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1 Introduction

There are three widely available indicators of technological change: (i) measures

of research input, such as employment of research scientists and engineers, (ii)

measures of inventive output, in particular counts of patented inventions, and (iii)

measures of the improvement in technologies in use, such as total factor produc-

tivity growth. These indicators, if taken seriously, are quite informative as to

which models are capable of organizing our empirical understanding of technolog-

ical change. I propose a model which, in a steady state equilibrium, replicates

the observed aggregate trends in research, patenting, and productivity. These

aggregate implications follow from a stochastic model of research, patenting, and

productivity growth at the level of individual products.

Figure 1 illustrates the behavior of the three technology indicators in the US

over the past three decades (see table 2 for data sources). For ease of comparison,

the three series are indexed at zero (on a log scale) in 1957. On the one hand, em-

ployment of research and development scientists and engineers in industry (S&E's)

has grown dramatically. Moreover, the level of total factor productivity (TFP)

in the manufacturing sector has grown more slowly, yet it does display a persis-

tent upward trend. On the other hand, the annual number ofsuccessful domestic

patent applications has displayed little upward trend relative to its fluctuations.

My interpretation of the evidence is that, while S&E's and TFP have grown, the

level of patenting has fluctuated around a constant level.1

'I associate domestic patents with US priority patents: inventions for which patent protection

is sought first in the US. The patent data would display a distinct upward trend if I had counted

all patents granted in the US, since foreign patenting in the US has expanded rapidly. There is

some basis for ignoring foreign patents. For the most part, US priority patents are the result
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My interpretation of the trends in the three technology indicators is supported

by data from other time periods and from other countries. As for the constancy

of patenting: (i) Griliches (1990) shows that domestic patent applications in the

US display little trend since the 1920's and (ii) Eaton and Kortum (1993) find

no trend between 1952 and 1990 in the annual number of patents granted do-

mestically to residents of France, Germany, UK, and the US. Only Japan, of the

countries studied, has experienced a noticeable increase in domestic patenting. As

for relative trends in research and patenting: (i) Evenson (1984) has documented

a dramatic decline in patenting relative to measures of research for a broad set of

countries and (ii) Kortum (1993a) finds that all the US manufacturing industries

for which data are available have experienced a decline in patenting per unit of

real R&D. Apparently, the aggregate decline in patenting relative to R&D is not

simply a result of R&D being performed increasingly in industries (such as Office

and Computing Equipment) where we suspect inventions are relatively unlikely to

be patented. As for the trends in research and productivity: Jones (1993) docu-

ments the rapid growth of research inputs and the relatively constant growth of

TFP over the past 25 years in France, Germany, Japan, and the US.

The trends in the three indicators of technology present puzzles for several

existing models. A standard assumption in the endogenous technological change

literature [Judd (1985), Aghion and Howitt (1992), and Grossman and Helpman

(1991)] is that inventive output is proportional to the quantity of labor allocated

of research performed in the US while foreign patents are not. On the other hand, foreign

patents may indicate the arrival of productivity improving techniques from abroad [see, Eaton

and Kortum (1993)]. The model in the current paper applies to an economy that obtains all its

technological advances from its own research.
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to research. In Romer (1990), the rate at which a researcher invents new types of

goods actually increases over time as a result of a research spillover. If the trend

in patents says anything about the rate of invention, the ubiquitous decline in

patenting per S&E argues against such formulations. Puzzles remain if we ignore

patenting and look directly at the relationship between S&E's and TFP. The same

models of endogenous technological change imply that TFP growth is proportional

to employment in research. Jones (1993) points out that while research employ-

ment has grown dramatically, TFP growth has not increased as the theories would

suggest. Finally, the empirical literature, quantifying the effect of research on pro-

ductivity, generally posits a linear relationship between productivity growth and

the growth of a stock of knowledge. If the stock of previous patents is used to mea-

sure the stock of knowledge, then the relative constancy of the rate of patenting

implies that the stock of knowledge grows at an ever declining rate. As Griliches

(1990) notes, the prediction of continuously declining rates of productivity growth

has not been observed.

None of these phenomena is a puzzle in the context of the model I construct

below. The primitive of the model is a set of distributions from which researchers

draw techniques for producing higher quality goods. A technique, once discovered,

can be used indefinitely, hence the technical capability of the economy is non

decreasing over time. However, the distributions of undiscovered techniques do

not evolve over time. Hence, as the quality of existing techniques improves, more

research effort (more time drawing from the distributions) is required to find a

patentable technique, i.e. one that is better than existing techniques. The model

implies that a constantly growing quantity of research input is required to generate

a constant flow of new patents. This explains why we observe a constant rate of
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patenting while the employment of S&E's has risen over time.

To account for constant exponential productivity growth, it must be that the

average quality of techniques in use rises at a constant rate. Assume that a fixed

percentage of the improvements in technique is patented. Since the rate of patent-

ing is constant, it must be that a patented technique is, on average, a constant

percentage improvement on some technique currently in use. This requirement

on the average 'size' of a patent can be used to prove that the underlying distri-

butions of undiscovered techniques are from the Pareto family. Given the Pareto

restriction, the model implies that productivity growth is proportional to the rate

of patenting, which is in turn proportional to the growth in the stock of past re-

search. Thus, a growing path of research input is consistent with a constant rate

of patenting as well as a constant rate of productivity growth.

To close the model, I show that if the population of individuals or the stock of

human capita] in the economy grows at a constant rat.e, then there is an equilibrium

in which a constant fraction of these human resources are devoted to research.

Though a researcher is increasingly unlikely to discover a patentable invention,

the average value of a patentable invention rises over time. Patentable inventions

become more valuable because, in a growing economy, new techniques will be

used to produce an ever greater quantity of goods. In equilibrium the value of

patents increases at the same rate as the cost of discovering them. This supports

an equilibrium with a growing level of research investment.

Having developed a model consistent with the trends, I investigate whether it

can account for the observed fraction of human resources devoted to research. I

measure this fraction as nominal R&D expenditure (compensation of researchers)

divided by nominal compensation of the labor force. I set the parameters of the
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model to mimic the growth of S&E's and TFP. I find that for moderate rates of

discounting, the model overpredicts the R&D share. Next, I ignore productivity

growth and fix one of the parameters to mimic econometric estimates of the elas-

ticity of productivity with respect to the stock of research. In this case I am able

to fit the R&D share given a reasonable discount rate. But, as with the empirical

literature on research and productivity, these parameters imply that industrial

research accounts for only 10-20% of observed productivity growth.

2 Relation to the Existing Literature

How does my explanation of the behavior of S&E's, TFP, and patenting relate to

other arguments in the literature? On the observed fall in patenting relative to

S&E's, Kortum (1993a) assesses three explanations: (a) opportunities for discov-

ering patentable inventions have declined, (b) the value of patentable inventions

has increased, making researchers willing to expend more effort to get one, and

(c) the fraction of inventions that are patented has declined. He concludes, in the

context of a theoretical model that differs from the present model, that explana-

tion (c) must be part of the story. Griliches (1990) proposes institutional reasons

why the fraction of inventions that are patented may be declining. The present

model, on the other hand, assumes that the propensity to patent is constant and

explains the observed decline in patenting relative to S&E's by a combination

of explanations (a) and (b). The increasing difficulty of discovering patentable

inventions is driven by the same search mechanism proposed by Evenson (1984,

1991). The value of patented inventions also rises over time, thus explaining why

research activity continues to grow in this environment of declining opportunities.
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What should we conclude about a possible decline in the propensity to patent?

The direct evidence we have, based on responses from R&D managers, Mansfield

(1986), and Henderson and Cockburn (1994), does not support the view that the

propensity to patent has declined. Nonetheless, further research needs to be done

before we can be certain that explanation (c) is unimportant.

On the behavior of productivity relative to patenting and S&E's, my account is

consistent with a number of previous works. In interpreting the trends in patenting

and productivity, Griliches (1990, pg. 1698) observes that a constant flow of

patenting could yield constant exponential productivity growth if patents are on

average percentage improvements. Aghion and Howitt (1992), Grossman and

Helpman (1991), and Caballero and Jaffe (1993) develop theoretical models that

are consistent with this interpretation of the size of patents. In studying time series

of productivity and S&E's, Jones (1993) concludes that the level of productivity

has a negative effect on productivity growth conditional on S&E's. When he

incorporates this phenomenon into a model of growth, he finds that population

growth is needed to support a steady state with endogenous technological change.

These features are also present in a model of endogenous technological change

developed by Nordhaus (1969). Similarly, in my model, exponential growth of

population or human capital is necessary if the value of patents (and research

activity) is to grow in steady state.

Caballero and Jaffe (1993) have recently made an ambitious attempt to assess

the empirical content of research-driven models of endogenous growth. They put

particular emphasis on modeling and measuring technological spillovers. Using

data on patent citations, they estimate that there has been a secular decline in

the knowledge spillovers generated by successive cohorts of patents. They note
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that this is a potential explanation of the observed fall in the patent-R&D ratio.

While this is a provocative finding, Caballero and Jaffe's theoretical model does

not provide an interpretation for it. In particular, their model implies that the

patent-S&E ratio is constant in steady state.

The technological spillovers emphasized by Caballero and Jaffe are totally ab-

sent in the present model. This absence reflects an attempt to keep the model sim-

ple rather than an a priori belief that spillovers are unimportant. In the present

model, with no spillovers, there is too much research in equilibrium relative to

what a social planner would choose.2 It is quite likely that this over investment

result would be reversed by introducing technological spillovers. A natural way

to introduce spillovers is to allow research successes to create general knowledge

which shifts the underlying distributions of undiscovered techniques. I leave this

as a topic for future research. One challenge will be to introduce research spillovers

while maintaining aggregate predictions that are consistent with the data.

The stucture of the theoretical model developed below borrows extensively

from existing literature. I start with Evenson and Kislev's (1976) search model

of technological change whose implications for patenting are derived in Kortum

(1991). Next, I follow Bental and Peled (1992) by assuming that the search dis-

tributions are Pareto. Finally, I embed the search model in a general equilibrium

framework styled after Grossman and Helpman's (1991, chapt 4) model of rising

product quality.3

2! have not proven this, however it is true for a wide range of parameter values. This result is

not caused by racing behavior. Rather, it is a general equilibrium effect. Too many individuals

enter the research sector because, due to imperfect competition, they are paid less than their

marginal product in the production sector.
3The search model of patenting does not fit as naturally into a model of expanding variety
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The paper proceeds as follows. In the first section I describe the economic

environment underlying the model. Next, I solve the model: first, deriving the

behavior of patenting conditional on research, second, deriving the behavior of

productivity growth conditional on patenting, and finally, solving for an equilib-

rium path of research. In the fourth section I compare the predictions of the model

with measures of technological change in the US. I focus on the prediction of the

model for the fraction of human resources devoted to research. The fourth section

contains concluding remarks and a look at how the model helps us interpret firm

level data on research and productivity growth. The appendices contain a table

of notation as well as the more tedious mathematical derivations.

3 The Model

The economy consists of a continuum of individuals and a continuum of varieties

of goods. Labor is the only input to production. At each moment, each individual

chooses to sell its labor or to search for a technique to produce a higher quality

good, i.e., an individual can be a laborer or a researcher. A researcher's success

is determined by the qualities of existing goods and the probability distributions

over the qualities of new ideas. A successful researcher gets an idea for producing

a higher quality good, obtains a patent, and hires labor to produce the good. I

focus on the relation between research activity, the arrival of new patented goods,

and the resulting improvements in product quality, which I relate to productivity

growth.

such as Judd (1985) Romer (1990), or Grossman and He)pman (1991, chapt 3).
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3.1 Research and Patents

During an instant, dt, an individual engaged in research will have an idea with

probability dt. An ideals defined to be knowledge of how to produce a consumption

good of variety j and quality Q. The variety is drawn from the uniform density

on [0, J].4 The quality, conditional on variety j, is drawn from the cumulative

distribution function, F(q) = Pr[Q <q]. 1 assume F is continuously differentiable

with density f(q).5

I assume that an idea is patentable if and only if its quality exceeds that of

all previous patents on variety j. The law is somewhat more complicated than

this, "Under section 102, a patent is barred for lack of novelty if there is enough

in the prior art to enable someone skilled in the area to perform the process or

produce the product described in the patent application." (Miller and Davis, 1990,

pg. 46). However, in a world where goods have only one quality dimension, it is

4Having a continuum of goods allows me to model research as a random process while treating

aggregate outcomes as deterministic. This modeling device greatly simplifies the analysis, as does

the assumption that the set of varieties is fixed. By assuming that the variety is drawn from the

uniform distribution, I have made it impossible for researchers to focus their search on specific

varieties. This strong assumption lets me avoid two difficult issues. First, a researcher owning a

patent on a given variety may attempt to prevent entry by continuing to search in that variety

[see, Reinganum (1989) for a general discussion of this issue]. Second, a researcher may want to

direct her research at varieties in which little technological progress has been made in the past.

These are both important issues which I would like to address with future incarnations of the

model.
5The assumption of a Poisson process guarantees that ideas arrive sequentially rather than

simultaneously. The assumption of a continuously differentiable density allows me to ignore the

possibility of two ideas having exactly the same quality. Both assumption help to simplify the

later analysis.
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natural to define the prior art as the quality of the previous best idea. Thus, to

be patentable, a new idea must surpass the prior art and set a quality standard

which becomes the new state of the art. I assume that patenting is costless so

that all patentable ideas are patented. I also assume that patent examiners only

grant patents on patentable ideas.6.

Research activity generates an expanding set of patented goods. Let N(j, i)

be the number of patents on variety j prior to time i. To guarantee that there is

always at least one good available in each variety, 1 assume that there is always

an unpatented good (good 0). The entire set of goods at time i is therefore,

G(L) {(i,j)i E {O,l,.. . ,N(j,i)),j E [0,)]).

Each good, (i,j) G(i), has an associated quality, Q(i,j) > 0. The following spec-

ification of patent protection justifies keeping track of only the initial unpatented

good along with all subsequent patented goods.

Each patent is owned by the individual who had the idea. The patent holder

can produce a good using the patented idea and can costlessly prevent others from

infringing on the patent. Patent (i,j) is infringed if an individual, other than the

owner of the patent, produces the jth variety with quality Q E (Q(i—1,j),Q(i,j)].7

Patent protection is assumed to last forever, though I show later that patent (i,j)

obtains no value from this protection once patent (i + 1,j) is discovered. The

original unpatented goods, (0,j), for j E [0,)], can be produced by any individual

without causing an infringement.

'These issues are discussed more thoroughly in Kortum (1991)
7Thi, way of specifying the scope of patent protection wu suggested to me by Nobuhiro

Kiyotaki.
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3.2 Production

All goods are produced under constant returns to scale. In particular, to produce a

good at rate x requires labor services at rate cx, where c is a cost parameter.8 The

producer sets a price, P, at which to sell output to other individuals and hires labor

to meet demand at that price. Prices are in labor units and the wage is normalized

to be unity. The flow profits from patent (i,j) are thus, C(i,j,t)[P(i,j,i) —c],

where C(i,j,i) is the quantity demanded of good (i,j).

3.3 Preferences

A continuum of infinitely lived individuals is indexed by h E [O,e'], where n> 0 is

the rate of population growth. Each individual is endowed with a unit flow of labor

services which it allocates to research, R(h,i) = 1, or production, R(h,i) =

Besides wage income of 1 — R(h,t), an individual may get profit income from

patents if she has been a successful researcher in the past.

An individual's objective is allocate her labor between research and production

and to allocate her consumption across varieties and qualities so as to maximize

the expected present discounted value of instantaneous utility,

Et[j e'tU(s)ds],
'For ease of exposition,! interpret technological change as quality improvement and normalize

costs of production to be constant. It is easy to show that technological change can also be

interpreted as reductions in labor requirements (with qualities unchanged over time). In this

alternative interpretation, the behavior of prices (though not price per unit of quality) will be

altered in an obvious way.
9Alternatively, imagine a fixed measure of individuals, each of whose endowment of labor

services grows at rate n due to exogenous accumulation of human capital. If n = 0, the ecoaomy

reaches a steady state where no one chooses research and productivity ceases to grow.
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where p is the individual's discount rate. 1 assume that instantaneous utility

is homogeneous of degree one in the set of goods, G(t), so that individuals are

indifferent to the risk inherent in research. I also choose a convenient functional

form which implies that individuals will spread their income evenly across all

varieties,
j N(j,t)

U(i) = exp{J1 / ln[ (Q(i,j)e'C(i,j,i))]dj).

A representative individual obtains utility from quality weighted levels of per

capita consumption of the individual goods. With identical preferences that are

homogeneous of degree 1, facing the same set of prices, {P(i,j,i)(i,j) G(i)},

at a point in time each individual will purchase the same basket of goods, scaled

up or down according to her income.'0

3.4 The Evolving Set of Goods

The aggregate level of research activity in the economy at time I is given by the

measure of individuals engaged in research at that time, R(I) f0" R(h,i)dh.

A path of research {R(s)Is � 2) will determine, probabilistically, future sets of

patented goods and their associated qualities. Much of the section 3 will be con-

cerned with describing exactly how the set of patented goods evolves over time. At

this point it is necessary only to point out that individuals are assumed to form

'°Note that,
,j N(,.t)

exp{J J In[ > (Q(i,j))e"C(i,j, i)))dj}
0

j N(j,s)
= Xexp{J1 f In[ (Q(i,j)e'"C(i,j,i))]dj}.

i0
Letting tend to zero shows that an individual with no income, e.g. an unsuccessful researcher,

will obtain instantaneous utility of zero by consuming nothing.
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expectations taking as given the equilibrium path of research and the implied

process for the arrival of new and better goods.

3.5 Equilibrium

An equilibrium for this economy in period i is a path of research, {R(s)js � i},

a consumption allocation, {C(i,j,i)(i,j) E G(s),s � i) and a set of prices,

{P(i,j,s)I(i,j) G(s),s t), such that in all periods s � t: (a) The consump-

tion allocation is utility maximizing given prices; (b) Each price is profit maxi-

mizing for the producer given the prices set by others and the demand schedule

for the good (prices are the outcome of Bertrand competition); (c) Each individ-

ual's labor allocation maximizes expected utility; (d) The labor market clears: i.e.

f' C(i,j,s)dj = [e" — R(s)]/c in all periods, $

4 A Solution

The model specified in the previous section is solved in three steps. First, I derive

the patent production function: the equation relating the aggregate rate of patent-

ing to aggregate research input. Second, I derive the productivity equation: the

equation relating aggregate productivity growth to the aggregate rate of patent-

ing. Finally, I close the model by solving for an equilibrium path of aggregate

research. The result is a set of equations for the rate of patenting, the rate of

growth of productivity, the rate of growth of research inputs, and the fraction of

human resources devoted to research as functions of the parameters of the model.

In solving the model, I impose restrictions on the representative search distri-

bution, F(q). While these restrictions are required for analytical tractability,they
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are also required if the model is to predict correctly the trends in patenting and

productivity growth. This is not true for the patent production function which I

derive without restricting the search distribution. Any continuously differentiable

search distribution is consistent with the observation that research inputs grow

exponentially while the rate of patenting is constant. However, the shape of the

search distribution is relevant to the form of the productivity equation. Only a

Pareto search distribution is consistent with the observation that a constant rate

of patenting produces exponential growth of productivity. Thus, I assume that the

representative search distribution is Pareto for the remainder of the paper (except

in the derivation of the patent production function). The analytical convenience

of the Pareto distribution makes it possible to solve explicitly for the equilibrium

level of research.

4.1 The Patent Production Function

The model has a striking implication for the aggregate output of patented ideas

conditional on a path of research. Let 1T(t) be the rate of patenting, R(t) the

rate of research, and 1u(1) J' j R(s)ds the stock of past research. The model

implies,

= R(i)p(i)'. (1)

The distinguishing feature of (1) is the negative effect on patenting brought about

by a rising stock of research. As the stock of past research rises, a decreasing

fraction of new research ideas surpass the quality of previous ideas. Hence a

decreasing fraction of new ideas are patentable. Consider a path of research where

R(i) grows at rate n (i.e., if a constant fraction of human resources are devoted

to research). While the number of ideas grows at rate n, the percentage of those
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ideas that are patentable falls over time. Eventually, i(i) grows at approximately

rate n. Hence the patent-research ratio falls at approximately rate n and the rate

of patenting approaches a constant, Jn. Thus, the patent production function

(1) is consistent with the observation that research has grown while the rate of

patenting displays little trend.

I derive the patent production function below. Since the derivation does not

depend on the form of the search distribution, 1 postpone imposing the Pareto

distribution. In Kortum (1993b), I derive the patent production function under

more general conditions and then test its implications. The empirical findings

support the model's prediction that the rate of patenting is positively related to

current research and negatively related to a proxy for the stock of past research.

4.1.1 Ideas

Remember that an idea is the knowledge of how to produce a good of variety j

and quality Q. Although most ideas are unpatentable, it will be useful to keep

track of all the ideas for producing a given variety. Let I(j,t) be the number of

ideas for variety j that occur before time t. The sequence of random variables

{I(j,s)fs 0) is a nonhomogenous Poisson process with an arrival rate R(s)/J."

The fraction of varieties for which there have been exactly I ideas by time i is

given by the Poisson density, z(t)'e(')/I!, where 1i(t) J1 JR(s)ds. Note

This result can be derived as the limit of a model where a finite number of researchers have

ideas about a finite number of varieties. For example, imagine R/d researchers and J/d varieties.

A given individual has ideas at rate 1, hence the individual has ideas about a given variety at

rate 1/old) =d/J. Since R/d researchers are generating ideas, the rate at which all researchers

have ideas about a given variety is (R/d)(d/J) = R/J. This result remains true as d becomes

arbitrarily small.
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that Jp(t) is the undepreciated stock of past research.

4.1.2 Patentable Ideas

Ideas are patentable if and only if they are the highest quality in their variety. In

the following argument, I will hold the variety fixed and solve for the expected

number of patentable ideas in that variety conditional on the total number of ideas

in that variety.

I assume that the search process begins at time 0, and that there have been

I ideas prior to time t. Denote the times at which those ideas occurred by, r1 <

r2 < ... < rj, where 0 < r1 and i. Let the qualities of the ideas be

Q, , Q,. . . , Q1, respectively. Since no patents exist before time 0, the first idea

is always patentable. The second idea is patentable if and only if Q,2 > Qr1, an

event that occurs with unconditional probability 1/2. Similarly, the Ith draw is

patentable if and only if,

Q,., > max{Q,.,.. .

an event that occurs with probability 1/I. The argument above leads to a simple

equation for expected cumulative patents of variety j, N(j,t), conditional on the

number of ideas of variety j,

1

E[N(j,t)I(j,i) = I) = E1/ilnI+1',

where 1, = .5772... is Euler's constant.12

'2There are simple and tight bounds for the expectation formula,

ln(1) <I/i<ln(fl+1
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4.1.3 Aggregate Patenting

I define the aggregate stock of patents as the integral over all varieties of the stock

of patents in each variety, N(t) JfN(j, t)dj.13 Conditional on the stock of past

research, Jp(i), the measure of varieties for which exactly I ideas have occured

is proportional to the Poisson density, jt1• But, among the continuum of

varieties for which I ideas have occured, the average number of patentable ideas

will be exactly 1/i. Combining these results we get an equation for the

aggregate stock of patents conditional on the aggregate stock of research,

(t)'e4.)N(i)=J> I! 1/i.
I show in appendix A.2 that this equation simplifies considerably when the stock

of research is large,

urn {N(t) — Jln(,u(t)) — Ji/.'} = 0.
p(1)—.oo

I will always assume that t(i) is large enough so that the error of approximation

may be ignored. Taking time derivatives of the asymptotic approximation above,

we obtain equation (1) for the rate of patenting, W(i) =

4.2 The Productivity Growth Equation

Economists' interest in patent data is ultimately based on the belief that patents

may indicate something about technological changeand productivity growth. Un-

and an asymptotic result,

lim (E[NjI] —In I) =
1—oo

These results are described in more detail in }(ortum (1991).
3Note that while the stock of patents in each variety is an integer, the aggregate stock of

patents is not confined to the integers.
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fortunately, there is little empirical work linking productivity growth to patenting.14

The trends in the data suggest that if such a link exists, it is a proportional rela-

tion between productivity growth and the rate of patenting. Below, I show that

if productivity growth is proportional to the rate of patenting, the representative

search distribution (giving the probability that a new idea will have quality less

than q) must be the Pareto distribution,

F(q) = 1 —

with parameter A < i.' Letting A(t)/A() be productivity growth, I show that,

A(t)/A(t) = A!T(i)/J, (2)

where A is the parameter of the Pareto distribution.

Combining the productivity equation (2) with the patent production function.

(1), and noting that fi(i) = J'R(t), we get an equation relating productivity

growth and growth in the stock of research,

= Aj(t)/p(i). (3)

Equation (3) is the empirical specification traditionally used to quantify the im-

pact of research on productivity [Griliches (1973, 1979)). However, while in the

traditional derivation, A is a parameter of the production function, in the present

derivation it is the parameter of the underlying search distributions. Econometric

estimates of A are generally less than 0.1.

34Kortum and Lach (1994) provide some preliminary estimates using industry level data.
l have imposed an arbitrary normalization so that the lower support of the distribution is

unity. I assume that the original unpatented goods all have unit quality, formally, Q(O,j) = I for

j E [0, J]. This implies that the first patent in each variety will raise productivity.
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4.2.1 A Productivity Index

The productivity index that I use in this section is the geometric mean of the

quality of goods currently produced. Let the state of the art quality, Z(j, i) of

a good of variety j be the highest quality of that variety that can currently be

produced: formally, Z(j,i) Q(N(j,t),j). It is well known that in a Bertrand

equilibrium, only goods with state of the art quality will be produced. Therefore,

the productivity index is the geometric mean of the state of the art qualities,

lnA(i)J' I lnZ(j,1)dj.- Jo

Alternatively, I can define a productivity index based on real aggregate output

per worker. In appendix A.3, I show that the two alternative indices of productiv-

ity grow at the same rate. This is a justification for using the index defined above

which depends only on state of the art qualities.

4.2.2 The Search Distribution

With productivity so defined, constant exponential productivity growth results

from the state of the art quality of each variety rising at a constant rate on av-

erage. If quality improvements are associated with patents and if the rate of

patenting is constant then on average a patent must represent a percentage im-

provement in quality. I define the percentage improvement in quality made pos-

sible by a patented idea as the inventive step of the patent, denoted as Y. In

a search model, as described above, Y is a random variable. Some patents will

represent substantial increases in the state of the art while others will be minor

improvements. However, the randomness in inventive steps will average out across

varieties. If the distribution of inventive steps does not change over time, a con-
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stant rate of aggregate productivity growth will result from a constant rate of

patenting.

Since the state of the art within each variety rises stochastically over time,

time stationarity of the inventive step requires a search distribution such that the

implied distribution of the inventive step for new patentable inventions does not

depend on the previous state of the art.

Consider a specific variety of good. Let Q be the quality of a new idea in

that variety and let x be the previous state of the art in that variety. If the

idea is patentable then Q> z and the patent has an inventive step Y = Q/x.

The distribution of the inventive step for patentable inventions, conditional on the

previous state of the art, is

G(yx) Pr(Y � IQ � x) = Pr(x Q zy)/Pr(Q � x)

= [F(zy) — F(x)J/[1 — F(x)].

I want to find conditions on the distribution function, F(.), such that G(ylx) does

not depend on x.

It is convenient to normalize the left support of the distribution function at

unity: formally F(q) > 0 for q > I and F(l) = 0. This implies, G(yIl) = F(y).

Thus, we want a distribution function which satisfies the functional equation,

F(y) = [F(xy) — F(z)}/[l — F(x)],

for all x � 1. The unique solution to this functional equation is the Pareto

distribution,

F(y) = G(yx) = I — y'
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for y � 1.16 With the Pareto distribution, the inventive step of patentable ideas

is not only independent of the previous state of the art, it also inherits the Pareto

form of the underlying searcii distribution. Throughout the remainder of the

paper, I assume that the search distribution is Pareto.17

4.2.3 Productivity and Patents

We can now derive an equation for productivity growth as a function of the rate

of patenting. Consider the increase in the log of productivity between time t and

t + s. This increase is due to the increase in the state of the art qualities of

'1 follow a proof in Billingsley (1986, pg. 191) which solves a similar equation to obtain the

exponential distribution. We want a function satisfying, I — = (1 — F(x))(I —

Equivalently, we want a function 1f(.) that satisfies H(Inz + my) = H(Inx)H(Iny) where,

H(ln q) = 1— F(q). Cauchy's equation implies H(w) = e for some number a. Thus, 1— F(q) =

olii q = qQ, which is the desired result.
17The following are some notes related to the Pareto distribution. The mean of the Pareto dis-

tribution is 1/(1 —A). If the random variable Q has the Pareto distribution, then the distribution

of In Q is,

Pr(tn Q � x) = Pr(Q <ex) = I —

which is the exponential distribution. In Kortum (1991) I note that only the exponential dis-

tribution has the property that the absolute increase in the state of the art is independent of

the initial state of the art. Now, we have the companion result, that only the log exponential

distribution has the property that the inventive step (defined as a percentage improvement) is

independent of the initial state of the art. The Pareto distribution is used by Bental and Peled

(1992) to illustrate their model of endogenous growth based on a search process. While Scherer

(1965) reports fitting the Pareto distribution to patent values (i.e. private values), the result here

concerns the distribution of social values of patents. The distribution of private values will be

discussed below. To examine the distributional assumption directly, one would want micro data

of the type being studied by Henderson and Cockburn (1993).
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individual varieties,

In A(i + 3) — In A(t) = J I ln(Z(j, i + 3)/Z(j, t))dj.
Jo

The increase in the state of the art within variety j, Z(j, i + s)/Z(j, t), is equal to

the product of the inventive steps of any patents on variety j which were discovered

between t and t + s. Let X(k,i,3) be the measure of varieties in which exactly

k E {O, 1,2,. . .} patents are discovered between t and i + s. Then,

00 k

In A(t + 3) — in A(t) = J (k, i, s)E[ln(ll 1';)].
k=1 i=1

Since the Y are drawn from the Pareto distribution, in).'1 is drawn from the ex-

ponential distribution and therefore has a mean of \. Thus,

k k

E[lh(flY1)) = E[1nY,] = kA.

Furthermore,

= N(i + s) —N(i).

Combining results,

In A(t + s) — in A(t) = J' (k, 1, s)kA = (N(t + s) — N(t))/J.

Dividing both sides of the equation by s and taking the limit as s goes to zero, we

get equation (2) for productivity growth.

4.3 Equilibrium Research

In the derivations above I have conditioned on a path of research. I can now solve

for an equilibrium path of research. Individuals in the model always have the

choice of being researchers or earning a wage of unity. A researcher has a chance of
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discovering a patentable idea which will yield a stream of future earnings. As long

as a positive measure of individuals choose to be researchers, a given researcher

knows that patentable ideas will arrive to her at a stochastic rate ii(i)/R(t). Our

patent production function (1) implies that this arrival rate is ji(t)1. Let V(t) be

the expected present discounted value of a patentable idea discovered at time t. In

an equilibrium where 0 < R(t) <e'", all individuals must be indifferent between

research and earning a wage of unity, i.e. V(i)(i)' = 1 or V(i) =

I will concentrate on the steady state equilibrium in which a constant fraction

of individuals choose research, R(i)/e" = a. Along the steady state, the stock of

research is given by 4t) = cxe'"/(nJ). It is increasing in a because a larger fraction

of individuals engaged in research leads to a higher stock of past research. Below, I

show that the expected value of a new patent is given by V(t) = (1 — a)Be"t where

B is a complicated function of several of the parameters of the model. Intuitively,

I'(t) is decreasing in a because in an economy where a large fraction of individuals

are engaged in research, levels of production will be low and hence patents will

be less profitable. The steady state equilibrium is the unique value of a such that

= V(t). I obtain an expression for a and calculate it numerically for a range

of values of the model's parameters. I conclude the section by comparing a with

the fraction of human resources which a social planner would devote to research.

4.3.1 The Value of a Patent

The value of a patent is the expected presented discounted value of the flow of

profits obtained by selling the patented good. A first step in determining the

value of a patent is to calculate this flow of profits. It was noted above that in a

Bertrand equilibrium between producers, only state of the art goods areconsumed.
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Given the simple specification of preferences, individuals will distribute expendi-

ture uniformly across all state of the art goods. Let C(j,i) C(N(j,i),j,i) be the

quantity of the state of the art good of variety j and let P(j,i) P(N(j,2),j,t)

be its price. Define aggregate expenditure as X(i) f'P(j,i)C(j,1). Then, we

have P(j, t)C(j, t) = J1X(t).
The producer of a state of the art good faces competition from the producer

of the next highest quality pricing at marginal cost. She maximizes profits by

charging a price of cY where Y is her inventive step. Thus, the flow of profits to

the producer of the state of the art good of variety j is,

P(j,i)C(j,t)[1 — c/P(j,i)] = JX(i)[l — Y(j,i)],

where, Y(j,i) Z(j,i)/Q(N(j,i) — l,j) is the inventive step of the state of the

art good of variety j. Note that profits depend on the variety, j, via the inventive

step. A patent with a greater inventive step is more valuable because the producer

can maintain a greater markup of price over marginal cost.

Now consider a state of the art patent with an inventive step of y. De-

note the quality of the previous state of the art patent by x. Thus, the state

of the art patent has quality z = xy. This patent generates a flow of profits,

r(1,y) J'X(i)[l — y] at time i. This equation governs its flow of profits un-

til the current state of the art patent is made obsolete by a new pateut with quality

exceeding z. Due to the scope of patent protection, the patent holder does not

see its markup eroded by subsequent unpatentable ideas with qualities between x

and z.

At time i, the discounted future profits from a patent with inventive step y are,

fr" e"(')7r(s,y)ds. This is a random variable because the future profitable life
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of the patent, L, is a random variable. Each patent faces an instantaneous hazard

given by the rate at which new ideas with higher qualities are being discovered.

At time s, ideas on a given variety are produced at rate J'R(s). For a patent

with a state of the art z the fraction of these ideas that are patentable is

Thus, the hazard rate for a patent with state of the art z is J1R(s)z'I', which

is decreasing in z. Combining results, the expected value of a patentable idea at

time i with a state of the art Z = z and inventive step Y = y is,

V(t,; y) = J°° I1(p+J_1R(v)z_1)dh7w(s,y).

The value of a patent depends on time (through its effect on aggregate expenditure

and aggregate research), the inventive step (through its effect on the price which

the producer can charge), and the state of the art (through its effect on the

expected profitable life of the patent). Conditional on these three factors, the

date at which a patent is invented is irrelevant.

For a researcher hoping to discover a patentable idea, the inventive step and

state of the art are random variables. Thus the value of a patent is also a ran-

dom variable, V(i, Z,Y). The expected value of a patent, conditional on it being

discovered at time is,

V(i) = E[V(i,Z,Y)] = jjV(izv)f(z7vIt)dvdz (4)

where f(z, ylt) is the joint density of the state of the art and inventive step of

patentable ideas discovered at time 1. That density is derived in appendix A.5.

4.3.2 Aggregate Expenditure

The profits from marketing a patentable good are proportional to aggregate ex-

penditure in the economy, X(t). At each instant, the aggregate expenditure on
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goods is equal to aggregate income. Aggregate income consists of wage income

and profit income. Since the wage is unity, wage income is equal to the measure of

individuals who are not researchers, e"— R(t). Aggregate profit income is equal

to the integral over varieties of the profits derived from the state of the art good

of each variety,

tJ
J ir(t,Y(j,t))dj = JX(t)j (1— Y(j,t)')dj = X(t) — X(i)0(t),

0 0

where, 9(t) J' f1' Y(j,i)dj. Therefore, X(i) = e't — R(2) + X(t) —

or X(t) = (e1't —

The term 0(t) is the average value across varieties at time i of the inverse of

the inventive step. Since there are a continuum of varieties, this average is equal

to the expected value of the inverse of the inventive step, 0(i) = J?° y'92(yIi)dy,

where g2(yjt) is the density of the inventive step for patents which are profitable

at time 1. 1 derive this density in appendix A.6 and show that it does not depend

on time. Therefore, 0(1) must not depend on time either. In summary, aggregate

expenditures are

X(t)= eT1—R(i) (5)

where the average inverse inventive step is now denoted by 0(A) to indicate that

it depends only on the parameter A. In the second column of table 1, I use

Mathematica to calculate 0(A) for various values of A.

4.3.3 The Steady State Solution

In order to solve for an equilibrium path of research, I assume that the economy

is in a steady state. I define a steady state to be an equilibrium such that the

fraction of individuals engaged in research is constant, i.e. R(s) = ae' for all
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s � t. Furthermore, I assume that the stock of past research has adjusted to this

steady state: formally J'R(t)/p(i) = n.

First, I calculate V(i) subject to this restriction on the path of research. Sec-

ond, I solve for the value of a which is consistent with equilibrium. In solving for

V(t), there is a complicated interaction between patent values (as a function of z,

y and i) and the joint distribution of the state of the art and the inventive step

(conditional on time) for new patents. This interaction remains complicated even

after applying the steady state results that R(s) and X(s) both grow at rate n.

The derivation of the following equation is found in appendix A.7,

11(t) = ____ — (p/n,A)] = (1_a)etii —

where, (p/n, A) is a complicated function. Numerical values of , for different

settings of p/n and A, are shown in table 1.

Two observations can be made which do not depend on the numerical values

of q5. First, the equation for V(t) conditional on X(i) does not depend on the

fraction of individuals who are researchers, a, though X(i) itself is a function of

a. Second, V(t) grows at rate n. This second result comes out of the interaction

(noted above) between the value over time of a patent conditional on Y and Z

and the joint distribution of Y and Z for each new cohort of patents. The value of

any existing patent grows at a rate less than n since, with rising research, existing

patents face increasing hazard rates. On the other hand, the marginal distribution

of Z is stochastically increasing over time, since ideas with lower qualities are less

likely to be patentable as the state of the art rises. In a steady state, these two

effects cancel each other.

I can now solve for the fraction of human resources devoted to research. Assume
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that a is strictly between 0 and 1.18 To support 0 < a < 1 as an equilibrium

requires that V(3) = p(3) for all ., � 2. But, since R(s) = ae'' = J1i(s) and

n = we have j(s) = Equating our expressions for V(s) and p(s)

yields,

a/n = (1— a)(1 — (p/n,A))/(9(A)p).

Solving for the fraction of the population who are researchers,

a =
9(A)p/n (6)

+ 1—#(p/n,.X)

We have found an equilibrium where the number of researchers and the stock

of past research both grow at rate n. According to the patent production function,

equation (I), the rate of patenting in this equilibrium will be Jn. According to the

equation relating productivity growth and patenting, equation (2), productivity

will grow at rate An in this equilibrium.

In table 1, I show numerical calculations of a for various values of the parame-

ters, A and p/n. The fraction of human resources devoted to research is increasing

in the richness of the search distributions (A) and decreasing in the value of the

discount rate relative to population growth.

A natural question for a policy maker is whether the equilibrium value of a

is above or below the value, c, which a social planner would choose. We would

not expect equality since, in the decentralized equilibrium, goods are not sold at

marginal cost. The social planner's problem, worked out in appendix A.10, yields

'8Consider the possibility of a = 1. In that case, s> i implies V(s) = 0, hence individuals will

not choose research. Therefore, a = I cannot be an equilibrium. Now, consider the possibility

of a = 0. In that case V(s) grows at rate n while 'u(s) is constant. Eventually V(s) will exceed

4s) which will cause individuals to choose research. Therefore a = 0 cannot be an equilibrium.
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the simple result that & = n)/p. In table 1, I compare values of a and a

for various values of the parameters. In all cases, the equilibrium leads to over

investment in research.

To gain an intuition for this result, let me begin by debunking an alternative

explanation. Does over investment result from racing behavior (since researchers

are competing for the prize of having the best invention)? The answer must

be 'no' because, within any variety, search is sequential with ideas arriving as

a non homogeneous Poisson process. At each instant, a researcher knows the

probability of making a marginal improvement in quality. Since a researcher earns

profits based on the inventive step of her idea, her payoffs are closely related to

the marginal social value of her idea. The correct intuition for over investment

arises from the general equilibrium effect of markups on the wages of production

workers. Since output is proportional to labor input, if production workers were

paid their marginal product, then aggregate wage income would be sufficient to

purchase aggregate production. In fact, aggregate wage income will purchase only

a fraction 0(A) < 1 of aggregate production (with the rest puchased with profit

income). Since production workers are under paid, too many individuals choose to

be researchs instead. This is only an intuition since researchers, by not being able

to price discriminate, are also under compensated. In the numerical examples, the

under compensation of production workers is quantitatively more important.

5 Calibration

I have shown that the search model can account for the trends in the data which

are observed in the US and several other technologically advanced countries. In
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this section I take the model literally and look for values of the parameters which

cause the model to make quantitative predictions which are similar to observations

from the US economy from 1957.1989.19 The data and sources are shown in table

2.

I equate R(t) with the number of research and development scientists and

engineers employed in US industry. Since S&E's have increased at an annual rate

of 3.6%, I take n = .036. This is a lower bound on n since it ignores any growth

in human capital per scientist and engineer.

I now consider calibrating productivity growth in the model, A/A = An based

on measures of productivity growth in the US. There are a range of values of A

implied by different measures. TFP growth in the manufacturing sector has been

2.0% which is also the growth rate of output per hour in the private business

sector. This implies An = .02 or A = .55. Alternatively if we use the growth of

TFP in the private business sector, 1.3%, we get A = .36.

Alternatively, we can calibrate A based on the econometric estimates of the

effect of research on productivity growth. As noted earlier, these estimates tend

to be no greater than 0.10. It is well known that these estimates of A imply that

less than 0.5% annual productivity growth can be attributed to research, with the

balance of productivity growth left unexplained [see, Sveikauskas (1989)). The

model developed above can easily be adapted to allow for exogenous productiv-

ity growth. Assume that the cost of production parameter, c, falls exogenously

over time at an exponential rate: c(i) = c(0)e_St. Since c does not show up in

any other equations, this change will have no effect on the other predictions of

19The data on research and development is a consistent series beginning in 1957.
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the model. However, it does create a wedge between the growth of labor pro-

ductivity, as defined in appendix A.3, and the growth of our productivity index.

In particular, labor productivity grows at rate g + A(i)/A(i), where g is exoge-

nous productivity growth and A(i)/A(t) is productivity growth accounted for by

industrial research.20.

I now look at data on the fraction of human resources devoted to research.

The obvious measure is the number of R&D scientists and engineers as a fraction

of US civilian employment. That number has increased from 0.38% in 1957 to

0.61% in 1989. Alternatively, we may interpret the model's prediction to be about

the fraction of human capital devoted to research. If we assume that the wage

per unit of human capital is the same in research and production then we should

look at the ratio of R&D expenditures (which is roughly the compensation of

researchers) to total compensation of employees. This ratio is equal to 3.0% in

1957 and 3.3% in 1989. The fact that the ratio of compensation is higher than the

ratio of employment reflects the fact that researchers have above average skills. I

will take .033 as the appropriate empirical counterpart to the fraction of human

capital devoted to research.

The model's prediction for the fraction of human capital devoted to research,

o, depends on two functions, 0(A) and cts(p/n,A) which I calculate numerically

using Mathematica. Table 1 shows the value of a for a range of parameter values.

If we take A = .36 then the model comes closest to fitting the data when the

20This follows from the fact that

— R(t)fl = —in c(t) — E[n Y] + inA() — in 8(A),

see appendix A.3
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discount rate is the highest, p/n = 3 (so that p = .11). Yet even then, the model

over predicts the observed value of a by a factor of 4. The situation would be even

worse for larger values of A. The situation would also be worse if we attempted

to fit the fraction of the labor force employed in research (which suggests a is less

than 1%).

Now, consider the values of A implied by econometric estimates. If we take A =

.1 then for p = .11 we come very close to matching the data. If A = .05, then we can

match the data even for a reasonable value of p/n = 2 (so that p = .07). The model

tells a story which is consistent with the empirical literature on productivity and

R&D. The observed fraction of human resources devoted to research is small and

this is consistent with productivity growth being primarily exogenous. Possibly

as little as 0.2% annual productivity growth (An = (.05)(.036) 0.002) can be

attributed to industrial research.

There is another, more speculative, explanation for the low fraction of human

resources devoted to research. This alternative explanation does not rely on small

values of A. In the model, inventors face only one hazard in appropriating the

benefits of their inventions: the success of subsequent inventors. In reality, in-

ventors face many other hazards, such as imitation, which hamper their ability

to appropriate returns; see Mansfield, Schwartz and Wagner (1981) and Levin et.

al. (1987). If in reality appropriability is more difficult than is implied by the

model, then it is not surprising that the model over predicts the level of research

investment. Actually modeling this may be difficult because a constant hazard of

imitation will interact in a complicated way with the existing hazard rates which

are not exponential (in the present model, a given patent faces an increasing haz-

ard).
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Data on patent renewels provides some evidence for this view. In countries

with annual patent renewal fees, we observe the rate at which owners of patents

fail to renew their patents. Following a cohort of patents invented in year t, one

can calculate the number of patents which fail to renew in year $ + 1 divided by

the number of patents which renewed in year a > t. Lanjouw (1993) plots these

hazard rates, averaged over cohorts of German patents. For patents of age 5 or

more, the hazard rates are almost always above 0.1. Data in Palces (1986) indicate

that these high hazard rates are also found in France and the UK.

Below I derive the model's prediction for the hazard rate from a cohort of

patents that are all invented at the same time. For simplicity I assume that the

renewel fees are small enough that their effect on the decision to patent may be

ignored. Furthermore, I assume that the failure to renew marks the age at which

a patent is surpassed by a better patent.2'

Let the random variable L equal the length of the profitable life of a patent.

If the state of the art of the patent is Z = z and the patent is invented at time i,

Pr(L xiz,i) = 1 —

To get a prediction of the rate at which patents in a given cohort lose value, we

need to integrate over the density of the state of the art for patents invented in i.

21These assumptions are, at best, approximations. The model implies that there are some

patents with arbitrarily small inventive steps and therefore arbitrarily small values. Thus, for

any given positive renewal fee, some patents with positive values will not renew. Putnam (1991)

has a provocative finding from his study of 'patent families' where the same invention is patented

in many countries. While the patents in the different countries face different renewal fees and

presumably have different values, all patents in a given family tend to stop renewing in the same

year. This suggests that it is the arrival of.a better invention that eliminatesthe private value of

the entire patent family.
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I show in appendix A.8 that,

Pr(L � xii) = j Pr(L � xlz,t)fi(zIi)dz = 1 — p(L)/1u(t + x).

In the steady state equilibrium with the stock of research growing at rate n,

Pr(L � xii) = 1 — e'. Thus, patents are expected to drop out of a cohort at

rate n. From the calibration I determined that n = .036. Notice that the model

underpredicts (by at least a factor of 3) the observed hazard rates. I view this as

evidence that the private value of patents is being undercut by imitation, a factor

which is absent in the theoretical model.

6 Conclusion

The progress economists have made in quantifying the economic importance of

research can be attributed to a vast number of empirical studiesof the link be-

tween productivity and research expenditures. The results of those studies suggest

that R&D investments contribute significantly to productivity growth. Yet pro-

ductivity growth remains, to a large extent, unexplained. The current paper is

sympathetic to that conclusion: the set of parameters that are consistent with the

observed growth of research as well as the observed fraction of resources devoted

to research also imply that research investments account for only a small share of

productivity growth.

The present paper is also consistent with the empirical literature in the sense

that it provides an alternative justification for regressing productivity growth on

the growth of the stock of research. The resulting estimate of the elasticity of pro-

ductivity with respect to the stock of research is the parameter of the underlying

Pareto search distributions. This interpretation is valid when the estimates are
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obtained from aggregate data and is probably also valid when the estimates are

obtained from industry data.

Much of the recent empirical work on research and productivity has been done

on firm level data sets [Mairesse and Sassenou (1991) survey this literature]. I

conclude by examining, in the context of the present model, what can be learned

from these firm level regressions. I obtain the provocative result that productivity

growth at the firm level is orthogonal to research at the firm level. Thus, the firm

level regressions of productivity growth on measures of research do not identify

the parameter of the Pareto search distribution.

I define firms as countable sets of researchers. Assume there is a continuum

of such firms indexed by m E [O,M(i)]. At time s firm m consists of Rm() re-

searchers. The firm's value is the value of all the patents invented by researchers

while they were in the firm. The firm's revenues are the receipts from marketing the

varieties on which the firm owns patents. Let Sm(s) be the set of varieties that are

produced by firm m at time t and let the integer Jm() be the corresponding num-

ber of varieties. I define the productivity index of firm m as the (geometric) average

of the qualities of the varieties it produces, ln Am(t) = Jm()' EJESm(t) ln(Z(j, i)).

This index is only calculated for firms which are currently producing at least one

variety.

How does E[ln Am(t)I{Rm(8))0} depend on the firm's path of research? The

path of research will determine (stochastically) the timing of the firm's patents.

To see how this alters the index of productivity, consider the probability density

of the state of the art for patents which are profitable at time i but were invented

at time s t. In appendix A.9, I show that this density is not a function of s,

the cohort of the patent. In particular E[ln(Z)It] = Aln(p(i)) + )i1' for patents
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discovered at any previous date. This implies that expected productivity growth

for firm m, conditional on its past research, is,

E[ln(Am()/Am(t — 1))I{Rm(3))=0] = )tlnCu(t)/au(t — 1)),

where p(i) is the aggregate stock of research. Thus, while productivity growth

is random across firms, it is orthogonal to their paths of research. Returning to

our initial question, the present model predicts a coefficient of zero in a firm level

cross-sectional regression of productivity growth on any measure of research.

Productivity growth for a firm occurs through the introduction of new high

quality goods as well as by the abandonment of old low quality goods. The former

is a consequence of the firm's own research while the latter is due to the research

of other firms. In the present model these forces act at the same rate so that the

productivity growth of a firm does not depend on its own research.
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A Mathematical Appendix

A.1 List of Symbols

j [O,JJ

I(j,t)

N(j,i)

iE[0,...,N(j,i)

Q(i,j)

Index of variety.

Stock of ideas (patentable or not) on variety j by time t.

Stock of patents on variety j by time 1.

index of goods (ordered by quality).

Quality of the ith good of variety j.

40



C(i,j,i) Consumption of the ith quality of variety j.

P(i,j, I) Price of the ith quality of variety j.

c Labor requirement equals marginal cost (wage=1).

h E [O,e'") Index of individuals.

n Population growth.

p Discount rate.

R(i) measure of individuals who are researchers.

(= J f R(s)ds): The stock of research.

Euler's constant ( .5772.)

Z(j,t) (= Q(N(j,i),j)): The state of the art in variety j.

C(j, I) Consumption of the state of the art good of variety j.

P(j,t) Price of the state of the art good of variety j.

(= Q(N(j,i),j)/Q(N(j,i) — 1,j)): The inventive step.

A(t) Index of productivity, geometric mean quality.

A Parameter of the Pareto distribution.

ir(i,y) Flow profits at ito a patent with inventive step y.

V(i,z,y) Value of a patent with state of art Z = z and inventive step Y = y.

V(s) (= E[V(t,Z,Y)): The expected value of a patent discovered at time i.

X(i) Expenditures at time i.

e Expected value (across varieties) of the inverse inventive step.

Equilibrium fraction of human capital devoted to research.
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A.2 Derivation of the Invention Production Function

I want to prove that

lim {N(i) — J ln(it(i)) — Jb} = 0.

Remember that,

00 j Z

N(i) = 1/i = JE[f(I)],

where, 1(I) = 1/i. Since f(I) is concave and I is a random variable with

mean ji(i), Jensen s inequality implies E[f(I)) 1/i, where int(y) is

the largest integer which is less than y. We can also derive a lower bound for

E[f(I)J. For any e > 0,

1 — Pr[(1 — E)/i(i) � I � (1 + e)jz(t)]

= 1 — Pr[—ep(i) I — j.t � e/2(t)]

= Pr(II — iz(t)I � eji(L))

where the last line follows from Chebyshev's inequality, Thus,

Pr[(1 - � I � (1 + /1(L)] � 1-
(t)2•

Using this result,

1
E[f(I)] � (1 — 1/i.

Now let e = p(i)'/3 and let .z(i) —+ oo. We trap E[f(I)] between two quantities,

each of which is becoming arbitrarily close to ln(ji(i)) + . The approximation is

quite accurate, even for p(t) as small as 20.
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A.3 An Alternative Productivity Index

Consider a productivity index defined as real output per production worker, [X(i)/P(t)]/[ent —

R(i)]. From equation (5) we see that X(t)/[e'"—R(i)] is constant over time. There-

fore, real output per production worker grows at the same rate at which P(t) falls.

The price index, P(s), is the geometric mean, over varieties, of price per unit of

quality,

In P(i) J' j ln(P(j,1)/Z(j,t))dj = E[lnP(j,i)] - lnA(i),

where P(j,i) is the price of the state of the art good of variety j. In calculating

the value of a patent, I show that P(j,L) = cY(j,i). Furthermore, in deriving

aggregate expenditures, I show that the distribution of Y across varieties is sta-

tionary over time. Thus, E[ln P(j,i)] is a constant over time, which proves the

result.

A.4 Derivation of the Productivity-Research Equation

We saw that by combining the patent production function and the productivity-

patent equation we could obtain a function relating productivity to the stock of

research. In this appendix I derive this relation directly. The strategy is to derive

the cross-sectional distribution of the state of the art across varieties as a function

of the stock of research. I then integrate over this distribution to obtain the level

of productivity. In particular,

,00
lnA(i) = J' I lnZ(j,t)dj = J I ln(z)gj(zli)dz,

Jo J1

where, gj(zi) is the cross sectional density of the state of the art. Below, I derive

that density, g1(zi) = (z(i)/))z_( )fAe_p(t)z2 Performing the integration
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and letting p(i) become large,

in A(t) = A ln((t)) + Ag',

or,

A(t) =

which is the desired result.

I now derive the cross-sectional distribution used above. Since the outcome

of search is independent across a continuum of varieties, the cross-sectional dis-

tribution of the state of the art conditional on the aggregate stock of research is

identical to the distribution of the state of the art within a given variety condi-

tional on J J R(s)ds. The latter can be derived quite easily. The trick is

to condition on the number of ideas (patentable or not) which might have occured

and then to sum over the probability distribution for the number of ideas, which

is Poisson. For an arbitrary variety j, consider z � 1,

Pr(Z(j,t) zjt(i)) = EPr(I = mIji(t))F(z)m

m —&(i)
= (lz_1/A)m

= °° Ii.(i)(1 —

in!m0
=

Note that Pr(Z(j,i) � z(i)) = 0 for z < 1. There is a discontinuity at

z = 1 which corresponds to the probability that no ideas have arrived before time

t. However, the probability of no ideas approaches zero as p(i) becomes large. I

will assume throughout that (t) is large enough that this issue may be ignored.
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Thus, the density of the state of the art across varieties is,

Thus,

in A(i) = j
Changing the variable of integration to x =

InA(i) = Aj 1nO.z(i)/x)edz = )tln(i(i))(1 — — Aj in(x)c_xdx.

The following equation is an arbitrarily good approximation for large enough i(t),

lnA(t) = )1nj4t) — Ajin(z)edx.

The Laplace transform of —' — in t is s1 in s, where ' is Euler's constant. Eval-

uating the Laplace transform at s = 1 implies,

fln(x)edx =

This gives us the desired result that,

lnA(i)= Alnp(i)+AtI'.

A.5 The Joint Density of Z and Y for New Patents

Let W Z/Y denote the random level of the state of the art which a new patent

surpasses. I first derive the density of W for patents invented in i. The joint

density of W and Y, h(w, yI), is then easily obtained since the inventive step, Y,

is independent of the state of the art surpassed, W. Finally, the joint density of Z

and Y, f(z, ylt), is obtained as the derivative of a certain integral over h(w, yI)•
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Let Q be the quality of a new idea of a given variety. Conditional on the idea

being patentable, the probability that the state of the art, W, which it exceeds is

less than w is,

Pr(W � wIQ � W) = Pr(W � w,Q � W)/Pr(Q � W)
f'vx_h/A(z(t)/A)x(1)/e i()x'"dxr
j(4i) /))z_(2+X)/Ae()X'dx,

where the second line integrates over all states of the art x, the product of the

probability of surpassing that state of the art and the (approximate for finite ji(i))

measure of varieties with that state of the art. The approximations in the second

and third lines become arbitrarily close as p(i) gets large.

Multiplying the density of the state of the art surpassed by the density of the

inventive step (since the associated random variables are independent),

h(w,ylt) = (p(t)/A)2y_(1)w_(2+e_t'.

The joint distribution of the state of the art and inventive step for a patentable

idea discovered at time i is,

ti i/y
Pr(Z ,Y = I I h(w,ylt)dwdy.JI Jl

Therefore, the corresponding density is

f(z, yI) = y1h((z/y),y) =

which is the result we were seeking.
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A.6 The Joint Distribution of Z and Y for Existing Profitable

Patents

To derive the density of the inventive step, I first derive a more complicated object,

the joint distribution, G(z, yI), of the state of the art and the inventive step for

patents which are profitable at time 1. This joint distribution can be used to derive

the density of the inventive step (and could also be used to derive various moments

of distribution of patent values).

Start with the joint density, f(z, yls), of the state of the art and the inventive

step for each cohort of patents, s [0, t] (that density was derived in appendix

A.5). To derive the joint distribution of the state of the art and the inventive

step of patents which have remained profitable through time i,I integrate over all

past cohorts taking into account the probability, that a patent

invented in s will still be profitable at time i. This consideration leads to the

expression,

G(, L) = j N(s)j j f(z,

where .1 is the size of cohort s relative to the measure of profitable patents.

Note that,

G(,It) = j

where,

D(s) = j f(z,yIs)e''dzdy.
Thus, D(s) is the fraction of patents from cohort s which are stiU profitable in i

and which have state of the art below i and inventive step below . We can write,
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D(s) = D1 + D2 where,

g=
J J f(z,ys)e(M(t)(3))'"'dydz,11

and,
pg

D2 = / J f(z,ys)e_((t)_M(1))ldydz.
Jg 1

Using our expression for f(z,yfs),

= / (j(s)/A)2z_(2+ e_(4_Jz'' B1(z)dz,
J1

where,

Bi(z) = I y(1_A)IAe_az(s)(z/v)dy,
J1

and,

D2 = f1(i(s)/A)2z_(2)Ie_((5))z_"B2(z)dz,

where,

B2(z) = r y(1_)/Ae_P(s)(zIv)3dy
J1

Changing the variable of integration to x =z(s)(z/y)I we obtain,

B1(z) = (A/,i(3))z1(e_I(J)2 —

and,

B2(z) = (A/(s))z1(e_ts(5)hIA — e))A).

Solving for D1 under the assumption that ji(s) is large (so that 0),

rj7 I/A
= J (p(s)/))z_(1+ e_14t) dz.

1

Changing the variable of integration to, x = p(i)zh/), and solving,

= (e_s(t_hFA —(t)
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We can write D2 = D3 + D4 where,

D3 =

and,

D4 = — j(p(s)/A)z_(1)/Ae_t(t)+1)1_1_1dz.

The integral D3 can be solved in the same way we solved D1,

D3 = —

It is convenient to define,

i(i) + z(s)(' — 1).

To solve D4, change the variable of integration to, x =

D4 = — it(s) (c_h( t4)) 1/) —

h(p(s))

Using the fact that, lim,()_, e'() = 0,

D(s) = D1 + D3+ D4 = — h(.(S))(e —

Note that 11(s)/J = fz(s)/p(s), thus our equation for the joint distribution of

the state of the art and the inventive step, evaluated at z and y, is,

G(z,yli) = j L)D(3)d3 = — c1,

where,

— f' ft(s) _[Ø(t)+M(,)(yh/Ai)]zIA_ _((i)4z(s)(vh/_1))vI)d
Jo 1t(i)+p(s)(y1" —1)

To derive the marginal cumulative distribution function of the state of the art, we

evaluate the joint distribution function at l = z to get G(z, zit) = (note
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that we derived this same distribution using a different approach in Appendix A.4.)

To obtain the marginal distribution of the inventive step, we evaluate the joint

distribution at an arbitrarily large value of z,

limc(z,ytt)= i—C2+C3,

where,

ft ___________________=
Jo (i) + 14(3)(yh/A —

and,

= ft
Jo j(t) + u(s)(y'/ — 1)

Integrating out the first expression,

C2 = ln(ylPt)/(y1i•\ — 1).

On the other hand, C3 � thus, = O Therefore, for

large /2(i),

G2(yIi) = 1 — ln(y')/(y" — 1).

Differentiating this function gives us the density of the inventive step,

I/A—I —

g2(yL) = (('/A — 1)2
ln(y') —

—

This density has the important property that it does not depend on I.

A.7 The Expected Value of a Newly Discoved Patent

The value of patent with state of the art z and inventive step y is,

V(i, z, y) =
f,'(.+J'R(u)z /")dv (1 —y' )X(s)ds.
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We are assuming that the economy is in a steady state, so, X(s) = X(i)e'(') and

— p(i) = (eTt(1_t)
— 1)(i). Applying these steady state results and changing

the variable of integration to x = (e"() — 1)(1)z'I', we get,

V(i,z,y) =
JO e(()1/A + 1)"dx.

We are actually interested in the expected value of a new invention, where we

integrate over the joint density of the state of the art and the inventive step for

new patents,

V(t) = E[V(,Z,Y)] =

where, from appendix A.5,

f(z,yI) = yg((z/y),yli) = (j(j)/\)2y(1_A)IAz_(2+A)/Ae_()(z/v)_I

Combining these results and changing a variable of integration from z to w =

we get,

Xt p(t) poo

V(i) = '
'j j e((x/w)+1Y°dzJ (1—y')y(')C''dydw.JnA0 o 1

By changing the variable of integration to u = we simplify the integral over

(t()/w)
J (1— y_1)y(1_A)/Jte_wYlFdy = (A/w)e_L — Aw'r(1 —

where, r(a, z) f°° es'ds is the incomplete gamma function. By changing

the variable of integration to IL = x + w we simplify the integral over z,

J e'((x/w) + 1)dx = w'/"e"r(1 — p/n,

Combining these results, and letting i() tend to infinity,

V(t) = j w" r(1—p/n, w)dw— j wP/leLr(1_p/n,w)F(1—X, w)dw.
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Using the identity, fot0_IF(b,t)dt = I'(a + b)/a, where F(a) is the complete

gamma function, the first integral reduces to 49k. Thus, we have the desired

result,

VQ) = ____ —

where,

= p/nj w"I 1e"T(1 — p/n,w)F(1 — )i,w)dw.

A.8 The Drop-Out Rate from a Cohort of Patents

We want an expression for,

Pr(L xii) = jPr(L xlz,t)fi(zIi)dz,

where1

Pr(L � xIz,i) = 1 —

and f1(zt) is the marginal density of the state of the art for patents invented at

time L. We can integrate over the joint density we derived in appendix A.5 to

obtain,

fi(zlL) = j f(z,yli)dy =

Combining these results,

Pr(L < xIi) = 1 — j(,2(i)/?)z(1)e_2ldz.
Changing the variable of integration tow =p(i+x)z1, and letting —, 0,

we get the desired resdt.
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A.9 The Distribution of Z for Surviving Patents, by Cohort

From appendix A.6, D(s) is the fraction of patents from cohort s which are still

profitable in i and which have state of the art below z and inventive step below y.

We were able to show that,

D(s) — — .t(s) (c_?(s))z••IP ——
p(i)

where h(p(s)) 1i(t) + 4u(s)(yhIA — 1). We want to ignore the distribution of the

inventive step so we evaluate D(s) at y = z i.e. at the maximum value of y,

D(s)I ——

Dividing by the unconditional probability, ji(s)//.t(i), that a patent invented in s

will be alive in i we obtain the distribution function for the state of the art of

patents invented in s which are profitable in t,

e

which has the interesting property that it does not depend on s. In fact, the

corresponding density is gi(zIi), which is derived by a different route in appendix

A.4.

A.1O The Social Planner's Problem

I assume that the social planner's objective is to maximize the utility of the rep-

resentative individual weighted by the size of the population:

j e(')U(s)e''ds]

where,
IJ= exp{J1 I ln[Z(j,t)C(j,i))dj).Jo
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Implicit in the utility function is the result that the social planner will only have

state of the art goods produced. The planner's control variable is a =R(i)e',
i.e. the fraction of the labor force devoted to research.

The planner cannot influence the underlying research technology, thus the lev-

els version of equation (3), which is derived in appendix A.4, gives the (geometric)

mean state of the art conditional on the stock of past research. The planner can

determine quantities produced and consumed. She will maximize utility by having

equal quantities produced of each variety. Given the quantity of production labor

determined by a choice of , this implies, C(j,i) = (1 — a)e"t/(Jc). Combining

these results, we have, U(t)e"t = ez(i)'(1 — a)e't/(Jc). The state variable is

the stock of research, whose law of motion is, fz(i) = R(t)/J = achlt/J.

The current value Hamiltonian is, H(i) = U(i)e' + A(t)1t(t), where A(t) is the

shadow value of research capital. The first order conditions are, A(i) =eji(t)/c
and .Ae'p()1(l — a)&"/(Jc) = pA(t) A(i). The transversality condition

requires that lim3... C"3A(s)ji(s) = 0. Combining the first order conditions and

using the fact that in steady state, p(L) = oe't/(Jn), we get the result that,

= An/p. The transversality condition is satisfied if p> (1 + A)n.
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Table 1: Simulation Results

A 9(A)

p/n = 1.5

(p/n,A) a cx

p/n = 2.0

q(p/n,A) a a p/n = 3.0

(p/n,A) a
.05
.10
.36
1.0

.923

.857

.616

.355

.934 .046 .033

.876 .088 .067

.655 .272 .240

.397 .531

.939 .032 .025

.885 .063 .050
.676 .208 .180
.420 .450

.944 .020 .017

.893 .040 .033

.696 .141 .120

.446 .342 .333
Notes: The numerical calculations are performed using Mathematica.
Remember that a is the equilibrium fraction of the workforce devoted to research,
while a is the social planner's choice.
The transversality condition for the social planner's problem
is violated when A = 1 and p/n equals either 1.5 or 2.

Table 2: Data Used in Calibration Exercise

level
in 1957

level
in 1989

growth rate
1957-1989

TFP, Manufacturing
TFP, Private Business
Output per Hour, Private Business

2.0
1.3
2.0

Industry R&D Scientists &
Civilian Employment (000's

Engineers (000's)
, over age 16)

229.4

64,071

720.2

117,342

3.6
1.9

Total Industry R&D Expen
Compensation of Employees

diture (S billions)
(S billions)

7.7
256.5

101.9

3,100

Successful US Priority Patent Applications (000's) 39.2 58.5 1.3

Sources: Productivity measures are from the Bureau of Labor Statistics.
S&E's are from the National Science Foundation (1987 and 1990).
R&D expenditure is from the National Science Foundation (1990).
Employment and Compensation are from,
Economic Report of the President (1982 and 1993).
Patents are from ICortum (1993a).
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Figure 1,:
Research, Patenting, and Productivity
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