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It is now a well-established fact that wage inequality grew over the 1980s (see
for example Tilly, Bluestone, and Harrison (1987), Murphy and Welch (1992),
Juhn, Murphy, and Pierce (1992), Bound and Johnson (1992)). Wage
differentials between younger and older workers and between more and less
educated workers expanded from the late 1970s to the late 1980s. Wage
dispersion among men and women with the same age and education also rose.
A unified explanation for all these changes is suggested by the hypothesis that
labor market earnings represent a return to a one-dimensional bundle of "human
capital” or "skill". Changes over time in the rate of return to skill would be
expected to increase the wage gaps between different age and education groups,
and increase wage dispersion within narrowly defined age/education cells. As
noted by Juhn, Murphy and Pierce (1991) a generic rise in the return to skill
also has implications for other measured wage gaps, including black-white and
male-female differentials. To the extent that unobservable components of skill
differ by race or sex, a rise in the return to skill would be expected to widen the
gap between black and white or male and female workers. !

In this paper we propose a simple technique for estimating and testing a
"one-dimensional skill" model of changes in the structure of wages. The method
is based on comparing means and quantiles of wages for narrowly-defined age
and education cells over time. This approach integrates three alternative
dimensions of "skill": education, age (or labor market experience), and
unobserved ability within age/education categories. We fit a series of single-

skill models to the wage structures of white men and women in 1973-74, 1979,

't should be noted at the outset that although wage differentials within the
male and female populations grew over the 1980s, the male- female gap in
average hourly earnings closed dramatically: from 38% in 1979 to 28% in 1989
(see Blau and Kahn (1992) for a recent analysis). A simple one-dimensional
skill model cannot reconcile this change with other changes over the 1980s.
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and 1989. We then use these models to analyze and interpret changes in black-
white relative wages over the 1980s.

A one-dimensional skill model provides a relatively accurate account of
changes in the structure of white female wages from 1979 to 1989. Over the
1980s we estimate that the return to skill for white women increased by 40
percent. Similar models are less successful in describing changes in the
structure of wages among white men. In particular, the rise in relative earnings
of young college-educated men is too large, even taking account of the 25
percent rise in the overall return to skill for white men during the decade.

Our integration of observable and unobservable skill components suggests
that changes in within-cell wage dispersion follow the same pattern as changes
in the structure of returns to age and education. Patterns of wage growth for
male college graduates again pose the greatest difficulty for a one-dimension
skill model. Results for men and women suggest that 40-45 percent of residual
wage variation within age and education cells is attributable to unobserved
abilities whose market valuation rose during the 1980s.

Comparisons of the wage gains achieved by black men and women during
the 1980s with the predictions generated by models of the white wage structure
lead to two sets of conclusions. On the one hand, changes in the white wage
structure provide a surprisingly good forecast of average wage growth for blacks.
Black men's wages grew 6.7% faster than predicted by the pattern of white male
wage growth, while black women's wages fell 1.8% short of the prediction based
on white female wage growth. On the other hand, there were sizeable relative
gains and losses within the black labor force. Wages of older blacks rose faster
than predicted while wages of younger blacks lagged behind. College-educated
black women suffered significant losses relative to predictions based on the wage

growth of white women.



I.__Single Index Models of Wages
This section outlines the conceptual framework used throughout this paper

to model changes in the structure of wages. We begin by considering the
special case in which observed log earnings are a linear function of a one-
dimensional bundle of skill.2 Let k; represent the skill index of individual i and
assume that the log wage of i in period t is a linear function of k;: say Bk;.
Without loss of generality, normalize B, = 1 for some base period 0. The

observed log wage of individual i is w,, where

(1) wy =Bk +e,

and e, can be interpreted either as measurement error or as the result of luck,
randomness, or mistakes in the labor market. If B, > 1, then we say that the
return to skill increased between the base period and period t.

This simple model can be implemented empirically by assuming that

(2) k‘ = xi9 + ai,

where Xx; is a vector of observable characteristics (education, age, etc.) and a; is
an unobservable component of skill. Equations (1) and (2) imply a set of linear

regression models with time-dependent coefficients:
(G) Wi =xi04 + ey,

where oy = B0 and e, = a; + ¢;. In this framework, an increase in the retum

to skill implies a uniform re-scaling of the regression coefficients associated with

2Simple economic models actually suggest that the level of wages (W) is
the product of an individual's human capital stock (K;) and the ‘rental rate' on
human capital in period t (r,): W;, = rK; (see e.g. Welch (1969)). Such models
predict that proportional wage differentials between individuals or groups with
differing levels of human capital will be constant over time -- a prediction that
is demonstrably false.
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observed skill attributes (education, age, etc.). An increase in the return to skill
also raises the residual standard deviation of wages, although the increase will
be smaller than percentage increase in the of's if the measurement error variance
is constant over time. To see this, note that the cross-sectional variance of e
is
s?2=p2oz2+0.2,

where 0.2 is the variance of unobserved ability and 082 is the variance of ¢,
The proportional increase in the unexplained variance of wages between a base
period (0) and a later period (t) is 8.‘2/802 = Btz (1-R) + R, where R is the
fraction of wage variation attributable to measurement error (or noise) in the

base period. This expression is less than Btz whenever B, > 1 and R > 0.

Nonlinear Models
A more general version of the single index model posits that log earnings in

period t are a monotonically increasing function of skill, plus measurement error:

@) wy=fk) + ey

where without loss of generality fy(k) = k. In this framework we would say that
the return to skill rose between periods 0 and 1 if fj(k) > 1 for all k: in other

words, if f, is everywhere steeper than f;. Equation (4) implies
(5) w; =1 (wp-29 t+ €.

Thus we can evaluate changes in the return to skill by estimating the
transformation between w;; and w;; and asking whether its slope is greater than
unity. Nonlinearities in f; permit wage differentials at different points in the
wage distribution to expand more or less rapidly without abandoning the
hypothesis of a single index of skill. For example, a more rapid expansion of
wage differentials among highly skilled workers implies that f; is convex.
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The form of equation (5) suggests a general property of single-index models
of the wage structure. If Wages are determined by a single index of skill, then
individuals with the same "skill" component of wages in any base period (i.c.
the same value of w;, - €,3) have the same expected wages in any other period.

In principle equation (5) can be estimated using panel data for a sample of
individuals observed in two different time periods. An alternative procedure that
we pursue in this paper is to consider repeated cross-sectional observations on
groups of individuals with the same observable skill characteristics.? In
particular, suppose that individuals can be stratified into J cells (based on single
years of age and education in the analysis below). Let lqj represent the skill

index of person i in cell j, where
ki] = kj + aij, with E(alj) = Q.

The term a;; is interpreted as the unobserved component of skill of person i,
relative to mean skill for cell j. Finally, assume that log wages of person i in

cell j in period t are generated by
©) wy=f(k+ a;) + ey

where (as before) &t is interpreted as measurement error or some random
component of wages, and fu(k) = k.

The mean log wage for cell j in period 0 is Wjg, Where

wijo =E (fo( k5 +19;)) =k;

30ur procedure is a direct application of Malinvaud's (1980, pp. 416-421)
suggestion to fit a model with errors in variables by grouping the data and fitting
the group means.
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the mean level of skill for cell j.4 The mean log wage of cell j in period 1 is:

Mean cell wages in period 1 are therefore related to mean cell wages in period

0 by

a wj; = f,( ij) + 5
where the "remainder term” T is 0 if f, is linear or if the variance of unobserved

skills is negligible. Otherwise,
= 172 var[aij] fl"(kj),

which will be constant across cells if the within-cell variance of unobserved
ability is constant across cells and if the change in the structure of wages is not
"too far" from a quadratic transformation.

Equation (7) suggests a simple and intuitively appealing method for
estimating the degree of change in the structure of wages: one simply finds'a
suitable approximation to the mapping between mean cell wages in different
periods. In the empirical analysis below we consider polynomial approximations
to f,, although more general functions could be easily used. In principle, panel
data are not required, so long as individuals in a given cell in oﬁe period are
viewed as exchangeable with individuals in the same cell in a different period.
This exchangeability condition will fail if individuals from different cohorts have
different mean levels of unobservable skill, or if the relation between skill and

the cell classifications changes between cohorts.’

4Our normalization fo(k) = k implies that "skill" is measured by wages in
period 0.

3For example, women of a given age from earlier cohorts may have lower

actual labor market experience than women of the same age from later cohorts.
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Equation (7) also suggests a simple procedure for testing a one-dimensional
skill model. Apart from sampling errors (and errors in the approximation of f,)
mean cell wages in period 1 are function of mean cell wages in period 0. Given
a choice of the approximation function, this restriction can be readily tested by
conventional goodness-of-fit tests.

Models of Unobservable Skill
Under a set of simplifying assumptions the preceding framework can be
extended to model changes in the overall distribution of wages in different cells.
A one-dimensional skill model suggests a parsimonious structure for both mean
cell wages and the quantiles of the within-cell wage distribution. Following the
notation of the last section, the wage of individual i in cell j and period O (the
base period used to define "skill") is
Wiio = Wjo + a;; + €0
where w; is the mean log wage in the cell, a;; represents unobserved ability, and

J y

&0 represents measurement error. Assume that a5 and ¢; are normally

distributed with variances sz and 052, respectively, and let e;q = ay; + €.

The qth percentile of wages in the jth cell in period 0 is

2 _
where Si0 Gj

standard normal distribution.

24 Gez is the variance of e; and 2% is the qth percentile of the

Wages in period 1 are determined by

wijl = fl (k] + aij) + eijl'
Assume that the transformation of wages for individuals in cell j is linear with

intercept ¥; and slope Bj. Then



Wit = % ¥ Biwio + Bay + &1
The mean wage for cell j in period 1 is
@ wir = %+ Biwe.
while the variance of wages within the jth cell in period 1 is

2 _ 2 .2 2
sjl = ﬂj Oj +6€ .

Finally, the qth percentile of wages in period 1 is

w‘}l = wj + 51 z9,

Let RJ denote the fraction of within-cell variance attributable to measurement

error (or random wage factors) for cell j in period 0. Then

2 _ 2 2
sjl = st ( Bj (I.R]) + Rj )
Combining the last two expressions with equation (8) we obtain

) w‘}l = + ﬂjw‘}o + sjo'zq05j,
where
8= (B’ -Ry+R;)) * -B;

Notice that for the median wage z9=0, implying that changes in mean and
median cell wages are identical (as must be true under the normality
assumption). If ﬂj > 1 (i.e. the return to skill has increased) and R>0 (.e.,
some fraction of within-cell variation is noise) the expression Sj is negative. In
this case the lower quantiles of wages increase by more than the mean or
median, whereas the higher quantiles increase by less. This compression reflects
the fact that an increase in the return to skill increases the within-cell standard
deviation of wages less than proportionately whenever some fraction of wage
dispersion is attributable to noise rather than "skill".

Equation (9) is derived under the assumption that the cell-specific
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transformation f; is linear. If the same linear transformation holds across cells
then (9) implies that the cell quantiles in period 1 are linearly related to the cell
quantiles in period 0, with quantile-specific intercepts.5 More generally, assume
that Y; and Bj, the intercept and slope of f; for wage observations in cell j, are
approximately linear functions of Wi (in other words, that f; is approximately
quadratic). Then

(10) qul =V, + V, w}o + v, (W;lo)2 + sj0°zq°8j,

for some constant coefficients (Vy, Vv, V,). In this case the cell quantiles in
period 1 are (approximately) a quadratic function of the corresponding cell
quantiles in period 0, with quantile-specific intercepts.

II. Econometric Issues

This section briefly outlines the econometric methods used in estimation and
testing of the models proposed in the previous section. A more complete
development is presented in the appendices.

The proposed models describe the relationship between cell-specific means or
quantiles of wages in two different periods. According to equation (7) the mean
log wage for cell j in period 1 is a simple function of the mean wage for the
same cell in period 0, plus an approximation error which we take to be constant
across cells. Equation (10) implies a similar relation between cell quantiles in
different periods, with quantile-specific intercepts. There are two main problems
in estimation: choice of functional form, and the presence of sampling errors in
the observed cell data. Our choice of functional form was determined by
plotting mean cell wages (and wage quantiles) in one year against the

corresponding means (and quantiles) in other years. As noted below, these plots

6Strictly speaking this also requires that the within-cell standard deviation
of wages is constant across cells.
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suggest a smooth function with only limited curvature. In light of this evidence
we have restricted our attention to linear and quadratic functional forms. For
convenience we refer to these as linear and quadratic single index models.
Given a particular functional form, the presence of sampling errors in the
observed base period means or cell quantiles induces an errors-in-variables
problem in estimation. Assuming that the number of cells is fixed, the sampling
variances of the cell means (and quantiles) tend to zero as the overall sample
size expands.7 Consequently, OLS estimates of equation (7) or (10) using the
observed means or quantiles for each cell are consistent. In any particular
sample, however, the presence of measurement errors in the base period data can

be expected to lead to biased estimates. Since the sampling errors of the base

period means and quantiles are estimable, it is possible to use the estimated
variances to construct measurement-error corrected least squares estimates. A
general correction procedure for regression estimation when the measurement-
error variances are known is developed in Fuller and Hidiroglou (1978).

To illustrate the procedure, consider estimation of a quadratic single index

model for mean cell wages. The true model is

— 2
W) a+bwjo+cwjo.

Let &jo represent the estimated mean wage for cell j in period 0, and let Qjo
represent the estimated standard deviation of wages. An estimate of the
sampling variance of (\ijo - W) is gjOZ/Nj’ where Nj is the number of

observations in cell j in period 0. Note that \’w\/joz is not an unbiased estimator

"The sampling error variance of the jth cell mean (or a particular quantile
for the jth cell) is proportional to l/Nj, where Nj is the number of observations
in the jth cell in the base period. If plim (N/N)=s;, where N is the overall
sample size and sj>0 represents the (true) fraction of the population in cell j,
then as N tends to infinity the sampling variances tend to 0.
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of Wj02 (although it is consistent as the overall sample size tends to infinity).
Instead, we use VI\\fjoz - gjoz/Nj as an unbiased estimator of the squared cell mean

wage. Thus our statistical model is:
(1) w;; = a + bwy + c{ Wi - 507N, } + 7,
where n; includes three terms:
= Gy W) - b (W - Wio)
-0{ (\%joz - Ajoz/Nj) - Wj02 }.

The first term is the sampling error in the dependent variable, and poses no
particular problem for estimation. The second and third terms, however, are
functions of the sampling errors in the independent variables, creating a bias in
ordinary least squares estimates of the coefficients (a,b,c).

Fuller and Hidiroglou (1978) propose a measurement-error corrected
estimator that makes use of a priori information on the covariance matrix of the

measurement errors of the independent variables. In obvious notation, write the

true model as

(12) ¥j = X 1=1,..3,

and denote the observed data by @j, )'EJ) Let
(13) y;-yj=¢, and

(14) xj-x=u;.

Suppose that an estimate $ of E(y;u;) is available. Let Iolxx denote the second
moments matrix of Qj, and let ICIxy denote the cross-products of )'Ej and §j- Fuller

and Hidiroglou (1978) propose the "measurement-error corrected least squares”
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cstimator8

&= (¥t - £ KL,
Under standard conditions, this estimator is consistent and asymptotically
normally distributed. We actually employ a weighted version of this estimator,
using as weights the fraction of the sample in each cell in a fixed base year
(1979). We also show in Appendix 1 how to compute the covariance matrix of
the estimates by adapting the method of White (1980).

When applied to cell means, the corrected estimator requires information on
the joint sampling covariance matrix of ‘Q'jo and v';'joz - gjolej- Given the
sampling covariance matrix of ‘I‘\’jo and Qjoz, we use the delta method to
construct the required sampling variance matrix. We follow a similar approach
in applying the model to cell quantiles, making use of the assumption of
normality to compute the sampling covariance matrix of the various quantiles
and their squares. We also develop a goodness-of-fit of the single index in
Appendix 1. The test follow directly from equation (11), making use of

estimates of the sampling errors of the dependent and independent variables to

construct appropriate test statistics.

Data Description
This section summarizes our findings on the use of single index models to

characterize changes in the structure of wages for white men and women. Our

¥Note that the matrix }Cixx - £ may not be positive semi-definite in small
samples. Fuller and Hidiroglou (1978) propose a partial adjustment technique
to handle this problem (see Cockburn and Griliches (1987) for an application).
The matrix h?(xx -2 s always positive semi-definite in the relatively .large
samples we use in this study.
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analysis is based on data from the 1973, 1974, 1979, and 1989 Current
Population Surveys (CPS). Since 1979 the monthly CPS surveys have collected
earnings information for one-quarter of individuals in the sample. Combining
the available wage observations from all 12 monthly surveys yields
approximately 150,000 wage observations per year. Prior to 1979 comparable
data were only collected the May CPS surveys. To increase the sample sizes,
we have pooled the May 1973 and May 1974 surveys, yielding a sample of
70,000 wage observations from the mid-1970s.°

In addition to their generous sample sizes these data sets have another
advantage for studying the structure of wages. Unlike the eamnings information
in the Decennial Census or the March CPS, the wage data pertain to hourly or
weekly earnings for the respondent's main joblo. Thus the reported wage
approximates a point-in-time measure of the price of labor, and is unaffected by
measurement error in reported weeks of work. A potential disadvantage of these
data sets is the sample frame, which consists of individuals who heid a job in
the week before the CPS survey. Individuals with lower employment
probabilities will tend to be under-represented in this sample frame relative to
the population of individuals who held a job any time in the previous year (the
sample frame for eamings data in the Census or March CPS).

To investigate the differences associated with the alternative sample frames

we compared average hourly eamings from our 1979 and 1989 samples to

Our samples exclude individuals with allocated hourly or weekly eamings
data, as well as individuals whose reported or constructed hourly wage is below
$2.01 or above $60.00 (in constant 1989 dollars). May 1974 wage observations
were deflated by 8.05 percent before being pooled with May 1973 observations.

191ndividuals who are paid by the hour report an hourly wage rate. Others
report usual weekly earnings and usual weekly hours, which we use to construct
an hourly rate. Self-employed workers are excluded from our analysis.
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average hourly eamings constructed from retrospective earnings and hours data
in the March 1980 and March 1990 CPS files. Using the March data on annual
earnings, weeks per year, and usual hours per week we constructed an average
hourly wage for all individuals who held a job in the previous year. We then
constructed three average wage measures: the simple average (across all
workers); a weighted average with weights equal to the number of weeks worked
last year"; and an average hourly wage rate for "full-time full-year” workers.!2
The results of our comparison are summarized in Appendix Table 1. Average
log hourly wage rates from our samples and the March CPS samples are
surprisingly close. Contrary to our expectations, average hourly wage rates in
the March CPS tend to be as high or even higher than hourly wage rates in our
samples. The weeks-weighted average and the average for full-time full-year
workers are higher still. Black-white wage differentials are also comparable in
the alternative data sets.

Tables 1a and 1b begin our data analysis by presenting some simple evidence
on recent changes in wage differentials among white men (Table 1a) and white
women (Table 1b). Rows 1a-1c show estimated wage differences between 46-55
and 26-35 year old workers at three different levels of education. Among men
and women age-based differentials for less educated workers expanded shaﬁ:ly
in the 1980s. For college-educated workers, however, age differentials have

been relatively stable. Rows 2a-2d show wage gaps between similarly-aged

U principle, weighting by weeks worked last year should adjust the March
CPS data to a sample frame of individuals who were employed last week.

12thy recent studies of wage dispersion concentrate on full-time full-year
workers e.g. Pierce and Welch (1992). In part, this choice is dictated by the
absence of accurate annual hours information in March CPS surveys before
1976.
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workers with different levels of education. These expanded at a roughly uniform
rate for women. For men, however, the college-high school wage gap expanded
more for young men and less for older men. Finally, rows 3a-3d show the
estimated standard deviation of log wages for 4 narrow age/education cells.
These contracted slightly from 1973-74 to 1979 but then expanded during the
1980s -- with a generally greater increase among women.

It is clear from Tables la and 1b that age and education-based wage
differentials Bave not expanded uniformly over the 1980s (nor did they change
uniformly from 1973-74 to 1979). Young college educated white men made
significant relative wage gains over the 1980s --leading to an expansion of the
college-high school premium for young men and a reduction in the age
differential for college-educated men. Among women the growth in wage
differentials was more uniform, although the collapse of the age premium for

college educated women is a notable czxception.13

Single Index Results

To implement the estimation methods described in sections I and II we
divided wage earners between the ages of 16 and 65 into 225 individual age and
education cells. The cells are based on single years of education (with < 8 years
in the lowest cell and > 18 years in the highest cell) and 1, 2 or 3 year age
ranges (single year age rahges for ages up to 23, 2 year age ranges for ages 24

to 43, and 3 year age ranges for ages 44 and older).!* We then computed the

13Comparisons of the pattern of age profiles for college-educated women in
different years suggests that there may be important cohort effects biasing down
the cross-sectional age profiles.

40ur sample excludes individuals whose age is less than 6 plus their years
of completed schooling.
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mean, median, 25th percentile and 75th percentile of log wages in each cell.

Figure 1 shows the relationships between mean cell wages for men and
women in 1973-74 and 1979 (upper panels) and 1979 and 1989 (lower panels).
For reference, each plot shows a line representing constant real wages between
the base year and the ending year. All four panels show a strong correlation
between mean cell wages in different years.ls Only one of the four panels -- the
lower left panel showing men's wages in 1979 and 1989 --shows a noticeable
degree of curvature. The graphs of 1979 wages against 1973-74 wages show
that real wages grew at about the rate of inflation over the late 1970s, although
there Was a tendency for higher-wage workers to lose ground (particularly
among women). As shown in the lower panels, real wages of many workers fell
sharply over the 1980s. Although women with above-average wages enjoyed
modest real wage gains, lower-paid women and most men suffered real wage
losses.

Table 2 presents coefficient estimates and goodness-of-fit statistics for various
single index models of male and female wages. All the models are estimated
by the measurement-error-corrected least squares procedure described in section
IL® Columns 1 and 4 present simple linear models while columns 2 and 5
present qﬁadratic models. As suggested by the absence of curvature in the plots
in Figure 1, the quadratic model does about as well as the linear model between
1973-74 and 1979. The same is true between 1979 and 1989 for women, but

not for men.

13The correlations between mean cell wages in any two years range from
0.97 to 0.99.

160LS estimates of the linear models are virtually identical to the estimates
reported in the table. OLS estimates of the quadratic models, however, are
slightly different and generally show a smaller quadratic term.
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The goodness-of-fit statistics for all the single index models in the Table are.
well above conventional critical values.!” The fit is relatively poorer for men
than women -- particularly between 1979 and 1989. To gain some insights into
the causes of failure of the single index model, we plotted fitted and actual mean
cell wages in 1989 against mean cell wages in 1979, using different indicators
for cells with different levels of education.!® The results are shown in Figure
2.

The plot of men's wages (in the upper panel of Figure 2) shows that college-
educated men near the middle of the 1979 wage distribution had much faster
wage growth than predicted by the single index model. These cells are
composed of younger college graduates. On the other hand the wage growth of
older college-educated men (whose wages are near the top of wage distribution)
was consistent with patterns for other education groups. Cells of college-
educated women also stand out in the lower panel of Figure 2. The plot
suggests that wages of older female college graduates grew "too slowly" over the
1980&

Aside from the general goodness-of-fit statistics, another way to test the
single index specification is to add regressors to the model for mean cell wages
(representing the levels of age or education in the cell). If the single index
hypothesis is correct, mean wages in the base year are a sufficient statistic for
mean wages in the ending year. Controlling for base period mean wages, age
or education should not help predict end-period wages. This idea is pursued in

columns 3 and 6 of Table 2, where we have added the mean years of education

A1 percent critical value for the fit statistics in the tables is approximately
275.

1Bwe use the quadratic models in column 5 of Table 2 to form the
predictions.
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in the cell as an additional predictor of wage growth. As suggested by the
simple wage gaps in Table 1 (and other previous research on the returns to age
and education) the results in column 3 suggest that cells with higher levels of
education had relatively lower wages in 1979 than would be predicted on the
basis of their 1973-74 wages. The models for wage growth between 1979 and
1989, however, differ between men and women. For women, education has no
significant effect on 1989 wages, controlling for 1979 wages. For men, cells
with higher education had significantly higher wages in 1989, controlling for
wages in 1979.

Further evidence on the fit of single index models for mean cell wages is
presented below. Before turning to this evidence, however, we discuss the
results of fitting similar models to the wage quartiles of men and women
between 1979 and 1989. Following equation (10), we assume that the 25th
percentile, median, or 75th percentile of wages for a particular cell in 1989 is
a linear or quadratic function of the corresponding wage quantile in 1979. Thus
we fit models for 675 cell quantiles (3 quantiles for each of 225 cells). Our
modified least squares estimation procedure makes no allowance for possible
correlations between the 3 observed quantiles from each cell, although our
estimated standard errors and goodness-of-fit statistics do take account of these
correlations (see Appendix 1).

Estimation results are presented in Table 3. In all models we include dummy
variables for the 50th and 75th percentile observations (with the 25th percentile
as a base). In the models for women we also include dummy variables
indicating whether the 25th percentile of wages in either 1979 or 1989 is at or
below the minimum wage for the particular year. These dummies were added
after a visual inspection of the data (see below) showed the importance of the
minimum wage in attenuating wage dispersion at the lower tail of the female

wage distribution.
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Under the assumptions underlying equation (11) (including normality of the
within-cell wage distribution) the quantiles of wages should follow the same
model as the mean of wages, with quantile-specific intercepts. Furthermore, the
intercepts should be higher for lower quantiles. Both of these predictions are
confirmed by the estimates in Table 3. Linear and quadratic single index models
for the quantiles of male and female wages are very similar to the corresponding
models for mean wages in Table 2. And the estimated 50th and 75th percentile
dummies (in rows 5 and 6 of Table 3) show slower growth for the higher
quantiles, controlling for the initial value of wages.

Figure 3 presents plots of the 25th and 75th percentiles of wages in 1989
against the corresponding quantiles in 1979. For reference, we have also plotted

the fitted quadratic models for the mean of wages. The plots illustrate the basic

conclusions from Table 3. Higher and lower quantiles of wages follow roughly
parallel models, with more rapid wage growth for lower quantiles. Furthermore,
models based on mean wag'es are relatively good predictors of wage growth for
different quantiles of wages.

The data in the lower panel of Figure 3 also illustrate the effect of the
relatively high minimum wage in 1979 on the dispersion of wages for younger
and less-educated women. The 25th percentile of wages is equal to the
minimum wage (1.06 in logarithms) for 37 cells in 1979. Over the 1980s the
real value of the minimum wage eroded significantly: only a few cells had 25
percent or more of workers at or below the minimum in 1989.

Under the assumptions of linearity and normality, equation (11) otffers a
simple interpretation of the quantile-specific intercepts in Table 3. Consider a

linear single-index model with a constant within-cell standard deviation of wages

s. Then the predicted coefficient of the 50th percentile dummy is

dgg = -6745s { B2 (1-R)+R)2-B},
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where B is the slope coefficient of the single index model and 1-R is the
fraction of within-cell variation attributable to ability. The predicted coefficient
of the 75th percentile dummy is 2ds,. Using an estimate of s=0.40 and f=1.2,
the estimated coefficients in column (1) of table 3 imply R=0.57 for men.
Using an estimate of s=0.35 and B=1.36, the estimated coefficients in column
(4) of table 3 imply R=0.55 for women. Similar implications follow from the
quadratic models in columns (2) and (5). Thus the relative changes in higher
and lower quantiles of wages between 1979 and 1989 suggest that 40-50 percent
of within-cell wage variation is attributable to unobserved skill, while 50-60
percent is attributable to (stationary) measurement error or other random factors.
Table 4 provides a summary of the ability of single index models to describe
changes in mean wages and the quantiles of wages for white men and women
over the 1980s. The entries in the table are mean prediction errors of 1989
wages for the age/education groups shown in the row headings. These means
are weighted averages of cell-specific prediction errors (over the subset of
relevant cells) from the quadratic single index models in Tables 2 and 3.
Examination of the prediction errors for various age groups suggests that
single index models are relatively successful in modelling changes in age-related
wage gaps. Among men there is some over-prediction of wages for 36-46 year
olds and under-prediction of wages for 56-65 year olds. Wages for 36-46 year
old women are also under;predicted. Average prediction errors for mean wages
and the quartiles of wages tend to be very similar for the different age groups.
Exax.nination of the prediction errors for different education groups reveals a
2.5-3.0% over-prediction of wages for male high school graduates
and a 5-10% under-prediction for male college graduates. By comparison,
prediction errors for different education groups of women are smaller and
unsystematic.

A closer examination of college graduates by age (in the bottom panel of the
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table) confirms the visual impression in Figure 2. A single-index model under-
predicts the wage gains of young college educated men over the 1980s. The
model does much better describing changes in mean wages for older college

graduates, but cannot account for the relative closing of the inter-quartile range
of wages among "prime-age” male college graduates. Similarly, although a
single-index model does relatively very well in describing the wage growth of
female college graduates as a whole, within narrow age ranges the model does
less well. As suggested by the evidence in Table 1b, younger female college
graduates gained while older ones lost.

One possible explanation for the failure of the single index model to explain
wage growth within narrow age ranges is that wages depend on several, as
opposed to only one, dimensions of human capital. For instance, Murphy and
Welch (1992) find that the structure of wages in the U.S. from 1963 to 1989 is
better described by a linear two-index model than by a linear single-index
model. The estimated effect of education for men in columns 3 and 6 of Table

2 also suggests that adding another index would improve the fit of the model.

To formally test the linear single-index specification against a more general
linear two-index model, we fit the following equation by measurement error

corrected least squares:

where wﬁ-,g is the wage for cell j in 1979 linearly predictéd on the basis of

A

wj73.19 We show in Appendix 3 that a t-test on the estimated value of the

coefficient ¢ is a specification test of the linear single-index model against a

1The prediction equation is obtained by fitting a linear equation of mean
cell wages in 1979 on mean cell wages in 1973 by measurement error corrected
least squares.
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linear two-index model. The estimated value of ¢ is equal to .692 with an
estimated standard error of .376 for men, and to 1.885 with an estimated
standard error of 1.414 for women. This suggests that adding a second index
does not improve the fit of the single-index model at conventional significance
levels, although it comes close in the case of men. Interestingly, the results
reported in column 5 of Table 2 suggests that the fit of the models improves
more by adding a quadratic term to the linear single-index model than by adding
a second linear index.

To summarize, we believe that a single index framework provides a
parsimonious and surprisingly accurate description of overall changes in the
wage structure for whites. Nevertheless, a one-dimensional skill model is clearly
inadequate to fully capture some specific features of the changing wage
distribution -- particularly recent changes among the college graduate labor
force. At the very least, a single index framework is a valuable starting point
for any descriptive analysis of changes in the wage structure. It is particularly
helpful in identifying "unusual” changes in the wage structure in an environment
of rapidly changing wage inequality, and in unifying the analysis of "observed”

and "unobserved” skill.

IV. Changes in Black-White Wage Differentials

We tumn to the second objective of this paper, which is to analyze changes
in wages for black men and women over the 1980s in light of the changing
structure of wages for whites. As a point of departure we present in Table 5 a
set of "conventional” estimates of the black-white wage gap, using our 1973/74,
1979, and 1989 CPS samples. These are derived from OLS regression models
that include a linear education term, a quartic expression in potential experience,
8 region dummies, and an indicator for Hispanic ethnicity, as well as a black

race indicator or interactions of a race dummy with indicators for different
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age/education classes.2?

Row 1 of Table 5 presents unadjusted differences in mean log wages for
black and white workers over our 15 year sample period. As previous
researchers have noted (see Bound and Freeman (1992), for example), the black-
white wage gap for men closed slightly between the mid- and late- 1970s, then
re-opened in the 1980s. ‘The black-white wage gap for women followed a
parallel course. Time series patterns of regression-adjusted wage gaps (in row
2) are roughly similar although the adjusted gaps are smaller in magnitude.

Comparisons of levels and changes in the wage gaps by age and education
show considerable diversity within the black labor force. Wage gaps for black
men and women aged 26-35 expanded significantly over the 1980s (growing by
7% for men and 10% for women) while gaps for older men and women were
stable. Wage gaps for better-educated blacks also grew more while the gaps for
male and female dropouts were stable. The trend in the wage gap for college-
educated black women is notable: these women had wages well above their
white counterparts in the mid-1970s but saw sharp relative declines over the late
1970s and early 1980s.

How do changes in the overall black relative wage gap during the 1980s
compare with predictions based on the changing structure of white wages? The
answer is presented in Table 6, where we report a simple decomposition of black
and white average wage gfowth from 1979 to 1989. Let W, denote the mean log
wage of one race/sex group in period t (t=0 for 1979, t=1 for 1989), let Wit
represent the mean log wage for the particular group in age/education cell j in

period t, and let s; represent the fraction of the group in cell j in period t.

20We include as blacks only those individuals who report their race as
"black". Results for models that pool "blacks" and "other races” are very

similar.
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Finally, let w8, represent the predicted mean log wage for cell j in 1989 based
on the quadratic single index model for whites and 1979 wages in cell j. Then

Wy - Wo = I 550 (wgl - Wig) + (W - ng) } + (51 - 850 Wy
The first term in this decomposition represents an average of cell-specific
predicted growth rates based on the single index model for whites. The second
is a weighted average of cell-specific prediction errors. The last term is a
distributional effect reflecting changes in the relative fractions of workers in
specific age/education cells between 1979 and 1989.

The decomposition in Table 6 leads to slightly different conclusions for men
and women. As noted by Juhn, Murphy, and Pierce (1992), changes in the
distribution of wages among white men imply that the relative wages of black
men would fall over the 1980s. Our estimate (in row 1 of Table 6) is that
increases in the "return to skill" would have led to a 5.3% fall in the relative
wages of black men. Relative changes in demographic structure (including the
retirement of older cohorts of less-educated blacks) and slightly better than
expected wage growth within narrow age/education cells moderated this relative
wage decline.

Fc;r black women, the increase in return to skill over the 1980s would have
led to a smaller relative decline in wages (-2.0%). Even though returns to skill
rose more for white women than white men, black women's wages are less
concentrated in the lower tail of the white female wage distribution. Thus
widening wage inequality had a smaller net impact on their relative position.
Within narrow age and education cells, however, black female wages grew more
slowly than predicted by the white female wage structure. On net, black men
and women had similar relative wage losses over the 1980s.

This overall assessment masks substantial relative gains and losses within the

black labor force. Columns (1) and (3) of Table 7 present mean prediction
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errors of black wages in 1989 by age and education group. Columns (2) and (4)
cox:hpute the relative prediction errors of blacks and whites in the same
subgroups. If the single index model provided a "perfect fit" to the white wage
distribution, the white prediction errors would be negligible and the relative
prediction errors would simply equal the black prediction errors (as is the case
for all workers in row 1). Since the single index model is imperfect, some
fraction of the relative prediction error in specific age or education categories
arises from the under- or over-prediction of white wages.

Examination of the patterns of relative and race-specific prediction errors by
age suggests that older black workers enjoyed substantial gains over the 1980s
while younger black workers lost ground. This is an important conclusion
because some of the conventional explanations for black relative wage gains in
the 1960s and 1970s (such as improved school quality) imply continued gains
in the 1980s for the oldest groups of workers. Evidence in Card and Krueger
(1992) suggests that black' relative school quality improved more or less
continuously from 1900 to the early 1950s. This improvement should have led
to "unexplained" wage gains for older blacks during the 1980s, as individuals
born before 1935 retired and were replaced by younger cohorts. The positive
prediction errors for black men and women over age 46 lends some support to
this story.

Analysis of the predicﬁon errors by education reveals that poorly- educated
black men and women did better than expected over the 1980s, given the
patterns of white wage changes. Wage growth for better-educated black men
was about equal to predictions based on the white wage structure. The
substantial positive prediction errors for white male college graduates however,
imply that the relative prediction errors for college-educated black men are
negative. Wage growth for better-educated black women was about 5% slower

than predicted given patterns for white female wages.
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A closer examination of the college subgroup shows a 19% relative loss for
young male college graduates, equally attributable to the over-predication of
black wages and the under-prediction of white wages.2! By comparison, wages
of older college-educated black men actually grew 8-10% faster than predicted
by changes in the white wage structure. The sharp distinction by age in the
relative wage performance of black male college graduates is absent for black
females. Across the age spectrum, wages for black female college graduates
grew more slowly than predicted, with the largest shortfall for the oldest group.

Finally, Table 8 contains a detailed tabulation of actual and relative
prediction errors for young black workers. Young black women of all education
levels did worse than predicted, both in absolute terms and relative to white
women in the same age-education groups. By contrast, less-educated black men
did relatively well and more-educated black men did relatively poorly.

As noted by Bound and Freeman (1992) it is hard to find a unifying
explanation for the relative wage changes of particular subgroups of black
workers over the 1980s. Hypotheses based on relative changes in school quality
for whites and blacks would seem to imply parallel changes for men and
women. At the broadest level the age patterns of relative wage changes are
similar for men and women: older black workers of both sexes enjoyed relative
wage gains, while wages of younger blacks followed the trends predicted by the
changing structure of white wages. Disaggregating by age and education,
however, our analysis suggests relative wage declines for younger better-
educated black men, and across-the board declines for younger black women.
One potentially surprising conclusion is that wages of young black men with 12

or fewer years of education have pot fallen faster than predicted by overall wage

2INote that college graduates age 22-25 are included in the overall college
group but not shown separately by age.
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patterns for whites.

We have also computed prediction errors for the 25th, 50th, and 75th
percentiles of black wages, and relative prediction errors between black and
white workers at various quantiles of wages. For the most part, the patterns of
the black prediction errors and the black-white relative prediction errors are
similar to the patterns for mean wages. The most obvious differences emerge
for college-educated men. Compared to the relative prediction error for mean
wages of male college graduates (-5.9%)
the relative error for the 25th percentile is more negative (-12.9%) while the
relative error for the 75th percentile is less negative (-1.5%). This "tilting"
(which also appears within age subgroups of the male college graduate
population) suggests that the dispersion in wages for black college graduates
widened substantially.

In summary, our analysis of black wage changes over the 1980s points to
three main conclusions. First, relative to predictions based on the white wage
structure, older black men and women enjoyed 8-10% relative wage gains.
These are similar in magnitude to the relative wage gains of black men in the
1960s and 1970s (see Smith and Welch (1989), Card and Krueger (1992)).
Second, younger black men and women, particularly the better-educated, suffered
wage losses relative to predictions from the white wage structure. Third, young
college graduate black males and college graduate black females of all ages
suffered the largest unexpected losses. Wage trends for less educated black men

were consistent with overall wage patterns for less-skilled white workers.
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Conclusions

We have proposed a simple technique for estimating and testing a one-
dimensional skills model of the wage structure. The method compares means
and/or quantiles of wages within specific age-education cells over time. A
single skill model provides a parsimonious and relatively accurate model of
changes in the structure of log hourly earnings for white men and women from
the mid-1970s to the late 1980s. Within this framework, we find that the return
to skill for women rose by 40 percent over the 1980s. For men, the rise was
smaller -- approximately 25 percent -- and somewhat greater in the upper tail of
the wage distribution than in the lower tail. We also find that 40-50 percent of
residual wage variation (around race/sex and age/education means) can be
attributed to unobserved ability whose market value rose in the 1980s.

We use the estimated model of changes in the structure of white wages to
analyze changes in black-white relative wages from 1979 to 1989. The
widening of the white wage distribution would have been expected to lower
black men's relative wages by some 5 percentage points during the 1980s.
However, changes in the relative demographic distribution of blacks and a small
net gain in black wages relative to the white benchmark moderated this loss.
The widening wage distribution of white women would have been expected to
lead to a 2 percentage point loss in relative wages for black women over the
1980s. Unlike men, black women's relative wages fell short of white
benchmark, accentuating the relative decline in their earnings.

There were also significant relative losses and gains within the black labor
force. Our estimates suggest that the wages of older black men and women
grow 8-12 percent relative to whites during the 1980s. On the other hand,
young college-educated black men and college-educated black women in all age
groups had wage declines of 5-10 percent relative to single-skill models fit to
whites.
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Appendix: Comparison of Wage Measures in Monthly Earnings Supplement and

March CPS
Outgoing March CPS
Rotation Weighted
Files All By Weeks* FTFY®
Men
1979 Data
a. Mean Log Wage-Blacks 1.660 1.634 1.687 1.762
(0.005) (0.011) (0.010) (0.012)
b. Mean Log Wage-Whites 1.868 1.882 1.935 2.019
(0.002) (0.003) (0.003) (0.003)
¢. Black-White Gap -0.208 -0.248 -0.248 -0.257
(0.006) (0.011) (0.010) ({0.012)
1989 Data
a. Mean Log Wage-Blacks 2.074 2.116 2.176 2.246
{0.006) {0.011) (0.011) (0.012)
b. Mean Log Wage-Whites 2.316 2.361 2.410 2.499
(0.002) (0.004) (0.003) (0.004)
c. Black-White Gap -0.242 -0.245 -0.234 -0.252
(0.006} (0.012) (0.011) (0.013)
Change in Black-White -0.034 0.003 0.014 0.005
Gap: 1979 to 1989 (0.009) (0.017) (0.015) (0.018)
Women )
1979 Data
a. Mean Log Wage-Blacks 1.424 1.383 1.428 1.517
(0.005) (0.009) (0.009) (0.012)
b. Mean Log Wage~Whites 1.474 1.455 1.497 1.583
(0.002) (0.003) (0.003) (0.004)
c. Black-White Gap -0.050 -0.072 -0.069 -0.066
(0.005) (0.009) (0.009) (0.013)
1989 Data
a. Mean Log Wage-Blacks 1.944 1.957 2.011 2.104
(0.005) (0.010) (0.010) (0.012)
b. Mean Log Wage-Whites 2.025 2.035 2.079 2.177
(0.002) (0.003) (0.003) (0.004)
c. Black-White Gap =0.081 -0.078 -0.068 =-0.073
(0.006) (0.011) (0.010) (0.012)
Change in Black-White -0.031 -0.006 0.001 -0.007
- Gap: 1979 to 1989 (0.008) {0.014) (0.014) (0.018)
Notes: Entries are mean log wages with standard errors in

parentheses. Entries in column 1 are from pooled monthly files of
individuals in the outgoing rotation groups of the Current
Population Survey (CPS) for 1979 and 1989, and are based on
reported wages for main job during the survey week. Entries in
columns 2-4 are from individuals in the March 1980 and March 1990
CPS, and are based on reported wage and salary earnings from all
jobs in the previous calendar year, divided by hours worked last
year. Individuals with allocated earnings data and individuals
with extreme values for their hourly wage are excluded.

a/Weighted average of log wage rates, using weeks worked last year

as a weight.

b/Based on full-time full-year workers only.
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APPENDIX 1: CONSISTENT ESTIMATION OF REGRESSION MODELS
WITH MEASUREMENT ERROR OF A KNOWN (ESTIMATED) FORM

In this appendix, we first derive the asymptotic covariance matrix of the
measurement-error corrected estimator (equation 12 in the text). We then
present 8 goodness-of-fit test and extend the model to the case where wage
percentiles (instead of means) are analyzed.
Al.1 Covariance Matrix of the Estimates: Model for Cell Means.

As mentioned in the text, the following sample moments can be

constructed from the available data frj and )’Ej:
Mo = (1K) 5 %/,
Ky = (1K) 5 3,
Consider Vj, the variance of the measurement error term y; (the sampling error

in )'EJ), and its unbiased estimate Vj (see Appendix 2). An unbiased estimate of

. A . .
the measurement error in M,, is thus given by:

£=1K) by Vj.

The "measurement-error corrected least squares” estimator of Fuller and

Hidiroglou (1978) is given by
T = MLy - £ K.,

Under standard regularity conditions, it is easily shown that

(R-x) ~ N(o,{EM,,*WMn"),
where W = E[(&n,-V;m)&n,-V;m)f,

and where N =g -ux (ej is the sampling error in 3'\1) A consistent estimate
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of W is obtained using the method of White (1980):
1 X
W = Ej-El [(ijﬁj—vjﬁ)(ﬁjﬁj-vjﬁ)’] ’

where ﬁj = §'j-§j'ﬁ:. Note that a consistent estimate of W can also be obtained
when the error term 1y; is correlated across observations. This situation occurs,
for example, when several wage quantiles from the same age-education cell are
used in the analysis. The consistent estimation of W in this special case is
discussed in detail in Appendix 2. Given a consistent estimate W of W, a
consistent estimate of the covariance matrix of T is given by the following

expression:

cov(R-x) = = (1~ £) WL -£)™

Finally, an additional variance component could be included to take account of
the sampling variability of the estimate Vj of the covariance matrix v;

Al.2 Goodness-of-fit Statistic

The equation relating §'j and )’EJ is obtained by substituting equations (13) and
(14) into equation (12):

(Al) yJ = Xjﬂ + ej-uj'ﬂ:.

Under the null hypothesis that equation (12) is correct, the error term ej-uj'n in
equation (A1) consists entirely of sampling error. When y; and x; refer to cell
moments or quantiles, it is possible to obtain estimates of the variances of the
corresponding sampling errors (see Appendix 2). Assume that estimates of
var(ej) and var(uj) are available, and assume that cov(Ej,uj) = 0. Rewrite the

. . A
regression residual n; as:
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fy = 9,2
= -un-x/(&-x).

Under the null hypothesis that model is correct, the variance of ﬁj is given by
(A2)  var(fi) = var(e)+var(y;m)+varfR;(R -x)]-2c0v(e;u; )
~2c0v{e R (& -7)]+2c0v{u)m,% (R -x)].

The first covariance term in equation (A2) is equal to zero since (by assumption)

; and u; are uncorrelated. We also ignore the two other covariance terms in

calculating the variance of the residuals.??  The variance of xj(ﬁ-n) can be

estimated using the delta method
var{k (f-m)] = Xvar(i-m)%).

The variance of ﬁj can thus be rewritten as
var(fy) = var(e)+ Vi +&var( -m) .

Similarly, the covariance between ﬁj and ﬁk is given by:
cov(fi;fiy) = Xjovar(R - T)=x;"

Consider the vector of residuals

fi =[ﬁ1 fiy . . ﬁk],,

' A
22 Empirically, incorporating the variance of T and its covariance with the
error components g; and Y in the calculations of the goodness-of-fit statistics

has a negligible effect for the samples of the size we are using in this study.
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and the estimate € of its covariance matrix:

var(i,)  cov(i Ay -
& - [oov(iiphy)  var(iy) .

Under the null hypothesis the model is well-specified, the goodness of fit
statistic G is asymptotically distributed as chi-squared with K-3 degrees of

freedom:

G = §'C7 - ¥*K-3)

where € is a generalized inverse of the estimated covariance matrix €.

A2.1 Model for Wage Percentiles.
The model for wage percentiles is the following:

25 2

=a 25 25 252
W =a +bwj0 +c(wjo ),

50 _ 50 50 50,2
w) =a +bwjo +c(wj0),

w75 =
J

75 75
al® + bwig +e(Wig )2,

These three equations can be combined in a single equation:

/
yjq -_-qun , for q=25, .50, and .75,

q q q q 2
where X; =[ Djso Dj75 Wi (wjg)]/

and © =[325 a 042 75325 c]/.

Note that D?So is an indicator variable that is equal to one when g=.50 while



34

D?-,, is an indicator variable that is equal to one when q=.75. As in the case of
the model for cell means, %t can be consistently estimated by replacing x‘} by an
unbiased estimate )'E;l and adjusting the cross products of )'E} for measurement
error. To simplify the calculations, assume that the (log) wage observations Wit
are drawn from a normal distribution with mean Wj; and variance sjtz. The

sampling variance of the qth estimated quantile (q = .25, .5, .75) is given by
var(ﬁt.q-\v.q) = _l_k qs.2
S LIS N, 3t

where k9 = q(1-q)/¢(zh)? and where 29 is the qth quantile of the standard normal
distribution (¢(.) is density of the standard normal distribution). As discussed
in section 2.1 of this appendix, the sampling variance of the estimate gjtz of sjtz
is given by:

2 1 2
var($y —sy) = E[%'%]-
It can also be shown that?>
cov(Wl,89) = -z%;.

An unbiased estimate of wi is the estimated quantile ‘:’?0’ while an
unbiased estimate of (wf‘lo)2 is (w“‘lo)2 - (l/Njo)-kqfs\}o. These unbiased estimates
can then be used to form an unbiased estimate ﬁ? of x?. A consistent estimate

of & is again given by:
;E = A - 2)_1 A

where the average cross products are now averaged over both quantiles q and

23 The proof of this result is contained in an appendix available on request.
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cells j

- T T,
M, - E I /Y

J-l q

2 LYy

J-l q

Under standard regularity conditions, it is easily shown that:

(f-x) - N(O,—Mn"WMn
wheto W = EY (4'nj-Vim)Y Gind-Vi'ny]
q q

and where ﬁ;’ = j;'\}-ﬁ;"n Note that the covariance matrix W takes account of the
correlation between the residuals of the three wage quantiles in a given cell. A

consistent estimate of W is obtained using the method of White (1980):
1 X
W = g2 D G-V @H-0.
1 q q

Finally, the goodness-of-fit test of the model is similar to the test for the cell

means model.

APPENDIX 2: ESTIMATION OF THE MEASUREMENT ERROR
VARIANCE
In this appendix, we discuss the estimation of the variances of the sampling

eITOrS §; and y; for models of cell means or quantiles.
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A2.1 Model for Cell Means.
As mentioned in the text, changes in the structure of wages are summarized by
the following quadratic model:

Wi =a+bwgytowg?, j=12,.K

For each cell, we observe:

A

Wj;: mean wage in cell j in period t.
42
8.

g variance of wages in cell j in period t.
th: Number of observations in cell j in period t.
The sampling variance of v':'jt 1s given by:
Var(&j,) = (1/Nj‘)’s‘jt2
Since E(v?rjtz) = E(wy) +5; 2 unbiased estimates of ‘Q’jo and vAvjoz are V’;’jo and
wio? - (IN;)s;o2. Let:

w 2
b . .2 510]/
0, = ,and X, = |1 W Wio=——|.
J Ez % f Njo

We can write v’&\rj = £(6)). Using the delta method, we find that
cov(®) ~ FAF,

where F; = af(xj)/axj, and where A; = cov(8)). The Jacobian matrix F; is given
by:
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K
|1 o
20, -—
N |
while
he
N Noe Ny
2
S0 CaoC2p0
No Ny

where ¢y is the kth central moment of the distribution of wages in cell j at time
t:

N

Cyp = g Wi

N’
ad oy = - 3 (wy-c,) for ka2.
N, i1

A consistent estimate of bov(xj) is thus given by:
- BAR,
where ﬁj and Aj are the sample analogs of F; and A;.

A2.2 Model for Wage Quantiles
A consistent estimate of cov()'EJq) is also obtained using the delta method:

Vi=F

st
>

989
Jﬁj’

“where f’;’ and A} are the sample analogs of F{ and AJ. It is easily shown that
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) 0 o ;
0 0
F.9= 0 0
J 1 07
2ng -_lf_q
j0
and that
1 2 4 3
A-q - 0 10
’ 1 293 1(c -sjg)-
—z 50 —(c40S;
| Njo Nio J

APPENDIX 3: ESTIMATION OF A TWO-SKILLS MODEL
Assume that wages for cell j in 1973 is the sum of two skills S, and Sy,
Without loss of generality, assume that the two skills are uncorrelated and that

they have the same variance o’ = var(wj73)/2
WJ73 = Slj + S2j

Cell wages in 1979 and 1989 are the following linear functions of these two
skills

Wiz = Yo79 t Y1,7951j + Y2795y and
Wigs = 0,89 + 11,8951 ¥ Y2,8952

The projection of Wiz on w3 yields
wha9 = Yo.79 *+ T19(Sy; + S,

where Y79 = () 79 + Y579)/2. The prediction error (W - ws’-,g) is given by
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Wi - Wf79) = (,79 - T29) Sq5 + (2,79 - T19) Sy5

The linear projection of W;gq on Wjz9 and (Wjpg - wl49) is thus given by

P[stg ij79’ Wj79 - Wg-,g] =a+ ij79 + C(WJ79 - Wg79),

where

a8 = Yo,89 - (Ygo/129)Y0,79
b = Y39/T79

¢ = [1,80(01,79 - Y290+ Y2,80(Y2,79 - T79)] /
[(71,79 - 779)2 + (72,79 - 779)2]-

Under the null hypothesis that the single-index model is well-specified, the
relative price ¥ /Y,, of the skills must remain constant over time. This
condition is necessary and sufficient for the two skills to aggregate in a single
skill. Furthermore, the coefficient ¢ is equal to O whenever this condition is
satisfied. A t-test of the measurement error corrected least squares estimate of
¢ is thus a specification test for the single-skill model against the two-skills
model. The measurement error correction used is similar to the procedure

described in Appendices 1 and 2.
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Table la: Changes in Wage Inequality Among White Men

Ratio
1973/4 1979 1989 1989/1979
1. Age Differentials:
Age 46-35 - Age 26-35
a. 9-11 Years Education 0.088 0.158 0.235 1.49
(0.016) (0.013) (0.016)
b. 12 Years Education 0.101 0.146 0.224 1.53
(0.010) (0.007) (0.008)
C. 16 Years Education 0.330 0.326 0.304 0.93
(0.021) {0.013) (0.015)
2. Education Differentials:
12 Years ~ 9-11 Years
a. Age 26-35 0.100 0.125 0.177 1.42
(0.013) (0.010) (0.011)
b. Age 46-55 0.113 0.114 0.165 1.45
(0.013) (0.010) (0.014)
16 Years ~ 12 Years
c. Age 26-35 0.176 0.144 0.324 2.25
) (0.013) (0.008) (0.008)
d. Age 46-55 0.406 0.324 0.405 1.25
(0.020) (0.013) (0.015)
3. Within-Cell Standard Deviations:
- 12 Years Education
a. Age 26-217 0.366 0.385 0.408 1.06
(0.011) (0.006) (0.007)
b. Age 47-49 0.397 0.388 0.417 1.07
(0.013) (0.006) (0.008)
16 Years Education
a. Age 26-27 0.394 0.409 0.437 1.07
(0.017) (0.010) (0.012)
b. Age 47-49 0.452 0.449 0.528 1.18
(0.023) (0.014) (0.018)
Overall Standard Deviation 0.501 0.497 0.568 1.14

of Log Hourly Wage

Note: Standard errors in parentheses.
mean log wages between indicated groups, or standard
deviations of mean log wages within indicated groups.
Samples include individuals age 16-65 who report positive

hourly or weekly wages.

See text for further

Entries are difference in

details.
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Table 1b: Changes in Wage Inequality Among White Women

Ratio
1973/4 1979 1989 1989/1979
1. Age Differentials:
Age 46-355 - Age 26-35
a. 9-11 Years Education 0.065 0.063 0.107 1.70
(0.019) (0.014) (0.017)
b. 12 Years Education 0.047 0.040 0.078 1.95
(0.011) (0.007) {0.008)
c. 16 Years Education 0.068 0.028 ~-0.008 -
(0.026) (0.019) (0.016)
2. Education Differentials:
12 Years - 9-11 Years
a. Age 26-35 0.153 0.151 0.232 1.54
(0.016) {(0.011) (0.012)
b. Age 46-55 0.135 0.128 0.204 1.59
(0.015) (0.011) (0.014)
16 Years - 12 Years
c. Age 26-35 0.344 0.282 0.441 1.56
(0.015) (0.009) (0.009)
d. Age 46-55 0.366 0.270 0.354 1.31
(0.024) (0.018) (0.015)
3. Within-Cell Standard Deviations:
12 Years Education
a. Age 26-27 0.368 0.364 0.421 1.16
(0.014) (0.008) (0.009)
b. Age 47-49 0.400 0.375 0.424 1.13
(0.013) (0.008) (0.007)
16 Years Education
¢. Age 26-27 0.332 0.359 0.428 1.19
{0.016) (0.010) {0.011)
d. Age 47-49 0.420 0.454 0.464 1.02
(0.039) {0.027) (0.015)
Overall Standard Deviation 0.437 0.418 0.514 1.23

of Log Wages

Note: Standard errors in parentheses.

Entries are difference in
mean log wages between indicated groups, or standard

deviations of mean log wages within indicated groups.
Samples include individuals age 16-65 who report positive
hourly or weekly wages. See text for further details.



Table 2: Measurement Error Corrected Estimates of Single Index

Model, White Men and Women,

1973/4 to 1979 and 1979 to 1989

1973/4 to 1979

1979 to 1989

(1) (2) (3) (4) (5) (6)
I. White Men
1. Constant 0.507 0.494 0.594 -0.040 0.704 0.404
(0.016) (0.042) (0.052) (0.033) (0.095) (0.123)

2. Mean Cell Wage 0.948 0.968 0.886 1.226 0.363 0.624
in Base Year (0.011) (0.067) (0.073) (0.017) (0.114) (0.132)

3. Mean Cell Wage - -0.008 0.036 - 0.243 0.153
Squared in Base (0.026) (0.030) (0.033) (0.039)
Year -

4. Mean Years of - - -0.006 - - 0.011
Education in Cell (0.002) (0.003)

5. Goodness-of-Fit 419.0 420.2 382.7 933.0 700.3 649.3
(deg. freedom) (223) (222) (221) (223) (222) (221)

II. White Women

1. Constant 0.601 0.538 0.610 -0.013 -0.178 -0.173

(0.017) (0.048) (0.070) (0.032) (0.171) (0.191)

2. Mean Cell Wage 0.847 0.971 0.954 1.407 1.470 1.466
in Base Year (0.018) (0.098) (0.111) (0.022) (0.234) (0.251)

3. Mean Cell Wage - -0.058 -0.020 - -0.021 -0.019
Squared in Base (0.049) (0.062) (0.080) (0.089)
Year

4. Mean Years of - - -0.008 - - -0.000
Education in Cell (0.003) (0.003)

5. Goodness—-of~-Fit 371.1 364.3 325.6 492.0 489.7 488.3
(deg. freedom) (223) (222) (221) (223) (222) {221)

Note: Dependent variable is mean log wage in age-education cell in final

year (1979 in columns 1-3; 1989 in columns 4-6).

by weighted count of workers in age-education cell in 1979.
Estimation method is corrected least squares -- see text.

Cells are weighted



Table 3: Measurement Error Corrected Estimates of Single Index Model,
25th, 50th, and 75th Percentiles of Log Wages for White Men
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and Women, 1979 to 1989.

White Men White Women
(1) {2) (3) (4) (5) (6)
1. Constant 0.015 0.419 0.173 0.002 -0.430 -0.437
(0.020) (0.062) (0.063) (0.020) (0.085) (0.085)

2. Corresponding 1.212 0.746 0.886 1.358 1.938 1.932
Wage Percentile (0.012) (0.068) (0.064) (0.016) (0.113) (0.112)
of Cell in 1979

3. Corresponding - 0.130 0.072 - -0.185 -0.187
Wage Percentile {0.019) (0.018) (0.036) (0.036)
Squared

4., Mean Years of -— - 0.015 - - 0.001
Education in Cell (0.002) (0.002)

S. Dummy for S5S0th -0.031 -0.030 -0.010 -0.035 -0.045 -0.026
Percentile (0.009) (0.009) (0.008) (0.007) (0.008) (0.008)

6. Dummy for 75th -0.057 -0.071 -0.025 -0.096 -0.102 -0.097
Percentile (0.012) ({0.011) (0.011) (0.010) (0.010) (0.011)

7. 25th Percentile - - - -0.119 -0.093 -0.092
Below Minimum (0.012) (0.013) (0.013)
Wage in 1979*

8. 25th Percentile -—— -—- - 0.030 0.052 0.053
Below Minimum (0.058) (0.067) (0.067)
Wage in 1989%

9. Goodness-of-Fit 3098.0 2894.6 2458.5 1724.6 1621.1 1627.5
{(deg. freedom) (671) (670) (669) {669) {668) (667)

Note: Dependent variable is 25th, 50th, or 75th percentile of log wage
distribution in age-education cell in 1989.
for each of 225 age-education cells).
count of workers in age-education cell in 1979.

corrected least squares -- see text.

* Dummy variable equal to 1 if 25th percentile of wa
is less than or equal to minimum wage in 1979.

b

(There are 3 observations
Cells are weighted by weighted
Estimation method is

ges in cell in 1979

Dummy variable equal to 1 if 25th percentile of wages in cell in 1989
is less than or equal to minimum wage in 1989.



Table 4: Mean Prediction Krrors of 1989 Wages fram Single Index Models, White Men and Women
Men Women
Cell Cell Percentiles Cell Cell Percentiles
Mean Mean
(1) (2} (3) (4) (5) (€) n (8)
e:
~Z5 Years -0.002 -0.025 0.007 0.018 -0.016 -0.030 -0.013 -0.009
(0.007) (0.009) (0.009) (0.010) (0.007) (0.00_0) (0.007) (0.008)
26-35 Years 0.010 0.011 0.002 0.006 -0.005 0.001 -0,010 -0.008
(0.007) (0.009) (0.008) (0.008) (0.007) (0.009) (0.008) (0.008)
36-46 Years -0,020 -0.013 -0.017 -~0.025 0.028 0.032 0.029 0.026
{0.007) (0.010) (0.009) (0.009) (0.007) (0.009) (0.008) (0,009)
47-55 Years -0.008 0.016 -0.010 -0.025 0.010 0.010 0.010 0.011
{(0.009) (0.011) (0.010) (0.011) (0.008) (0.011) (0.010) (0.011)
56-65 Years 0.029 0.036 0.025 0.022 -0.004 0.006 -0.007 -0,019
(0.010) (0.013) (0.012) (0.013) (0.010) ({0.013) (0.012) (0.013)
By Iducationt
= sats cation -0.007 -0.033 -0.020 0.004 0.003 -0.014 0.004 0.008
(0.007) (0.009) (0.009} (0.010) (0.009) (0.001) (0.009) (0.010)
12 Years Education -0,02% -0,033 -0.031 -0.029 -0.008 -0.003 -0.003 -0.018
(0.006) (0.008) (0.007) (0.008) (0.006) (0.007) (0.006) (0.007)
13-15 Years Xducation 0.005 -0.002 0.006 0.012 0.012 0.018 0.003 0.011
(0.007) (0.009) (0.009} (0.009) (0.007) (0.009) (0.008) (0.009)
16+ Years Education 0.049 0.098 0.074 0.037 0.007 0.004 0.002 0.030
(All Ages) {0.009) (0.010) (0.010) (0.011) (0.013) (0.012) (0.011) (0.013)
College Graduates, B et
]%c 26-35 0.097 0.123 0.112 0.096 0,009 -0.006 -0.003 0.045
(0.010) (0.013} (0.012) (0.014) (0.015) (0.016) (0.014) (0.016)
Age 36-46 -0.014 0.064 0.012 -0.036 0.024 0.025 0.015 0.046
(0.015) (0.016) (0.016) (0.019) (0.020) (0.021) (0.018) (0.021)
Age 47-55 ~0.018 0.088 -0.004 -0.067 -0.054 -0.028 -0.042 -0.041
{(0.021) (0.023) (0.022) (0.02§) (0.026) (0.030) (0.026) (0.029)
Age 56-65 0.000 0,060 0.081 -0.018 -0.040 0.017 -0.052 -0.042
{(0.026) (0.031) (0.030) (0.035) (0.033) (0.041) (0.035) (0.038)
Notes: Entries are average prediction errors of cell mean log wages (columms 1 and S} and cell

wage percentiles
on models presented in column S of Table 2.
models presented in columns 2 and § of Table 3,
weighted by weighted count of workers in cell in 1979.

columns 2-4 and 6-8) in 1989.

Predictions of cell mean wages are based

Predictions of cell percentiles are based on

Cell-specific prediction errors are

Standard errors (in parentheses

take account of the unpling variance of the estimated parameters and of cell wages.
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Table 5: Cross-Sectional Black-White Wage Gaps for Men and Women, 1973-1989

Men Women
1973/74 1979 1989 1973/74 1979 1989
(1) (2) (4) - (5) (6) (8)
1. Unadjusted Gap -0.233 -0.208 -0.242 -0.093 -0.049 -0.081
{0.009) (0.006) (0.006) {0.008) (0.005) (0.006)
2. Adjusted Gap -0.146 -0.140 -0.178 -0.029 -0.017 -0.044
{(0.007) ({0.005) (0.005) (0.007) (0.004) (0.0095)
3. By Age:
Age 16-25 -0.089 -0.104 -0.133 -0.001 -0.028 -0.063
{0.013) (0.009) (0.011) (0.013) (0.008) (0.010)
Age 26-35 -0.170 -0.139 -0.207 -0.019 0.011 ~-0.087
(0.013) (0.008) (0.008) (0.013) (0.008) (0.008)
Age 36-45 ~-0.192 -0.177 -0.204 -0.029 -0.011 -0.012
{0.015) (0.010) (0.010) {(0.014) (0.009) (0.009)
Age 46-55 -0.153 -0.155 ~-0.157 -0.056 -0.034 0.026
(0.016) (0.011) (0.013) {(0.016) (0.011) (0.012)
Age 56-65 ~-0.134 <0.142 -0.142 -0.089 -0.060 -0.061
(0.022) (0.015) (0.018) {0.023) (0.015) (0.017)
4. By Education:
Dropout -0.152 -0.154 -0.163 -0.044 -0.040 -0.053
(0.010) (0.007) (0.010) (0.011) (0.008) (0.011)
High School -0.159 -0.150 -0.203 -0.074 -0.038 -0.081
(0.012) (0.007) (0.007) (0.011) (0.007) (0.007)
Some College -0.149 -0.133 -0.175 -0.024 -0.008 ~0.038
(0.020) (0.011) (0.010) (0.018) (0.010) (0.009)
College Grad -0.047 -0.063 -0.130 0.200 0.091 0.052

(0.026) (0.014) (0.013) (0.022) (0.012) (0.011)

Notes: Entries represent estimated differentials in log hourly wages between
black and white workers. Adjusted gaps and gaps by age and education
represent estimated coefficients of a black indicator variable (or the
interaction of a black indicator with age or education indicators) in
a linear regression model than includes linear education and quartic
experience terms, 8 regional dummies and an Hispanic indicator.
Standard errors (in parentheses take account of the sampling variance
of the estimated parameters and of cell wages.
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Table 6: Decomposition of Changes in Black Relative Wages, 1979 to 1989

Male Decomposition: Female Decomposition:
Blacks- Blacks-
Blacks Whites Whites Blacks Whites Whites
(1) {2) (3) (4) (5) {6)
Average Across Cells of:
1. Predicted Within 0.328 0.381 -0.053 0.448 0.468 -0.020
Cell Change * {(0.005) (0.004) (0.003) {(0.004) (0.004) (0.002)
2. Unpredicted Within 0.007 0.000 0.007 -0.018 0.000 -0.018
Cell Change ® (0.009) (0.005) (0.009) (0.008) (0.005) (0.008)
3. Change in Cell 0.078 0.066 0.011 0.089 0.083 0.006
Distribution ¢ (0.003) (0.001) (0.003) (0.002) (0.001) (0.002)
4. Total Change in 0.413 0.448 -0.035 0.518 0.551 -0.033
Mean Log Wages (0.007) (0.002) (0.007) (0.006) (0.002) (0.006)
1979-89 :
Notes:

Standard errors (in parentheses take account of the sampling variance
of the estimated parameters and of cell wages.Predictions are based
on quadratic single index models fit to whites only.

Weighted average of difference between predicted mean log wage for
cell in 1989 and actual mean log wage of cell in 1979,

Weighted average of difference between actual mean log wagé for cell

in 1989 and predicted mean log wage of cell based on single index
model.

Change in cell weight between 1979 and 1989, weighted by mean log
wage of cell in 1989,



Table 7: Unpredicted Changes in Mean Cell Wages for Blacks, 1979-1989
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Men Women
Blacks- Blacks~-
Blacks Whites Blacks Whites
(1) (2) (3) (4)
Overall 0.007 0.007 -0.018 -0.018
(0.009) (0.009) (0.008) (0.008)
By Age:
- Years -0.016 -0.014 -0.035 -0.020
(0.014) (0.014) (0.014) (0.014)
26-35 Years -0.045 -0.055 -0.112 -0.107
(0.016) (0.016) (0.014) (0.014)
36-46 Years -0.002 0.017 0.023 -0.002
(0.017) (0.018) {0.015) (0.016)
47-55 Years 0.080 0.088 0.086 0.077
(0.024) (0.025) (0.021) (0.023)
56~-65 Years 0.152 0.124 0.084 0.087
{0.028) (0.029) (0.029) (0.030)
By Education:
9-11 Years Education 0.028 0.035 0.036 0.033
(0.014) (0.014) (0.015) (0.015)
12 Years Education -0.007 0.018 -0.037 -0.028
(0.134) (0.013) (0.012) (0.012)
13-15 Years Education 0.000 -0.005 -0.046 -0.058
(0.019) (0.020) (0.017) (0.018)
16+ Years Education -0.009 -0.059 -0.046 ~-0.053
(All Ages) (0.028) (0.029) (0.026) (0.024)
College Graduates, By Age:
Age 26-35 -0.091 -0.188 -0.076 -0.085
(0.044) (0.044) (0.036) (0.036)
Age 36-46 -0.009 0.006 -0.072 -0.095
(0.054) (0.055) {0.049) (0.047)
Age 47-55 0.083 0.101 -0.069 -0.015
(0.084) (0.086) (0.064) (0.066)
Age 56-65 0.075 0.076 -0.188 -0.147
: (0.110) (0.113) (0.111{ (0.112)

Notes: Entries are average prediction errors of cell means for blacks
(columns 1 and 3) or differences in average prediction errors

of cell means between blacks and whites (columns 2 and 4).

Standard errors (in parentheses take account of the sampling

variance of the estimated parameters and of cell wages.
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Table 8: Unpredicted Changes in Mean Cell Wages for Young Blacks, 1979-1989

Men Women
Blacks Blacks- Blacks Blacks-
Whites Whites
(1) {2) (3) (4)
Age 16-25, By Education:

9-11 Years Educatlon 0.012 0.024 -0.033 -0.048
(0.023) (0.022) (0.025) (0.024)

12 Years Education -0.046 -0.008 -0.056 -0.013
(0.021) (0.021) (0.020} (0.020)

13-15 Years Education -0.044 -0.075 -0.052 -0.035
(0.032) (0.033) (0.028}) (0.029)

Age 26-35, By Education:

5-11 Years Education ~-0.034 0.013 -0.078 -0.055
(0.032) (0.034) (0.031) (0.034)

12 Years Education -0.036 0.008 ~0.136 -0.128
(0.023) (0.023) (0.020} (0.021)

13-15 Years Education -0.045 -0.047 -0.120 -0.112
{(0.031) (0.032) {0.029) (0.030)

16+ Years Education -0.091 -0.188 -0.076 -0.085
(0.044) (0.044) (0.036) (0.036)

Notes: Entries are average prediction errors of cell means for blacks
(columns 1 and 3) or differences in average prediction errors
of cell means between blacks and whites (columns 2 and 4).
Standard errors (in parentheses take account of the sampling
variance of the estimated parameters and of cell wages.,
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Figure 2

Predicted & Actual Wage Growth 1979-89
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Figure 3
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