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1 Introduction

The goal of this paper is to examine the degree of short and long run comovement in U.S.
output series. The methodology used is described in Vahid and Engle(1992), which extends the
discussion of common features in Engle and Kozicki(1990). The use of this multivariate
technique allows dealing with series which simultaneously contain common trends and common
cycles. We focus our attention on sectoral per-capita GNP series to be able to cover a wide range
of economic activity while keeping tractable the dimension of our data set. A special trend-cycle
decomposition of the data is performed, which allows implementing a variance decomposition of

sectoral output innovations.

The first thorough study of business cycles was done by Bums and Mitchell(1946). They
decomposed several economic series into two distinct parts: a permanent component (or trend)
and a cyclical component. Business cycles, as reported in their book, have two major stylized
facts: persistence and comovement. The first can be described in an econometric sense as
positive autocorrelation. For example, periods of unusually high output tend to cluster together.
The second can be described as a tendency for different maero series to display similar short run
fluctuations. These stylized facts have sﬁrvived the test of time: they are stressed in Lucas(1977)
and in the Real Business Cycles (RBC) literature started by Kydland and Prescott(1982) and
Long and Plosser(1983).

The Keynesian paradigm incorporated Bums and Mitchell’s idea of business cycles and
went further in identifying fiscal and monetary policies as the driving forces of cyclical
fluctuations. Then, econometric methods of estimating cycles consisted in detrending macro
series by extracting their deterministic trend components, usually a linear time trend. In such
trend stationary world cyclical components are very important, since they account for all wiggles

of economic series.



As a result of the work of Nelson and Plosser(1982), macroeconomists started to believe
that most economic series should be treated as unit root processes [I(1)]. As a consequence,
cointegration became an important approach in evaluating linear equilibrium conditions (see
Granger(1983 and 1986)). A New method of detrending univariate I(1) macro series was
developed by Beveridge and Nelson(1981) and extended to deal with multivariate I(1) data by
Stock and Watson(1988). For I(1) series, the trend component is very important, since it

cointegrates with the original series to generate the 1(0) cyclical component.

All the macroeconometric developments occurred in the 1980’s reshaped the way macro
theorists modelled business cycles. In the RBC literature, integrated productivity shocks are the
source of integrated sectoral outputs, e.g., Long and Plosser(1983), and the source of

cointegrated consumption, investment and output series, e.g, King, Plosser and Rebelo(1988b).

There has been a recent change in gears in macroeconomics since Burns and Mitchell
published their influential book. Before, theorists believed that cyclical components were the
source of economic fluctuations, whereas currently, the RBC literature emphasizes the
importance of trend components. Most RBC models consider I(1) productivity shocks as the only
source of randomness. As a result, not only do trend innovations have a permanent effect on the
level of macro series, but they trigger cyclical fluctuations as well'. The empirical evidence for
RBC models is not different: King, Plosser, Stock and Watson’s(1991) variance decomposition
results only grant a limited role for cyclical innovations. In a sense, we observe today a business

cycle theory where cycles themselves are of secondary importance.

From the introduction of Burns and Mitchell(1946) (see pp 3-22), several interesting

guestions remain open about business cycles. Among them: (i) Is general business activity

1 Again, Long and Plosser(1983) and King, Plosser and Rebelo(1988b) are examples.
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generated by one common cycle? (ii) Are there differences in amplitude or counter-cyclicallity
for different output series? In addition to these important old questions, there are some new ones
raised by the RBC literature. They are: (i) What is the importance of trend and cyclical
innovations for output fluctuations? (ii) What is the correlation between trend and cyclical

components, and between trend and cyclical innovations?

We try to answer these questions using U.S. per-capita sectoral GNP. The stylized facts for

these data are similar to that of most macro series:

(1) After testing, Durlauf(1989) concluded that they are I(1), which is in line with the general
findings in Nelson and Ploser(1982).

(i1) Durlauf also reported some evidence of bivariate cointegration among different sectors. This
is not surprising given the degree of interdependence among them.

(iti) Their Fluctuations display persistence and comovement as characterized by Lucas(1977)

(see section 2) and explicitly modelled by Long and Plosser(1983).

Given the stylized facts about sectoral outputs, it is desirable to use an econometric
technique which accommodates them ir vying to answer the questions posc? =™ - -e. Engle and
Granger(1987) provide a unified theoretical framework to deal with multvariate data sets where
variables contain a reduced number of stochastic trends. The inroduction by Engle and
Kozicki(1990) of the concept of common features and the refinements in Vahid and Engle(1992)
provide a unified way to discuss data sets in which variables display both long run comovement
(common stochastic trends) and short run comovement (common serial correlation). The
contribution of our paper is to discuss important business cycles issues using an appropriate
newly developed econometric technique. Also, the fact that we work with disaggregated data

provides insights on idiosyncratic elements of economic sectors.
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Even though the econometric techniques are at hand, it is desirable to use a theoretical
model which is able to explain the phenomena being considered. A macroeconomic model based
on Long and Plosser(1983) is developed to explain the important stylized facts of sectoral output
data outlined above. This model is used as a basic structure for econometric estimation. It also
connects macroeconomic modelling and econometric estimation in the spirit of King, Plosser,

Stock and Watson(1991).

Section 2 reviews the concept of common features applied to business cycles and discusses
testing cointegrated series for common cycles. It also discusses ways of identifying trend and
cycle of integrated series which display short and long run comovement. Section 3 presents a
macroeconomic model able to generate a multivariate system for sectoral outputs displaying
these features. It is an extension of Long and Plosser’s(1983) model, augmented to accommodate
cointegrated sectoral output series. Section 4 presents system estimates and the results of
cointegration and common features tests. It also presents the results of a trend-cycle

decomposition for sectoral output. Section 5 concludes.

2 Common Features Tests

According to Engle and Kozicki(1990) two stationary and ergodic series have a common
feature if each of them individually exhibits the feature and there exists a linear combination of

them which doesn’t. To illustrate this concept, consider the following system®:

Y . 1 &, .
5 - el

2 Notice that due to stationarity and ergodicity assumptions on y,, and y,,, if we are considering
1(1) variables, these have to be differenced to have a representation such as (2.1).



Where the disturbance (g, €,,)" is white noise and possibly COV(g,,,€,,) # 0. The latent variable

@, is the feature. Given that we are interested in modelling business cycles, we assume that , is
a serially correlated latent variable which captures the common persistence in the series y,, and
Y. Clearly, y;, and y,, are serially correlated, but y,, —Ay,, = &, — Ag,, is not. This suggests that

the serial correlation is common. The vector (—A, 1)’ is called the cofeature vector.

Vahid and Engle(1992) discuss the same issue in a multivariate framework, where series
are allowed to be integrated processes with common stochastic trends. They start their analysis
assuming that the reduced form for the variables of interest can be represented by a Vector
Autoregression (VAR) of order k. In doing so, they avoid dealing explicitly with latent variables

such as w, in (2.1). The reduced form is considered to be:

AlL)y, = ¢

i
Nx1 Nx1 NxN

£ :
Where AWL)=X AL ; AQ)=I, ; ¥, ; & ; A 2.2).
ix0

The y,’s represent a stack of sectoral outputs and the &,’s are white noise. If the y’s are

cointegrated, by the Granger Representation Theorem, e.g. Engle and Granger(1987). there is an

Error Correction (EC) representation of this system as follows:

E-1
Ay, = Ay, + EA.'.A.V,-; + g
i=1

Where A =-(A;,,+ -+A,) Vi=12,.,k-1 (2.3)

i+
Moreover, if we stack all r linearly independent cointegrating vectors in a r x N matrix o/, then,

Yo = A(1), where ¥ is a full column rank N x r matrix. From Yo' = A(1), any element of the

cointegrating space, say, @,’, is an element of the column space of A(1)". Consider ~ow a
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cofeature vector, say, &l’. Since a cofeature vector has the property of cancelling the serial
k-1
correlation of the Ay,’s, it must lie simultaneously on the left null spaces of A(1) and of % Al

i=

Thus, pre-multiplying (2.3) by &, yields:

/Ay, = o, (2.4)

Therefore, &,’Ay, is white noise. There are two important implications from this result: first, if

we integrate &,’Ay,, we find that @,’y, is a random walk, thus with serially uncorrelated
innovations. Therefore, the vector that removes the serial correlation of the Ay,’s also removes
the cyclical component of the y,’s. Second, since @ is an element of the left null space of A(1) it
must be orthogonal to the cointegrating space, i.e., the space spanned by all linearly independent
cointegrating vectors. The last result is a very important theoretical link between the
cointegrating space and the cofeature space. It follows from it that if there are r linearly
independent cointegrating vectors, there can be at most N-r linearly independent cofeature
vectors. Notice that there is no guarantee that this upper bound will be achieved. When it is,

however, a special trend-cycle decomposition of the y,’s is possible as discussed below.

We now turn to estimation of the cointegrating space and the cofeature space. From the
discussion above, we have to consider testing methods that allow estimating the cointegrating
rank and the cofeature rank. The testing procedure we propose has two steps: first we estimate
the cointegrating rank and conditioned on the results we estimate the cofeature rank. For both
estimations we use reduced rank regression methods: for cointegration, we use Johansen’s(1988)

technique and for common features we use canonical correlation analysis.

Let’s start the discussion of the testing procedure by assuming that the data can be
approximately described by a finite VAR of order k, with Gaussian errors, and augmented by a

constant and a linear trend terms as follows:



3
vo = TAY o+ M + Kt o+ g 2.5)
i=1

Where y, is a N-column vector of random variables and €, ~ IIN(0, €2). The EC representation of

(2.5) is:

k-

1
A)’v = ’Ya’yx—l + ZA;A)’,_; + uﬂ + ,»11“ + Er (26)
i=]

Where A’ =—(4;,,+...+4;) Viand A(1) =y, where yand o are N x r matrices. The

hypothesis of cointegration is defined as H,: A(1) =7y, i.e., that the rank of A(1) is less or

equal tor, where r <N,

Johansen(1991a) modified the Granger Representation Theorem (see pp 1558~1561) to
establish the representation of Ay, in (2.6) when p, = 0. His result can be easily extended for the
case where 1, # 0 to prove that, apart linear trend, Ay, has an invertible moving average

representation as follows‘:
Ay, = CL)(E+YUe+1y 1) (2.7),
That y, is non-stationary with a quadratic trend and that 'y, is trend stationary as follows:
y, = C(UTg + CL)E + Clu, - -21 iclu,
i=1 =
. 1
- [CO-Cy -t + SCWK - (2.8)

oy, = oCLE + «C'(, - «IiCh + o«C (-t 2.9)
izl
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Where C (L) is decomposed as C(L) =C(1)+ C'(Ly(1~L)and

C() =a,ly,’d - Tt1 A, Ty,’, where @, and v, are the orthogonal complements of a and Y

respectively’.

The peculiar feature of (2.6) is that Error Correction terms are trend stationary. Therefore,
in testing for cointegration, this has to be taken into account. The reason we discuss this more
general VAR representation here is because our data seems to conform well to a process like
(2.5) above. Johansen(1991b) discusses testing for cointegration under these conditions. The
procedure involves a slight modification of the one discussed in Johansen(1988): using the EC
model, first run a regression of Ay, onlagged Ay,’s, a constant and a time trend. Denote the
residuals from this regression as R,,. Second, run a regression of y,_, on the same variables,
denoting the residuals as R,,. The rest of the testing procedure follows Johansen(1988). The
asymptotic distribution of the likelihood ratio test Q,=-2InQ(H, | Hy) of H, in Hy, i.e., that the
cointegrating rank is r, changes vis-a-vis the one presented in Johansen(1988). This issue is

discussed in Johansen(1991b).

Using the concentrated likelihood function, one can test the Hypothcsis that a given data set
conforms to the VAR specification in (2.5) instead of its restricted version with y, = 0.
According to Johansen(1991b), the likelihood ratio test for the null that i, = 0 is asymptotically
distributed (V).

3 The proof is available upon request.
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Given the restrictions on the VAR found from the cointegrating tests, one can form an EC
model with the number of EC terms equal to the cointegrating rank. This EC model will itself
have cross equations restrictions if the variables have common serial correlation. As discussed
above, the cross equation restrictions are a result of Yo’ and t;l A; having the same left null

space, which imply that there are linear combinations of the Ay,’s which are white noise.

The method of finding the cofeature rank incorporates the restrictions of cointegration by
using the EC model. We look for linear combinations of the Ay,’s which are white noise. Since
all the serial correlation of the Ay,’s is captured by the conditioning variables on the RHS of
(2.6), we should look for linear combinations of the Ay,’s which are uncorrelated with any linear
combination of these conditioning variables. Notice that performing such orthogonality tests is

exactly the object of canonical correlation analysis.

The idea behind canonical correlations is simple: suppose we have two sets of variables.
The firstis Ay’, = (Ayy,, Ay, ..., Ayy), i.e., the variables in the LHS of (2.6), and the second is
2 =AY W AY e (@Y, ), 1,t), Le., the conditioning variables in the RHS of (2.6). Let
w, =0 Ay, and v, =Bz, i =1,2,...,N, be specific linear combinations of the Ay,’s and the z,'s
respectively. The goal is to get a maximal correlation coefficient between ;, and v,,
i=1,2,...,N. The set of the N orthogonal choices of the @,’s and B;’s is such that they deliver
such optima, which are called canonical correlations (for an introduction see Anderson(1984) pp

480-519).

From the discussion above, it is clear what canonical correlation analysis provides: each
statistically zero canonical correlation represents a linear combination of the Ay,’s uncorrelated
with all linear combination of the z,’s, since it is uncorrelated with the one which delivers

maximal correlation between i, and v;,. The cofeature rank, s, is the number of statistically zero
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canonical correlations, where s £ N-r, and the number of common cycles is* N-s. Clearly, the
number of common cycles is the number of non-zero canonical correlations. The N x s full rank
matrix &, which stacks all the &;’s associated with the zero canonical correlations, is a basis for

the cofeature rank.

Vahid and Engle(1992) discuss a special case on the dimensions of the cointegrating and
cofeature ranks, for it generates a unique trend-cycle decomposition of the data. Suppose the
cointegrating rank - r, and the cofeature rank - s add up to the number of variables in the data set,

i.e., N=r+s. The common trend representation of the system (2.5) is given by:
vo= COZe + CLwe + Cwy - TiChy -
i=1 i=1
. 1
- CO-CWwr + SCOw - (2.10)

Equation (2.10) is more than a common trend representation: there are common trends
whenever the rank of C(1) is less than N. What about common cycles? The cycles are generated
by C*(L)e,, therefore there are common cycles whenever C (L) is reduced rank. When N=r+s,
we can explore the reduced ranks of both (1) and of C (L) as follows: first collect all
independent cointegrating vectors in a N xr matrix ¢ and all independent cofeature vectors in a
N x s matrix 0. We know that every element of the cointegrating space eliminates the stochastic

trends and every element of the cofeature space eliminates the cycles. Thus:

4 The reasoning is identical to the one in the common trend literature, e.g. Stock and
Watson(1988).
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oy, = o'C'(L), + «'C (Y - a’iiC;ul + aC (-t (2.11)
i=1
and
ay, = &'C(l))':e,. - &'iic,.‘u, - aC(y, -t + %&'C(np,.ﬂ (2.12)
i=1 il

Notice that (2.11) contains no stochastic trends, only trend-stationary cycles, and that (2.12)

contains no cycles, only stochastic and detérministic trends. Suppose we now stack &’ and o as

follows:
&’ oy d -’- : - =7 l_l 2
PxN aC(l}Ze — o 2iCy, - a/CUp -t + —o’CUY,-t
i=1 i=1 2
= R (2.13).
a; aC'Ly, + o«C'Wy - «3iCly, + «C' U, 1
rx i=1

Define now the matrix A to be:

Since the cointegrating and cofeature spaces are orthogonal and r+s=N, the matrix A is full rank.

Consider the following partition of A™, conformable to A:

Pre-multiply (2.13) by A™ to obtain:
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-

y, = da’Cl)Ye - a'd'iic,.‘ul - dC(y,-t + %d&'C(l)ul~t‘
i=1 i=1
+ adC'(L), + ao’C'(ly, - aa’iiC,-'ul + adC{y, -t (2.14)
i=1

Equation (2.14) is a trend-cycle decomposition: the top line in its RHS only contains
stochastic and deterministic trends, while the bottom line only contains trend-stationary cyclical
elements’. Sinee it is usual practice in the literature to have a cyclical component free of
deterministic elements, we opt to assign ao/’C (1), —ac’ X7 iC Wy +ao’C (1, - f to the wend
part. If we do it and use equations (2.11) and (2.12) into (2.14), we can decompose y, into two
parts: a permanent component - y7, which has the stochastic trend and all deterministic
components of y,, and a cyclical component - y;, which is a pure non-deterministic cycle. Notice

that we can carry on this exercise without resorting to any knowledge of C(L)":

Y, = ¥y o+ ¥ (2.15)
Where y¢ = ao’y, - ao/C'(, + ad TiCl, - aod’C (L, 1 (2.16)
i=1
¥ o= aiy, + a@C(ly - ao’ TiCH, + ad’C (L, -t 2.17)
i=1

5 It is easier to conceive the trend-cycle decomposition when U, = [, = 0, since in that case:
~, / -
y, = d’'Xg + ad’C (L,
i=1
The first term contains only common stochastic trends and the second contains only common

cycles.

6 Although is not apparent from equations (2.16) and (2.17), the deterministic part of ¥, need not
be estimated using C(L). One can simply project the trend-stationary cycle on a constant and a
linear trend and use the knowledge of a o’ to calculate

ao'C (Dpy~aed T, iCrity +ao’C (D - 1.
i=1
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There are two important facts about the trend-cycle decomposition in (2.15): first, it is
unique, i.e., performing linear transformations in the cointegrating space or cofeature space in
isolation will not change the estimated trend and cycles. Second, y; is just a linear combination
of the detrended Error Correction terms. Here, the Error Correction terms can be viewed as cycle

generators, which emphasizes their importance in macroeconometrics.

There is a clear advantage in using a decomposition such as this one: we need not impose
any improbable conditions to be able to identify trend and cyclical components. The same is not
true about other such decompositions, e.g. Blanchard and Quah(1989) and King, Plosser, Stock
and Watson(1991). In these, an orthogonality condition between innovations to the permanent
component and purely transitory innovations is needed for identification, The reason we need not
impose such restrictions here is because we exploit the fact that both C (1) and C (L) are reduced

rank and that N=r+s.

3 A Real Business Cycles Model for Sectoral Output
One of the few models attempting to derive persistence and comovement of sectoral output

from optimizing behavior is Long and Plosser(1983). This RBC model explains these features
based solely on idiosyncratic technology shocks. As noted by Mankiw(1989), RBC models are
an extreme version of dynamic Walrasian Equilibrium models in which money plays no active

" role. Trying to explain persistence and comovement using such extreme models can lead 1o
incomplete or misleading explanations of how macroeconomic fluctuations come about.
Nevertheless, RBC models are still useful, in what they are internally consistent theoretical
models, with rational optimizing agents, which deliver some intuition of how macroeconormic

variables interact.
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Long and Plosser set up a dynamic programming problem solved in a Robinson Crusoe
type of economy, where an infinitely lived agent maximizes discounted expected utility subject

to technology constraints. The optimization problem is the following:

- ¥
Max E X [Golnz,,j + ZO;C;,+,:| 5.
j=0 i=1
b N a;; .
Yit+1 7"i1+1Li1'HXij;J H Vi > 1:1725"'7N
j=1
N
Z + YL, = H ; v
i=1
N
G + XX, =Y, ; Yro; j=1,2,...N
i=]
N
8,>0 9,20 , b+Za=1 ; i=1,2,...,N
j=1

i=
Where Y, is a the produced quantity of commodity i, i=1,2,...,N, and ¥, is a vector containing all

individual production. Each good can be used either for consumption (C;,) or as input in
producing other goods (X;;), where X;; is the quantity of good j used in producing good i. Since
for production to take place inputs have to be readily available, it is assumed that period t's
production uses inputs produced in period t-1. Production of commodity i requires also some use
of labor, L;. There are N sectoral technology shocks A, stacked in a column vector A,, where
{A\.} is assumed to be a jointly time homogeneous Markov process. The particular choices of
utility and production functions used reflect the goal of obtaining closed form solutions for the

choice variables’.

The competitive equilibrium solution is found by applying the second "Welfare Theorem.”

The optimal solutions for consumption, labor and input quantities are given by:

7 Production functions are Cobb-Douglas with constant returns in all sectors.
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6.

C, = [—'JY,-, ; i=1,2,..,N (3.1)
Y

. BYia." .. ~

X, = [— v, o Lj=12,..,N 3.2)
Y,

. ud !

L, = B%b.-(emﬁiy,b,-) H i=1,2,..,N (3.3)

j=1

Where the ;s are elements of the vector Y"=6( —BA)™, where 6=(9,,6,,...,6,) and A = {a;).

There is an important property of the optimal solution for X;, abave. If output of good j is

unexpectedly high at time t, inputs of commodity j will be unexpectedly high in period t as well.
If commodity j has several uses as an input, the positive shock will migrate across sectors.
Moreover, there is a tendency for this shock to propagate forward in time. Since most sectoral
outputs are unexpectedly high in period t, endowments of most commodities will be high in
period t+1, which will trigger higher than usual outputs in t+1. Therefore, this thecretical model
is able to explain sectoral output persistence and comovement, which is a stylized fact of
business cycles. However, it fails completely to address issues such as frictions due to sectoral
shifts, for which Lilien(1982) provided some evidence. Our empirical evidence will discuss these

two seemingly competing models.

Using the optimal input decision rules for the Cobb-Douglas production function, Long
and Plosser are able to derive the dynamic behavior of (log) sectoral output. The reduced form of

the system is summarized by the following expression:

logf, = K + A log¥,_, + logh, (3.4)

Where K is a function of the preference parameters Band 8, ; i=0,1,...,N.



-16-

The matrix A plays an important role in the dynamics of sectoral outputs. Recall that the
ay’s are input elasticities in production. Thus, A is a non-negative matrix. If labor is used in
positive amounts, from the constant returns to scale assumption on the production functions,

_)N:l a; < 1 holds. Thus, A is stable, i.e., all its eigenvalues lie between zero and one in absolute
i=
value®. To achieve sectoral outputs that are I(1) processes, Long and Plosser required {log,} to

be I(1) in the following way:

logh, =logh,_,+€, ; i=12,..,N

elr
Where ¢,=|...} E()=0; E(ge)= {

Exe

I for t=s} (3.5)

0 fort#s

i.e., (log) productivity shocks are assumed to be uncorrelated random walks. Of course, this
assumption implies that all log(Y;,)’s will have a unit root as well, however, it has some other
important implications attached to it. The first one is that (3.4) will not be the VAR
representation of the log(Y)’s, since the logA’s are not I(0). The VAR representation of the

system can be found by taking first differences of (3.4) as follows:

AlogY, = A Alogl,_, + ¢ (3.6)
Which can be rewritten as:

A(l)logY, = K + ¢

Where  A(L)=( -(A+I)L+ALY (

[
N
=

8 This fact is proven in Proposition 3.1 below.
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i.e., the system is a VAR of order 2. This VAR has the property that A(1)=0, therefore, there is
no cointegration among the log(Y)'s. However, evidence in Durlauf(1989) contradicts it and

suggests expansion of this dynamic specification.

It is now useful to ask under which conditions will non-cointegrated sectoral outputs as in
(3.7) deliver common serial correlation. The answer is straightforward. We are asking if there are
some N x 1 vectors @, such that &;A = 0. Thus, common serial correlation requires the matrix A
to be reduced rank, i.e., that there exists some sort of (log) linear dependence among production
processes. Moreover, all sectors will only share a common cycle if A(1) has rank one, i.e., the

input mix for all enterprises is the same.

Summarizing the econometric implications of the theoretical model in Long and
Plosser(1983): (i) in general, both logY,’s and AlogY,’s will display serial correlation; (ii)
because the matrix A is stable, in order to get log(Y)'s which are I(1), Long and Plosser imposed
the logA,’s to be uncorrelated random walks. This implies that the log(Y)’s are not cointegrated;
(iii) as long as A is reduced rank, the serial correlation of the AlogY;’s will be common. As

discussed before, this implies that the logY;’s will have common cycles.

We propose modifying Long and Plosser’s model in order to account for cointegration
while preserving its persistence and comovement implications. A natural extension of the mode]l
is to allow for cointegration of the log(Y)'s by requiring the logA;’s to be cointegrated. For

example, consider:
logh, = Dlogh,_, + T, (3.8)
Where {n,} is white noise. Assume further that each element of logA, is I(1) and that (/ - ®) is

reduced rank. In this case the logA,’s will share common stochastic trends. Combining (3.8) and

(3.4) we get the following VAR representation for the log(Y)'s:
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AL)logY, = (I-DK + 7,

Where AL)=[-(A+D)L+PAL’ =[(/ —PLY(J —AL)] (3.9)

i.e., a VAR of order 2. Its EC representation is:

Alogy, = (-P)K - (-d)I-A)log?,., + PAAlogY,_, + 1, (3.10).
We now state a very important result of the modified model (3.10):

Proposition 3.1: Given the model in Long and Plosser(1983), and assuming that {log A} follows

(3.8), if labor is used in all production processes, then, there is cointegration among sectoral
outputs if and only if there is cointegration among productivity shocks. Moreover, under

cointegration, the two cointegrating ranks coincide.
Proof: See appendix.

Proposition 3.1 delivers an intuitive result, since the log(Y)’s are integrated as a
consequence of the logA’s being integrated. The interesting feature of this result is that it rules
out production processes as a source of cointegration for the log(Y)’s, since (/ ~A) is necessarily
full rank. Therefore, if productivity shocks are not cointegrated, there cannot be cointegration
among sectoral outputs even if production processes are (log) linearly dependent. Because we

assumed the logL's to be cointegrated, it follows that there is cointegration among the log(Y)'s.
Any cointegrating vector lies in the column space of [(/ — &) (/ —A)]". What about common

serial correlation? Decompose A(L) as follows: A(L) =A (1)L +A™(L) (1 — L). Therefore,

A'(L)=({ - ®AL). Common cycles among the log(Y)’s requires the intersection of the left null

space of (DA) with that of [(/ — ) (/ —A)] to be non-empty, a feasible condition which

emphasizes the relations between the technology process and the production function.
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In summary, the modification proposed in (3.8) provides an EC model (3.10) where it is
possible to have simultaneously: log(Y)'s which are I(1), cointegrated, and that share common

cycles. It also provides 2 starting point for estimating a RBC system of sectoral outputs.

It is helpful to examine the macroeconomic implications of the modified model. The
crucial point of our extension is to allow for cointegration among (log) productivity shocks,
instead of requiring them to follow (3.5). Notice that since A(1) = (/ ~A)({/ =), and (/ —-A)is
full rank, the only way of generating cointegrated (log) sectoral outputs is to require (log)
productivity shocks to be cointegrated, i.e, (I —®) to be reduced rank’. Cointegrated productivity
shocks allow technological innovations in one sector to contribute to technological innovations
in others. This seems to be a reasonable assumption, since, for example, the mass production of

computers generated technological improvements in sectors other than Manufacturing.

4 Empirical Evidence

The multivariate procedures described in section 2 were applied to sectoral per-capita real
GNP. Per-capita data is used since the theoretical model discussed in the previous section is that
of a representative agent. Data consist of yearly (log) sectoral real GNP divided by total
population, and is available from 1947 to 1989"°. Sectors are a sub-division of private GNP as
follows: Agriculture, Forestry & Fisheries - A, Construction - Con, Mining - Min, Wholesale
and Retail Trade - W, Manufacturing - M, Transportation and Public Utlities - T, Finance,

Insurance & Real Estate - F and Services - §''. A plot of the these data is presented in Figure 1 in

9 This fact is an cbvious empirical test for Long and Plosser’s RBC model, since the log(Y)'s are
cointegrated. To follow up on this issue, however, one has to estimate productivity shocks, and
this is no easy task (see the discussion on King, Plosser, Stock and Watson(1991)).

10 All data were extracted from Citibase. Sectoral private GNP is calculated at constant 1982
prices.

11 This is the only sectoral breakdown used in this paper. Sectors names are sometimes written
in short to save space.
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the appendix. Most series show the familiar upward trend of macroeconomic variables, however
it seemns that they are trending at different rates. Figure 2 shows the shares of Private GNP of
individual level series. This Figure reveals some important intersectoral dynamics: sectors like
Wholesale/Retail Trade, Finance and Services had increased their share in Private GNP, while
sectors like Agriculture, Mining and Construction had their shares reduced. On the other hand,
for Manufacturing and Transportation there is neither a strong tendency to increase their share
nor to decrease it, even though a slight hysteresis is observed for Manufacturing. The overall

picture that emerges is that of a group of trending sectors with some evidence of sectoral shifts.

Durlauf(1989) tested the order of integration of sectoral per-capita GNP and concluded
that these data are well approximated by an I(1) process™. Even though there is controversy
about the power of unit root tests in distinguishing between different "Generic Unit Root™"
(GNR) processes, there is little doubt these tests are able to distinguish GNR from non-GNR
processes. The I(1) specification is used here since there is a well developed methodology for
dealing with it. If sectoral outputs contain stochastic trends, the next interesting question is to
infer whether or not some of these are common across sectors. In testing sectors for
cointegration, Durlauf finds some evidence of bivariate cointegration, although not widespread.
Since the cointegrating rank must be estimated in our methodology, Johansen’s(1988) technique
is applied here. The results are reported in Table 1. We conclude that there exist two

cointegrating vectors at the usual significance levels. A plot of these two cointegrating vectors

12 Since Durlauf tested several series identical to the ones used here, we will not conduct
integration tests.

13 This terminology groups trending processes which all have near-unit roots and that are
indistinguishable in the statistical sense for the limited amount of data macroeconomists possess.
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suggests that they may be stationary around a deterministic trend. Indeed, running them on a
deterministic trend and a constant yields significant coefficients for both. As discussed in section

2, we may be dealing with a VAR which contains a linear trend, e.g. equation (2.5).

The next step was to test whether the VAR representation contains a deterministic linear
trend. We used the Likelihood Ratio (LR) test obtained from the concentrated likelihood
function, as suggested in Johansen(1991b). The LR statistic** for this test is 48.35, which rejects
the null that the VAR representation (and the EC representation) does not contain a linear trend.
The next step was to re-estimate the cointegrating vectors using the EC model in (2.6). The
estimates of the two cointegrating vectors using the modified VAR representation are trend
stationary, as expected. In order to extract their deterministic components we run them on a
constant and a linear trend. The detrended coimegrating vectors are plotted in Figure 3. They

both appear to be well behaved long run relationships.

Finding a small number of cointegrating vectors rules out the possibility that sectoral
output data have one common stochastic trend. Indeed, since the cointegrating rank is
two-dimensional, the eight sectors will share six independent common trends. This finding is
consistent with the evidence presented in Durlauf(1989), which notes that one should not expect
to find very different sectors sharing common stochastic trends if these arise from technology
shocks. As he notes, a technological improvement in Agriculture does not imply improvement in

Manufacturing, due to little spill-over effects among these sectors.

Table 2 presents the estimates of the EC model (2.6) conditioning on two lags of the
endogenous variables. This corresponds to a VAR of order three, which, with yearly data. should

be enough to capture the dynamics of the system. The EC model estimates are satisfactory,

14 This stadstic is distributed as a %*(8) since we are imposing eight zero coefficient restrictions
in the VAR.
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suggesting that the system can be well approximated by a VAR of order three with a linear trend.
It is worth mentioning that all residuals passed normality tests', a desirable feature since
Johansen’s(1988) test assumes Gaussian errors. Table 3 displays system significance levels for
each regressor. Inclusion up to lag two of the endogenous variables seem justified. Notice also
the high explanatory power of the time trend in the system, corroborating the evidence of the LR

test conducted previously.

In order to infer the cofeature rank, a canonical correlation analysis was conducted using
the EC representation to capture the serial correlation in the system. Results are presented in
Table 4. The F-test used in this table provides better small sample results than the usual x*
approximation (see Rao(1973)). As noted before, the cofeature rank will be equal to the number
of statistically zero canonical correlations. From Table 4, at the 5% level, we conclude that the
cofeature rank is six-dimensional. This implies that the eight sectors will share only two
independent serially correlated cycles. Thus, we should observe a very similar cyclical behavior
for different sectors; This feature is the basic thrust behind Burns and Mitchell’s(1946) research,
and is cited as a stylized fact in Lucas(1977), and is emphasized in Long and Plosser(1983 and
1987). '

A particular attribute of our data set is that the cofeature and cointegrating rank add up to
the number of variables. As discussed before, it allows a special trend-cycle decomposition of
the data which exploits the reduced rank of the cofeature and cointegrating spaces. Figures 4
through 11 graph each individual sectoral output and its respective trend, estimated by the
method described in section 2. There are two striking characteristics of this set of results: first,
trends display a very distinct behavior across sectors. This is not surprising since the eight

sectors share six independent trends. Second, in most cases, the trend is more volatile than the

15 They also showed no sign of autocorrelation when tested.
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series themselves'. This is confirmed by Table 5, which presents summary statistics of sectoral
outputs and their two components. Recall the decomposition of sectoral output presented in
equation (2.15): y, =yf +y5, Vi.Because

VAR(y;) = VAR(y})+ VAR(y5)+2- COV(¥Z,y5), Vi, whenever the covariance between trend
and cycle is negative and big in absolute value, individual sectoral GNP's may be smoother than
their respective trends. Thus, what explains the relative volatility of the trend here is its negative
correlation with the cycle. Notice that this particular result is found in applications of the

univariate Beveridge-Nelson decomposition as well.

Recall from section 2, that the estimated cycles are a linear combination of the Error
Correction terms (Z, = &y,, i =1,2). Thus, examining the Z's may shed light on the behavior
of the cycles. A plot of the two Z's is presented in Figure 12, which includes NBER recessions’.
Even though Z, is basically fiat, Z, displays a typical cyclical behavior, decreasing in every
single post-war recession. The cyclical components of sectoral output series are plotted in
Figures 13 through 16, which also include NBER recessions. In these plots, sectors are grouped
according to the similarity of their cycles. Five out of eight sectoral cycles conform to NBER
recessions and are therefore labelled pro-cyclical. They are: Mining, Manufacturing,
Wholesale/Retail Trade and Finance. Three sectors do not conform with NBER recessions. with
upward movements during those, and are labelled counter-cyclical. They are: Agriculture,

Transportation and Services.

16 It should be noted that this feature is not a general consequence of the methodology used.
since the rend in the Wholesale/Retail Trade sector is smoother than that sectoral output itself.

17 There is a mismatch of frequency between our data and the NBER methodology, which
works with monthly observations. For our purposes, recession years are the following: 1948-49,
1953-54, 1957-58, 1960-61, 1969-70, 1973-75 and 1980-82.
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Examining the cycles of pro-cyclical sectors reveals that these have similar shapes and
durations but very different amplitudes. The sector with the cycle of highest amplitude is
Construction. This is not surprising: since Construction includes housing construction, our
evidence is in line with the stylized facts in Lucas(1977), who points out that consumer durable
output has a relative high amplitude. Construction is followed by Mining and Manufacturing,
with amplitudes roughly half its size. Finally, the lowest amplitudes are found for

Wholesale/Retail Trade and Finance, with amplitudes roughly a fifth of that of Construction.

All the counter-cyclical sectors have very similar cycles in shape and duration. They also
share in common a very small amplitude. Moreover, it seems that the shape of these
counter-cyclical cycles is just an upside down version of the pro-cyclical ones. These findings
reinforce the idea that per-capita sectoral outputs have a common cycle, if not in the statistical
sense at least in the economic sense. The plot of the EC terms (Z’s) only reinforced this

suspicion, since only one of the (Z’s) has a business cycle behavior.

To investigate further the findings of counter-cyclical sectors, a plot of the (log) level
series for these sectors is presented in Figure 17, which includes NBER recessions. During
recessions, the behavior of Agriculture is definitely odd: while its series is almost flat, it
increased in four out of seven recessions. Likewise, Services displays little downward sensitivity
In recession periods, which is most striking until the 1969-70 recession. Until then, not only
per-capita Services output increased during recessions but it showed no decrease in its growth
rate vis-a-vis neighboring periods. After 1970, this feature is reversed. Transportation is the only
counter-cyclical series which does not display any unusual behavior for recession periods. In that

sense, finding it to have a counter-cyclical behavior is surprising.

There is some empirical support for our findings of counter-cyclical sectors: using PSID

data, Lougani and Rogerson(1989) found that the inflow of workers into Services increases
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during recessions and that the outflow of workers from Services increases during booms. These
findings are consistent with counter-cyclical behavior for Services, even though they do not
imply it. For Agriculture, Romer(1991), using factor analysis, found evidence that several
agricultural goods have short run counter-cyclical behavior (see p 27). Even though her evidence
is more compelling for the inter-war era, it holds for the post-war era as well. Evidence of low
coherence for agricultural output is also mentioned in Lucas(1977) as a stylized fact of business

cycles (see section 2).

Finding counter-cyclical sectors is a way of conciliating the business cycle evidence of
persistence and comovement for sectoral outputs with the sectoral shifts evidence. If sectoral
outputs were I(0), persistence and comovement of sectoral outputs would imply a positive
correlation among them. On the other hand, sectoral shifts would imply a negative correlation
among sectoral outputs, since some sectors are hit with positive shocks and others with negative
shocks. These mutually exclusive possibilities may cease in an I(1) world: in this case, we can
allow counter-cyclical sectors to account for sectoral shifts, while keeping a high positive
correlation in levels of sectoral outputs to account for persistence and comovement. In a trending
world, this last result is achieved simply because trend components dominate the correlation

coefficient in levels.

The next exercise done was a variance decomposition of trend and cycle innovations (one
step ahead forecast errors). The results are presented in Tables 6, 7A and 7B. It is useful to
explain the method used to identify trend and cycle innovations before discussing these results.
For end innovations recall equation (2.17): since &'A_v, is white noise, &'y, is a random walk.
This implies that 4@y, is also a random walk, since it is a linear combination of random walks.
As aresult, y7 is a random walk plus a constant and a deterministic trend, and its innovation can

be found by first differencing it. For cycle innovations recall equation (2.16): since ¥¢ is a linear
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combination of the detrended EC terms, we can find cyclical innovations by running sectoral
cycles on lagged detrended EC terms'®, We chose to include up to four lags of the EC terms in

calculating cyclical innovations.

Table 6 presents the results of the variance decomposition of total sectoral innovations
(rend plus cycle). Their striking characteristic is the following: innovations in the trend and in
the cycle are negatively correlated for almost all sectors. The only exception is Wholesale/Retail
Trade, for which they are uncorrelated. As stressed in the theoretical macro literature, e.g., King,
Plosser and Rebelo(1988a,b), a shock changing the steady states of integrated control variables
also triggers short run dynamics leading towards these new steady states. Thus, one should
expect trend and cycle innovations to be correlated in general. An interesting result is that almost
all trend and cycle innovations are negatively correlated. Thus, for almost all sectors, the effect
of a 1% increase in the trend innovation will only lead to a 1% increase in the level of sectoral
output in the long run, since the short run dynamics inhibits its full impact. Similar results are
reported in the simulations of King, Plosser and Rebelo(1988b) (see p 315, Figure 1) and are
achieved by the theoretical model of King, Plosser, Stock and Watson(1987)".

18 This is only one possible way of finding sectoral innovations. Another appealing choice
involves using the EC representation in the following way: pre-multiply (2.6) by «’ and
rearrange to get:

k-1
Z, = (@y-DZ_, + T odAAy_; + ay + oWt + o
i=1

Where Z, = oy,. Thus, a natural way of calculating cyclical innovations is to run cycles on
lagged detrended Z’s and lagged Ay,’s. This alternative however did not provide serially
uncorrelated estimates and was therefore dropped.

19 We cite the preliminary version here since part of the theoretical model is supressed from the
published version.
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Itis very hard to infer the importance of trend and cycle innovations from the results of
Table 6, since for almost all sectors the covariance effect is very large. The enly case of
orthogonal innovations is Wholesale/Retail Trade, for which the cyclical innovation accounted
for roughly 80% of total sectoral innovation variance. In order to be able to pursue this relevant
issue further, we used principal components in orthogonalizing the covariance matrix of trend
and cyclical innovations™. Tables 7A and 7B present the results of this exercise. It is clear
looking at these Tables that the ordering of innovations really changes the type of results
achieved: in Table 7A, where we ordered the trend innovation first, the cyclical innovation is
assigned the bulk of the variance for most sectors. The opposite result is shown in Table 7B,

where that ordering was reversed.

Despite the difference in results shown in Tables 7A and 7B, some sectors displayed
remarkable robustness to the changes in the ordering of innovations. For example, the results for
Wholesale/Retail Trade were kept in line with those of Table 6, with the cycle innovation
explaining from 70%-80% of total innovation. Manufacturing is another example of the bulk of
total variance explained by cycle innovations: 60%-100%. Sectors where trend innovations are
unequivocally important are: Agriculture, with 70%-100%, Transportation, with 70%-90%, and
Services, with 40%-100%. Notice that these are the counter-cyclical sectors. The remaining
sectors, Construction, Mining and Finance, have results that seem to depend heavily on the
ordering of innovations used, thus remaining open issues. The picture that emerges from these
analyses is that there is no clear evidence that either trend or cyclical innovations have a
prominent role across all sectors. However, for essential sectors like Manufacturing and

Wholesale/Retail Trade, cycle innovations do have a prominent role.

20 See notes on Tables 7A and 7B for details.
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Our evidence from the variance decomposition exercise is very different from the one
presented in King, Plosser, Stock and Watson(1991). In their RBC model, the trend innovation
explained the bulk of the variance of total output innovation. There are two possible explanations
for the difference in results: first, we are using disaggregated data, and second we are using a

different methodology in performing the trend-cycle decomposition.

5 Conclusions and Further Research

The basic goal of this paper was to re-examine business cycles using a modemn
econometric technique which allows for modelling integrated time series with both short and
long run comovement. The results of applying this technique to per-capita sectoral output data
revealed that these share a relatively large number of common trends but a relatively low number
of common cycles. Thus, trends in per-capita sectoral outputs have a very distinct behavior,
whereas cycles seem almost identical in shape, duration and timing. This evidence is in
accordance with the belief implicit in Burns and Mitchell( 1946) that most economic series are

driven by a common cycle.

The fact that cycles are so similar for different sectors is remarkable evidence, which
confirms the basic thrust of Burns and Mitchell(1946), Notice that this result was obtained using
meodern econometric techniques, able to discuss business cycles while accommeodating I(1)
cointegrated series. Since for I(1) series the trend component is the only one to have asymptotic
infinite variance, the results of the variance decomposition were surprising, as they showed that
for prominent sectors such as Manufacruring and Wholesale/Retail Trade, cyclical innovations
were the most important in explaining total innovations. This result casts doubt in the recent
direction of the RBC literature, where trends and permanent shocks seem to have a prominent

role and cycles and temporary shocks a secondary one.
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The results of our trend-cycle decomposition also revealed that trend and cycle innovations
are negatively correlated. As it seems, a positive shock to the trend has two effects: it sends the
permanent component up, increasing the steady state value for sectoral outputs, but also sends
the cycle down. This result is in line with the simulations in King, Plosser and Rebelo(1988b).
This negative correlation opens the possibility for purely temporary shocks to sectoral outputs to
have permanent effects on these variables. In this richer environment, long and short run get
integrated, since long run shocks can cause economic fluctuations and short run shocks can have
permanent effects. This result is in line with the discussion in Prescott(1986), who claims it is
inadequate to model trends and cycles in a dichotomous way. In this scenario, economic policy
deserves a closer look, since until today macroeconomists have isolated long and short run policy

effects.

The final picture that emerges from our evidence on sectoral outputs is that of idiosyncratic
trends and similar cycles. For sectors like Agriculture, Transportation and Services it seems that
the trend component is the most important. However, for Manufacturing and Wholesale/Retail
Trade, it seems that the cycle is the most imponant. Even though the theoretical RBC literature
has gone very far in modelling together economic growth and fluctuations under optimizing
models, little empirical evidence have accumulated supporting these models, especially with
regard to linking long run shocks to technology. With that regard, our extended model offers an
empirical test for Real Business Cycles, since it suggests that the cointegrating rank of
productivity shocks and sectoral outputs should coincide. Further research should try to close the

present gap between the RBC literature and empirical evidence.
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7 Appendix

Proof of Proposition 3.1: There is cointegration among the log(Y)'s if and only if
A(l)=({ -A)({ — ) is reduced rank. Recall the constant returns to scale assumption on
production functions:

N
Za; + b =1 Vi and ag; 2 0.
j=1
If labor is used in all production processes, b; >0 Vi, thus:
N

a < 1 Vi and a;, 2 0.

j=1
Therefore, A = (g;) is a non-negative matrix. Consider now, (/ —A). Its eigenvalues are:
1=Af, 1-2},..., 1=A4, whered!, A4,..., A% arethe eigenvalues of A. Clearly, since
A{l)=( -A)(I - D),if  —A) is full rank, A(1) is full rank if and only if (/ — ) is full rank. To
prove that (I —A) is full rank, it suffices to show that:

max [A}] < 1 (A.1),

Since it implies that all eigenvalues of (/ — A ) are non-zero. Equation (A.1) follows from a
theorem relating matrix norms and spectral radius, see Lancaster(1969), Theorem 6.13, p 201.
Define:

140,

N
max ¥ |a;
i j=1

To be the row norm of A. Lancaster(1969), Theorem 6.13, says that:

1AL, = max A%

N
Since 0 £ ):la,-jl <1 Vi, JA], <1 Thus: max| A} <1,and (/ —A)is full rank. Therefore, A(1)
j=1 i .

is reduced rank if and only if (/ — ®) is reduced rank. Moreover, rank(4 (1)) = rank(/ — &), and
the result follows. ) ) :
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TABLE 1

COINTEGRATING RESULTS (JOHANSEN’S(1988) METHOD)

EIGENVALUES TRACE STAT. | CRITICAL VALUE NULL HYPOTHESES
() -T ¥ In(1-p,) AT 5% (1%)
jsi

0.0066 027 495 3 at most 7
(6.65) cointegrating vectors

0.1517 7.02 17.52 3 at most 6
(20.03) cointegrating vectors

0.2303 17.75 3255 Jatmost 5
(35.65) cointegrating vectors

0.3509 3547 50.34 Jat most 4
(54.46) cointegrating vectors

0.4576 60.55 71.80 3 at most 3
(76.06) cointegrating vectors

0.5762 95.75 98.33 3 at most 2
(103.18) cointegrating vectors

0.7599 154.25 128.44 3 at most 1
(133.57) cointegrating vectors

0.8976 247.69 161.31 3 at most 0
(168.35) cointegrating vectors




-35-

TABLE 2

SYSTEM ESTIMATES OF THE EC MODEL

DEPENDENT VARIABLES
REGRESSORS Alog4, AlogCon, AlogMin, AlogM, AlogT, AlogW, AlogF, Alog,
Zya 1.47 0.09 -1.57 -2.47 0.73 0.96 0.67 0.67
1-stat, (1.43) (0.13) (-1.79) (-2.43) (-139) (-1.88) (-2.95) (-259)
Z. 0.08 0.04 2002 0.05 0.2 0.06 0.01 003
testat. .67 -120) (039) (-0.95) (0.77) (-2.56) (0.54) (-2.52)
0.01 0.00 0.00 0.0t 0.00 0.00 0.00 0.00
R @293 (-0.49) (-139) (:2.70) (-3.04) (0.88) (4.59) (0.42)
AlogA, ., -0.64 0.02 0.26 0.05 0.16 £0.07 0.03 0.04
Latat. (-3.20) (0.17) (-1.45) (024) (155 (-0.69) (0.62) (0.79)
AlogCon,_; 0.58 0.16 026 021 022 035 0.06 0.09
(-stat. (1.79) {0.70) (0.90) (-0.61) {-1.28) (-2.07) (-0.78) {-1.02)
AlogMin,_, 0.89 0.11 022 022 017 028 011 0,13
t-stal, @97 055 (0.85) (0.73) 111 (1.80) (-1.62) (-1.62)
AlogM,_; 029 038 0.17 -0.16 0.25 0.37 -0.07 0.05
t-stat. (-0.81) (-1.56) (054) (-0.45) (-133) (-1.99) (0.80) 056)
AlogT, 037 0.11 -1.70 -1.93 0.29 -0.83 -0.23 0.59
t-stal, (-0.40) (0.18) (-2.0%) (-2.01) (-0.59) {-1.72) (-1.09) (-2.40)
AlogW,_; 0.62 0.19 1.45 2.66 1.13 1.22 0.55 0.58
t-stal. 0.71) 031 (1.86) .95 @.43) .69 @78 2.53)
AlogfF,_, 0.10 059 1.11 -0.30 0.24 0.65 0.32 0.40
t-stat, .11 -097) {139 (0.32) (0.50) (1.39) (-1.54) (1.68)
Alog$, ., 0.98 1.2 1.08 224 1.47 0.84 0.74 0.87
tsta, (-1.08) (1.82) 1.3%) (2.40) (3.06) (1.79) (3.58) (3.67)
AlogA,_, 0.23 0.04 0.00 0.47 0.30 0.10 0.10 0.06
vstat, (-1.08) 0.29) (0.02) @1 .65 0.92) (2.06) (1.14)
AlogCon, _, 0.29 0.34 042 0.40 028 .03 0.00 -0.12
t-stat. (i.07m (1.89) (-1.77) (-1.45) (-1.96) (0.21) (0.08) (-1.66)
AlogMin, _; 0.36 0.02 057 099 0.49 030 020 0.09
t-stat. (0.97) (0.09) (-1.73) (-2.60) (-252) (-1.58) (-2.36) (0.94)
AlogM,_, 0.69 0.38 0.85 1.49 0.71 0.69 0.34 0.12
T-stat. -1.61) 1.32) @24 (3.40) (3.16) @17y (3.46) (1.10)
AlogT, ., 0.87 0.43 -1.04 0.74 0.38 -0.44 -0.28 021
Lostar, (1.31) (-0.98) (-1.79) (-1.10) (-1.08) -1.31) (-1.84) (-1.3%)
AlogW, _; 001 0.49 0.77 0.22 0.07 0.16 0.05 0.32
tstat. (-0.03) (-1.69) (2.03) ©.51) 0.32) ©.73) (0.48) 085
AlogF,_, 1.03 -1.06 -1.07 -3.51 -1.63 -1.80 070 027
Tstat. 097 (-1.49) -1.15) (-3.24) (2.92) (-332) (-2.89) (0.96)
AlogS.., -0.01 -1.41 0.87 -1.46 -0.40 057 0.33 034
Cstat, (0.01) (2.61) (-1.22) (-1.76) (0.94) (-1.38) 171 (-1.63)
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TABLE 3
SYSTEM SIGNIFICANCE TESTS (EC MODEL)

F-STATISTIC ON RETAINED REGRESSORS F(8,20)

REGRESSOR 2y Zy, TREND  AlogA,., AlogCon,_, AlogMin,_,
F 17.26 2.55 7.02 1.71 2.67 4.11
Pr>F 0000 0427 .0002 1587 .0360 .0049
REGRESSOR  AlogM,_; AlogT,_; AlogW,_, AlogF,., AlogS,., AlogA,_.
F 6.26 8.68 6.31 3.38 1.62 1.62
P>F .0004 .0000 0004 0128 .1810 .1807
REGRESSOR AlogCon,_, AlogMin,_, AlogM,_, AlogT,., AlogW,_, AlogF,_,
F 2.36 2.68 4.07 1.81 5.51 2.40
Pr>F .0568 .0353 .0051 .1348 .0009 0541
REGRESSOR  AlogS,.,
F 0.84
Pr>F .5813
TABLE 4
CANONICAL CORRELATION ANALYSIS - COMMON CYCLES TEST
CANONICAL CORRELATIONS| Prob.>F NULL HYPOTHESES
P
0.9836 0.0001 Current and all smaller (p;) are zero
0.9460 0.0113 Current and all smaller (p,) are zero
0.8640 0.4198 Current and all smaller (p;) are zero
0.7652 0.7237 Current and all smaller (p;) are zero
0.7163 0.7842 Current and all smaller (p;) are zero
0.6609 0.8088 Current and all smaller (p;) are zero
0.6226 0.7922 Current and all smaller (p,) are zero
0.5268 0.7847 Current and all smaller (p;) are zero
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TABLE 5
SUMMARY STATISTICS OF SECTORAL OUTPUTS, CYCLES AND TRENDS

(log) LEVELS CYCLICAL TREND CORREL.
O COMPONENT COMPONENT  TREND AND

o) (674 CYCLE
SECTORS i s opn q 6 on n 6 o1 CORR(®Z,yS)
A 5905 0098 0017 0000 0055 - 5905 0.103 0017 -0.3526"
Con 6.644 0.153 0.023 0.000 0292 -  6.644 0344 0.052 -0.8280°
Min 6.331 0.100 0.016 0000 0.176 - 6331 0.164 0.026 -0.8975*
M 7782 0250 0.032 0.000 0.120 -  7.782 0256 0.033 -0.2801°
T 6.848 0309 0.045 0.000 0.047 - 6848 0.318 0.046 -0.2741°
W 7.441 0289 0.039 0.000 0.040 -  7.441 0288 0.039 -0.0333
F 7.253 0373 0051 0000 0068 - 7253 0377 0.052 -0.1489
S 0.000 0079 - 7230 0367 0.051 -0.2661°

7.230 0.355 0.049

Notes: (a) Significant at the 1% level. (b) Significant at the 5% level. (c) Significant at the 10%
level.

TABLE 6
VARIANCE DECOMPOSITION OF SECTORAL OUTPUT INNOVATIONS

% OF THE VARIANCE OF SECTORAL OUTPUT

INNOVATION ATTRIBUTED TO:

SECTORS TREND CYCLE COVARIANCE SUM®

INNOVATION INNOVATION EFFECT
A 146.7 40.2 -86.9 100.1
Con 208.3 2627 -369.1 101.8
Min 177.5 256.1 -333.6 100.0
M 479 144.9 -92.7 100.0
T 2452 90.4 -227.0 108.6
w 23.7 79.3 0.0 102.9
F 187.7 2527 -339.8 100.6
S 246.3 177.0 -319.8 103.4

Notes: (a) Only computed when the correlation coefficients between trend and cycle innovations
were significant at the 1% level. P-value for Wholesale/Retail Trade is 0.84. (b) Sum may be
different than 100 due to rounding errors.



238 -

TABLE 7A
VARIANCE DECOMPOSITION OF SECTORAL QUTPUT INNOVATIONS
USES PRINCIPAL COMPONENTS"*

% OF THE VARIANCE OF SECTORAL
OUTPUT INNOVATION

SECTORS TREND CYCLE SUM
INNOVATION INNOVATION

A 726 27.4 100

Con 55 945 100

Min 57 943 100

M 0.0 100.0 100

T 63.4 316 100

w 19.6 80.4 100

F 58 9472 100

S 401 500 100

TABLE 7B
VARIANCE DECOMPOSITION OF SECTORAL OUTPUT INNOVATIONS
USES PRINCIPAL COMPONENTS

% OF THE VARIANCE OF SECTORAL
OUTPUT INNOVATION
ATTRIBUTED TO:
SECTORS TREND CYCLE SUM
INNOVATION INNOVATION
99.8 02 100
Con 86.5 13.5 100
Min 82.8 17.2 100
M 40.3 59.7 100
T 92.0 8.0 100
w 30.1 69.9 100
F 84.4 15.6 100
S 99.4 0.6 100

Notes: (2) Denote 1" = (1,,,,7;.,)’ as a stack of period t innovations in sector i, where T 1S the
innovation in the trend and 1, is the innovation in the cycle. Table 7A presents the results of
decomposing the variance of [, = (1, 1)n, - the total period t innovation in sector i, by using a
lower triangular matrix D, such that D;VAR(,)D, is diagonal for all i, in the following way:
VAR(/,) = VAR[(1, 1)D;'Dn,). The matrix D, used was:

r1 07 -

G. G.
D, = O W where VAR(M,) = G'P ? 'PCJ.
o | { Oipc  Cice
(b) Table 7B performs the same exercise with 1),” = (Nietr M) and:
10 :
Oicc  Oipc
D, = Oipe . where VAR(M,) = }
- O_ 1 L Oiac iep
e |




Figure 1
Sectoral Per—Capita GNP
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Figure 2
Sectoral Per—Capita GNP Shares
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Figure 3
Detrended Error Correction Terms
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Figure 4
Per—Capita Agriculture GNP and its Trend
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Figure 5
Per—Capita Mining GNP and its Trend
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Figure 6
Per—Capita Construction GNP and its Trend
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Figure 7
Per—Capita Manufacturing GNP and its Trend
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Figure 8
Per—Capita Transportation GNP and its Trend
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Figure 9
Per—Capita Wholesale/Retail Trade GNP and its Trend
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Figure 10
Per—Capita Finance GNP and its Trend
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Figure 11
Per—Capita Services GNP and its Trend
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Figure 12
Detrended Error Correction Terms
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Figure 14
Cycles in Selected Sectors of Per—Capita GNP
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Figure 15
Cycles in Selected Sectors of Per—Capita GNP
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Figure 16
Cycles in Selected Sectors of Per—Capita GNP
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Figure 17
Selected Sectoral Per—Capita Outputs
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