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I Introduction

Most theoretical analyses of capital investment decisions by firms under
uncertainty have focused either on irreversibility of investment or on convex
costs of adjustment.! Recently, Abel and Eberly (1993) have shown that
an appropriately specified investment cost function can incorporate convex
costs of adjustment as well as irreversibility. In this framework, investment
is a nondecreasing function of the shadow price of capital, denoted as ¢. In
the irreversible investment case, investment is a strictly increasing function
of ¢ for values of ¢ above a certain threshold value; for values of ¢ below this
threshold value, investment equals zero, and negative investment is never
optimal.

In this paper we present a parametric example of a firm facing convex
costs of adjustment and irreversibility, and we provide closed-form solutions
for the investment and market value of the firm. To our knowledge, the
existing literature does not contain any closed-form solutions to problems
of this type. Specifically, we examine a continuous-time stochastic model of
an infinite-horizon, risk-neutral, competitive firm with a constant returns
to scale production function. In this case, the value of the firm is a linear
function of the firm’s capital stock. The slope, g, of the value function with
respect to capital is the shadow price of capital which governs investment
decisions. The constant term in the value function is the expected present
value of rents to the adjustment technology.

We proceed by first analyzing the investment and market value of a
competitive firm that faces convex adjustment costs and has the possibility
of undertaking negative gross investment. Our motivation for starting with
the case of reversible investment is based on substantive as well as expo-
sitional considerations. First, the model of reversible investment and mar-
ket value that we analyze is richer than existing models that have yielded
closed- form solutions. Specifically, the models in Abel (1983, 1985) specify
convex costs of adjustment but do not include a cost of purchasing capital

!Eisner and Strotz (1963), Lucas (1967), Gould (1968), and Treadway
(1969) examined investment under costs of adjustment. Mussa (1977) and
Hayashi (1982) discussed the role of adjustment costs in Tobin’s (1969) ¢
theory of investment under certainty, and Abel (1983, 1985) discussed this
role under uncertainty. Investment under an irreversibility constraint was
introduced by Arrow (1968) and was later studied by Bernanke (1983), Mc-
Donald and Siegel (1986), Bertola (1987), Dixit (1989, 1991), and Pindyck.
(1988). See Pindyck (1991) for a review of the irreversibility literature, and
Dixit and Pindyck (1992) for an extended instructive treatment. In ad-
dition, Lucas and Prescott (1971) examined investment under uncertainty
with both costs of adjustment and irreversibility, though irreversibility was
not a focus of their paper. Indeed, they did not even comment on the
assumption of irreversibility in their model.



goods. By not including a cost of purchasing capital and by specifying the
marginal adjustment cost to be zero at zero investment, those models are
set up so that a positive rate of investment is always optimal. However,
once we include the realistic assumption that there is a positive purchase
price of capital, there will be situations in which it is optimal for the rate
of investment to be zero or negative. Caballero (1991) specifies the cost of
investment to include a positive purchase price of capital as well as con-
vex costs of adjustment, but does not provide a closed-form solution for
investment and the market value of the firm as we do.

Second, in both the reversible and irreversible investment cases, invest-
ment can be expressed as a non-decreasing of function of ¢, the shadow price
of capital. Technically, ¢ is derived as the solution to a differential equa-~
tion. The particular solution to the differential equation is the expected
present value of marginal products, but the general solution also contains
“bubbles” which are unrelated to the fundamentals. Previous analyses of
closed-form solutions for firms facing convex costs of adjustment have ig-
nored this component of the solution. We show that, in fact, the conditions
of optimality require these “bubble terms” to be absent from the solution
for g. However, the value of the firm may contain bubbles, as we explain.

Third, much of the analytic apparatus needed for the case of irreversible
investment is the same as for the case of reversible investment. Because
the case of reversible investment is much less complicated, it provides a
useful opportunity for presenting the model, its manipulation, and its basic
results.

Fourth, the case of reversible investment provides a benchmark against
which to compare investment and market value in the presence of irre-
versibility. We will show that, in our parametric example, the value of ¢ is
unaffected by the presence or absence of irreversibility. For values of ¢ high
enough to lead to positive investment in the reversible case, the optimal rate
of investment is unaffected by the presence of irreversibility. For values of
¢ low enough to lead to negative investment in the reversible case, optimal
investment equals zero in the irreversible case. Although irreversibility does
not affect the value of ¢, it does reduce the market value of the firm.

Section II presents the optimization problem of the competitive firm.
The optimal rate of investment and the value of the firm in the case of
reversible investment are derived in section III. Irreversibility is introduced
and analyzed in section IV. Concluding remarks are presented in section

V.



II The Optimization Problem of the Com-
petitive Firm

II.1  The price process

We consider a continuous-time model of a competitive firm that sells its
output at time t at an exogenously given price p,. The price p; evolves
according to geometric Brownian motion

d
P~ pdt+odz, po>0 (1)

Pt
where p is the instantaneous drift, o is the instantaneous standard devia-
tion, and dz; is an increment to a standard Wiener process.

Later in our analysis it will be convenient to have expressions for the
expected present value of p* for various A. Under the geometric Brownian
motion assumption in equation (1), E.{p},,} grows at a constant rate Au+
142X(A—1) as 5 increases for a given t. Thus, the present value of E;{p}y,}
discounted to time ¢ at the rate R is

e_R’Et{pQ\+,} - p;\ e Rs e[)“‘+(1/2)"2"()“1)]' — pt)\ o= (MiR)s , (2)

where

FOGR =R- -1’22 -1) (3)

is the growth-rate-adjusted discount rate, equal to the discount rate R

_minus the expected growth rate of p*, Ay + %0'2/\(/\ — 1). The growth-

rate-adjusted discount rate, f(A; R) is a (concave) quadratic function of A.
Notice that when R > 0, the equation f(A; R) = 0 has two distinct roots,
one positive and one negative.

Define PVi[p*; R] to be the present value (discounted at rate R) of p*
from time ¢t onward. Formally, we have

o0 oo A

PVi[p*; R] = E, {/ Piys e'R‘ds} =p}Ey {/0 e—/(A;R)sds} - f(f\)fR)
0 )

(4)

where the second equality in equation (4) follows from equations (2) and

(3)-

II.2 The Operating Profit and Investment Cost Func-
tions

The firm uses capital, K¢, and labor, Ly, to produce output, Y;, according to
a Cobb-Douglas production function Y; = L¥ K{ ™, where the labor share o
satisfies 0 < o < 1. The firm pays a fixed wage w so that its operating profit
at time t, which equals revenue minus wages, is pthKtl'“ —wL;. Because

labor can be costlessly and instantaneously adjusted, the firm chooses L



to maximize the instantaneous operating profit at time ¢. The resulting
maximized instantaneous operating profit, 7( Ky, p;), is

“(Kt’pt) = hpto‘[{t ) (5)

where
=T-a
and
h=6"%(0-1)"tuw'"?>0.

Notice that hp? is the marginal revenue product of capital at time ¢.

The firm’s capital stock increases as a result of gross investment I;, and
decreases as a result of depreciation at a constant rate § > 0. Thus, the
change in the capital stock is

dK, = (I, — 6K,)dt . (6)

Let c(I;) denote the total cost of investing at rate I, and assume that
c(IL) is strictly convex.

II1.3 'The Bellman Equation

We assume that the firm is risk-neutral and maximizes the expected present
value of its cash flow. Let r > 0 be the constant rate of discount. Let
V(Ky,pt) denote the expected present value of cash flow from time ¢ on-
ward. Thus V(K p;) is the value of the firm’s objective function at time
t. Formally, we have

[¢ o}
V(Ki,ps) = fnax, E; { / (hply Kiys —c(.r,+,)]e-"ds} . (D
l+l ]
The fundamental value of the firm at time ¢ is V(K:, pt).
The fundamental value of the firm satisfies the following Bellman equa-
tion (from this point on, we will suppress time subscripts unless they are
needed for clarity):

rV(K,p) = max [hpaK c(I)+ E{dV}] . (8)

The right hand side of equation (8) contains the two components of
the expected return on the firm over a short interval of time: the instanta-
neous net cash flow, hp? K —¢(I), and the expected capital gain, E{dV}/dt.
Equation (8) requires that the sum of these components equals the required
return rV (K, p).

The expected capital gain is calculated using Ito’s Lemma and equa-
tions (6) and (1), which describe the evolution of K and p, to obtain

E{dV)
dt

= (I = 8K)Vi + upVp + 30752V, . (9)



It will turn out that investment depends on Vi, the marginal valuation
of a unit of installed capital. Anticipating this result and emphasizing the
relation to the ¢ theory of investment, we define ¢ = Vk. Notice that ¢ is
the shadow value of installed capital, and is non-negative. Substituting ¢
for Vk in equation (9), and then substituting equation (9) into equation
(8) yields

rV(K,p) = max [Rp’K — c(I) + (I — 6K)q + ppVp + 20%p*V,p] . (10)

We can re-write equation (10) by “maximizing out” the rate of invest-
ment to obtain

rV(K,p) = hp’ K + ¢ — 6Kq + ppV, + 10?p?V;, | (11)

where

¢ = max [Tq—¢(I)] . (12)

Note that ¢ is the maximized value of rents accruing to the investment
technology from undertaking investment at rate I. When the firm invests
at rate I over an interval d¢ of time, it acquires Idt units of capital. Because
g is the shadow price of this capital, the firm acquires capital worth ¢Idt,
but pays ¢(I)dt to increase its capital stock by Idt. Thus, ¢I — ¢(I) gives
the value of the rents accruing per unit time to the firm for undertaking
investment at rate I.

III Reversible Investment

In this section we focus on the case of reversible investment. We begin
in section IIL.1 by specifying an investment cost function for which the
optimial level of investment can be negative. Also in section IIL.1, we
specify the optimal rate of investment as a function of ¢. After deriving the
differential equation describing the fundamental value of the firm in section
II1.2 we then obtain ¢ as a function of p in section II[.3. The value of the
adjustment technology is derived in section I11.4.

III.1 The Investment Cost Function and the Optimal
Rate of Investment

Specify the total cost of investing at time t, c(I;) as
o(L) = bLy + yI;/ Y (13)

where b > 0, v > 0, and n € {2,4,6,...}. The cost of undertaking invest-
ment, ¢(I;), has two components: (1) bl; is the cost of purchasing new
capital at a fixed price of b per unit; for negative gross investment, bI; < 0



and represents the proceeds to the firm of selling capital at a price of b
per unit. (2) yI'®™~V is a convex cost of adjustment. Notice that when
n = 2, the cost of adjustment is vI? which is quadratic. The assumption
that n is an even positive integer insures that the adjustment cost function
yIM =1 s convex for negative I as well as for positive I. To insure a
finite fundamental value of the firm, we assume that f(nf;r) > 0.

Using the parametric specification of the cost function in (13), we can
obtain closed-form solutions for investment and the value of the firm. Using
the investment cost function in equation (13) we rewrite equation (12) as

¢ = max((¢ - b)I - 4171 (14)
The optimal rate of investment is determined by differentiating the

term in brackets on the right hand side of equation (14) with respect to I,
and setting the derivative equal to zero to obtain

n—1 n-1
I= —prt, 15
2= w-v (15)
Equation (15) indicates that investment is an increasing function of gq.
When the shadow price of capital ¢ is greater than the purchase price of
capital b, gross investment is positive. When the shadow price ¢ is less than
the sale price of capital b, the firm sells capital, and gross investment I is
negative.?
To determine the value of ¢, substitute equation (15) into equation (14)
to obtain
¢=(g-b"T (16)
where
T=(n-1)""tamy(-" 50,

Notice that the maximized value of the rents accruing to the investment
technology, ¢, is positive whenever ¢ # 5. When ¢ < b, the firm chooses a
negative rate of gross investment and earns rents by selling capital that is
worth less to the firm than the price b.

II1.2 The Fundamental Value of the Firm

We have derived the optimal rate of investment as a function of ¢, the
marginal value of installed capital. Our next step is to determine ¢ as a
function of the price of output p, and then to determine the fundamental
value of the firm V(K, p). We proceed by substituting the expression for ¢
from equation (16) into the differential equation (11) to obtain

rV(K,p) = hp’K + (¢ — b)"T — 6Kq + ppV, 4+ 1o?p*V,, . (17)

?Recall that with n even, n — 1 is odd so that (¢ — b)*~! has the same
sign as ¢ — b and is an increasing function of ¢ — b.
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We will solve this differential equation by hypothesizing that the solu-
tion is a linear function of the capital stock. Thus,

V(K,p) = ¢(p)K + G(p) (18)

where ¢(p) and G(p) are functions to be determined. To determine these
functions, substitute equation (18) into equation (17) to obtain

rqK4+rG = hpK+ (¢—b)"T —6Kq+ ppgp K + ppG,  (19)
+10%p2 g K + L0?p*Gyyp .

This differential equation must hold for all values of K. Therefore, the
terms multiplying K on the left hand side must equal the terms multiplying
K on the right hand side. In addition, the terms not involving K on the
left hand side must equal the terms not involving K on the right hand side.
These equalities yield

rg = hp® —éq+ ppg, + Lo’ pqpp (20)

and
rG = (¢ = b)"T + pupG, + L02p*Gypp - (21)

There is a recursive structure to these equations. The differential equa-
tion for ¢(p) in equation (20) does not depend on G(p), but the differential
equation for G(p) in equation (21) depends on ¢(p). Thus, we will solve
equation (20) for ¢(p) and then proceed to solve equation (21) for G(p).

II1.3 The Marginal Value of Installed Capital, ¢

The marginal value of installed capital is obtained by solving the differential
equation (20). It can be easily verified by direct substitution that a general
solution to this differential equation is

a(p) = Bp® + A1p™ + Axp™ (22)

where

h

B= f(6;r+8) g

0

and 7; > 73 are the roots of the quadratic equation f(n;r + 6) = 0.

The particular solution in equation (22), Bp®, equals the expected
present value of marginal revenue products of capital, hp?, accruing to
the undepreciated portion of a unit of currently installed capital.?

The terms A;p™ and A,p"? are solutions to the homogeneous part
of the differential equation (20). These solutions involve the roots of the

3The expected present value of marginal revenue products of capital,
hp?, accruing to the undepreciated portion of a unit of currently installed



quadratic equation f(n;r + 8) = 0. Recall that f(y;r + 6) is a strictly
concave function of 7. Note that f(0;r+6) = r+6 > 0 and, by assumption,
f(nb;r + &) = f(n#;r) + 6 > 0. Therefore, the concavity of f(mr +6)
implies that f(n;r 4+ 6) > 0 for all 5 in [0,n8]. Therefore, one root of
f(n;r 4 6) = 0 is negative and the other root is greater than nd. Recalling
that n; > 72, we have g, > nf > 20 > 0 > 5,. Notice that the expected
growth rates of A;p™ and A;p"? are both equal to r + §. We refer to these
terms as bubbles because they are unrelated to the underlying fundamentals
(marginal revenue products).

The next task is to determine the values of the coeflicients A; and
Az. The shadow price of a unit of installed capital, ¢, is non-negative.
Therefore, as we now show, neither A; nor A, can be negative. Notice that
p™ dominates both p? and p" as p becomes arbitrarily large. Thus, if A
were negative, ¢ would be negative for sufficiently large p which contradicts
the fact that ¢ is non- negative. Thus A; is not negative. Similarly, p"?
dominates both p? and p™ as p approaches zero. Thus, if A; were negative,
g would be negative for p sufficiently close to zero which contradicts the
fact that ¢ is non-negative. Thus A, is not negative.

We have argued that neither A; nor A; is negative. In Appendix B we
prove that a positive bubble in the value of ¢ (corresponding to a positive A;
or a positive Ay) is inconsistent with the solution of the firm’s maximization
problem in equation (7). Since A; and A; can be neither positive nor
negative they must equal 0. Thus, the marginal value of capital in equation
(22) simplifies to

g(p) = Bp® . (23)

Notice that the expression for ¢ does not involve any of the parame-
ters of the adjustment cost function. The value of q is simply the present
value of expected marginal revenue products, and for a competitive firm
with constant returns to scale, the marginal revenue product of capital is
exogenous. Because the path of marginal revenue products does not de-
pend on the firm’s investment, ¢ is independent of the specification of the
adjustment cost function. Also note that because p evolves according to
geometric Brownian motion with py > 0, p? cannot be negative. Thus, as
mentioned earlier, ¢ cannot be negative. .

Observe from the definition of B in equation (22) that B is an Increasing

capital is

=8 (r+6) hp{
h Uy = —=1
/o Fiee © NG
where the equality follows directly from equation (4). Note that B =
h/f(6;r + 6) is positive because A > 0 and f(8;r + §) > 0. To verify that
f(8;7+8) > 0, observe that (1) f(0;r + §) =r+6>0;(2) f(nb;r+6) >
f(nf;r) > 0 by assumption; (3) 0 < 8 < n8; and (4) f(A;r + 8) is concave
in A.
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function of 0 because § > 1. Thus ¢ is an increasing function of the
instantaneous variance o2. Because investment is an increasing function of
g, investment is an increasing function of o2 for a given value of the output
price p. This result is the same as in Hartman (1972), Abel (1983), and
Caballero (1991).

III.4 The Value of the Adjustment Technology

The intercept term G(p) in the fundamental value of the firm, V(K,p) =
g(p)K + G(p), is the present value of the rents accruing to the adjustment
technology. The function G(p) is determined by the differential equation
(21). Let GP(p) denote a particular solution to equation (21). It can be
verified by direct substitution that the following expression is a particular
solution to equation (21)

n T'n!
GP(p) = E il(n = DIFG;T)

=0

Bip? (~b)" | (24)

Notice that in the special case in which b = 0, as in Abel (1983), we have
GP(p) = T'q"/f(n8;r) which is equivalent to the intercept of the linear
value function in equation (11a) of Abel (1983).

To interpret the particular solution in equation (24) more generally,
apply equation (4) with A = j8 and R = r to obtain

. pi’
PV[p¥ir] = 7. 25

Now multiply both sides of equation (25) by B?, use equation (23) to obtain
¢/ = Bip'®, and use the fact that PV[-;r] is a linear operator to obtain

Bipi®
fGo;r)

Substituting equation (26) into equation (24) and again using the fact that
PVy[-;r] is a linear operator yields

PVi[¢'sr) = (26)

n

GP(p) = TPV, zj—!(—n"—ij—)!qf(—b)"-f;r . @7)

Recognizing that the summation on the right hand side of equation
(27) is a binomial expansion of (¢ — b)", we obtain

GP(p) =TPVi[(g - b)";r] . (28)

Thus, the particular solution is the expected present value of the instanta-
neous rents (g — b)" accruing to the adjustment technology.



We can obtain a general solution to equation (21) by adding the partic-
ular solution in equation (24) and the solution to the homogeneous part of
the differential equation. The solution to the homogeneous part of equation
(21) is C1p** + Cyp*¥2, where wy > w; are the roots of the quadratic equa-
tion f(w;r) = 0. Observe that f(0;r) =r >0, f(nf;r) > 0, and f(w;r) is
concave in w, so that f(w;r) > 0 for w in [0,nd]. Therefore, the roots of
flw;r) = 0 satisfy w; > nf > 20 > 0> wy.

Notice that the expected growth rates of C;p“* and C,p“? are both
equal to r. These terms are bubbles in the sense that they are unrelated
to the underlying fundamentals (cash flows) of the firm. Although the op-
timality conditions associated with the maximization problem in equation
(7) rule out bubbles in g, they do not rule out bubbles in the market value
of the firm. Thus, the market value of the firm can differ from the funda-
mental value by the bubble terms C;p** and Cyp*2. Imposing the condition
that the market value of the firm is non-negative for all p > 0 and all K > 0
rules outs negative values of C; and C,. However, we are still left with the
possibility of positive C; and/or positive C;, which correspond to positive
bubbles in the market value of the firm.

If we define the value of the firm to be the present value of expected
cash flows as in equation (7), then we have ruled out bubbles by assump-
tion/definition. This is to be contrasted with the finding that a bubble on
g is ruled out by optimality.

IV  The Case of Irreversible Investment

Now we consider the case of irreversible investment. Rather than simply
assume that it is impossible for gross investment to be negative, we modify
the investment cost function ¢(I) for negative values of gross investment
so that it is never optimal for the firm to undertake negative gross invest-
ment. In this case, optimal behavior is observationally equivalent to a case
i which investment is physically irreversible. Our goal in this section is
to understand the impact of irreversibility on the firm’s value and on its
investment decisions. Fortunately, much of the mathematics of this case is
the same as for the case of reversible investment discussed in earlier sec-
tions. We take advantage of this overlap to abbreviate the derivations in
this section and to focus on aspects that are specific to irreversibility. We
can also use the results of earlier sections as a benchmark for comparison
to understand the impact of irreversibility on the firm’s decisions and its
value.

10



IV.1 The Modified Investment Cost Function and the
Optimal Rate of Investment

The only modification that we will make to the firm’s decision problem is
to change the investment cost function to

n/(n-1)
C(It) - {bI-¢ + ‘)’It s for It 2 0 (29)
9(I) >0, for I; <0

where we continue to assume that b > 0, ¥ > 0, and n is an even positive
integer. Note that for non-negative values of I;, the investment cost function
in equation (29) is identical to that in equation (13). Again, we assume that
f(n8;r) > 0 toinsure afinite fundamental value of the firm. For all negative
values of gross investment, we now assume that the cost of investment c(I)
is positive.

Even with this modification to the investment cost function, the fun-
damental value of the firm V (K, p) must still satisfy the Bellman equation
in equation (10). However, using the investment cost function in equation
(29) changes the optimal rate of investment and the maximized value of
rents ¢I — ¢(I). Notice that with the investment cost function in equation
(29), the rents q¢I — c(I) are negative for any I < 0 (since ¢(I) > 0 for
I < 0 and ¢ > 0). Because the firm can always attain a value of zero for
¢I — c(I) by setting I equal to zero, the firm will never choose a negative
rate of investment. Thus equation (14) can be modified as

¢ = r}'lzac))([(q — b)) — yIM (=] (30)

Now observe that if ¢ < b, the maximand in brackets on the right hand
side of equation (30) is negative for any positive value of I. Therefore, if
g < b, the firm can maximize its rents by setting I = 0. In this case, the
optimal rate of investment is zero, and ¢ = 0.

For values of ¢ > b, the maximization problem in equation (29) is
identical to that in the case of reversible investment in equation (14); in
this case the optimal rate of investment is given by equation (15) and ¢
is given by equation (16). We summarize these findings for the case of
irreversible investment as

I= max{O, [";71]"'1@- b)"-l} , (31)

¢ = (max[0,q¢ — B))"T" . (32)

and

IV.2 The Fundamental Value of the Firm

Equation (31) gives the optimal rate of investment as a function of the
shadow price of capital ¢. The next task, as in the case of reversible invest-
ment in section III, is to determine ¢ as a function of the price of output

11



p. We proceed by substituting the expression for ¢ from equation (32) into
the Bellman equation (11) to obtain

rV(K,p) = hp’ K + (max[0, ¢ — 8))"T ~ 6Kq + ppV, + 16%p?V,, . (33)

We will solve this differential equation by hypothesizing that V(K p)is
a linear function of the capital stock, and that there are two regimes: regime
H applies for values of ¢ greater than or equal to b; regime L applies for
values of ¢ less than b. Thus,

VOK,p) = ¢D(@)K +GD(p), i=L, forg<b (34)

H, forg>b

where ¢)(p) and G®¥)(p) are functions to be determined. To determine
these functions, substitute equation (34) into equation (33). As in the
reversible case in section III, the terms multiplying K on the left hand side
must equal the terms multiplying K on the right hand side. In addition,
the terms not involving K on the left hand side must equal the terms not
involving K on the right hand side. Setting these terms equal yields

rg® = hpf — §¢ 4 #pq}(,") + %azpzq,(,? , $=L,H (35)
rG9 = (max[0,q - )T + /lpG}(,i) + %azsz,(,? y i1=L,H (36)

These equations correspond to equations (20) and (21) in the reversible
investment case. As in section ITI, we exploit the recursive structure of these
equations by solving equation (35) for ¢(*)(p) and then solving equation (36)
for GW(p).

IV.3 The solution for ¢ and the optimal rate of invest-
ment :

The solution for ¢(¥)(p) is determined from equation (35), which is identical
to equation (20). Therefore, a general solution to this equation is

) = B’ + ADp" + AP, i=LH (37)

where B, n; and n are identical to their values in equation (22) (the re-
versible investment case). Notice that the particular solution, Bp?, is iden-
tical to that in equation (22). The only new aspect of equation (37) is that
the coefficients Agi) and Ag") in the homogeneous part of the solution can
potentially differ across the two regimes L and H. We now explore this
possibility. :

The two regimes L and H come together when ¢ = b. Let p* denote
the value(s) of p for which ¢ = b. The value matching condition requires
that q(L)(p') = ¢ (p*). Applying this condition to q(i)(p) in equation
(37) yields

AP AP < AFn 4P )
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What is often called the smooth pasting condition requires that q,(,L)(p‘) =
q,(,H)(p"‘). Applying this condition to ¢(*)(p) in equation (37), and multiply-
ing both sides of the resulting equation by p*, yields

AP + 0y AP =y APt g gy A (39)

Multiplying equation (38) by 7; and subtracting the resulting equation
from equation (39) yields AgL) = AgH). Similarly, multiplying equation
(38) by 72 and subtracting the resulting equation from equation (39) yields
ALY _ 4H)

1 1 ) ,

We have just shown that the coefficients Ag') and Ag') are the same
across the regimes L and H. Thus, the general solution for ¢{*)(p) is the
same in both regimes and is identical to equation (22). From this point on,
the solution method for ¢(p) is identical to the reversible case. In particular,
the same arguments used in section III can be applied to show that Ag') =0
and Ag') = 0. Thus, ¢ = Bp? just as in the reversible case.

To summarize our comparison of the reversible and irreversible invest-
ment cases so far, we have shown that the value of ¢ is identical in both
cases, and that there are no bubbles in the value of ¢ in either case. Fur-
thermore, for values of ¢ greater than or equal to b, investment is the same
in the reversible case and in the irreversible case. The only difference in
investment behavior occurs when ¢ < b. In this situation, investment is
negative in the reversible case and is zero in the irreversible case.

IV.4 The Value of the Adjustment Technology.

Although the shadow price ¢ is unaffected by whether or not investment
is reversible, the rents to the adjustment technology, represented by the
intercept G(p), depend on whether or not investment is reversible. The
function G(p) is determined by the differential equation in equation (36).
Notice that this differential equation contains the term (max[0,q — b])nF
which equals 0 in regime L but equals (¢ — b)"T in regime H. We need to
solve the differential equation separately for each regime. We begin with
the simpler case, which is regime L.

Recall that in regime L we have ¢ < b. In this case, max[0,¢q — b] = 0,
and the differential equation (36) is homogeneous. Specifically,

rGE) = ppG}(,L) + %azsz}(,I};) . (40)
The general solution to this homogeneous differential equation is
B (p) = P 4 C{Ppe | (41)

where w; > wq are the roots of f(w;r) = 0 as in the reversible case, and
C’fL) and C’gL) are constants to be determined.
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We have already shown that w1 > nf > 26 > 0 > wy. Notice that p¥2
becomes arbitrarily large as p approaches zero. However, the fundamental
value of the firm approaches zero as p approaches zero. Thus, if we assume
that there are no bubbles, CgL) must equal zero and G{)(p) can be written
as

G(L)(p) = C’§L)p““ ) (42)

Equation (42) gives the fundamental value of a firm with no capital
in regime L. Even though a firm in this situation has no capital and is
not currently undertaking gross investment, it will have a positive value
because of the prospect that one day ¢ may rise above b, and it will becomne
profitable for the firm to invest. Thus GE) is positive, which implies that
C§L) is positive. We will tie down the value of CfL) after we solve for

GH) . Notice that in this case, C§I’)p“’1 is not a bubble. As we have said,
when ¢ < b, a firm with no capital will have positive value if it has access
to the adjustment technology and faces the possibility that eventually ¢
will be greater than b, so that positive rents will accrue to the adjustment
technology.

In regime H, ¢ > b so that (max[0,q — b])"I‘ = (¢ — b)"I'. Thus, the
differential equation (36) becomes

rGH) = (¢ — b)"T + upG{™) + L0?p*G{E) . (43)

This differential equation is identical to the differential equation (21) in
the reversible case. Therefore, the particular solution, GP(p), in equation
(24) is also the particular solution of the differential equation in equation
(43).

We can obtain a general solution to equation (43) by adding the par-
ticular solution in equation (24) and the solution to the homogeneous part
of the differential equation. Notice that the homogeneous part of the differ-
ential equation (43) is identical to the differential equation (40). Thus the
solution to the homogeneous part of equation (43) is C’gH)p“’1 + CgH)p“”.
Notice that w; > né so that p¥* dominates GP®H)(p) and p“* as p grows
without bound. Imposing the condition that the market value of the firm
is non-negative requires C£H) > 0. As in the case of reversibility we cannot

rule out a positive bubble (CgH) > 0) in the market value of the firm, even
if we assume that the firm maximizes its fundamental value in equation
(7). However, from this point on, we assume that there is no bubble in the

market value of the firm. Thus, CgH) =0.

The coefficients CgL) and C'gH) still remain to be determined. These
two coefficients can be tied down by using the value matching condition

GO (p*) = GH)(p*) and the smooth pasting condition G,(,L) (p*) = G,(,H) (»").

Appendix A shows how these two conditions lead to the following solutions
for G(E) and GH), It is more convenient to write these expressions as
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functions of ¢ = Bp® rather than of p:

-1

i ) 2Tb" 6™ n! wi/8
G = |@i-w)[Jer-i0)| = (3) (44)
j=0
GH(g) = TPW[g—b)" 1] (45)
-1
- ) 2rb" 8" n! /gy walé
+|@-en[Je-io) =7 (5"
j=0

Recall that wy > nf > 0 > wy. Therefore, equation (44) implies that
G™)(g) > 0 because wy —wy > 0 and wy —j0 > 0 for j =0,1,...,n. Thus,
as suggested earlier, even when ¢ < b so that it is not currently profitable
for the firm to undertake positive gross investment, the prospect that ¢ will
eventually exceed b means that the present value of the rents accruing to
the adjustment technology is positive.

Equation (45) allows a direct comparison of the present value of rents
to the adjustment technology in the reversible and irreversible cases. Recall
that the first term on the right hand side of equation (45), TPV;[(¢—b)", 7],
equals G(p) in the reversible case. Thus, the difference between between
G(p) in the irreversible and reversible cases is given by the second term
in equation (45). Observe that wy — j0 < 0 for j = 0,1,...,n. Since
the second term in equation (45) contains an odd number (n + 1) of such
terms, the second term in equation (45) is negative. That is, G(#) in
the irreversible case is smaller than T'PV;{(g — )", r]. The reason for this
result is clear. In the case of reversible investment the current rents to the
adjustment technology are (¢ — b)" regardless of whether g is greater than,
less than, or equal to b. However, in the irreversible case, current rents
to the adjustment technology are 0 (which is less than (g — b)") whenever
¢ < b. Even when ¢ is currently greater than b, the prospect that ¢ may
eventually fall below b means that the expected present value of rents to
the adjustment technology is smaller in the case of irreversible investment
than in the reversible case.

V Conclusions

We have presented a closed-form solution for the optimal investment and
market valuation of a competitive firm under uncertainty. This solution was
obtained under the assumptions that the firm has a constant returns to scale
production technology and convex costs of investing. We have solved for
investment and market valuation in both a reversible and an irreversible
investment case. Optimal investment is a non- decreasing function of ¢, the
shadow value of capital, and we have shown that bubbles on g are ruled out
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by optimality. Optimal investment is therefore driven only by fundamentals
and will be invariant to bubbles. Bubbles can exist, however, on the market
value of the firm.

The shadow value of an additional unit of capital, g, is unaffected by
irreversibility in our model. The only effect of irreversibility on investment
behavior is to set investment to zero when it would otherwise be negative.
Irreversibility does, however, affect the market valuation of the firm. Since
rents accrue to the firm when it is investing or disinvesting, irreversibility
reduces these rents and therefore the value of the firm. An implication of
this finding is that average ¢, computed as the ratio of market valuation to
the capital stock, V(K,p)/K, and often used as an empirical proxy for ¢,
is reduced by irreversibility despite the fact that (marginal) ¢ is unaffected.
Irreversibility therefore reduces the difference between marginal and average
g, since average ¢ exceeds marginal ¢ by the ratio of the present value of
rents to the capital stock, G(p)/K. Also, because the value of the firm may
contain bubbles, average ¢ may contain bubbles even though marginal ¢
cannot contain bubbles.

The invariance of (marginal) ¢ to the imposition of irreversibility is
in contrast to results reported in the irreversible investment literature,*
where imposition of a non-negativity constraint on investment reduces the
marginal value of additional capital as a result of what is often called the
“option value of waiting”. In 6ur model, the value function is linear in cap-
ital, so ¢ does not depend on the capital stock. Consistent with Pindyck’s
(1993) argument, the firm does not “kill an option” when it invests, since its
investment behavior does not affect the current or future return to capital.

We have confined our attention to a competitive firm with constant
returns to scale so that the operating profit function of the firm is linear in
capital. Therefore, the marginal operating profit of capital is invariant to
the capital stock. However, if the firm has some monopoly power and/or if
the production function exhibits decreasing returns to scale, the operating
profit function of the firm will be strictly concave in the capital stock, and
the marginal operating profit of capital will be strictly decreasing in the
capital stock. The case with a strictly concave operating profit function is
substantially more difficult, but would allow analysis of the “option value”
found in some irreversible investment models. This issue is the subject of
ongoing research.

“For example, McDonald and Siegel (1986), Dixit (1989), Bertola (1987),
Pindyck (1988).
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Appendix A

Applying Value Matching and Smooth

Pasting
to GU)(p) and G(2)(p)

Recall that we have argued in the text that C§H) = 0 so that

GH)(p) = GP(p) + CSpvs . (A1)

Now evaluate the particular solution GP(p) in equation (24) and its deriva-
tive at p = p*. In evaluating these expressions at p = p*, it is helpful to
note that Bp*? = b.

n!

3t (n = 5)1f(56;7)

GPUDG) = Tor Y (-1 (A2)
i=o

n

@y - (L n —1)"i; n
GP{M(p") = (.)Fb >_(-1) T Gen - A

p j=0

The value matching condition G)(p*) = GU)(p*) implies, using equa-
tions (42) and (A1) that

CBprr = GP(p*) + C{Mprea | (A4)

The smooth pasting condition G,(,L)(p") = G,(,H)(p“) implies, using equa-
tions (42) and (A1) that

wlch)p'“’"l = GP}SH)(p") +wZC§H)p"""1 . (AS5)

Equations (A4) and (A5) are two linear equations in the two unknown
variables Cgl’)p““’l and CgH)p“"’. Solving these two linear equations yields

B e — p*GPp(H)(p‘) —ng’P(H)(p*)
1 p haat )
W) — Wo

(A6)

and

U ewn _ P CBE(p) — w01 GPUD (")
2 P = .
W1 — w2

(A7)

Now use the fact that ¢/b = (p/p*)? to observe that Cfl’)p"’1 = CI(L)p‘“l (p/p*)“r =
CgL)p“"’ (¢/8)“1/¢ so that equation (A6) implies

y -GP(H) ) _ GP(H) * w, /6
Cg,-,)pl:{p P00 —wn PN 0yl

W1 — w2
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Similarly, observe that CgH)p‘*’2 = CgH)p““ (p/p*)¥* = CgH)PWz(Q/b)wzlg

so that equation (A7) implies

P (p*) — wy GPUED (p* wa /8
ng)pwz:{p P (P7) —wr (P") <%> L (A9)

Wy — W

Next use equations (A2) and (A3) to calculate

n
p*GPI(p*) — w;GPH (p*) = b7 Y "(j8 — w;) Dj(—1)"~ (A10)
j=0
where D; = T'n!/[j!(n — j)!f(76;7)].
Substituting equation (A10) into equation (A8), and recalling that
GE)(p) = C’§L)p“’1, we obtain

W1 — w2

Substituting equation (A10) into equation (A9), and recalling that
G(H)(P) = GP(H)(P) + CgH)p“", we obtain

¢(p) = P (p) + (1) bnz(“’ “’l)D( D" (any)

—Ww2

We can simplify the expressions in equations (All) and (A12) using
the following Lemma.

Lemma Let w; and wk be the two real roots of the quadratic equation
f(zir)=r—pz— Lo%z(z — 1) = 0. Define

n . n! n—j
Sn = J_};(J@ — w;) [j!(n —)FG8; r)] (=0

Then

_ __ 2nle"/o® ‘
7 [Tmetor - )

Proof. Observe that the quadratic function f(z;r) can be written as
f(z;r) = 20%(w — z)(z — w;), so that f(j0;7) = Fo%(wr — jO)(50 — wi).

Therefore, (76 — w;)/f(§6;r) = T——z—(ﬁm and we can rewrite S, as

" %JZ:% el Foer ol (k)
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Applying equation (L1) for n — 1 yields

1= Z[ k-JG] { (f(ln—_ll—) 7! ]( SRR

Multiply both sides of equation (L2) by —n# to obtain

‘""S"“sz:: 5] =] e
(13)

Observe that when j = n, the summand on the right hand side of
equation (L3) is zero, so we can increase the upper limit on the summation
index j from n — 1 to n. Performing this change and rearranging yields

05 = 22[5:‘——110)”«%])']( S

Now replace §(n — j) by (6n — wi) + (we — jf) to obtain
_ 0n — wyg n! n—j
T = E [wk = 10] [j!(n —j)!] =) (5)

i el o

j=0

The second summation on the right hand side of equation (L5) is simply
the binomial expansion of (1—1)", which is, of course, zero. Using equation
(L1) to simplify the first term on the right hand side of equation (L5) we

obtain
—nbS,_1 = (fn —w)S, (L6)

Therefore,

So=[—"0 |5, (L7)
=3

wg —0n

To solve the difference equation in (L7), we need a boundary condition.
Observe (using equation (L1)) that when n = 1, we have

S 3{[&](—1” 1 }: 2/a" (L8)

o2 wy — 0 wi{wg — 6)
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Equations (L7) and (L8) together imply
2n!6" /o?

" M-9]

(L9)

Now use the Lemma to re-write equations (A1l) and (A12) as

(a\ee 2T'n!g" /o2
GO (p) = (3) b T ) (A13)

and

2Tnl"™ /o2
(w1 — wa) [Tj=o(wa — 36)

which are identical to equations (44) and (45) in the text.

GH(p) = GPU(p) + (%)”’/e b (Al4)
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Appendix B
Proof That ¢ Cannot Have a Positive Bubble

Consider a firm at time t with capital stock K,. Assume that the
firm solves the maximization problem on the right hand side of equation
(7). Let {If,,,K{,,}s>0 be the path of investment and capital stock if
gi+s = Bp{,,. Observe that the first-order condition for investment implies
that ¢/(If,,) > qi4+s = Bp?,,. (This condition always holds with equality
under reversibility; under irreversibility it holds with equality when I, , >
0.) Define V;* as the value of the objective function under this path of
investment and capital stock so that

00
v s mf [Tt K - e s} (B1)
0

¢
Let {I}},,K{},}s>0 be the path of investment and capital stock if

@145 = Bpl, + A1pl}, + A2p[;,. Define V* as the value of the objec-
tive function under this path of investment and capital stock so that

v =B [Tt K el . (B

Suppose that A; > 0 and Ay > 0 and either A; or Aj is strictly

positive. Thus, Bpl,, + Aipl}, + A2pl2, > Bpl,, so that Iif, > If,,.
(Under reversibility Iy}, > I;;, always; under irreversibility, I/}, > Iy, if
Bpl,, + Aip]}, + Aspi2, > b))

Define A = V;** — V;*, so that equations (B1) and (B2) imply that

oo
A= B { [Tl = K - 02 - (I e ds| . (B)
Observe that

I{t+, = 1{16—6’ +/ IH.ue"&(’_")dv y (B4)
0

which implies that
Kif = Kips = [ (= Fa)e 0040 (85)
Equation (B5) can be used to obtain
m{ [Tt - K] (B6)

- E, { /O /O (bl (177, = I, e C—Der gy ds} .

21



Using the law of iterated projections (E¢{-} = E¢{Eiy,{ }} for v >
0), and changing the order of integration, equation (B6) becomes

oo
E { [N K:+,]}e-"ds} (B7)

o0 (]
= Et {/ Et+v {/ hpf+, [It‘-:u - It‘+u]e_6(’—U)e—r‘ds} dv}
0 v

o0 o0
=B { Wit = e { [ hpthsem 0 b e
0 v

Now use the fact that
00
Bpf+u = Fiyy {/ hpf+‘e-(r+6)(8—v)ds} (B8)

to rewrite equation (B7) as
o0
B { [T ol i, - KD (8)

oo
= E; {/(; Bpi,  [Ift, — I,"‘+u]e"'"dv} .

Recall that ¢(I) is convex and that Iff, > I, so that

o(Ifs) — eIiy,) 2 (L3, — Ly, )e (By,) (B10)

with strict inequality whenever If}, > Ij,,. It follows from equation (B10)

and the fact that there is a positive measure on the event I}}, > I}, that

B{ [ ettt - iz e (B11)
> e [T - el . @)

Using equations (B9) and (B11) along with equation (B3) we obtain

< [ @ - n)B, - e e} <0, @)
0

where the second inequality in equation (B12) follows from the facts that
Iy, =1, >0,Bpl,, —c(I},,) <0,and e~ > 0.

We have shown that A < 0 which means that the path {I}},, K/, }.>0
is strictly dominated by the path {I},,, K, }s>0. Therefore, neither A,
nor As can be positive. Since we have already shown in the text that neither
Ay nor A, can be negative, it follows that A; and A3 must be zero.
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