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ABSTRACT

This paper has two purposes. One is to assess different models of inventory behavior in
terms of their ability to well approximate the realized data on inventories. We do this initially
for the pure production smoothing model and then for a sequence of generalizations of the model.
Our analysis both performs specification tests as well as measures the deviations of the data from
each null model, which we refer to as model noise. This involves the introduction of 2 noise
ratio which provides a metric for measuring the magnitude of the noise component of the data.
A second purpose is to explore whether observed cost shocks, including in particular carefully
measured series on raw materials prices, can be helpful in explaining inventory movements. We
find that the basic production level smoothing model of inventories, augmented by buffer stock
motives, observed cost shocks, properly measured, and to a lesser extent stockout avoidance

motives, appears to well approximate monthly inventory data.
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1. Introduction

A large empirical literature has explored various rational expectations models of

1 This literature has taken as a baseline and has typically

inventory accumulation.
estimated rational expectations formulations of a pure production smoothing model of
inventories, where firms accumulate inventories in order to smooth production in the face
of fluctuating demand. A number of authors have shown that the pure rational
expectations versions of the model are inconsistent with the data, at least as measured by
model specification tests. These initial rejections of the model have led researchers to
analyze empirically augmented forms of the models. Blanchard [1983], West [1986] and
Kahn [1992] have added a stockout avoidance motive, Maccini and Rossana [1984],
Blinder [1986] and Miron and Zeldes [1988] have added cost shocks in the form of real
input prices; Eichenbaum [1989] and Kollintzas [1992] has added cost shocks in the form
of unobservable technology shocks; Ramey [1991] has added nonconvexities in production;
West [1988] has added backlogs of unfilled orders.?. These authors have typically
concluded that such modifications improve the fit of the model but do not fully explain
the rejections of model specification. One problem with these different studies is that it is
difficult to assess whether the specification rejections are economically interesting-i.e,
whether a given model is a useful method of explaining the bulk of realized inventory
volatility. - At the same time, it is difficult to understand the degree to which
generalizations of the model are quantitatively important in helping us to understand

movements in inventories.

One purpose of the current paper is to assess different models of inventory

'See Blinder and Maccini [1991a,b] for a survey of the literature and an
assessment of recent research.

20ther empirical studies in recent years that test the production smoothing
model, generally with data other that the aggregate Commerce Department data, include
Fair [1989], Haltiwanger and Maccini [1989], Ghali [1987], Kashyap and Wilcox [1992),
Krane and Braun [1991], Rossana [1990], and Schuh [1992).



behavior in terms of their ability to well approximate the realized data on inventories.
We utilize signal extraction methods developed by Durlauf and Hall [1990] which thus far
have not been exploited in inventory research or previously applied to Euler equation
estimation. We do this initially for the pure production smoothing model and then for a
sequence of generalizations of the model by treating the data behavior described by the
" Euler equation as the sum of two unobserved components. The first component is that
combination of the data that can be explained by the Euler equation implied by a
specified null model; the second component is model noise. We then perform a signal
extraction exercise on the data which provides estimates of the variances of the
unobserved components. These estimates have the desirable property that the variance of
the estimated noise component is a lower bound on the variance of the true noise
component. We then compute a noise ratio by dividing the noise variance by the
variance of the sum of the components in order to interpret the empirical performance of
Euler equations. The noise ratio is closely related to the J-statistic which is
conventionally used to test the orthogonality restrictions implied by an Euler equation,
and will be proportional when the Euler equation defines a sequence of identically
distributed white noise variables. An advantage of the noise ratio is that it provides a
way of assessing the degree to which an Euler equation well approximates observed data
behavior, i.e. whether the noise component is large. It applies even when the model is
rejected by formal hypothesis testing procedures. While we apply the noise ratio here to
a sequence of inventory equations, we feel that it is useful in other work with Euler

equations.

Another purpose of this paper is to determine whether observed cost shocks can
be helpful in explaining inventory movements. An important innovation in the analysis
is that we use a carefully measured series on raw materials prices as one of our cost
shocks. In constructing the series, special attention has been paid to measure the real
price to a particular industry of purchasing materials and supplies from outside the
industry. To the extent that cost shocks are relevant for short run fluctuations, real

materials prices are likely to be important in that they are much more volatile over the



cycle than other cost factors such as real wage rates. OQur approach improves on the
previous literature that has explored cost shocks in that Maccini and Rossana (1984],
Miron and Zeldes {1988] and Ramey [1991] use rather imprecise measures of materials
prices and obtain rather poor results, while Eichenbaum [1989] who relies on an
unobservable cost shock to capture the full range of cost shocks must impose additional
restrictions to identify the cost shock. An important finding of the present paper is that
observed cost shocks, properly measured, contribute significantly to the explanation of

inventory movements.

The paper is organized as follows. Section 2 outlines the theoretical model we
consider. Section 3 describes the econometric methodology. Section 4 provides estimates
of model noise under different assumptions about the the timing of information, the
presence of a stockout avoidance motive, and the inclusion of observed cost shocks.
Section 5 explores some alternative specifications of the underlying inventory model.

Summeary and conclusions follow in Section 6.

2. Inventory models

The model to be used is the standard buffer stock-production smoothing model of
inventory behavior. The model contains two key features: (1) variable demand and
rising marginal cost of production--which generates production smoothing, and (2)
stochastic demand, which generates buffer stock behavior. In this paper, we modify the
basic model to allow for a stockout avoidance motive and for cost shocks in the form of
real input prices, forces which counter the firm’s incentive to smooth production. In
future work, we plan to consider technology shocks, nonconvexities in production, and
order backlogs. We formulate the model in a linear quadratic framewérk. The specific
model we employ is essentially that of Eichenbaum [1989], but is very closely related to
models used by Blanchard {1983], Blinder [1986], Blinder and Maccini [1991a], Ramey
[1991] and West [1986], among others.



Production costs are given by
1
AYyps) = (404 )Yy tg - Yi, ©>0 (21

where Y, is the level of output produced by the firm and T, , is a cost shock.

Inventory holding costs take the form
BNy Xipy) =0 Ny ot g(NHraXm)z ba>0 (2.2)

where N, +s

is real sales. Inventory holdings costs are quadratic in inventories, which balances two

is the stock of finished goods inventories at the end of period ¢+ 5 and X, |,

forces. The linear term (as well as the quadratic term over some range of values) rises
with the stock of inventories, capturing increased storage costs, insurance costs and the
like. At the same time, over some range of inventory values, the quadratic term falls
with inventories, reflecting the notion that higher levels of inventories for a given level of

expected sales reduce the likelihood that the firm will stock out and lose sales.

Inventory accumulation is governed by the identity

NH-.!_ Nt+s—1 = Yt+3_ Xt+s (2.3)

With cost minimization, the firm is assumed to face an exogenous sales process and its

objective is to

o0
Min E,Y_A°TC,,, (2.4)
s=0
where
TCH»: = C( YH-:) + B(Nl+a’Xt+a) (25)



which using the inventory identity
= C(Npyy =Ny 1t X )HB(Nyy o Xo )
= (cl+Ft+s)(Nt+s_Nl+s—1+Xt+l)+%(Nt+:_Nl+:—l+Xt+c)2
+bi Ny, +§b(N¢+,—"Xt+a)2 (2.6)

and ﬂ:-l——li-—r is the discount factor implied by a constant real rate of interest r.
Production decisions are initially assumed to be made before demand is revealed at 1, so
that inventories aloné serve to buffer demand shocks. The model contains an incentive
for the firm to smooth production in the face of variable demand (¢ > 0), and, since
demand is stochastic, an incentive to use inventories to buffer demand shocks. In
addition, the model contains forces, in particular cost shocks (T',) and an allowance for

the possibility of stockouts (& > 0), which serve to increase production variability.

Let lower case letters represent the expected values of corresponding upper case
letters, i.e. 2, ,= E(X, | &,), where §, denotes a common information set available to

all firms at t. The Euler equation for the cost minimization problem is
By g1 —[14+B+be]ny g Ay,
=(1~abe)ryy = Br 1+ Vs = BYppy gt € (2.7)
where ¢ is a constant. Solving this equation for the optimal level of inventories yields

O .
Mpps = A,y +{1= (1= abc))] Z;(ﬂ’\)lzwsh'
t=

_It+s+c[l—’\lz(ﬁ’\)i7t+s+i_ Teyst€ (2.8)
=0



s=0,1,2...,, where XA is the stable root of the relevant characteristic equation and is given

by
)= 1+%(r+—’5ﬁ—°-)-[(r+""7°)2+4”3‘-]"2 (2.9)

Observe that the parametric assumptions regarding a firm’s cost structure predict that
0<A<l. Further, observe that 1 — abe>1 only if «, b, or c is negative, which we rule out

by assumption in this paper. Hence our model also predicts that 1 — abe<1.

A relationship for actual inventory accumnulation, i.e. for calendar date ¢, may be
derived as follows. Set s=10 in (2.8), recognize that n,_, = N,_;, and rearrange the

resulting relationship to get

n,~ N, = (1= \N,_, +[1-(1-abc)A]f:(ﬂ,\)fz,+,.
=0

—z+1=N Y (BN i — e+ € (2.10)
1=0

Then, take expected values of (2.3) for s =0 and observe that under our assumptions,

EY, = Y,, which implies
E(N=N,_y) = n—N,_ = Eyt"EXt =Y -z (2.11)
Now, use the inventory identity evaluated at s =0 and (2.11) for
N=Ny_y = V=X, = Yz, + (z,-X,)
=n=N,_1+(5—-X) (212)

Substituting (2.10) into (2.12) and rearranging terms yields



Ny=AN,_ =X, +[1-(1-eabc))z,

+[1=(1 = abc))] i(ﬂ/\)irm

1=1

"C’\'It +c[1-1] i(ﬂ’\)i'ru.i +t (2.13)

=1

This relationship governs inventory accumulation in the model.

3. Econometric methodology

Current sales and cost shocks observable

In order to capture the testable implications of this model, we exploit the
expcctaﬁons based relationships within the model. Our approach identifies parameters by
estimating the equivalent of the Euler equation associated with optimal inventory
accumulation for different specifications of the objective function and information sets of
agents. Unlike other work in this literature, however, we complement specification
testing of the model by attempting to assess the ability of the model to successfully
approximate the data. We therefore provide a noise ratio calculation which is a natural
metric for measuring the accuracy of the null model in approximating the data even if
the model is rejected by formal hypothesis testing procedures. Durlauf and Hall {1990}
advocate this calculation as a way of assessing the reasonableness of a particular model in

explaining data movements.

In order to provide a rationale for the noise ratio, we derive our estimating
equation in a somewhat different fashion from the direct use of an Euler equation. Define

the following variable

A= N = AN, + (1 —abe)AX, + cAT,. (3.1)



Under the null hypothesis that agents observe X, and I'; at the time that inventories at ¢

are chosen, z, = X, and vy, =T,, we can use (2.13) to rewrite this variable as

OO . o0 .
A= (1=1=ab)))D (BN gy +c(1=2)) (BN ypy; + & (3.2)
i=1 i=1
This is a pure expectations-based variable. Since this variable equals a conditional

expectation, this allows us to define a perfect foresight analog.

A7 = (1= (1- b)) 3 ()X, i+ el = 2) S0 (BNT + 2

i=1 i=1

i=1 i=1

= (1= (1= b)) S (BN 4 i+ (1= ) S (BN 7pps 10 (3.3)

wh_ere 7, is a forecast error related to current and future sales and cost shocks. The
variable A} may be directly constructed from the sales and cosi; series if B, a, b, cand A
are known. As shown in Durlauf and Hall [1990], all testable implications of the null
model can be summarized in the orthogonality of A, — A} to any information measurable

at 1.

Observe that A, — A} is not in general white noise as it depends on current as
well as future realizations of different variables. In order to efficiently estimate the
underlying parameters in A, — A}, it is useful to filter the variable by (1 - BAL™Y to

generate
g=(- ﬁ’\L~l)(Az - A7)
= =M 1+ A = (1= A1 —abe))AX, g = (1~ A)FATyy, + ¢ (3.4)

where € = — (1 — #A)¢. This filter produces a left hand side variable that is proportional

to the Euler equation. Under the null hypothesis, g, is white noise. Again, the



parameters of this process are not observed. However, using (3.1), (3.4) can be written

as
9= —BIN, 1 +(1 +BAYN, = AN, ~ BAX, 41
+ (1= ab)AX, — BAT,y, + AT, + (3.5)

to which generalized methods of moments (GMM) can be applied. Following the
literature, we impose a value for § equal to .995. Defining u = 1 —~ abe, we may estimate
A, p#and ¢ by GMM. The idea is to choose these parameters to force orthogonality of the

implicitly estimated g, to some set of instruments.

We shall refer to g, and its subsequent variants as Euler equation forecast errors,
as the variable captures, under the null hypothesis, an exact linear combination of
inventories, sales and cost shocks which represents the optimal adjustment to information
received between 1—1 and ¢, i.e. F, —&,_;- Under the null hypothesis, g, equals some
combination of the information which lies in §,—%,_;. We denoté the value of this

particular combination of new information as v,.

Hy g,=v, (3.6)

Under any alternative H,, the variable g, may be defined as the sum of v, and a

variable S, which represents the component of g, which deviates from the null.

Hy: g,=v,+5, (3.7)

We shall refer to 5, as model noise.
Letting L, denote the econometrician’s information set, and Z, denote an
operator which linearly projects a variable onto this information set, we can construct an

estimate of model noise, S, [ through3



5,10 =92, (3.8)

since v, is by definition orthogonal to L,. As shown in Durlauf and Hall [1990] and
Durlauf and Hooker [1993], the estimate of model noise is the solution to a signal
extraction problem which attempts to identify the unobservable S, from the available
data. Those papers verify that an important property of the estimated model noise is
that the variance of estimated model noise is a lower bound on the variance of actual

model noise, i.e. for each g,,

Var(SHt) < Var(S,). (3.9)

The variance of model noise is interesting as it provides a metric of the extent to
which a model well approximates the data. Standard specification tests ask whether
model noise possesses .a zero variance —i.e whether the Euler equation fully characterizes
the interactions of a set of time series. This requirement may be too extreme to assess
the utility of macroeconomic models, where the combination of data measurement
problems and many auxiliary assumptions employed for the sake of analytical v
convenience suggest that model noise is unlikely to equal zero. The variance of model
noise provides a way of determining whether a model is a useful way of thinking about
the behavior of a particular time series. In other words, low variance in estimated model
noise means that the joint behavior of inventories with other variables is close to that

predicted by the optimal inventory model.

Our analysis focuses on the noise embedded in the Euler equation rather than the
inventory series itself for two reasons. First, since our interest is in the relevance of the
optimal inventory mode] in explaining inventory movements, the Euler equation provides
the context for assessing these movements relative to those variables which are supposed

to affect them under the null model. Second, our experience suggests'that estimates of
3By  definition, S, | & equals  the projection of 5, onto L.

10



noise based on the Euler equation possess relatively good finite sample properties.

In assessing the magnitude of the variance of model noise it is useful to consider

an estimated noise ratio NR, which we define as

Var(S, | d)

NR = —————.
Var(g,)

(3.10)
This ratio normalizes the estimated noise variance bound. Although 5, and v, are not
orthogonal, S, It and v, are orthogonal since S, [t is constructed to lie in L,. This allows
us to interpret the ratio NR as a lower bound on the percentage of Var(g,) which is
attributable to noise. We use the noise ratio for the first time to assess the performance

of Euler equations.

There are many ways to construct measures of Var(S, | ¢) given L, and the null
model, each one of which corresponds to a different way of estimating the parameters of
the null model in order to construct an observable version of the series g, In the
subsequent analysis, we follow the following procedure. GMM parameter estimates are
used to construct g,. This g, series is then linearly projected against the instrument set
used to estimate the model parameters in order to compute .S'l“ and its associated
variance. This means that the noise ratio measures the implied model noise associated
with the set of model parameter estimates which minimize the J — statistic proposed by
Hansen [1982] to test the orthogonality restrictions in the GMM procedure.  Our
procedures therefore measure the noise ratio implicitly associated with each specification
test we employ. When the Euler equation innovations are white noisé, our estimated
model noise variance ratio will represent the lowest admissible for all possible
noise/model decompositions which are consistent with the data. When these innovations
are not white noise, our noise ratio estimate is the lowest admissible value for the ratio
compatible with those model parameter estimates which minimize deviations between the
null model and the data as measured by the J-statistic. In fact, for white noise errors

one can show that the noise ratio will equal the Jstatistic divided by the number of

11



observations in the data set; for non-white noise errors this equivalence will not hold.4
An advantage of the noise ratio is that it provides a metric for assessing the degree to
which the Euler equation approximates the data, even when the model is rejected by

specification tests such as the J-statistic.

Finally, observe that if current sales and cost shocks are known when decisions
are made at time ?, then by (2.5) end-of-period inventories at t are also known and are

thus contained in the information set.

Current sales and cost shocks unobservable

If agents at ¢ cannot observe sales and cost shocks at the time that inventories
are determined, then z, # X, and 4, #T,. This is an important alternative case in that
in most inventory models current sales and costs are assumed to be unknown to the firm
at the time it makes decisions so that inventories serve to buffer current sales and cost
surprises. The previous equations should then be modified as follows. Using (2.13),

uinder this formulation of the null hypothesis,

Af=N,=AN,_; + X,

=(1—(1—abe)A)z, +(1-(1 - abc)/\)f: BNz, 4

1=1

—0A7z+c(1~/\)i(ﬁ/\)‘7t+;+ é (3.11)

i=1

“When the Euler equation implicitly defines a non-i.i.d sequence, the noise ratio
will not be proportional to the J-statistic because of a need in the latter case to correct
the covariance matrix of the equation’s innovations in computing whether the model’s
coefficients obey the overidentifying restrictions. Such a correction is unnecessary in
computing the variance of the model noise. However, the two are still closely related
asymptotically as the noise ratio will converge to zero if the J-statistic converges to a
bounded value. We thank Spencer Krane for these observations.

12



which defines a new perfect foresight series

Ay =(1~-(1-abe))X, +(1—-(1- abc)A)Z (BA)X,
i=1

t+d

— el +c(1—A)Z(ﬁA) Ty ite
i=1

=(1-(1~ab)N)zg, +(1—-(1- abc)/\)i BNz, s

t=1

oo
— Ay, +e(l1-1) Z (BN, 4 +€, (3.12)
1=1

where ¢, is a forecast error.

All testable implications of the null model can be summarized in the
orthogonality of the newly defined A; - Ai* to all information measurable at ¢ — 1, since

the new forecast error contains an event measurable at . Notice that g; now equals
9= (1= AL (A - A])

= —BAAL L+ A~ (1= (1= ob)M)X, + cAT, ~ By —

= = BAN, 1+ (1+ 8NN, - AN,_, — BAX, 1

+ (1 —abe)AX, — cBAT, ; + AT, - T (3.13)

which is exactly the same form as ¢,. Hence, the estimating equation is independent of
whether sales and cost shocks are observable, We again assume that 8 = .995 and use

GMM to estimate A, g =1—abcand ¢

The difference in estimating the model when sales and cost shocks are
unobservable is that the information set available to the econometrician does not include

current sales and cost shocks. Note that since current sales and cost shocks are

13



unobservable at 1, inventories at { are also unknown and are thus excluded as well from
the information set. Letting L,_; denote the econometrician’s information set, and Z, ,

the projection operator for this information, our estimate of model noise is now

Stle-1= 02y . (3.14)

Var($,y,_1)

which may be used to estimate NR/ = ———————.
Y Var(g't)

From the perspective of specification testing, the change in the dating of the,

econometrician’s information set means that g'; will now be MA(1).

Multiple cost shocks

Cost shocks typically derive from multiple sources. For example, production
costs can be affected by fluctuations in materials prices My, wages Wt+s and energy
prices V, ,. In order to account for the impact of these different input prices on firm
production decisions, it is necessary to choose a particular functional form for the cost

function.

We relate the cost function to the input prices through the relation
142 =
CYpy) =l +0 Wy +0,My +03V,, 1Y, +5 Vi, (3.15)
so that the 0, is the marginal cost response to a change in input price 7. Notice that if
(3.16)

Pope =0 W +0,M,  +03V, 10

" then we will recover our cost function (2.7).

14



e

The solution for actual inventories (2.13) is then
Ny=2N,_; =X, +[1- (1 —abc))z,

+ 1= (1 —abe))] i(ﬁ'\)izufi

i=1

+e(l~ '\)_E (BA)[8y0p i+ 05my 4 + 630, ], (3.17)

i=1

where the lower case letters again denote expected values. This implies that our

estimating equation becomes
g= —BAN, L1 +(1 +BA)N, = AN, —BAX, 1
+ (1= abc)AX, — AW + AW, — BV, M, + AT, M,
— BAYL Y, + AT,V 45, (3.18)
where ¥,=0,¢, ¥,=0,c and ¢3:835r with ¥; > 0. This equation forms the basis for our
empirical work with cost shocks. Notice that since both future sales and cost shocks are

discounted by the same factor, (ﬁ)\)", this equation will have the same statistical

properties as (3.5).

4. Econometric results

The data used for inventories and sales are the constant dollar finished goods
inventory and shipments data published by the Bureau of Economic Analysis. They are
monthly, seasonally adjusted, measured in 1982 dollars and cover the period 1959:1 to

1990:6. The data were adjusfed to place inventory stocks and shipments in comparable

15



units.® To measure cost shocks, we use real materials prices, real wage rates and real
energy prices. The nominal materials prices are weighted averages of producer price
indexes used by a particular industry, where the weights are the value of each material
input expressed as a fraction of the value of shipments of materials to the industry. We.
work with series for both crude materials prices which measure the prices of unprocessed
materials and supplies and intermediate materials prices which measure the prices of
partially processed materials and supplies. = Whenever necessary, all series were
deseasonalized and detrended with the use of a quadratic time trend. In this paper, since
the model is strictly applicable only to industries that produce to stock, we focus on the
nondurables aggregate and selected SIC two-digit industries —Food, Chemicals,

Petroleum and Coal, and Rubber and Plastics — which do not carry unfilled orders and

are presumed largely to produce to stock.

Tables 1 through 4 -report our empirical results with different formulations of the
production smoothing buffer stock model. We estimate the implied Euler equation
forecast error for inventories —the g, equation —with two different»information sets,
which essentially differ on whether current sales, end-of-period inventories and cost shocks
are included.® Recall that this difference reflects whether inventories buffer current sales
and cost shocks. Estimation is carried out with Generalized Methods of Moments.
Associated with the parameter estimates of each model are J-statistics which test the
orthogonality of g, to different information sets. Under the null hypothesis of no model

noise, these statistics are distributed as XZ, where ¢ equals the number of overidentifying

5This adjustment is needed because inventories are measured at cost whereas
shipment are measured at market. See West [1983] for the appropriate adjustment.

SCertain authors, e.g. Kashyap and Wilcox [1992], West and Wilcox [1992], and
Fuhrer, Moore, and Schuh [1992], have pointed out that estimates of parameters of Euler
equations can be sensitive to the choice of a left hand side variable or in effect of a
normalization. This problem appears to be more severe with the estimation of underlying
cost parameters than with the estimation of combinations of parameters such as A, which
evidently can be estimated more tightly. Nevertheless, the equation we estimated, (3.18),
does embody a particular normalization.  As a check, we explored alternative
normalizations by, for example, dividing (3.18) by — ) and estimating the resulting
equation. This produced results very close to those presented.

16
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restrictions in the model, i.e. the number of instruments less the number of parameters to
be estimated. Finally, we report estimates of model noise bounds, NR, which allow us to

assess how well the model approximates the data.

Table 1 reports coefficient estimates and associated standard errors for the pure
production smoothing model with the two different information sets, Pure production
smoothing arises when there is neither a stockout avoidance motive (a = 0 and g = 1) nor
cost shocks (y =0). The first row for each industry reports results with X, and N,
observable; cost shocks are excluded entirely from the information set since this version of
the model disallows cost shocks. Perhaps not surprisingly, in view of the literature on
empirical work with inventory models, the model performs poorly. In particular, the
noise ratios, which place a lower bound on the ability of the model to explain the data
are very high, typically in excess of 50%. The J-statistics overwhelmingly reject the
overidentifying restrictions of the model. All 5 test statistics in the Table are stétistically

significant at the 5% level.

The second row reports results with X, and N, excluded from the information
sets, which captures the idea that inventories buffer sales surprises. The pure production
smoothing model now performs much better in that the noise ratios are much lower, on
the order of 13% or less and the J-statistics drop substantially. All 5 test statistics are,
however, still statistically significant. An additional major caveat is that the estimates of
X are generally quite high, on the order of .7. A_s is well known, the inventory
accumulation equation (2.13) can be rewritten in stock adjustment form where 1—2A
represents the speed at which inventories adjust towards desired levels. The point
estimates of A imply that inventorie; are adjusting towards optimal levels at only about
30% per month, which seems .implausibly low. Hence, allowing inventories to buffer
current sales surprises improves considerably the fit of the pure production smoothing

model. Nevertheless, substantial room for improvement remains.

Table 2 allows for a stockout avoidance motive. Compared to Table 1, this
relaxes the assumption that a = 0. We therefore estimate 4 =1~ abc. When X, and N,

are observable, this model is equivalent to the model analyzed by Eichenbaum [1989] as
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the production-level smoothing model. When a stockout avoidance motive is considered
and X, and N, are observable, the noise ratios and J-statistics fall slightly, but the model
is still decisively rejected. On the other hand, in contrast to Eichenbaum [1989),
allowing for a stockout avoidance motive in a model where X, and N, are not observable
further reduces the noise ratios and J-statistics so that the model fits the data reasonably
well. The model is in fact accepted in the cases of food and petroleum. Further, the
noise ratios are now quite small, suggesting that the rejections of the model are not
associated with large departures from the data. Two caveats arise, however. The
estimates of A are a bit larger than in Table 1, implying somewhat slower adjustment
speeds.  Further, the estimates of p are quite close to unity; in fact, many are

insignificant from one.”

Table 3 tests the model with cost shocks as well as a stockout avoidance motive.
In Table 3, the material price component of the cost shocks is measured by crude
materials prices. Even when values of X,, N,, M, W, and V, are included in the
information set, the model fits the data quite well. The noise ratios are all below 20%
and the J-statistics accept the model for food and rubber. The model >ﬁts especially well
when X,, N, M,,W, and V, are excluded from the information set as the noise ratios and
the J-statistics are substantially lower. All noise ratios are now below 8% and the model
is accepted for all industries. This further highlights the support for treating inventories
as a buffer for current sales and cost shocks. Moreover, the estimates of A are now
generally more plausible, implying adjustment speeds, 1 -}, in the range of .4 —.5. The
estimate of the parameters associated with cost shocks from the instrument set that
excludes current values are generally positive and frequently significant despite a good

deal of collinearity among the measures of input prices. This is quite contrary to the

"Estimates of u near unity and thus possibly estimates of & near zero are not
necessarily evidence against a stockout avoidance motive. Kahn [1992] has argued that a
better approximation to a stockout avoidance motive is to allow inventory holding costs,
(2.2), to depend on Nt+,;l +Y‘+,-—&Xt+,, which using the inventory identity implies
that the argument of the holding cost function is N, — (& —1)X,,,. Then estimates of
4 near unity and « near zero are evidence that o —1 is near unity, which is very much
evidence of a stockout avoidance motive.
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body of previous studies which finds that observed cost shocks often have the wrong sign
and are invariably insignificant. Estimates of x are more mixed. Again, in some cases

they are insignificantly different from unity.

To explain inventory movements, these results provide strong support for a
model which augments production smoothing motives by allowing for observed cost
shocks, buffer stock motives, and to a lesser extent stockout avoidance motives. The
model contrasts with that put forward by Eichenbaum [1989] and Kollintzas [1992] in
two respects. First, these authors focus on a model with unobservable cost shocks and
provide evidence that the unobservable noise in the inventory Euler equation behave as
an AR(1) process. However, the empirical analysis assumed that this noise was a cost
shock. By using actual cost shock data, our approacl does not require any identifying
assurnptions concerning the source of model noise and thus directly shows how cost
shocks can reconcile -production smoothing models with the data. Second, Eichenbaum
at least implicitly ignored a buffer stock motive for current stocks by assuming that firms
know current sales and cost shocks when making decisions. We have shown that allowing
for a buffer stock motive significantly improves the ability of the model to explain

inventory movements.

Table 4 reports results with intermediate materials prices used as a measure of
materials prices. The results represent a deterioration from those of Table 3. The noise
ratios generally rise, and even with instrument set 4, the overidentifying restrictions of
the model are rejected at the 5% significance level in some industries. Further, the
estimates of the parameters associated with the materials price cost shock frequently have
the wrong sign. In view of the poorer performance of the results for intermediate input
prices and the inevitable difficulties in ensuring that intermediate materials prices are

exogenous, the results for crude materials prices are clearly preferred.



5. Additional results

Target Inventories

To capture the stockout avoidance motive, a target inventory equation must be
specified. Following Eichenbaum [1989], we assumed that the target depends on current
sales. An alternative assumption is that it depends on next period’s sales, as in
Blanchard [1983], Ramey [1991], and West [1986] among others. This is perhaps a more
plausible assumption in that N, in (2.2) is end-of-period inventories. To see whether

this specification makes a difference, assume that (2.2) takes the form

B(Nt+a’ Xt+s) = blNHrs + %(NH-.; - aXt+s+1)2' (2.27)
ba>0

Then, straightforward manipulation results in a modified estimating equation, which is

= = BNy (1 BAIN = ANy = A1+ (X 1y + 2K,
— BAY,W g+ AU W, = BAU M + AU M = BAVV, 4+ 2TV, e (3.18)

We now estimate A, p' =1+ (“Tbc), and ¥, for i=1, 2, 3. The model predicts ,u'. to be

greater than unity.

The results are presented in Table 5. We only present the results for a model
where the instrument set excludes current values and where crude materials prices are
used as the materials price series. These are the conditions that produced the best results
in prior tests. The results are essentially the same as in Table 3. Again, the noise ratios
are all under 8% and the J-statistics accept the model for all industries. The adjustment
speeds are extremely close to those in Table 3. Finally, p' is generally estimated to be

above unity, as the model now predicts, although it is statistically significantly greater
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than zero only for chemicals. We thus conclude that the specification of the target stock

makes little difference in the analysis.

Costs of Changing Output

Frequently, researchers estimate an inventory mode! which allows for costs of
changing output. See e.g. Blanchard [1983], Eichenbaum [1989], Ramey [1991] and West
[1986]. Such costs may be due to costs of changing underlying inputs such as labor. To
incorporate costs of changing output into the model, assume now that production costs

are given by
1+2 1 2 . i
AYipe Yigsm1) = (4T )Y,y 45 Y0y, Foa(Yips = Yigoo)” 6m>0 (2.1)

where C(Y,, ., Y,,, ;) denotes the cost of producing Y4, at t+s given that output the
previous period is Y,,, ;; [y, is again given by (3.15). Strictly convex costs of
changing output create an additional incentive for the firm to smooth ovutput beyond that
already contained in the rising marginal cost of the level of output. In this case, the

estimating equation becomes

98 = BPAN 0= B + B6+ (2 + B)SIN,
F1+ 820+ BA2+ B85 + A8(1 +28)IN, = N1+ 6+ (1 + 28)6)N,_,
+HAN o+ B26X, 5 — BN+ (24 B)8)X,y + (1 +28)6 + u)X, — MX,_,
= BAUW,  + AW, ~ BAULM,  + AWM~ ATV, + ATV, +c (3.18")

where now A, p=1-abe, ¥; and § = (c/m) are estimated. The model predicts that
§>0.

The results are reported in Table 6, and again we only report results for the case
where the instrument set excludes current values and materials prices are measured by

crude materials prices. This modification of the model again leaves the results of Table 3
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essentially unchanged. The estimates of § are invariably of the wrong sign and generally
are insignificant, although the estimate for nondurables is marginally significant. Not
surprisingly, the point estimates and standard errors of A, u and ¥; are very close to their
values in Table 3. Further, little change takes place in the noise ratios and the J-
statistics. We thus conclude that modifying the model to incorporate costs of changing
output does nothing to improve the fit of the model, and that once cost shocks, buffer
stock motives and stockout avoidance motives are controlled for, costs of changing output

are not evident in the data.

Underlying cost parameters

So far, we have estimated structural pal;ameters, namely A, g, and the s,
which are combinations of the - underlying cost parameters. This was done for two
reasons. First, we structured our analysis to follow in parallel to Eichenbaum [1989] in
order to contrast our results using observed cost shocks with those he obtained with
unobserved cost shocks. Second, certain combinations of parameters, .such as the stable
root of the characteristic equation, can be estimated more precisely than the underlying
cost parameters, as is evident from the wide confidence intervals that estimates of cost
parameters have produced in the literature. However, since many studies have in fact
focused on these parameters, most notably West [1986] and Ramey [1991] who both
worked with aggregate BEA data,8 it is useful to derive the underlying cost parameters

that are implied by our estimates.

To derive cost parameters, observe that (2.7) implies that the roots must satisfy
Brti=1+4p+0b (5.1)

or

8See Blanchard [1983), Kashyap and Wilcox [1992], Krane and Braun [1991], and
Schuh [1992] for studies that have estimated structural cost parameters with different
data sets.
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E=B+i-+m (5.2)

which is ratio of the slope of the marginal cost of production (%) to the slope of marginal
inventory holding costs (b). As is well known, only relative convexities, not individual

cost parameters, are identified. Further, from u = 1 — abc, we have that

l—p
a=— (5.3)
which is the target-inventory sales ratio, which is identified. Finally, from Y, =0, we

have that
f= ot (5.4)

which is the response of the marginal production cost to a change in the real input price

relative to marginal inventory holding costs.

The cost parameters together with standard errors (in parentheses) are presented
in Table 7. The table uses the results of Table 3 with instrument set 4, which represents
our preferred set of results, and Table 6, to derive underlying cost parameters. Recall
that Tables 3 and 6 report respectively estimates of models excluding and including
adjustment costs to changing output. As the table indicates, the marginal cost of
production relative to marginal inventory holding costs is positive and quantitatively
similar in all industries. Furthermore, not surprisingly, given the literature that has
estimated cost function. parameters, the confidence intervals for the estimates of the slope
of relative marginal production cost are considerably wider than those for A, which
highlights an advantage of estimating certain combinations of underlying cost
parameters, such as the stable root of the characteristic equation. Still, the estimates of

the relative marginal production cost, %, are generally significant at the 5% level for the
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parameters derived from Table 3, which are our preferred estimates, and at least at the
10% level for those derived from Table 6. Sirnilarly, the target inventory-sales ratios are
plausible, indicating that firms in most industries shoot for target inventories of just
under 1 month’s sales, with exceptions for rubber and perhaps petroleum. Finally, the
relative marginal cost of a change in the i’th real input price is generally positive and
frequently significant, though the quantitative magnitudes vary a good deal across

industries.

Of particular interest is the sign of the marginal cost of production, which
indicates whether the industry productioh function exhibits increasing or decreasing
marginal costs. The quantitative magnitude of marginal production cost depends on the
particular normalization used.® Consider first the normalization b =1, which was
considered by Ramey [1991]. It is immediately evident from Table 7, whether one uses
Table 3 or Table 6 as the source of underlying cost parameters, that marginal cost is
positive and generally significant in all industries, contrary to Ramey’s original results.
It is also useful to recognize that in a model with adjustment costs the change in total
cost due to a change in current production has slope (1+ﬂ)z—%+%c. As the table
indicates, under the normalization that b =1, this slope is also positive and generally
significant at the 10% level in all industries. An alternative normalization, advocated by

West [1986], is that (1 + ﬁ)%-%—% = 1. The results for this case are presented in the last 2

columns of Table 7. In the model estimated in Table 3, which ignores adjustment costs’

to changing output, we assumed that -,lﬁ =0, which under the West normalization implies
that %: 1. To better gauge the impact of this normalization, we use the model and the
results of Table 6, which are presented in the bottom row of each industry of Table 7. As
the column for % in the table indicates, the marginal cost of production is still positive

and often significant in all industries. Overall, then, we conclude that our results are

9Note that we are not presenting estimates of cost function parameters estimated
under different normalizations. Rather, we are taking our estimates of the slopes of
relative marginal cost derived from our estimates of A, g, 6, and the ¥’s and exploring
the implications for our parameter estimates of different normalizations that have been
used in the literature.
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evidence in favor of rising marginal cost.

5. Summary and conclusions

In this paper, we have attempted to identify the sources and magnitude of
misspecification or noise in various forms of the inventory production smoothing model.
We do this by considering the impact of a buffer stock motive, a stockout avoidance
motive and observable cost shocks on the goodness of fit of the model. An innovation of
the paper is that we assess goodness of fit both in terms of a noise ratio which measures
the contribution of model noise to the interactions of inventories, sales and costs shocks,

as well as through specification tests of the model.

Our conclusions are fourfold. First, we have identified substantial noise in the
pure production smoothing model where firms do not use inventories to buffer current
shocks, avoid stockouts or smooth cost shocks to accumulate inventories. Over 50% of
the variance of estimated Euler equation forecast errors can be attributed to model noise
in this case. When an incentive to buffer current shocks is incorporated into the model,
the amount of model noise drops dramatically, to 10%-15% of the total variance. The
model, however, is still rejected in formal hypothesis testing. Second, we found some
evidence that the stockout avoidance motive provides additional power in explaining
model noise. The combination of buffer stock and stockout avoidance motives eliminated
some of the dramatic rejections reported by Eichenbaum [1989] and others in the
literature. Third, we have shown that the remaining noise in the model can be well
explained by observable cost shocks. Cost shocks based on crude material prices, wage
rates and energy prices in conjunction with the buffer stock and stockout avoidance
motives eliminated all rejections of the model and generated very low point estimates of
model noise. Finally, and more generally, the paper illustrates the usefulness of the noise
ratio as a metric for assessing the degree to which Euler equations approximate the

observed data, and should be useful in other studies as well.



Collectively, these results suggest that a generalized rational expectations

production smoothing model can well explain observed inventory movements.
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Table 1
Pure Production Smoothing ¥odel

Industry A i J-Stat!
Nondurables .
Inst. Set 1 . 547 .490 96.48
(.037) .
Inst. Set 2 .658 .129 43.51
(.052)
Chemicals N
Inst. Set 1 .634 .426 81.50
(.034) i
Inst. Set 2 .700 .120 37.82
(.042)
Food .
Inst. Set 1 .489 577 74.22
{.040)
*
Inst. Set 2 .681 .072 17.90
(.080)
Petroleum
*x
Inst. Set 1 .448 .591 90.99
(.040)
*
Inst. Set 2 .666 .037 11.27
(.066)
Rubber
*
Inst. Set 1 . .547 .520 88.82
(.034)
* .
Inst. Set 2 .692 L1135 28.55
(.073)

Inst. Set 1: N, N Nt—?’ Nt—3’ Xt, Xt—l’ Xt—2’ Xt_3, constant

1 Tt-1
Inst. Set 2: Nt—l’ Nt—?’ Nt—B’ Xt—l’ xt—2’ Xt_3, constant

1The asterisk denotes that the overidentifying restrictions of the
model are rejected at the .05 level of significance.



Table 2
Stockout Avoidance Yodel

Industry i u NR Jstat!
Nondurables .
Inst. Set 1 1.920 .855 .524 85.21

, (.142) (.033) R
Inst. Set 2 .720 .944 078 25.78
(.054) (.024)

Chemicals
*
Inst. Set 1 .697 .923 .339 53.83
(.035) (.023) .
Inst. Set 2 .743 .922 .090 17.96
(.044) (.025)

Food .
Inst. Set 1 1.923 .729 © 432 60.87
(.133) (.049)

Inst. Set 2 . 742 .879 .025 6.53
(.082) (.056)

Petroleum
*
Inst. Set 1 .603 .991 .396 66.16
(.051) (.027)
Inst. Set 2 L7132 .975 .021 6.75
(.089) (.026)
Rubber
. *
Inst. Set 1 .638 .950 .345 70.40
(.035) (.026) )
Inst. Set 2 L7558 .964 .058 17.36

(.080) (.025)

Inst. Set 1: Nt’ Nt—l’ Nt—2’ Nt—3’ Xt, xt—l’ Xt_2, xt—3’ constant
Inst. Set 2: Ny, N oy N 95 X;y» X o, X _5, constant

1The asterisk denotes that the overidentifying restrictions of the model
are rejected at the .05 level of significance,
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