previous literature on
collapsing pegs, (e.g. Flood and Marion, 1982; Blanco and Garber, 1986), the size of
devaluation is taken as exogenous when determining the expected date of devaluation. The
present model appropriately treats the expected size and time of devaluation as jointly
determined. The drift and variance of the real exchange rate path, the interest rate and the
cost of peg adjustment jointly determined the optimal size and time of devaluation.

We now develop some predictions of the theoretical model that can be tested using
data on exchange-rate pegs. In particular, we examine how a change in the drift and
variance of the real exchange rate affect the optimal size and timing of devaluations.

First, we examine the effect of the drift and variance parameters on the optimal band

for the real exchange rate, which gives the optimal amount of real appreciation over the peg

5See Harrison (1985), pp. 38-44, for details.



spell, or the optimal devaluation size. Given our solutions for o and xq in (10) and (15), it

follows that :6

ox ox. . oo
o — (Zloy(Zl O
an - G Gn <
(=) (+)
and
ox, _ ,0X,,, 0o
18y 20f - Gaae? >0
=)

—a(A)x,
6From (135), let F(o, xo()) = x_ + © L A5 = 0.

T Tay) o) 2

Then using implicit differentiation, we find that
ox, -dF/oo. _ —[1-e™™(1+x,0)] <

0
o, 9F/ax, oZ(1— e )

since axp >0 and O<e ™ (1+x. o) <1.

From (10) it follows that

doe 1. (u?+206%A)2 +p
—=— 1 ] >0
oL o (W2 +2620)"

To satisfy the second-order conditions for minimization of the loss function, ot(A) in (10)
must be positive, implying that the numerator and denominator of dot/dt must each be
positive, even when pu<0. It also follows that:

do. _ —(uP+0°A) —p(p’ + 2602 >

20 f 0
dc* Wiy < b

For plausible parameter values do/do? is negative.

10



Equation (17) indicates that the policymaker who faces a more negative drift will
start the peg at a higher real exchange rate, given a normalized lower barrier of zero. The
wider band within which the real exchange rate can fluctuate without triggering a
devaluation implies that the policymaker accepts a greater real exchange-rate appreciation
over the peg spell. Alternatively, we can interpret equation (17) as stating that more
negative drift increases the optimal devaluation size.

Equation (18) shows that an increase in the variance of the real exchange rate
increases the optimal band within which the real exchange rate can fluctuate without setting
off a devaluation. Thus holding drift and other determinants constant, higher variance in
the real exchange rate should increase the optimal devaluation size.

In order to calculate the effect of drift and variance on the optimal time of
devaluation, we again invoke rational expectations so that the expected time when the real
exchange rate hits the lower barrier is equal to the actual time it hits the lower barrier

adjusted for an error term, €, that is uncorrelated with xg:

(19) Exo [C—KT(O)] = e—KT(O)eQ

Substituting (19) into (16), taking logs of both sides and rearranging terms yields

o(A)xX, + &

20) T(0)= -
(20) T(0) n A

The effect on the timing of devaluation of a change in the drift component of the real

exchange rate process is :

oT 1 ox,
21 SE = (x)[a(x)(

HEH G )G

do o . >
gu—)ﬁ' Xo(a)] Z 0

11



and the effect of a change in the variance of the real exchange rate is:

T 1
0 357 - G

ax, ., oo oo . >
2 (—) + x,(=—)]1—0
20 507 %567 <
H HE G G)
A more negative drift or a larger variance of the real exchange rate has an uncertain

impact on the timing of devaluation. The ambiguity with respect to drift is due to opposing

forces. For a given band size (a given Xp), a larger negative drift always reduces the time
spent on a peg since the real exchange rate hits the lower barrier more quickly. However, a
larger negative drift also increases the optimal band size. The same ambiguity arises with
respect to real exchange-rate variance. For a given band size, a higher variance of the real
exchange rate reduces time on the peg. But higher variance also increases the optimal size
of the band. Thus the effects of drift and variance on the timing of devaluations is

ultimately an empirical question.”

3. Empirical Evidence

In this section we use data from capital-controlled fixed-exchange rate episodes
in Latin America to test some predictions of the model. The Latin American countries were
chosen because they have easily identifiable dollar pegs and because they are most subject
to the type of real exchange rate misalignment that is highlighted by our choice of loss

function.

"Even though the policymaker can calculate the expected time of devaluation, private agents
may not be able to do so if they lack complete information about the policymaker's fixed
cost of devaluation or the discount rate used to calculate the present value of costs. Even if
private agents can extract this information and infer the expected timing of devaluation, they
cannot initiate a speculative run on the currency due to the presence of controls. It is
conceivable that private agents with market power could alter their pricing policies in
anticipation of a devaluation, thus affecting the behavior of the real exchange rate and the
timing of devaluation. In our framework we do not model pricing behavior explicitly.
Relative prices are treated as Brownian motion.

12



Recall that the model assumes that the authorities peg the nominal exchange rate so
that the value of the real exchange rate at the start of a peg episode and the lower barrier for
the real exchange rate that triggers a devaluation are optimally chosen. When the real
exchange rate follows regulated Brownian motion with negative drift, the stochastic
properties of the real exchange rate process are determinants of the optimal band within
which the real exchange rate fluctuates without triggering a devaluation. The band yields
the optimal real appreciatioh over a peg spell. If the real exchange rate follows the same
stochastic process over the policymaker's planning horizon, the characteristics of the
process determine the optimal devaluation size at the end of each peg spell. Since the
timing of devaluation is conditional on the optimal band width, the properties of the real
exchange rate also help determine the optimal time of devaluation.

The exact nonlinear specifications for the optimal size and expected time of
devaluation are given in (15) and (16). The partial effects of the drift and variance of the
real exchange rate on the optimal band width are given by (17) and (18), and their effects
on the timing of devaluation are given by (22) and (23).

We start by examining the appropriateness of our assumption about the real
exchange rate process during fixed exchange rate episodes. We then test whether the drift
and variance of the real exchange rate process affect the size and timing of devaluation in
the ways predicted by the model. We conduct these tests without taking the model
specifications too seriously at first. At this point we are interested in whether regressions
based on linear and nonlinear approximations will show the predicted effects of drift and
variance. Since these initial tests are promising, we then consider the exact model
specifications and test how well they hold using our data.

We use monthly data from actual dollar peg episodes in Latin America. The data
come from the IMF's International Financial Statistics compact disk dated September 1993.
Since we want observations over the entire peg spell, data availability requires us to

consider peg episodes that start on or after January, 1957, and end on or before January,

13



1990. A country must maintain a fixed nominal exchange rate for at least three months to
be included in the sample. All peg spells in the sample meet the requirement that the initial
value of the real exchange rate is greater than its value at the end of the peg episode. Based
on these criteria, we end with a sample of 80 peg episodes from 17 countries in Latin
America.8

To construct the real exchange rate, we use a bilateral real exchange rate index
based on end-of-the month nominal exchange rates (home currency/dollar) and monthly
average consumer price indices for the home country and the U.S. The real exchange rate
series is normalized so that the index is always set at 100 at the end of the month in which
the exchange rate is initially fixed. The observed real exchange rate at the end of the last
full month on the peg is used to proxy the lower barrier. Thus the actual band width, or
actual real appreciation over a peg spell, is measured by mapping x¢ back into (qo - Q¢),
where qo = 100 and q¢ is the observed lower barrier described above. Because real
exchange rate data are available only at monthly frequencies, this measure of band width
is somewhat imprecise. If real exchange rates are characterized by negative drift over the
entire peg spell, this measure of band width probably understates the true band width since
the actual starting date of a peg can precede the measured starting date and the actual
stopping date of the peg can follow the measured stopping date.

The time on a peg is measured by the number of complete months during which

the nominal exchange rate is fixed.

Some information about band width and time spent on the peg for our sample is
summarized in Figure 3. The top histogram in the figure shows the variation in real

exchange-rate appreciation (band width) over peg episodes. The average real appreciation

8The countries are Argentina, Bolivia, Brazil, Chile, Colombia, Costa Rica, Dominican
Republic, Ecuador, El Salvador, Guatemala, Jamaica, Mexico, Nicaragua, Panama, Peru,
Uruguay, and Venezuela. In all peg episodes, the home currency weakens when the peg is
abandoned. Most peg episodes end with a devaluation, though some end with a move to a
craw] or a float.

14
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is 28 percent and the standard deviation around the mean is 21.75 percent. The median real
appreciation is 23 percent. The range is considerable. Several countries exited a peg after
experiencing real appreciations under 5 percent, while others permitted real appreciations in
excess of 75 percent before ending their pegs. The histogram reveals that a third of the peg
episodes had a real appreciation of 13 percent or less, while three-fourths of the episodes
had a real appreciation under 38 percent.

The bottom histogram in Figure 3 illustrates the variation in the time spent on the
peg. The average time spent on a dollar peg is 28 months, while the median duration is 10
months. The standard deviation around the mean and the range of the sample are
substantial. The standard deviation of the duration is about 44 months. The range of peg
durations is 3 months (by construction) to 281 months (the longest peg episode represents
Paraguay's peg of 126 guaranies to the dollar between 1960 and 1984). The bottom
histogram reveals that over three-fourths of the pegs in the sample end within three years.

For each peg spell, the drift of the real exchange rate is obtained by regressing the
first difference of the monthly real exchange rate index on a constant and using the
estimated value of the constant. The variance of the residuals from this regression is the
measured variance of the real exchange rate over the course of the peg spell.

Figure 4 illustrates the behavior of the bilateral real exchange rate during selected
peg episodes. The graphs support our notion that the real exchange rate is characterized by
negative drift and periodic shocks. Latin American countries have generally had larger
price level increases than the United States during fixed exchange-rate episodes, generating
real appreciations. Some of the figures show a more moderate drift at the end of the spell.
This phenomenon may call into question the model's assumption that the drift is always
exogenous with respect to the behavior of the policy-maker or private agents.

Table 1 shows the effects of real exchange rate drift and variance on the size of the
band as measured by the actual real appreciation over the peg spell. The estimation results

in Table 1 are based on a simple cross-section linear regression using White's correction to

15
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TABLE 1: Estimation Results on Band Width

(1) (2) 3) 4) (5
n 80 80 80 80 80
constant 20.5894** 24.6468** 21.6141%** 12.7892%* 11.4727%*
(2.39) (2.12) (2.80) (5.62) (5.85)
drift of the real -2.7366** -1.8290* -1.6770%* -0.9733
exchange rate (0.46) (1.02) (0.81) (0.74)
variance of the real 0.3054** 0.1293 0.0108 0.0889
exchange rate (0.08) 0.149) 0.07) (0.08)
R? 0.220 0.198 0.222 0.488 0.541

Standard errors are in parentheses. The values are based on White's (1980) heteroskedasticity-consistent covariance matrix.
** (%) Significant at the 95 (90) percent confidence level.

Equations (1) - (3) have no fixed effects; equation (4) includes country dummy variables; equation (5)

includes country dummies and a set of individual calendar year dummies for the post-Bretton Woods years, 1971-1990.
Regressions based on a cross-section of peg spells. Dependent variable is band width (xo).

Source: IMF, International Financial Statistics, compact disk September 1993,



achieve heteroskedastic-consistent estimates. The results are consistent with the theoretical
predictions. Regression (1) shows that the simple correlation between drift and band width
is negative and highly significant. A more negative drift therefore increases the size of the
band and hence the amount of real appreciation incurred over the peg spell. Regression (2)
shows that the simple correlation between variance and band width is positive and highly
significant. Regression (3) examines the effects of both drift and variance on band width.
Along with the constant term, drift and variance explain about 22 percent of the variation in
band width. The coefficient on the drift variable is still negative but only significant at the
90 percent confidence level. The coefficient attached to variance is insignificant.

If drift and variance are highly correlated, then multicollinearity might make it
difficult to obtain statistically significant estimates on both drift and variance. Indeed, the
correlation between drift and variance is -0.82 and highly significant. It is well known that
higher inflation levels are positively correlated with higher inflation variance, so something
of the sort may be going on here since the real exchange rate process is driven primarily by
the domestic price process.

The constant term in the regressions captures the fixed cost of peg readjustment. It
may also include other spell-specific elements that influence band size. There is no reason
to believe that this constant term should be the same for all peg spells. We thus reestimate
regression (3) with various fixed effects. Regression (4) in Table 1 reports results using a
set of country dummies, and regression (5) reports results using both country dummies and
a set of calendar year dummies for the year in which a devaluation took place. When
country dummies are incorporated, the coefficient on drift becomes significant at the 95
percent confidence level and the adjusted R? rises from .222 to .488. When both country
and calendar year dummies are added, the coefficient on drift becomes insignificant.

Since our first set of regressions relies on an approximation for band size rather
than the exact nonlinear specification in (15), we also experiment with various log-linear

approximations. We report one version in Table 2, regressions (1)-(3). In this version,
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TABLE 2: Additional Estimation Results on Band Width

(1) @) (3) 4
n 80 80 80 80
constant 19.8180** 14.0385** 10.0243* 20.3171**
(2.03) (6.09) (5.61) (1.98)
drift of the real -0.7336 -0.8241* -0.7555
exchange rate (0.53) (0.42) (0.55)
log of the variance of the 6.9646** 4.0294** 3.6481** -
real exchange rate 4.17) (1.33) (1.25)
drift of the real exchange -1.4888**
rate (revised) (0.52)
log of the variance of the 4.3181**
real exchange rate (revised) (1.41)
R? 0.384 0.538 0.567 0.366

Standard errors are in parentheses. The values are based on White's (1980) heteroskedasticity-consistent covariance matrix.

** (*) Significant at the 95 (90) percent confidence level.

Equations (1) and (4) have no fixed effects; equation (2) includes country dummy variables; equation (3)
includes country dummies and a set of individual calendar year dummies for the post-Bretton Woods years, 1971-1990.

Regressions based on a cross-section of peg spells. Dependent variable is band width (xq).

Source: IMF, International Financial Statistics, compact disk September 1993.



band width is regressed on a constant, the drift and the log of the variance. The fit is better
in this version. Together with the constant term, the drift and the log of the variance
explain almost 40 percent of the variation in band width. Both drift and log variance enter
with appropriate signs, but only the log of the variance is highly significant. Introducing
fixed effects does not change the key results, although the inclusion of country dummies
improves the explanatory power of drift.

Each peg spell in our sample ends with a devaluation. Therefore the expected value
of shocks toward the end of a spell is negative rather than zero. To check for the biases
introduced, we constructed a Brownian motion with negative drift and some variance and
simulated its movement until it hit a lower barrier. The simulation results indicate that the
estimated value of the drift is biased upwards (in absolute terms) and the estimated variance
is biased downwards. In the absence of specific measures for the amount of bias, we
follow a common-sense approach. We construct measures of drift and variance using only
the first 75 percent of observations from each peg spell. While this strategy introduces
some small sample bias, it should reduce somewhat the biases generated by having a non-
random sample of peg spells. Moreover, this strategy may limit a possible problem
concerning the endogeneity of the real exchange rate with respect to the policymaker's
behavior. For a few spells, the drift moderates as the real exchange rate approaches the
lower barrier, suggesting that domestic inflation was deliberately reduced to preserve the
peg.? The revised measures should exclude these periods. The revised measures are
similar to the original measures of drift and variance, but the correlation between drift and
variance is now somewhat reduced. The effects of drift and log variance on band width

using the revised measures is reported in regression (4) of Table 2. The results support the

? Examples include the last months of the following peg episodes: Bolivia, 1959-1972;
Bolivia 1972-1979; Chile, 1979-1982; and Paraguay 1985-1986.
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predictions of the model. Both drift and log variance enter with appropriate signs and are
highly significant. 10

While band width is an acceptable proxy for devaluation size, we also considered
the percentage change in the nominal exchange rate on the day the peg is abandoned. These
data are obtained from Pick’s Currency Yearbook and supplemented by various issues of
the IMF's Annual Report on Exchange Arrangements and Exchange Restrictions. 1deally
we would like to have a measure of the change in the real exchange rate at the time the peg
is adjusted, but relative price data are unavailable on a daily basis. The correlation between
band width and the percentage change in the nominal exchange rate is +0.46 and highly
significant.

When we regressed the percentage change in the nominal exchange rate on the drift
and the variance of the real exchange rate, neither drift nor variance had any explanatory
power when entered in levels. Multicollinearity did not appear to be the culprit since the
joint explanatory power of the two components of the real exchange rate process was
negligible as well. When the variance was entered in logs, the coefficient on variance was
positive and significant at the 95 percent confidence level, but the coefficient on drift was
still insignificant. The explanatory power of the regression was also quite low. QOverall,
the percentage change in the nominal exchange rate proved to be a less satisfactory proxy
for the dependent variable.

Table 3 shows that both drift and variance significantly affect the time of
devaluation. Recall that a priori their effects can be of either sign. The coefficient on the
drift term is positive and highly significant so that a more negative drift shortens the time
spent on a peg. The coefficient on the variance term is also positive and highly significant,
suggesting that a higher variance increases time on a peg. While this latter outcome may

seem surprising, recall that higher variance decreases time on a peg for a given band, but it

10 For further discussion on the problem of using constructed regressors measured with
error, see Pagan (1984).
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TABLE 3: Estimation Results for Time on the Peg

(1) (2) 3)
sample size 80 80 80
constant - 41.4049** 31.1565** 41.4358**
(7.41) (10.68) (15.25)
drift of the real 6.6318** 7.9568** 7.8079**
exchange rate (1.87) (2.25) (2.12)
variance of the real 0.4492** 0.4668** 0.7467**
exchange rate (0.18) (0.20) (0.22)
R? 0.105 0.106 0.359

Standard errors are in parentheses. The values are based on White's (1980) heteroskedasticity-consistent covariance matrix.
** (*) Significant at the 95 (90) percent confidence level.

Equations (1) has no fixed effects; equation (2) includes country dummy variables; equation (3) includes country dummy
variables and a set of individual calendar year dummies for the post-Bretton Woods years, 1971-1990.

Regressions based on a cross-section of peg spells. Dependent variable is time on the peg (T), expressed in months.

Source: IMF, International Financial Statistics, compact disk, September, 1993.



also increases the size of the band within which the real exchange rate fluctuates without
triggering a realignment. In the Latin American peg episodes, the latter effect apparently
dominates. The results are robust to the introduction of various fixed effects. The results
are also similar when the log of the variance is used in the regression or when the revised
measures of drift and variance are used. In summary, a more negative drift in the real
exchange rate shortens the life of a peg, while a larger variance actually increases the time
spent on a peg because it increases the amount of real appreciation the policymaker is
willing to tolerate over the peg spell.

We now estimate parameters of the actual specifications for the optimal band width
and time of devaluation given in (15) and (20). Table 4 shows the results of the
estimations for cross-section data on Latin American peg spells. Specification (1) reports
the results of estimating the fixed cost of peg adjustment, 8, when the monthly real interest
rate is set at 0.004 (an annual real rate of 5 percent). A priori, we want & to be positive, but
we have no view about its magnitude. The fixed cost is positive and precisely estimated,
with & = 843 and the standard error at 163. The log likelihood function is -198 for 80
observations.

The theoretical model predicts that relatively long spells have a bigger fixed cost of
adjustment, ceteris paribus.!' To test how well this prediction holds up, we replace 8 with
(8+B1*dum) in the estimation of the band equation, where dum is a dummy variable that
takes on a value of one for those peg episodes that last longer than the median sample time
and zero otherwise. If longer spells are indeed characterized by a larger fixed cost, then the
coefficient B1 should be positive and significantly different from zero. Specification (2) in
Table 4 shows that this is indeed the case.

Specification (3) examines whether longer spells have a larger fixed cost of

adjustment and, simultaneously, whether the coefficient attached to the (1/ar) term is indeed
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TABLE 4: Estimations of Parameters in Exact Specifications
for Band Width and Time on a Peg

Band width (xg)

X, +——e "M = _L A

° " oh) ah) 2

1. 80 observations
Log Likelihood = -198.41

d = 843.442 s.e. = 162.56

Band width (xo)

1 —a(}) 1 ;\4
X, +——e "= —— +=(8 + PB,*dum) + ¢,
o 0((7\.) a(l) 2 ( Bl ) 1
2. 80 observations
Log Likelihood = -186.22
0 =121.03 s.e. = 196.22
B1 =1481.86 s.e. = 281.03

Band width (xo)

%, +—eo® =g (L A5 4p xdum) + e,

°a) ah)” 2
3. 80 observations
Log likelihood = -186.18
0 =164.37 s.e. = 255.82
B1 =1453.32 s.e. = 302.35

B2 = 0.9999 s.e.= 0.0003



Band width (xo)

1 A8

+——e "Mz (—)+ = +¢,
RRTEY Gtz e
4. 80 observations
Log likelihood = 615.854
8 =901.150 s.e. = 479.70
A =0.0002 s.e. = 0.00001
Time on Peg
e = e ™Mt ; x,=100-gq,
5. 80 observations
Log likelihood = 82.51
q¢ = 81.2593 s.e. = 1.67
Time on Peg
e = eVt ; x, =100 -q,
6. 80 observations
Log likelihood = 83.52
q¢ = 83.1254 s.e. = 2.08

B1 =0.9811 s.e. = 0.01



Time on Peg

T - Y
e = e +

7. 80 observations
Log likelihood = 572.10

A = 0.0004 s.e. = 0.00002




close to one. The results indicate that both conjectures are appropriate. The coefficient on
the dummy variable is positive and is precisely and plausibly estimated. It indicates that
longer spells have a bigger fixed cost associated with devaluation. The coefficient attached
to the (1/at) term is precisely and plausibly estimated at 0.9999, with a standard error of
0.0003. The estimate conforms with our prior that the coefficient should be about one.

So far the model is linear in the parameters that we have estimated. We now
consider a case where the model is nonlinear in the estimated parameters. We estimate
jointly the fixed cost of peg adjustment, §, and the monthly real intcrest rate, A, in the band
equation. Specification (4) shows that 8 is a reasonably estimated positive number. Its
value is 901 and its standard error is 479. The estimate is moderately precise. The
monthly real interest rate is precisely estimated. Its value is 0.0002 and its standard error is
0.00001. The estimate is positive but smaller than one would expect.

Specification (5) reports the estimation for equation (20), which gives the number
of months on the peg. The estimation is a test of the joint null hypothesis that time spent on
the peg is the outcome of cost minimization and that the policy-maker forms expectations
rationally. Since xo = (qo - q¢), we estimate the lower barrier q¢ given a starting value for
the real exchange rate of qo = 100. We would expect that 0 < q¢ < 100. We also set the
monthly real interest rate at 0.004. The lower barrier is precisely and plausibly estimated at
q¢ = 81.2593 with a standard error of 1.67. The sample median for q¢ is q¢ = 76.05, and
the sample mean is q¢ = 71.85.

Specification (6) estimates the lower barrier without constraining the coefficient
attached to exp(-0xp) to be one. The lower barrier is precisely and plausibly estimated at
q¢=83.1254 with a standard error of 2.08, and the B1 coefficient is close to one. Indeed, it
is estimated to be 0.9811 with a standard error of .01.

Specification (7) estimates the monthly real interest rate parimeter in the time

equation. The parameter-A is precisely estimated, with A = 0.0004 and a standard error of
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0.00002. The estimated monthly real interest rate is positive but smaller than one would
expect.

Overall, then, our estimates indicate that the data are supportive of the nonlinear
specifications of the size and timing of devaluations as a function of the stochastic process

of the real exchange rate, the interest rate, and the fixed cost of adjustment.

4. Conclusion

When developing economies maintain controls on capital and currency flows, the size
and timing of devaluation are jointly determined by the policy authorities. In this paper, we
consider the policymaker who pegs the nominal exchange rate and adjusts the peg
periodically so as to minimize the flow cost of real exchange-rate misalignment and the
fixed cost of peg readjustment. The optimization problem is made difficult by the fact that
the time of devaluation is a stochastic variable. Hence the policymaker has a stochastic
horizon for making decisions about the peg. Fortunately for the case where the real
exchange rate follows regulated Brownian motion, the cost minimization problem can be
solved explicitly for the optimal band within which the real exchange rate can fluctuate
without triggering a devaluation and for the time when the real exchange rate hits the lower
barrier, causing a devaluation.

The framework yields insights into how changes in the stochastic environment
jointly affect the size and time of devaluation. These insights may provide guidance about
the determinants of devaluation episodes even when Brownian motion is not the relevant
stochastic process for real exchange rates. Using data on 80 peg episodes from seventeen
Latin American countries over the 1957-1990 period, we find that the stochastic
components of the real exchange rate are indeed predictors of the size and timing of
devaluation. Moreover, their effects can best be understood within a framework where the
optimal size and timing of devaluation are jointly determined decision variables. For

example, one would expect that higher variance of the real exchange rate would generate
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more frequent devaluations. But in our sample of Latin American pegs, higher variance
increases the time spenton a peg. Such an outcome is consistent with the theory presented
here, for when size and timing are jointly determined, the effect of increased variance on
timing can go in either direction. Higher variance reduces the time spent on a peg for a
given band size, but it also increases the optimal band and hence the amount of real
appreciation the policymaker is willing to tolerate before adjusting the peg .

We are able to obtain explicit solutions for the optimal size and timing of
devaluations by claiming that the policymaker monitors one state variable in order to make
decisions about the peg. However, it is more realistic to believe that the policymaker
tracks several state variables in deciding the size and timing of devaluation. For example,
the policymaker may decide to terminate the peg the first time that either the real exchange
rate or international reserves hits some policy-determined lower barrier.!2  If all of the
monitored variables follow Brownian motion, then their linear combination also follows
Brownian motion. Incorporating into the theoretical framework a composite variable which
is a linear combination of the monitored variables is a straightforward exercise. Such an
extension shows that the stochastic process of each monitored variable as well as the
covariances among them influence the size and timing of devaluation. More complex
interrelationships among the various monitored state variables are also possible. While
these more complicated processes do not lend themselves to analytical methods, their
implications can be explored through simulations. We plan to pursue such a strategy in

future work.

12Bilson (1979) identifies two variables that can be leading indicators of the time of
currency devaluation in developing countries: (1) a monetary indicator based on the
monetary approach to the exchange rate that includes a role for the difference between the
actual and equilibrium values of the real exchange rate, and (2) the ratio of international
reserves to high-powered money. Klein and Marion (1994) also find that the real exchange
rate and the level of international liquidity help predict the monthly probability of
devaluation in a set of developing countries.
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Appendix
Using Harris'gn (1985), pp. 44-48, the g(xo) function in (8) is equal to:

(A1) g(x,) = f(x,)-f©0)eM~; ~ x 20

[}

where, using Fubini's theorem,

(A2) f(x,)=E, [ [e™(x,—x")dt]=[e™E, [(x, - x")]dt
0

0

To calculate (AZ), use the expression in (2) for xt and derive the expected squared deviation
of the real exchange rate from its equilibrium value:

(A3) E, (x,—x")" =(x, = x")" + p’t’ + 2(x, - x")ut + to’

Substituting (A3) into (A2) gives:
(Ad)  f(x,)=(x, —x") [e™dt+p? [e™ P dt+[2(x, - x I+ " ]fe™ tdt
0 0 0

Integrating (A4) yields the following expression for f(xo):

(x,—x)*  2u?  2x,—-x)u+¢’
x N X

(AS) f(x,)=

Substituting (A5) into (A1) and also evaluating the function f(xo) at xo=0 gives:

- -
.

.2 2 . 2 . 2 .
A6) g(x)=Fe=X)" 20 SR =xDuro’}  x” 2u s —fxu)]e-a,,

A 5 A A X A

To get the complete expression for expected discounted costs, g'(0) must also be
calculated. Note that



, 2(x,-x) 2 x" 2ut (6 = 2x"W), o
(AN gx) =20 SR al i S S e
so that

, 2x" 2 x" 2t (6t -2x"w)
(A8) gO)= X +F+a[T+ X + ¥ 1



