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1. Introduction.

This paper identifies a particular type of technology shock and measures
its contribution to generating fluctuations in aggregates. The shock to
technology we focus on is the invention of new products, some of which are
intermediate goods and can therefore be interpreted as shocks to the production
function for final goods. Microecomomic data tell us how fast these products
spread after they are invented, and how important they eventually become. From
this we infer how. much recurring invention of new products contributes to
fluctuations of aggregate output,

Romer (1987) and other growth theorists have considered models in which the
number of intermediate goods increases over time. In these models, goods are
symmetric, and they penetrate the market instantaneosly. The same is true in
models. in which che number of goods fluctuates over the business cycle, models
such as Devereux et al. (1993); in these models too, products are all the same,
and there are no diffusion lags. In our paper we relax these two assumptions.
We then use some U.S. data on newly-imvented products to estimate the speed of
their diffusion, and the degree of heterogeneity in the products’ importance.

We find that neither symmetry of products nor their instantaneous diffusion
are good approximations to reality. First, mew products. differ greatly in
importance: The coefficient of wvariation of the distribution of quality over
products is estimated at 0.56. And second, if there is something that one can
call "eventual market penetration" of a product, the typical product approaches

this wvalue very slowly -- at the rate of 4.3% per year. The diffusion of new
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products is, in cother words, quite slow.

Given these estimates, we then ask how much of the fluctuation in per-
capita GNP of the advanced countries is attributable to this type of shock. 1In
our model, the persistence of the output effects of the technology shock depends
on the speed of diffusion. The faster the usage of a new product diffuses
throughout the economy, the less persistent its effect on output will be. Since
we find that new products are slow to penetrate the market, the shock explains
only the relatively highly persistent compenent of the business cycle. It does
not generate movements at high frequencies. A really great new product like the
computer will eventually raise output by a'lot once it is in widespread use. But
by the time it has spread, newer products will have appeared on the scene; the
cumulative effect of these shocks is therefore a combination of many independent
influences, and these are subjected toc too much averaging to have an aggregate
impact at high frequencies. 1In sum, the invention of new products can explain
only low frequency movements in aggregates.

High frequency movements in aggregates can still fesult from process
innovations that affect many goods simultaneously. We have not ruled out the
possibility that widely applied process innovations may explain some high
frequency movements in aggregates. And then there are other shocks that the
model leaves out: Policy shocks, legal shocks, shocks to import prices, shocks
to management techniques, and so on. Many of these occur at higher frequencies,
and they presumably can account for the discrepancy between our model and -the

data.



2. Diffusion Lags and Aggregate Qutput.

Assume the following aggregate production function:
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Here L, is the labor input, q,, is the quantity of the i'® intermediate input,
and &, 1s the number of intermediate inputs available at t. Romer (1987) uses
such a production function. We depart from his formulation in that we identify
the intermediate inputs = g; with inventions of different quality that are
gradually adopted by producers.

If market size does not affect a product’s rate of adoption, g, will be
proportional t¢ the country’s number of producers, or population, L,. And if

product i was introduced at date s;, its output at t should also depend on its

age, t - s.. Thus we shall write

Hew products differ in their importance; to capture such differences let

Bt - s)% = @t -5, 0., € . @



The shock 4,

product-specific, independent over i and t, with CD
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at t of products of vintage s

affects all products of wvintage s, while the shock

€5y 1s

F G(e). The average ocutput

f¢<:—s, g, €)dG(e) = flt-s, §) (3>
Because a continuum of products of measure 1 arrives at each date, the e¢’s will
wash out, and average output coincides with total output. Per capita income then
is
A[

Yo v, = If(t-s,, 9 )di

Z Tt i1 Vs, .
Now suppose that A, grows exogenously at the rate X, and normalize A, to
equal unity. Then 4, = e, Changing the variable of integration from the

product name 1 to its vintage s, where i = &%,

@
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where )«l.e‘”f(r, 6,,7dr is a
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moving average

is intuitive: There are xe** " products of age

vields .
At
s 0o )dr o= eK (4)
of past #'s. Equation (&)
7, and each contributes an



amount f(r, #._.). We then just add over all ages.

Proposition 1: If the {4,} process is stationary, log y, is stationary around

The long-run growth rate is A; it does not depend on f. Diffusion lags
therefore have only level effects in the long run.
To see how diffusion lags affect the cyclical properties of y,, the X,

component, assume that

I ~e g for 7 >0

o~

3

The parameter § denotes the product’s eventual (r = =) market size.! A large

f, indicates that products of vintage s, and that vintage only, will eventually
become more important. The parameter p measures the speed of diffusion -- it is
the same for each product.

Substitute for- ¢ - into eq. (3), and assume that Ie‘dc(e) =1. Then

£lr, 8§y = (1 - e*7)F. Eg. (4) then implies

! Therefore products last for ever. This parametrization seems apt given
the level of aggrepgation: The Gort-Klepper products show little tendency of
disappearing as they age. But at lower levels of aggregation, there are bound

to be many products that eventually disappear.
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%, = Al'e-“(l - e™y6, dr . 6
The process {§,) is assumed to be stationary and serially uncorrelated:
R - 7}
E(4) = p and  Cov(d,, 8,) = (¢

The level effect of the diffusion rate can be measured by the long-run mean of

X,, which is increasing in the speed of diffusion p:?

The appendix shows that for each k = 0,

Cov(In¥X,, InX, ,) = '4)2_/\2(?;;;_;;8_)‘]‘ 1+ %(l—e"’k) R (8)

vhere ¥ = o/p 1s the coefficient of variation of the distribution of #. The

? The expressions that we shall now present are valid (in roughly the same
form) in discrete time and with discrete numbers of innovations. We use
continuous time here because it leads to simpler formulas.
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While r, decreases with p for all k, it decreases with X only for large
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k, and i
of lu y tends to ./\0‘2/2}12, Thus faster diffusion reduces persistence, but it
raises the steady-state variance around trend.

Since In X% equals de-trended In y,, we shall evaluate the model by

comparing the predicted autcocovariances in eq. (8) to those of de-trended output,

To do so, we need estimates of 4, ¥, and XA. The first two are estimated using

data, the rhird using aggregate data.



3. Estimates of p» and ¥: The Gort-Klepper Data.

The data assembled by Gort and Klepper (1982) document the historical
development of 46 new products in terms of their sales, price, output, and
numbers of producers over (part of) the life-cycle of each product. Table 1
lists the 21 products for which we have sales data. Most of them seem to qualify
as intermediate inputs in the sense of eq. (1). Since the number of products is
not that large, we analyze them all. Column 1 tells us when each product was
introduced into the market. There are old products such as records, dating from
1887, as well as relatively new ones such as lasers, which became available in
1960. The last year for which data were collected was 1972 and, in general,
sales and quantity of output figures were available for only a part of the life
of the product. The age range for which there are data appears in the second
column.

The last three columns of table 1 report our estimates of the product-
specific #’'s. The production function in (1) treats intermediate products as
exchangeable inputs: One unit of product i and twe units of #roduct j can produce
as much final output as two units of product i and one unit of product j. Now
computers and ballpoint pens are surely not exchangeable in this sense, and
something must be done to bring them intc common units. We shall do this by
expressing everything in units of the 1967 "consumption good", sc that for q;¢
we shall use product i’'s sales at t, deflated to 1967 dollars by the Wholesale
Price Index. Gort and Klepper discuss their data at length. One property that

they point to is that on average there is a rapid decline in the rate at which



Product Initial Age g 5.D,
Year Range of 4 éo = max [&}A
t | L
1. Computers 1935 20-36 3.50 1.28 4.81
2. Crystals, Piezo 1936 25-36 0.65 0.05 69
3. DDT 1943 1-27 0.58 0.10 63
4. Electrocardiographs 1914 47-58  0.36 0.05 .38
5. Electric Blankets 1911 5-61 0.76 0.07 .80
6. Electric Shavers 1930 1-42 0.87 0.21 .97
1 7. Fluorescenc Lamps 1938 0-3%  0.87 0.17 98
8. Freezers, Home and 1929 18-43 1.39. 0.19 1.47
Farm
9. Gyroscopes 1911 52-61  0.48 0.08 .52
10. Lasers 1960 3-11 0.59 0.23 .80
11. Missiles, Guided 1942 9-30 2.37 -0.62 2.77
12. Motors, Outboard 1908 42-64  1.00 0.10 1.06
13. Penicillin 1943 2-28 0.95 0.30 1.03
14. Pens, Ballpoint 1945 6-27 0.83 0.11 .89
15. Records, Phonograph 1887 34-85  1.58 0.44 1.77
‘ 16. Streptomycin 1945 1-27 0.67 0.39 .71
: 17. Styrene 1935 8-36 0.85 G.08 .88
18. Tapeg, Recording 1947 14-25 0.99 0.09 1.03
; 19. Television, 1929 17-43 2.08 0.50 2.37
: Apparatus,; Parts
20, Transistors 1948 6-24 1.17 0.31 1.35
21. Tubes, Cathode Ray 1922 26-50.1.09  0.24 1.21
Average

! Notes: For each product, the size of the sample is the number of years included
in the age range, including the end years. So for computers, for example, the
size of the sample is 17.

Table 1: The Gort-Klepper Products.




sales and guantity of output grow with the age of the product, and that their
growth rates asymptote to zero. The functional form with this property is in eq.

(5); it implies that

(2,,/1)% = [1 - expl-p(t-s) + EiQ]es for t = s, (10)

where the q; are sales in 1967 dollars, L is the population of the US, and a =
1/3. Since the time series for each product is not too long, and since we assume
that the parameter p is the same over products, we shall estimate p by pooling
the data.

Estimating p and 4; (for each 1) requires a non-linear procedure. We
proceed in two steps: first we obtain a consistent estimator of §; and then use
it, and the value of «a, to transform the nonlinear equation into a linear one.
The second step is to estimate p by linear OLS on a transformed version of
(10). Given an estimate of p, we can reestimate § and iterate this two-step
procedure till convergence. It turned out, however, that the initial and first-
round estimates of 4 were quite similar so that we did not iterate.

Our initial estimate of §; was the maximal value over t of (g;,/L;)%
Let T, be the largest age for which data are available for product i. Since
(qs4/Le}® mever exceeds 4, and approaches it with probability one as t gets
large, this is a consistent estimator of 4, as T, increases. Denote the

initial estimate by 4,°. 1t is reported in the last column of table 1. The

second step 1s to estimate the OLS regression py = v - PAGE;, + u;,, where p;,

10



= log {1 - (q:/L)%/6.°], AGE = t - s, u; equals ¢, plus an additional
error term generated by estimating §; and -y captures the nonzerc mean of «.
The OLS estimate of p from the pooled sample, 499 observations, is 0.043

with a standard deviation of 0.013. The first-round estimator of §; 1is
(4/L)"

— -, where p,, is the predicted p,,
[1 - exp(p;,)}

obtained by solving for ém =

from the pooled regression. We then average over all ages t to obtain an

estimate of §;. This estimate and its standard deviation within each product
are in columns 3 and 4 of the Table. Finally, in column 5 we present the initial

estimate of 4, namely Biu; the two sets of estimates do not differ much.

For p  we used the average of the individual él’s, namely 1.16, although
2

this does not differ much from the pooled estimate. The estimate of o“ is the

between-products variance of §,. If we regard the within-variance component as
the variance of & measurement error then this should be subtracted from the

3

estimated total wvariance of 4. Its coefficient of variation, ¢, therefore

is 0.56. The frequency distribution of § is in Figure 1.%

his adjustment 1s needed because the §; are estimates so-that their

i
!

variance partly reflects sampling wvariability.

* Being based on BLS figures, the Gort-Klepper sales data do not fully
control for qualitvy change that is passed on to the consumer and therefore not
fully reflected in sales. Adjusting for this could make a huge difference to our
estimates of some of the §'s, especially for computers (Gordon, 1990). This
underestimate of quality change was the largest for those products for which our
éi is the largest, such as computers, television, and transistors. On these
grounds, ¥ is probably underestimated.

But a second consideration suggests that % is overestimated. Several
inventions may be lumped together and labelled as just cne invention. Perhaps
computers should count as several inventions. Arbitrary classification errors

therefore would lead to an overestimate of 3. These are two reasons why it is

W

hard to assign a standard error to our estimate of ¥ reported in table
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Figure 1: Frequency Distribution of é {(in 1967 $’s per capita)

Figure 2 provides information that bears on our assumption that § is
stationary and, indeed, serially uncorrelated. The figure plots the size of ¢
on its vintage, and it reveals neither trend nor autocorrelation, which is

consistent with the assumptions in eq. (7).

@)
>

Figure 2: The estimated time series #
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4. Evaluating the Model: The G-7 Data.

In our model, only one shock drives per capita GNP.  But actual data
respond to other influences as well. Our aim is to find out how important our
technology shock is relative to these other factors. Specifically, we want to
measure its contribution to the time-series properties of per capita GNP in the
G-7 countries. These are countries for which applying our US-based estimates of
p and Y seems justifiable to us.

The G-7 income data are from the International Monetary Funds's
International Financial Statistics. These are post-war quarterly series for
Gross National product (GNP} in four countries (Canada, Germany, Japan and the
United States), and for Gross domestic product (GDP) in three countries (France,
Italy and the United Kingdom). All series are seasonally adjusted. The sample
periods are shown in Table A.1.

Proposition 1 states that the predicted long-run growth rate of y is A,
and so we have set i equal to the average growth rate of per-capita incomes,
which is 2.9 percent per year. The Gort-Klepper data have provided us with

estimates of p and ¢ summarized in Table 2.

Parameter Estimate Standard Errox
X 0.029 0.002
G.043 G.013
¥ 0.56 n.a.

Table Z: Parameter Estimates and their Standard Errors.
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The model precisely predicts the autocovariance and autocorrelation of
detrended 1n y., in equations (8) and {9). We shall focus on the autocovariance
function because it easily reveals what our model accomplishes and where it falls
short. It falls short at high frequencies because new products diffuse slowly
and because the model omits all other temporary shocks.

The autocovariance function of detrended log y, is based on the OLS
residuals from a regression of 1In y, on time. Averaging over all 7 countries
we get (k) = Z,v;(k)/7. Figure 3 plots (k) on k ranging from 0O o 10
years. Using the estimates of X, p and ¢ we compute the predicted (k)
also plotted in figure 3.°

The explanatory power of the model rises with the length of the lag: it

explains 7 percent at lag zero, 16 percent at lag 5, and most of it at lag 10
Evidently, it leaves most high frequency variation unexplained.
The respomse of v to an impulse in #. In equation (6), the weight on 6, is

2e™(1 - 7). Dividing it by our estimate of ¢ yields the unimodal impulse

response function shown in figure 3. The peak takes place at t = p lln[(3+p)/2]
afrer which it declines and converges to zero. The estimates imply that the
impulse response function peaks at about twenty seven years, a surprisingly large
number that underlies the high persistence of In y, in this trend-stationary
model. This differs from the conventional model in which the response decays

much faster.®

5 The figure also reports a 95 percent confidence interval around the
predicted v(k), as explained in the appendix.

® Technological shocks do not have permanent effects on ¥, because the
permanent gbsolute effect of §, on output shrinks relative to y, as the latter

grows without bound. Marco Lippi and Lucrezias Reichlin (1990) alsc discuss th

o
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Autocovariance

Figure 3: Autocovariances
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Figure 4: The response to a one standard-devation impulse in # at date zerc.

5. Comparison with Other Approaches.

The dominant approach to analyzing the effect of technology shocks on

aggregates i1s the real business cycle model summarized by Prescott (1986). It

treats the state of technology as an unobservable process, and aims to produce

reasonable-looking business cycle behavior with a simple model shocked by a

first-order autoregressive technology process. In spite of its success in this

regard, a drawback of the approach is that it treats technology as a residual.

A second approach pursues Schumpeter’s suggestion that business cycles may

be driven by "bunching" of innovations. In our terminology this amounts to

fluctuations in X. Since direct measures of the frequency of inventions such

as aggregate patent statistics and direct counts of inmovations do fluctuate,
Kleinknecht {1987) and others have argued that bunching of innovations does

indeed occur, although they have had less success in tying the invention process

to the business cycle. A problem with this approach is that the economic value

effect that diffusion lags might have on the time series properties of GNP.

et
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of patents and "inventions” may itself change in such a way as to offset, at
least in part, the effect that fluctuations in their number have on aggregates.
While the Gort-Klepper data do not solve this problem entirely (see note 43, they
do provide information on the economic value of the innovations.

Our approach incorperates elements of both of the above. As in the first
approach, we quantify the implications of the moel, and compare them to the data
in second moment form. Moreover, we derive an exact relation between the speed
of diffusion of innovations and the persistence of output fluctuations. But as

in the second approach, we measure technology directly and not as a residual.

6. Conclusion

We find that product innovations explain fluctuations at lower frequencies
fairly well, but that it has little to do with fluctuations at higher
frequencies. This finding is Eased on the Gort-Klepper data and on post-war
aggregate data from the G-7 countries. One must therefore resist generalizing
it ro situations where that evidence does not apply.

We feel, however, that our conclusions are unlikely'to be overturned by
other data, First, output fluctuations are both less variable and more
persistent in the developed world than elsewhere, so that bringing in more
countries into the process of estimating the autocovariance function displayed
in figure 2 would only show an even steeper empirical autocovariance. For the

model to a better job at higher frequencies but not overpredict at lower ones,

we would need a much higher estimate of the speed of diffusion of new products.
But whatever scattered evidence there is on the diffusion of other products {or,

for that matter process inventions as well) indicates a speed of diffusion much

16



like that of the Gort-Klepper products.7

Since the diffusion of new products is slow, we can be confident that the
predicted autocovariance function must be fairly flat -- as in figure 3. On the
other hand, we are less sure about the intercept of the predicted autecovariance.
This is because, as table 3 indicates, we are not too confident ahbout our
estimate of ¥: The data may understate quality change of some key products, and
the BLS may have misclassified or wrongly lumped products together. Therefore,
further attempts to measure quality differences among distinct new products would

shed more light on the link between product innovation and the business cycle,

7 The literature on diffusion often calculates the statistic "at", defined
to be the time it takes a new product or process to grow between 10% and 90%
diffusion. Our estimate of p = 0.043 implies that our At 1s 30 years. The
most comprehensive study of diffusion (of 265 inmoavtions) in the U.S5. seems to
be the one by Grubler (1991). He reports that the largest number of diffusion
processes have At’s on the order of 15-30 years, and the sample mean At 1is
41 years., Our estimate of the speed of diffusion is therefore reasonable.
Unfortunately we are unable to check our estimate of ¢ against his sample
because it does not contain information about the value of the inventions. This

is why the Gort-Klepper sample is so valuable.
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Appendix A: Calculating Cov(¥,. X,uJ).

let a, = e (1-e*"). Then “

Cov(X, 4, %) = ACov ljajhk”dr, iaTGL_TdT
But if we change variables from r to s =7 - k, then7 =0 = s = -k, 7 = =

s = =, t+k-7 = t-s, and 7 = k+s. Therefore, since ds = dr,

’

@ £l

32Cov J;as afe-gds, iasﬁt_sds

n

Cov(X, 40 X

@

B
2 " 2
= X“Cov Ias‘kﬁb_sds, a2 f,_.ds

@ »

= ;\2‘721[&5 3 ds = )\Zazle Mg 25 (] g TPRs)y (1 g "PS)ds
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= A%gle ik _];_ N o TPk L - —l.
2X 2X +p 2X+p 2(X+p)
r Y
o 22g2 Mk i - ey _ AN L e
23 (21 +p) (2x+p)2(X+p) 2(2x+p) | A x+ep |
2,2, -ak
rotpe + i(l-e_"k)] .

- {1
200 +p) (22 +p) P

Moreover, for any two variables u and v, Cov(ln u, 1ln v) = Gov(u, v)/E{u)E(v)

This approximation underlies the expression in eq. (8).

Computation of Confidence Intervals. Write Cov (In X, In X,4) = v(k; §) where

6 1is the vector of parameters (X, p, ¥). Let hats denote estimated values. The



variance of +y(k; §) is gotten from the variance of the linear Taylor expansion

of y(k; &) around . This results in an estimated variance given by
g(6) Qg(sy, where g{(6). 1is the column vector of partial derivatives of «y(k;

5§y evaluated at §  and O 1is . the 3 % 3 covariance matrix of §. The diagonal

elements of O were taken from the third column of Table 2, assuming that the

s zero, which means that the reported bands are tighter than

e

variance of
they would be. ([Footnote 4 mentions two reasons -- unmeasured qualit; change and
classification error -- why some of the §;  may be mismeasured; and why 1it,

o assign a standard error to our estimate of .} The off-

g

therefore, is hard
diagonal elements of G are assumed to be zero. The confidence interval for the
true autocovariance is based on using the normal distribution as an approximation
to the true distribution of ~v(k, §y. The 95 percent confidence interval is then

v(k; &) £ 1.96 (g(5) ag(s)i¥e.

Country Sample Number of Observations
Canada (GHP) 1957:1-1991:2 138
France (GDP) 1970:1-1991:2 86
Germany {GHP) 196G:1-1991:2 126
taly (GDPy 1960:1-1991:1 125
Japan (GNP} 1957:1-1991:1 137
United Kingdom {GDP) 1957:1-1991:1 137
United States (GHNP) 1957:1-1991:2 138

Table Sample Periods and Number of Observations.




