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ABSTRACT

To forecast future option prices, autoregressive models of implied volatility derived
from observed option prices are commonly employed [see Day and Lewis (1990), and Harvey
and Whaley (1992)]. In contrast, the ARCH model proposed by Engle (1982) models the
dynamic behavior in volatility, forecasting future volatility using only the return series of an
asset. We assess the performance of these two volatility prediction models from S&P 500
index options market data over the period from September 1986 to December 1991 by
employing two agents who trade straddles, each using one of the two different methods of
forecast. Straddle trading is employed since a straddle does not need to be hedged. Each
agent prices options according to her chosen method of forecast, buying (selling) straddles
when her forecast price for tomorrow is higher (lower) than today’s market closing price, and
at the end of each day the rates of return are computed. We find that the agent using the
GARCH forecast method earns greater profit than the agent who uses the implied volatility
regression (IVR) forecast model. In particular, the agent using the GARCH forecast method
earns a profit in excess of a cost of $0.25 per straddle with the near-the-money straddle

trading.
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1 Introduction

In efficient capital markets, when the volatility of the rate of return on an asset is
constant over time, the asset’s volatility is reflected in its option price. Schmalensee
and Trippi (1978) and later many others have shown that call-option implied volatilities
yield better forecasts of standard deviation than do simple estimates using the standard
deviation estimated from past returns.

Market volatility, however, can change dramatically when it is affected by stock mar-
ket crashes or monetary policy. For example, the standard deviation of S&P 500 daily
returns increased from about 1.2% t0 9.4% in the ten days surrounding the stock market
crash of October 1987. Changes in volatility of this magnitude may have large effects on
the level of stock prices and thus the option prices. Under changing volatility, it is still
possible to compute the exp'ected implied volatility over the life of an efficiently priced
option if unexpected changes in volatility over the life of the option are non-systematic
(see Wiggins (1987) and Hull and White (1987)). However, such a circumstance is not
guaranteed, particularly when the asset in question is a well-diversified portfolio, and.
with time-varying volatilities, we cannot even take for granted that the option market
is efficient with respect to any volatility forecast.

The autoregressive conditional heteroskedasticity (ARCH) model proposed by Engle
(1982) allows the conditional variance to change over time as a function of past errors.
leaving the unconditional variance constant. Many authors, Bollerslev (1986), Coulson
and Robins (1985), Engle and Lilien (1987), and Domowitz and Hakkio (1985), have
successfully applied ARCH models to financial and macro-economic data to explain
changing risk premiums and inflation volatilities. ARCH models capture the dynamic

behavior of market volatility using specific volatility equations of the asset return se-



ries without presupposing any option pricing formula, or using observed option prices.
Hence, option price estimates derived from ARCH models can be used to test whether
observed market options are efficiently priced.

The usual way to measure the performance of a volatility prediction model is to
assess its ability to predict future volatilities. However, since volatility is unobservable,
there is no natural metric for measuring the accuracy of any particular model. But
realized rates of return allow us to test the efficacy of variance driven option prices and
provide a test for market efficiency with respect to volatility forecasts.

Engle, Hong, Kane and Noh (1993a) proposed a framework to assess profits from
options trading for competing algorithms to forecast the volatility of an asset in a
simulated market. They evaluated four separate volatility forecast models by comparing
cumulative profits from options trading and found that profits earned by the GARCH
forecast model dominate those earned by any of the other three alternatives. Engle,
Kane and Noh (1993b) extended the analysis of one-day options trading to long-term
options trading and assessed profits for the GARCH estimation using the S&P 3500
option data in European style options trading. Recently, Harvey and Whaley (1992)
conducted an S&P 100 index option market efficiency analysis using an implied volatility
measure, and found that the implied volatility method fails to make significantly positive
profits after transaction costs. They used one pair of call and put near-the-money
options each day and delta-hedged using an S&P 500 futures contract.

In this paper, we test the efficiency of the S&P 500 index option market based on
the performance of these two volatility prediction models. We use one type of straddle,
which has maturity above 15 days and is nearest to the money, each day rather than

trade different types of call and put options separately. There are two advantages of



using straddle trading instead of using call and put option trading separately. The first
advantage of using straddle trading is that we don’t need to delta-hedge the straddle;
optimal hedge ratios can not be easily computed with time varying volatilities. The
second advantage is that under straddle trading the Black-Scholes (1973) option straddle
prices are relatively insensitive to dividend adjustment.

We find that, in some cases, both the agent using a GARCH forecast model and the
agent using an Implied Volatility Regression (IVR) forecast model generate abnormally
high positive rates of return in the S&P 500 index option market. Overall, the agent
using the GARCH method performs better than the agent using the IVR method.

The paper is organized as follows. In section 2, we discuss two different specifica-
tions for volatility prediction, the GARCH forecasting method and the IVR forecasting
method, and a Hull and White (1987) type option valuation method with changing
volatility. Section 3 describes the option data, option trading and the rate of return

calculation. Section 4 reports an economic analysis of the options trading results.

2 Volatility Estimation and Option Valuation Methods

Estimates of the annualized standard deviation of monthly stock returns reported
in French, Schwert and Stambaugh (1987), and Schwert (1990) range from a low of
2% in the early 1960's to a high of 20% in the early 1930’s. Daily volatility also
fluctuates and can change very rapidly; for example we estimate that the annualized
standard deviation of daily returns increased from about 1.2% to 9.4% in a ten dav
period around the stock market crash of October 1987. Changes in volatility of this
magnitude may have important effects on stock returns and thus on option prices. This

volatility feedback effect has been emphasized by Pindyck (1984) and French, Schwert
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and Stambaugh (1987).

Table 1 shows the mean and standard deviation of S&P 500 index returns and the
implied volatilities of S&P 500 index options , computed in section 2.2, over the period
of April 21, 1986 thorough December 31, 1991. It shows that the volatility of S&P
500 index returns increases on Monday and decreases on Tuesday compared to that of
the overall period. The effect of the market crash on October 19, 1987 is dramatic.
Including the market crash of 1987, the average volatility on Monday is increased by
64% and it is 44% higher that that of the overall period. The table also shows that the
put implied volatilities of S&P 500 index options are higher than those of call implied
volatilities, and the volatility of S&P 500 index returns generally lies between these two.
Changes of call and put implied volatilities show that the market crash on October 19,
1987 induced a large increase in both call and put implied volatilities i.e., the change of
average Monday call option implied volatility increased from .33 to .55, and the change
of put option implied volatility increased from .68 to .84 when we included the market
crash. Since, in the following, we use two different volatility estimation methods, one
using the S&P 500 index return series and the other using the S&P 500 index option
implied volatilities, we employ the following facts from Table 1. First, if we use the
return series to estimate and forecast future volatilities, then we need to specify a
model which increases volatility on Monday and decreases it on Tuesday. Second, if we
use implied volatility series to estimate and forecast future volatilities, then we need to

use call and put implied volatility series separately.



2.1 GARCH Method

Many authors (Chou (1988), French, Schwert and Stambaugh (1987), Pagan and Schw-
ert (1989), Engle and Gonzalez-Rivera (1989), Nelson (1991)) have used the GARCH
model of Engle (1982) and Bollerslev(1986) to estimate stock market volatility. More
recently, to capture some of the implications of volatility feedback, Engle, Lilien and
Robins (1987) developed a GARCH-M specification, and Campbell and Hentschel (1992)
modified the GARCH model to explain the asymmetric effects of shocks to stock returns.

In this paper, we use the following GARCH specification for the S&P 500 index
return series.

=0+ aT_ + ¢ (1)
he = di{bo + d7% (bi€l_) + bshi_1)}, (2)

where r, denotes the S&P 500 index return at time t and d, denotes number of days
elapsed from the last trading date. French and Roll (1986) have shown that the variance
rate slows down significantly in days when the market is closed. Inclusion of the dummy
variable d, helps to capture this phenomenon since d, raised to the power § measures the
average speed of the variance rate over the d; calendar days. If date ¢ is a Monday, then
d, = 3,and h,_, is increased by d® and if date t is a Tuesday, then h,_; is diminished by
d{_,. Table 1 supports this claim since the standard deviation of the S&P 500 returns
on Monday is higher than that of the sample period while the standard deviation of the
S&P 500 returns on Tuesday is lower than that of the sample period.

We use the past 1,000 rolling observations of the S&P 500 index return series to up-

date estimates of the above specification and then compute multi-day volatility forecasts



as follows,

hiqr = df+1{b0 + d:-6(b1€:2 + bahy)} (3)
h:,:+£ = df.n{bo + dt-:i-l(blE[etzi»i-lth] + bth.t+i-1)} (4)
= dii{bo + 475 (b1 + b2)heegici} i=2,3,--1,7, (3)

where € ,4; and hy4; denote the predictions of ¢,; and hesi at time t. Then forecasts
of call and put option prices at the next trading day , based on the above conditional
volatility forecasts and market closing index, are calculated using the Black-Scholes

option pricing formula:

Covpsrer = SN(d)) = Ke™" N(dy) (6)

SN (dy) = 1]+ Ke™""[1 — N(d;)]

~—~
~1
~—

Pt+1,t+1+r

In(S/K)+ (r + 1/2‘7t2+1.t+1+r)r
U:+1,t+1+r\/;
dy = dl — 004140V,

dl -

where Ciyy 14147, Piyre414- are Black-Scholes call and put option prices forecasts at
time ¢ + 1 until the maturity date, and S, is the market closing price of the S&P 500
index as a substitute for S;4;, and K is the exercise price, r, is the risk-free rate, 7 is the
time to the maturity date, and 041,414+ = (1/7) 105 he g is the volatility prediction
at time ¢ + 1 until the maturity date.

The above option valuation formula uses a deterministic volatility assumption even

though we get time varying volatility forecast series from the GARCH specification.



A discrete-time option valuation under stochastic volatilities can be devised, following

Hull and White (1987), using Monte Carlo simulation via

1 N
Ct+1,t+l+r = ﬁZBSI(SzH,K,&J‘),
i=1

where BS;(-) represents the Black-Scholes call option price formula of equation (6),
g; = (1/r) it h{,,“- , and N is the number of replications for random variables
Misij = €4ij/Vhsijy t=1,-+;,7—1and j=1,---,N, which are drawn from the

standard normal distribution with mean 0 and standard deviation of 1.}

2.2 Implied Volatility Regression Method

As a second specification for conditional volatility forecasts, we use a time series regres-
sion of option implied volatilities of the S&P 500 index. Since Schmalensee and Trippi
(1978) used option implied volatility as an estimate for conditional volatility, many oth-
ers followed their method to provide future volatilities over different time horizons. Day
and Lewis (1988) found that implied volatility has incremental information regarding
weekly S&P 100 index returns. They also compared the ability of implied volatilities
and GARCH-based alternatives to provide out-of-sample forecasts of future volatility
for the S&P 100 index. Harvey and Whaley (1992) used time series regressions of option
implied volatilities to forecast the one-day ahead volatility of S&P 100 index options.
We estimated implied volatilities using a GLS version of Whaley’s (1982) nonlinear re-
gression procedure which was used by Day and Lewis (1988). With this approach, each

observation is weighted in proportion to the day’s total trading volume in this contract as

'From equation (2) we get the following relationship: heyi = o + (himipicy +82)kheqicr, 1=
1,2,---, 7, where n follows standard normal distribution with mean 0 and standard deviation 1.



a percentage of the total trading volume of its expiration series. This weighting scheme
effectively places the greatest weight on those options that are either at the money or
one strike price (five dollars) out of the money. Consequently, it gives the greatest
weight to the option prices that are most sensitive to the volatility of the underlying
stock index. In addition, since thinly traded options and far-out-of-the-money options
receive relatively little weight, this scheme tends to minimize the extent to which the
estimates of implied volatility are affected by noise caused by either non-synchronous
trading or the size of the bid-ask spread. Let Ci(vo(7)) denote the theoretical price
of an option having a strike price indexed by k and expiration at 7, given an estimate
vo(7) of the volatility of the return on the stock over the time to expiration. The actual

price of option k with expiration at 7 is denoted by Cy ,. Define
Ye = Crr — Ci(wo(7)), (8)

and let N denote the number of strike prices with expiration at 7. Given an initial
estimate of volatility implicit in the prices of options with expiration at 7, a new estimate

of the implied volatility, v(7), is chosen so as to minimize

N
AAR (9)
k=1

where §; is the proportion of trading volume in options expiring at 7 represented by
trading in contract k. At each iteration of this process, the new estimate of the implied

volatility is given by

v(7) = vo(7) + [(DX)(DX)]"(DXY (DY), (10)



where D is an N x N diagonal weighting matrix whose diagoﬁa.l elements equal the
percentage of the trading volume in a given expiration series represented by trading in
that contract, X is an NV X 1 vector whose elements are the partial derivatives of the
call options expiring at 7 with respect to the underlying volatility, evaluated at vy(7),
and Y is an NV X 1 vector whose elements are defined by equation (8). If the estimate
converges to within a given tolerance level, then the estimate v(r) is taken as acceptable.
If the estimate is not within the desired tolerance, the procedure is repeated using v(7)
in place of vo(7). Finally, the implied volatility of each day is computed as an average
of implied volatilities with different maturities weighted by their proportion of trading
volume. This approach is implemented each day for every option in the sample.

Using the volatilities computed as above, we run the following time-series regression
of implied volatilities to predict one-step ahead implied volatility which is used to price

options

Avey = o+ aldl,t + a2d2,t + asri_1 + a4Av, ey

tasAv. 2+ asAvp o1 + azlvp 2 + € (11)
Av,y = co+ aydy ¢+ axday + agri_y + asAve,_,

+a5Av_2+ asAVp 1 + a7 AV 2 + €24, (12)

where v, and v, , denote call and put option implied volatility at time ¢, respectively,
and d,, and d,, denote Monday and Friday dummies at time ¢, respectively. Call and
put option forecast prices are calculated using the option pricing formula (6) and (7) ,

where 014 14,41 is replaced by the forecasts v, 4, and Vp141, Tespectively.

10



2.3 Estimation Results

The GARCH method and the IVR method are distinctive in that they use different
data sets. The GARCH volatility forecasts are computed using the past realized return
series of the asset and are not affected by the realized option prices. On the other hand,
the implied volatilities are estimated from the past realized option prices series.

Table 2 and Table 3 show the estimation results of GARCH and IV regressions over
the sample period of April 21, 1986 thorough December 31, 1991. The left panel of Table
2 presents results of GARCH regressions for the full sample and the right panel presents
results excluding the market crash. A comparison shows that the coefficient of the AR
term in the variance equation decreases by 9% and the coefficient of the squared error
term in the variance equation increases by 187% when we include the market crash.
Thus it becomes more responsive to innovations. It also reveals that weekend volatility
effects on Monday increase from 1.13 to 1.32. Theses numbers are in the range of the
ratio of weekend volatility relative to weekday volatility reported in French and Roll
(1986).

Table 3 presents results of IV regressions. The Monday dummy variable is important
for the put volatility regression, since it has a significantly positive coefficient for both
sample periods. For call volatility regressions, the Monday dummy has a significantly
positive effect only when we include the crash period. The Friday dummy variable
has a significantly negative effect only in the call volatility regression for both sample
periods, which may be consistent with a large number of traders closing out positions
before the weekend. For a leverage effect, we use the lagged S&P 500 return and it has a
significantly negative effect on put volatility changes and negatively enters call regression

when we include the crash period. Both panels show that the call volatility change and

11
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the put volatility change are mean-reverting series as shown by the significantly negative
coefficients on lagged call volatility change in the call regression, and the significantly
negative coefficients on the lagged put volatility in the put regression. This can be
explained by the reasoning of Harvey and Whaley (1992). If good news about the
market arrives late in the trading day then, because the index option market is so
active, it is likely that the information is quickly incorporated in option prices. If the
information is not fully reflected in the index level by the close of trading, the observed
index level is lower than it should be, and the implied volatility of the call is higher
than it should be. On the following day, when all stocks in the index have traded in
reaction to the previous day’s news, the observed index level catches up and the implied
volatility of the call is reduced. On the other hand, if bad news arrives late in the
trading day, the price of index puts is quickly bid up. If not all stocks in the index are
traded by the close of trading, the observed closing index level is higher than it should
be. The implied volatility of puts is higher than it should be, and on the following day

the implied volatility of puts is reduced.

3 Application to the S&P 500 Index Option

3.1 Data

S&P 500 index option data were obtained from the Chicago Board of Options Exchange
for the period from October 1985 through February 1992. The data record contains
call/put indicator, exercise price, expiration date, last sale price and the number of
contracts traded.

Index option trading volume increased substantially over the period of 1986 through

14



Table 4: S&P 500 index options trading days and volumes. (November 21, 1985 -
December 31, 1991)

Trading Call Put Total Daily
Year Days Volume Volume  Volume Average Volume
1985 64 669 572 1241 19.4
1986 244 893005 751032 1644037 6737.9
1987 252 2889457 2684717 5574174 22119.7
1988 253 2227054 1990206 4217260 16669.0
1989 251 2954205 2692315 5646520 22496.1
1990 253 5233105 5464571 10597676 41888.0
1991 253 5409209 5610283 11019492 43555.3

1991, except for a sharp drop after the October 1987 crash. Daily average volume
of 6,738 in 1986 increased to 43,555 in 1991. For the period of April 1986 through
December 1991, the annualized average rate of return of the S&P 500 index was 13%
with a standard deviation of 23%.

From the above data, we collect straddle data which have at least fifteen days to
expiration and whose volumes are greater than 100 per day. Then we select a straddle
at each day whose exercise price is closest to the index level. As a proxy for the risk-free
rate of interest, we use the one-month Treasury bill rate from the CRSP tape.

There are two issues to be mentioned with regard to option pricing. One is the
dividend yield adjustment in option valuation and the other is non-synchronousness
between index closing price and index option closing price.

First, to derive the implied dividend yield from the observed option prices, we use

the following put-call parity for option prices with dividend yield adjustment:

P=C+{Ke ™ —Se "} (13)

15



where C, P are Black-Scholes call and put option prices with dividend yield adjustment
and 7 is the compounded dividend yield rate.? We produced an implied dividend yield
series from equation (13) using near the money option prices, and the mean of the
implied dividend yield was 4% with a standard deviation of 3%.> These magnitudes of
dividend yield may affect option prices enough to make an agent change her decision
to sell/buy those options when she compares her forecast prices with the market prices.
In the next section we compute trading profits both with and without implied dividend
yield and show that trading decisions for straddles are not sensitive to dividends.
Second, the index option market stays open until 3:15 p.m. and the stock market
closes at 3:00 p.m. and this gives an option holder a wild-card option opportunity.
Harvey and Whaley used the S&P 500 futures index as a proxy for the expected 3:15
p.m. S&P 100 index level. In this paper, we use 3:00 p.m. stock market closing prices
and do not allow a wild card option opportunity. Since we use two different volatility
forecasting methods to price options, and then execute a trading strategy based on
deviations of the market price from the model prices, a trading strategy which produces

profits cannot be attributable to mis-pricing options.

?Let Vy be the present value of all known dividends paid during the option’s time remaining until
expiration, and define y = —(1/r)in(1 — V4/S). Then the Black-Scholes call option and put option
prices with dividend yield adjustment are computed from the following formulas,

C = Se™N(d)) - Ke ™" N(d2) (14)
P = —Se"VN(~d})+ Ke ™" N(=d}) (15)
4 = dl_l\[l
o
dy = 42_7_\/;
o

where d and d; are as defined in equations (6) and (7).

3 Using the put-call parity equation (13), we get the following relationship, v = —(1/7)In((C - P +
Ke™"7)/S). Since the dividend yield should be positive, we drop all observations for which {P — (C +
Ke™"7) — 5))} is negative.
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3.2 Rate of Return Calculation

During the sample period, on each day, each agent applies her forecasting method to
get a volatility estimate and forecasts the straddle price of tomorrow. She compares
her straddle price forecast with the market straddle price, and if her straddle price is
greater than the market straddle price, then she buys the straddle, and if her straddle
price is less than the market straddle price, then she sells the straddle. Each agent picks
one type of straddle each day and invests $100. When she sells straddle, we allow her
to invést the money in a risk-free asset. Later we apply a filtering strategy where each
agent trades only when thg price change is expected to be greater than $.25 or $.73. In
these cases, the numbér of trading days are reduced and we allow her to invest her money
in a risk-free asset when she does not trade straddle. In this way, we can compare the
performance of each agent for different forecasting algorithms and for different trading
filters.

When the agent buys straddles, the rate of return is computed as follows,

RT, = -2 S((Co+ Pi= Cooy = Py, (16)

(Ce+ P

where C, and P, are call option price and put option price, respectively.

When the agent sells straddles, the rate of return is computed as,

100 -
—P)[——(C‘-{-P‘—C‘-l—-P‘-,)]-{-rj. (ll)

RT, =
T (Co+

The net rate of return from straddles trading after transaction costs of $.25 per straddle
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is computed as
100

IVRTg = RT; - m ¥ Z
t t

4 Empirical Results

The forecasting experiment and options trading for both the GARCH and the implied
volatility methods begins at November 3, 1986 and ends at December 30, 1991 providing
options trading opportunities on 1,251 days. The GARCH forecasting method provides
one common conditional volatility estimate for both call and put options prices while
the implied volatility forecasting method provides different volatility estimates for call
and put options prices.

Since we are using both in-the-money options and out-of-the-money options data
and we are using two separate volatilities, call and put, to forecast option prices, we
need to check whether the two different kinds of option data give consistent estimates
for volatilities, and also whether one option pricing formula is consistent for both call
and put option data. To do this, we select in-the-money call and put options whose
exercise price is closest to the index level, and select out of the money call and put
options whose exercise price is closest to the index level. Table 5 shows that correlation
coefficients between implied volatilities form in-the-money options and out-of-the-money
options are .92 and .93 for calls and puts, respectively, during the entire sample period.
The correlation between IV from in (out of)-the-money options for calls and in {out
of )-the-money options for puts is .84 (.88). However, the correlation between IV from
in-the-money options for calls and out-of-the-money options for puts is .80. This may
be explained by the fact that the asymmetric effects of positive and negative returns on

agents expectations give higher premia for put options. For the sample period excluding
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Table 5: Correlations among the closest in-the-money call and put implied volatilities
and the closest out-of-the-money call and put implied volatilities.
(April 21, 1986 ~ December 31, 1991)

Full sample
VCALIN VCALOUT VPUTIN VPUTOUT
VCALIN 1.00 0.92 0.84 0.80
VCALOUT 1.00 0.90 0.88
VPUTIN 1.00 0.93
VPUTOUT 1.00

Excluding Oct. 15-30, 1987

VCALIN VCALOUT VPUTIN VPUTOUT

VCALIN 1.00 0.91 0.83 0.80
VCALOUT 1.00 0.90 0.86
VPUTIN 1.00 0.95
VPUTOUT 1.00
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Table 6: Correlations between annualized GARCH volatility forecasts and options im-
plied volatility forecasts. (November 3, 1986 — December 31, 1991)

Full sample Excluding Oct. 15-30, 1987

Obs. Mean Std. Obs. Mean Std.

GARCH 1251 17.87 6.44 1240 17.42 3.79

Call 1251 17.41 6.28 1240 17.12 5.35

Put 1251 21.48 7.81 1240 21.05 5.79
Correlation Coeflicient Correlation Coefficient

GARCH Call Put GARCH Call Put

GARCH 1.00 0.75 0.80 1.00 0.68 0.65

Call 1.00 0.94 1.00 0.93

Put 1.00 1.00

the fifteen days around the market crash, the correlation coefficients mentioned above
remain almost the same.

Table 6 shows that the average of the GARCH volatility forecasts is greater than
that of the call option implied volatility forecasts, but is less than that of the put option
implied volatility forecasts for both sample periods. Including the fifteen days around
the market crash on October 1987 increases all the three volatilities about .4 percetage
points. Additionally, the standard deviation of the GARCH volatility increases nearly
two times.

The correlation coefficient between the call option implied volatility forecasts and
the put option implied volatility forecasts is .94 for the full sample and is .93 for the
subsample, which suggests that the two volatilities are moving together. However, the

correlation coefficient between the GARCH volatility forecast and the option implied
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volatilities is about .78 for the full sample and is about .67 for the subsample. To decide
how close these two volatility forecasts are, we use the correlation coefficients of Table
5 as a benchmark. Based on those correlation coefficients, we can infer that the two
forecasting methods may be quite different at some periods. This is partly supported
by the fact that the correlation between the dummy variable which indicates positions
(buying or selling) of the agent using the GARCH forecasts and those of the agent using
the implied volatility forecasts is .35 i.e., both agents agree to buy or sell their straddles
only for 437 days out of 1251 days.

Table 7 shows the actual S&P 500 index options prices and the options price forecasts
of the GARCH and the implied volatility methods. The GARCH forecasts for straddle
prices are lower than the actual straddle prices of the S&P 500 index options, and
the implied volatility forecasts for straddle prices are higher than the actual straddle
prices. The correlation coefficients among the three prices are very high, from the low
.84 between the GARCH prices and the actual prices to the highest .98 between the
implied volatility forecast prices and the actual prices.

The correlation coefficient between the expected return from the GARCH forecasting
method and that from the implied volatility forecasting method is .52, which is fairly
low compared to the correlation coefficient between the volatility estimates of the two

methods.

4.1 Near-the-money Straddle Trading

Table 8 shows the daily rate of return of near-the-money straddles trading during the full
sample period before and after transaction cost. The average daily rate of return from

options trading before transaction costs is 1.35% for the GARCH forecasting method
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Table 7: Average option prices of S&P 500 index, GARCH forecasts and implied volatil-
ity forecasts.(November 3, 1986 — December 31, 1991)

Full sample Excluding Oct. 15-30, 1987

Type Obs. Mean Std. Obs. Mean Std.
S&P 500 Call 1251 749 3.59 1240 7.38 3.19
Put 1251 6.49 4.16 1240 6.26 2.84
Straddle 1251 13.98 6.14 1240 13.64 4.74
GARCH Call 1251 744 3.57 1240 7.29 2.88
Put 1251 5.63 3.08 1240 5.45 2.07
Straddle 1251 13.08 4.99 1240 12.74 4.42
IVR Call 1251  7.21 3.23 1240 7.10 2.84
Put 1251 6.80 3.33 1240 6.63 2.47
Straddle 1251 14.01 5.77 1240 13.73 4.77

and .68% for the IVR forecasting method, respectively. These profits are far from certain
in the sense that standard deviations corresponding to these are 10.74% and 10.80%.
respectively. However, t-ratios of 4.44 and 2.22 indicate that they are significantly
greater than zero.* This argument is supported by Figure 1 which shows the cumulative
rate of return from options trading of agents using the GARCH and the IVR forecasting
methods, respectively.

The more realistic trading strategy will be to trade options when their profits are
predicted to exceed trading costs. For this purpose straddles are traded only if the
absolute price deviation is greater than $.25 or $.50. Under these filters, the number of
days of straddle transactions are reduced more dramatically for the IVR method than

the GARCH method. For example under a $.50 filter, straddles are traded 69% of the

*Since rates of return from straddle trading for each day are assumed to be independent, the t-ratio is
computed as a ratio of mean to standard deviation divided by the square root of number of observation.
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total days for the GARCH method and 25% of the total days for the IVR method.

Since the two methods show different numbers of trading days and partly non-
overlapping trading dates for filters greater than zero, we need to compare their per-
formances over the entire sample period allowing agents to invest in the risk-free asset
when they don’t trade options. For the sample period, daily average rates of return from
both options trading and the risk-free investment using the GARCH forecasting method
is greater than that of the IVR method for all three types of filters. For example, with
a $.25 filter, an agent using the GARCH method makes 1.62% average daily return over
1,048 days and the agent using the IVR method makes 1.04% average daily return over
655 days. The total rate of return from both options trading and risk-free investment
yields the agent using the GARCH method 1.36% and the agent using the IVR method
only .56%. This suggests that the GARCH agent makes much higher profits than the
IVR agent.

After transaction costs of $.25, and under a zero filter, the agent using the IVR
method has negative profits while the agent using the GARCH method has positive
profits, which are not significant. When we apply the $.50 filter, the agent using the
GARCH forecasts makes a .84% daily rate of return from straddles trading on 863 days
with t-ratio of 2.04 and the agent using the IVR forecasts makes -.25% daily rate of
return over 313 days with t-ratio of -.26. Altogether the GARCH agent makes a .38%
total return with a t-ratio of 2.06 and the IVR agent makes -.05% total return with a
t-ratio of -.18.

When we compute the daily rate of return of near-the-money straddles trading
during the sample period using the implied dividend, the results change only slightly

compared to Table 8.
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Over the sample period, out of 1251 observations, the agent using the GARCH
method short-sells straddles for 793 days and makes 1.52% return and buys straddles for
458 days and also makes 1.05% return. This implies that even if, on average, the GARCH
method under-predicts market volatilities, the GARCH method predicts volatilities well
enough to make the right decision to make profits. For the IVR method, the agent using
the IVR method makes 1.28% return when she short-sells straddles for 614 days, while
she makes .10% return when she buys straddles for 637 days.

Table 9 reports the rate of return for the subsample period which excludes the market
crash on October 1987. The rate of return of the GARCH method is decreased and that
of IVR is increased when we exclude the crash period. However, the rate of return of
the GARCH method is still higher than that of the IVR method. For example, the
GARCH method makes 1.05% return and the IVR method makes .48% with a $.5 filter
before transaction costs. After transaction costs of $.25 per straddle, both methods
make significantly positive rates of return after using a $1 filter. The GARCH method

makes .28% return and the IVR method makes .16% return.

5 Conclusion

We examined two volatility forecast methods, the GARCH forecasting method and the
IVR forecasting method to investigate whether they produce future volatility forecasts
which can generate positive profits from straddle trading in the S&P 500 index op-
tion market. We find that the agent using the GARCH volatility forecast can earn
significantly positive profits with near-the-money straddle trading against the market
even after transaction costs of $.25 per straddle, and that the agent using the GARCH

forecasting method performs better than the agent using the IVR forecasting method.
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Figure 1: Cumulative Rate of Return from Straddles Trading.

(November 3, 1986 - December 31, 1991)
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