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1. Introduction

This paper is a theoretical study of the effects of monetary
disturbances in an economy where goods are exchanged for money in a certain
kind of non-Walrasian market. The market is one in which sellers of goods
deal with potential buyers in sequence, deciding whether to accept buyers'’
orders before learning how many further orders they will receive. As a
result, the current state of demand is not revealed to sellers until after
the process of sequential transactions has concluded. A consequence of the
trading and informational structure we assume is that unanticipated changes
in nominal spending flows induce less-than-proportional responses in nominal
transaction prices, and as a result changes in the same direction in real
output.

The idea of attributing a non-neutrality of money to the assumption
that some prices are established before the current state of demand is fully
revealed to all participants underlies many earlier models. In many
familiar models it is simply assumed that money prices must be fixed prior
to the realization of demand. Indeed, one may interpret the model of this
paper as one in which producers set prices in advance, though different
units of the same good may be offered for sale at different prices.

In the model of Lucas (1972), nominal prices in individual markets are
set by a Walrasian mechanism, and fully reflect local demand information,
but sellers in any one market do not have access to relevant information
about the state of demand in other markets., In the model of that paper,
buyers and sellers can negotiate any price they like at the time that an
order is accepted, and all participants have full access to any relevant
information in the system at that time. In our model, it is the non-

Walrasian market structure and not restrictions on agents’ strategies or on



their information sets that prevents instantaneous revelation through prices
of the state of aggregate demand and leads to the monetary non-neutrality.
Our model adapts a market game introduced by Prescott (1975) and
Butters (1977), in which buyers search for low priced supply offers by
sellers. In this game, sellers are not required to offer identical items at
the same price to successive buyers, and in equilibrium do not choose to do
so. As Rotemberg (1988) has stressed, this game need not involve any price
commitments by sellers prior to the time at which an order is accepted. Ve
embed this model of sequential purchases in an intertemporal model of
monetary exchange where buyers are subject to a cash-in-advance constraint.
Sections 2 and 3 analyze temporary equilibrium in a one-shot game with
sequential purchases. This allows us to present the non-Walrasian market
game while abstracting from dynamic complications. Section 4 then embeds
the temporary equilibrium in a complete intertemporal monetary equilibrium,
and proves the existence of a stationary equilibrium in the case of monetary
shocks that are independent across periods. Section 5 discusses further the

interpretation of our results, and concludes the paper.

2. A Pricing Game with Sequential Purchases

In this section we describe in some detail the kind of market game
with sequential purchases that we have in mind. Since our theory centers on
the progressive revelation of information through the process of trading, it
is important to be explicit about the exact sequence of events. We describe
a simple one-shot game, an adaptation of the games introduced by Prescott

(1975) and Butters (1977), in order to explain our equilibrium concept.



There are two types of players, producers and consumers. Each
producer begins with y wunits of a single good. We may think of this as y
units of inventory that can be sold, or as a capacity to produce up to y
units. The latter interpretation is especially interesting insofar as it
allows us to interpret the fluctuations in equilibrium sales derived below
as fluctuations in output. Each consumer begins with one dollar. Though we
use monetary language in referring to this second good in this section, the
question of why people value this good will be deferred until Section 4,
where it will be given as complete an answer as such a question admits. In
this section, money is just a good from which some people get utility, in a
way we will describe shortly.

The play proceeds as follows. First, each producer chooses a schedule
of prices at which he is willing to sell successive units of the good. We
might imagine that each producer places a dollar price on each unic of his
endowment. But he need not, and in general will not, choose the same price
for all units. Alternatively, we may suppose that a producer chooses a
schedule indicating the price at which he is willing to sell a unit of his
remaining inventory (or commit a unit of his remaining uncommitted capacity)
as a function of the number of units already sold.

Second, each consumer receives a dollar transfer that transforms his

money holdings from 1 to 4§, where § 1is a positive-valued random

variable with the probability measure & on an interval 8 = [ﬁ,;] C R+.
The distribution & is known to producers at the time they choose their
supply schedule, but the realization 4§ {is not. Third, consumers use some

or all of their balances 4§ to purchase goods. It is assumed that



consumers can costlessly search across producers for the lowest-priced
supply offer.

In this section and the next, we will develop a definition of a
symmetric equilibrium of a game that makes this search process explicit and
characterize its equilibrium. To anticipate this development, an
equilibrium will involve two functions p(f) and c(f) of the money supply
shock ¢, where p(d) is the highest, or marginal, price at which goods are
purchased and c{f) 1is the total consumption of each consumer. Consumers
will be assumed to have a marginal utility of unspent cash that is
independent of 4, so they will purchase goods up to the point at which the
marginal utility of current consumption spending just equals this marginal
return to cash holding, or at which they exhaust their cash. Producers will
be assumed to maximize expected return, so they will offer goods for sale in
such a way that the price of each unit times the probability that that unit
will be sold is equated across all prices at which goods are offered. By
develeping the implications of these two simple principles, we will
construct an equilibrium in which an array of goods are offered at different
prices, with low priced units actually sold for almost all values of 4 and
high priced units sold only at very high 4 values.

To formulate a definition of the equilibrium of this game, we need a
description of the strategies available to producers and consumers, and of
the process that matches consumers to the differently priced goods made
available by producers. In this section, we sketch such a description for a
game with a continuum of producers and consumers, and with a countable set
P of possible prices, and then use this game to suggest a definition of an
equilibrium in which any real number can serve as a price. This definition,

on which all of the results in the paper are based, appears at the end of



this section. In Section 3, we use the first-order and market clearing
conditions to show that there is a unique symmetric equilibrium of this
game and to characterize this equilibrium.

We assume a continuum of length one for both player types. For our
initial example, we require all transaction prices to lie in a countable set
P = (pl,pz,...), where 0 < 121 <Py < ... Since consumers can costlessly
search for the lowest-price supply offers, each would like to acquire
whatever goods he is consuming at the lowest price P1 and none at any
higher price. If this is possible (if demand at 121 with no consumer
rationed is less than or equal to the total quantity of goods offered for
sale at pl) we will call this an equilibrium, but in general it is clear
that some non-price rationing scheme will be needed. We imagine that this
rationing is done (by an auctioneer, if you like) as follows.

Beginning with the lowest price P each consumer 1 submits a buy

order subject to the constraint P1Xqg < 6, and each producer

11
submits a supply offer ylj' subject to the constraint ylj s y. If the
aggregate of these orders, Dl - fxlidi , is less than or equal to aggregate
supply, S1 - fyljdj, the game ends at stage 1.1 Each consumer i receives
X1¢ units of the good, and foregoes piX;; of his cash. Each producer |}
sells the fraction Dl/sl of the goods ylj that he has offered at the
lowest price, and all his remaining goods go unsold. If Dy > Sys each
producer sells all the goods he has offered at 120 and each consumer i
receives ¢4 (Sl/Dl)xli‘ paying 121 for each unit. In this case, the
game proceeds to a stage 2.

In any stage k = 2, if it is reached, consumer i submits a buy order
Fiep subject to the constraint imposed by the cash holdings remaining from

earlier stages:



k-1
.1 P = g - SElpscsi

Producer j submics a supply offer Yy WOt exceeding his inventory

remaining from earlier stages:

k-1
ykj = y- I ys1

s=1 4

If the aggregate of these orders, Dk ~ kaidi , is less than or equal to
aggregate supply, Sk - fykjdj, the game ends at stage k. Each consumer i
receives Xy and foregoes Pi¥pq of his remaining cash. Each producer j
sells the fraction Dk/sk of the goods ykj he has offered at the price
Py and all his remaining goods go unsold. If Dk > Sk, each producer
sells all the goods he has offered at Py and each consumer i receives ki
- (Sk/Dk)xki‘ paying Py for each unit. In this case, the game proceeds to
stage k+1.

So the process continues, with the game ending whenever Dn -1 Sn'
Each consumer’s payoff is given by U(ci) + aw,, where ey = E:-lcsi is his
total consumption (here Chy = xni)’ vy o= g - 22_1pscsi is his unspent
cash, @ 1is a positive parameter, and U(¢) 1is a strictly increasing
function. The reason for assigning a value to unspent cash will be
clarified when we proceed to the multi-period game of Section 4. Each
producer’s payoff is given by the dollar value of his sales revenues, summed
over all n stages. Producers obtain no payoff from unsold inventory or
unused capacity. Each type of player seeks to maximize expected payoff.

The reason why producers seek to maximize expected revenues is also

clarified in Section 4.



Information is revealed as follows. At the beginning of stage 1, each
consumer learns the value of ¢, but producers do not. At the end of each
stage, each producer learns the number of goods that he has been able to
sell, each consumer learns the number of goods that he has been able to buy,
and both types learn whether the game proceeds to another stage or not. 1In
fact, without changing the equilibrium concept we may assume that all sales
are publi{c. What is important is that the aggregate orders D, are not
revealed, but only the purchases that actually occur. This assumption is
intended to capture the idea that producers learn about the state of
aggregate demand only through the number of sales that have aleady been
made .

A strategy for consumer 1 in this game specifies his buy order X
at each stage k = 1,2,..., as a function of his information at that stage.

Thus the consumer chooses a sequence of the form

K (9re1g 00, 1)

each term of which satisfies (2.1) for all values of the arguments. We
might, if we like, add as arguments of the i the complete history of
sales that have occurred in the first k-1 stages of the game. However,
given the strategies of all players other than consumer i, this history is
a function of ¢, and so it suffices (in defining a Nash equilibrium) to
allow consumer i to choose a function of the form written above.2

A producer’'s information is always the same when he reaches stage k:.
he knows that he has sold all the units that he offered for sale at prices

pl""’pk-l’ and he knows nothing else about the current state, We might,



symmetrically with our notation for consumers, write producer j's strategy

as a sequence of functions

NS RERERL S NP

where z represents j’'s sales in stage s. However, payoffs will depend

s]

only on the sequence of quantities

ykj - ykj(yljy-nvyk_l,:))

Hence we may describe a producer’s strate as simply a measure x on the
y P gy mply

set P satisfying:3

(2.2) P =< y.

Let =

3

several producers together determine an aggregate measure =x = ijdj.

be the measure chosen by producer j. The strategies of the

Aggregate supply at each price is then given by Sp = x(pk).

Note that the strategies available to producers are the same as in a
game in which each producer must place a price tag, in dollar terms, on each
unit of his endowment, prior to the realization of the shock #, and must
then sell each unit at the price indicated in advance if a consumer offers
to buy it. Hence it is not surprising that variations in # have real
effects in this model that are similar to those in an economy in which money
prices are posted in advance, of the kind studied by the authors cited in
the introduction. Yet here the result does pot depend upon any inability of

producers to determine freely the price at which they are willing to sell at



the time that an order is accepted. At each stage k, the producer is free
to determine the number of units (if any) that he is willing to supply at
the price Py and is forced to accept no orders in excess of that number.

The producer’s strategy "j is independent of § , because producers do
not observe § prior to accepting orders. Consumers instead observe 4,
and so § 1s an argument of each function xki(')' Given the strategy ﬂj
for each producer, and the strategy (xli(ﬁ),x21(0,cli),...) for each
consumer, the process we have described determines a unique final stage
n(d), as well as a unique sequence (511(0),521(0),...,cni(ﬂ)) for every
consumer, a dollar expenditure for every consumer, a total quantity sold and
a total dollar revenue for each producer, all for each possible value of ¢4
The payoffs to each player are thus determined as a function of 4.

In the game whose rules we have just described, the payoff to any
player depends only on his strategy choice and the aggregate quantities
offered and bid for at the various prices. An individual player’'s effect on
these aggregates is negligible‘A In particular, an individual producer’s

choice of =« has no effect upon which stage n (as a function of 4) is

3

the final stage, or upon the fraction of goods offered for sale at the price

Py that are sold (also a function of 4). He therefore takes as given the

final stage n(d) and the fraction of goods unsold at that stage, u(f) =

(Sn<Dn)/Sn, and chooses « to maximize the expected value of

3

n(é)
(2.3) sfl,{j(ps)ps - u(g)"j(Pn(a))pn(g)
subject to the constraint (2.2). The expectation is taken over possible

realizations of ¢, using the measure &.
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An individual consumer similarly takes as given the fraction of the
goods bid for at the price p, in stage k that he will be able to buy, as
this fraction is unaffected by his own strategy. He will therefore bid for
as many units as he can (given the constraints (2.2)) at each stage prior to
the last stage in which he bids for any positive quantity.

In what follows, we focus attention on a specific kind of symmetric
equilibrium of this game, in which all consumers play the same strategy.
Furthermore, we consider only symmetric equilbria with the property that if
a stage k 1s reached such that consumers would wish to purchase no more
than is supplied at the price Py + Were they allowed to buy an unlimited
quantity at that price, then in such a stage they would buy only the number
of units they actually wish to consume. This latter restriction rules out
an equilibrium in which all consumers bid for, say, 25% more units in stage
k than they actually wish to buy, because they know that excess demand will
necessitate their being rationed to only 80% of their bids. There is no
loss of generality in ignoring such equilibria, since there will always be
an equivalent equilibrium (in the sense that the same allocations of goods
and money result) in which consumers bid for only the number of units
desired, and hence are not rationed.

We observe that in any such equilibrium each consumer’s optimal
strategy is to bid all of his remaining cash in every stage prior to n--the
first stage in which consumers are not rationed, and the last stage reached
in the game. For since consumers are rationed in stage n-1, they must bid
for a positive quantity in that stage; hence they bid all of their available
cash in every stage k < n-1. Moreover, in stage n-1, they also bid all of
their available cash, because each would like to purchase more than his

share of what is supplied at the price otherwise, by our assumption

Pp-17
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in the preceding paragraph, they would not be rationed in stage n-1. Hence
i{f the terminal stage of the game is n(d), the equilibrium strategy of
consumers is completely described by the quantity cn(a) bid for (and,
under the convention adopted above, received) in that final stage.
Equivalently, one may describe a consumer’s strategy in a symmetric
equilibrium by n(f) and c¢(4), the total units purchased in all stages,
since the quantity purchased in each stage k < n must equal the supply

7 (py) -

Now consider the choices avallable to a single non-atomic consumer,
who takes as given the identical strategies chosen by all other consumers,
as just described, and the aggregate measure of goods offered at various
prices by producers. Since all other consumers bid all of their remaining
cash at each stage k < n, the most an individual consumer can obtain at
that stage, assuming he has obtained the maximum amount at all earlier
stages, is the amount Sy = «(pk) purchased by the other consumers. On the
other hand, in stage n, the consumer can obtain any amount he bids for,

since consumers are not rationed at that stage. This budget set can be

conveniently described as follows. Let the supply function S«:R+ +P=PuU

(+=) be defined by:
(2.4) S.(c) = inf(p € Plx((pl,...,pn)) 2 c)

(When the set in brackets is empty, the infimum 1is defined to be +=».) Note
that SK {s an alternative description of the measure =--a kind of cdf of
x. If a total quantity ¢ is purchased and the lowest-priced goods are

purchased first, Sﬂ(c) represents the price of the last unit purchased.
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Then if his initial cash is 4 and the terminal stage is n, a consumer can

bid for any amount ¢ satisfying:

Cc

(2.5a) {min[sx(x),pn]dx s 4

and his remaining cash will be the amount by which # exceeds the left hand

side. The consumer’s optimal bid will then be:

c
(2.5b) c(f;n) = arg max(U(c) + aff - Imin[Sl(x),pn}dx) ,
c 0

where the maximization is subject to (2.5a).

A symmetric equilibrium then involves an n(f#) and c(f) such that
(2.6a) n(f) = inf(n | c(f;n) s ®((Py,.-.vp )
(2.6b) c(8) = c(8;n(8))
(Again, we define inf ¢ = + », and P, - to if n = +w,)

Conditions (2.6) define equilibrium play by consumers, given the
aggregate supply measure x of producers. On the other hand, the objective

function (2.3) of an individual, non-atomic producer is defined by the

function n(d) describing consumers’ strategies and the function

(2.7) u(d) = [x(p)-c ()]/x(p))
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that is implied by consumers’ strategies and the aggregate supply measure
chosen by other producers. A symmetric Nash equilibrium for the continuum
game is thus a measure x on P, and measurable functions n:8 - N, u:8 -
[(0,1], and c:8 = R+, such that (c,n) satisfy (2.6), given =x; u satisfies
(2.7), given (c,x); and «x maximizes the expected value of (2.3), subject
to the constraint (2.2), given (n,u).

We next adapt this definition of equilibrium to the case in which the
set of possible prices is the entire nomnegative real line. We proceed
directly from the above characterization of a symmetric equilibrium, rather
than introducing notation for the underlying strategies and game form. An
equilibrium will now consist of a measure x in the set M of all measures
on the Borel sets of R+, and Borel-measurable functions p, u, and ¢ on
0.

As before, we imagine a game proceeding through prices from 0 on up
to some terminal price p(d) that depends on the state of demand 4. At
each price below p(#), consumers bid all of their cash and are rationed to
receive equal shares of the goods on offer at that price. Producers sell
all of the goods offered at that price. At the terminal price p(4),
consumers are not rationed, while producers can sell a fraction 1-u(4) of
the goods they have offered at p(4). In a symmetric equilibrium with a
continuum of both player types, consumers take as given the terminal price
p(8) and their rations at prices lower than p(d), determined by the supply
distribution x chosen by producers. Their actions determine the number
c(8) of goods purchased. Producers take as given the price p(d) and the
rationing function wu(d). Their actions determine the supply distribution

n.
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Each producer’s problem in this game is to choose a measure x € M
that satisfies (2.2) so as to maximize E[R(§)] = fR(o)Q(dﬂ), where R(4)

is his dollar revenues in state 4, given by:

p(d)
(2.8) R(§) = I zn(dz) - u(8)p(8)=((p(&)}))
0

Here (2.8) is an obvious generalization of (2.3).
Each consumer's problem can similarly be described in a way that

directly generalizes (2.4)-(2.6). We can again define a supply function

S.;B, - R =R U (+=} by:

(2.9) S,(e) = inf(p 20 | x({0,p]) 2 ¢)

Note that S_  is a non-decreasing, left-continuous function (see Figure 1
in the next section). Its flats correspond to mass points of the supply
distribution =, while its jumps correspond to price intervals on which =«
offers no goods.

The consumer’s problem, at each stage p of the game, is to choose ¢

so as to maximize

<
(2.10a) U(e) + alf - f min[S_(x),pldx]
0

subject to
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c

(2.10b) 8 > f min{S_(x),pldx .
0

Let c(8;p) be the solution to this problem.
We assume that U 1Is continuously differentiable on R _, strictly

increasing and strictly concave, with 1lim U’(c) = +wo, The integral in
c-0

(2.10) is well-defined for all ¢ > 0 and p € i+. It is a continuous,
non-decreasing function of ¢, so the constraint set is a closed interval,
bounded if p > 0. The function (2.10a) is continuous and strictly concave.
Hence if p > O there ls a unique maximum of (2.10a). If p = O, the

function (2.10a) is increasing for all ¢ and we define c(§;0) = +=. Thus

e(9:p) is well defined on all of R+xi+. It is also easily shown that
c(f;p) 1is non-increasing as a function of p, and continuous in p for all
p > 0.

The direct generalization of (2.6) to the case of a continuum of

prices is thus:

(2.11a) p(4) = inf(p | c(d;p) = x([0O,P1)]

(2.11») c(d) = min{c(d;p(8)),x({0,p(HH]D] .,

where again we define inf @ = + ». The second altermative in (2.11b)
applies if c(8;p) =< x({0,p]) for all p > p(#), but nonetheless c(d:p) >

x([0,p]). Because of the continuity of c(4;p) in p, (12.11b) implies

c(8) = c(8;p(8)) 1f p(é) >0,
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c(8) = m((0) if p(8) = 0 .

The corresponding generalization of (2.7) is

o x([0.p(N-c(d)
(2.12a) u(é) x((p(6)) if =({p(&))) >0,

(2.12b) u(§) = 0 if  =({p(8))) =0 .
We can then define an equilibrium for the continuum game as follows:

Definition A temporary equilibrium (TIE) is a measure =« € M, a function

Sﬂ_:ll+ - i+ defined in terms of « by (2.9), and a triple of measurable

functions p:8 - i+, u:8 - (0,1}, and c:86 -~ R+, such that (1) given (p,uw),
x maximizes the expected value of (2.8), subject to (2.2); (ii) for each ¢
€ 8 and given =, (p,c) satisfy (2.11); and (iii) for each ¢ € 8 and

given (r,p,c), u satisfies (2.12).

We call this equilibrium temporary because it represents equilibrium play in
a single period, taking as given the expectations about the future value of
money reflected in the parameter a > 0. In Section 4 we will define and

characterize an intertemporal equilibrium in which the equilibrium value of

a 1is determined.

3, Characterization of Tempora uilib
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In this section, we use the consumer's problem and the producer's
problem in turn to characterize the temporary equilibria defined at the
close of Section 2. We first use the first-order conditions for the
consumer’s problem in a TE to show that given any producer behavior ("'Sx)
there is a shock value ; > 0 with the property than consumers spend all
their cash when § =< ;, and spend ; when 4 2 3. We characterize ;, and
then (in (3.1) and (3.2)) characterize c¢(8) and p(d) 1in terms of ; and
Sx'

The Kuhn-Tucker conditions for the problem "maximize (2.10a) subject
to (2.10b)", together with (2.11b), imply that for all 4 such that p(4) >

0, the equilibrium values of c¢(§) and p(4) must satisfy

c(f)
U'[c(d)] = aS_(c(d)) and f S (x)dx s 4,
e 0 e

and either

c(8)
Sx(x)dx - 8

O t—

or

S (c(8)) s U'[c(8)] = aST(c(8)) = alim S_(c).
o x cic(8) x

Now from previously discussed properties of U and S*, there is

exactly one ¢ € [0,1(R$)] such that Sx(c) < a'lU’(c) < S:(c) (see Figure

1). Hence when p(8) > 0, either
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c(f)y = ¢ and S (x)dx s 4

>
Q=m0 >
2

c(8)

and I S*(x)dx - 4
0

c(d)y =

0

[INSERT FIGURE 1 ABOUT HERE)

One observes furthermore that for any 6 € 8, there exists p > 0 such that
c(d;p) > x({0)). Hence (2.1la) implies that p(f) > 0 for all ¢ € 8, and
the above results apply in any TE.

Define F(c) = fg S*(x)dx , let F'l denote its inverse when the
argument of the function is positive and no greater than x(R+), and define
F-l(O) - supic = O fg S, (x)dx = 0) = x({0)). Then it follows that

equilibrium consumption is given by:

(3.1a) c(8)y = F'l(o) if 053 - F(;)
(3.1b) c(8) = ; if 023

Note that c¢(§) is a continuous, non-decreasing, concave, nonnegative-
valued function. 1If x(R+) >0, ; >0 and c(f) 1is positive for all 4§ €
8 and strictly increasing on (ﬁ,;).

Given the behavior of equilibrium quantities, the behavior of prices

is immediate.
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(3.2a) p(é) = Sx[c(ﬁ)] if ¢ < ;

A

(3.2b) p(d) = a-lU'(;) if 4>94
Note that p(8) 1is a non-decreasing function, constant when 4§ > ;, and
positive for all 4 € 8.

We next study the seller’s problem. We show that all goods are
offered for sale at positive prices ((3.3)), that sellers are never rationed
in equilibrium ((3.7)), and that expected returns per unit of goods, the
product p(§)Prob(# = ), are equated to a constant value A for all § =< ;
((3.8)). The value of this constant X 1is given in (3.9).

We first verify
(3.3) (R ) =y and x({0)) =0 .

For any q = 0, let A(q) = q[Prob(p(8) = q) - Ju(8)I({4|p(d)=q))®(ds)]
(where I(A) 1is cthe indicator function for the set A). Thus A(q) 1is the
expected revenues per unit of goods priced at q. Note that for any 0 <gq
< p(8), A(g) = q>0. Then if x places an atom at the price zero, or if
n(k+) <y, revenues can be increased by adding goods at the price q, taking
away the atom at zero or else increasing the total measure #(R) to y.
This proves (3.3).

It follows from (3.3) that ; « y. For (3.1) and (3.2) imply that
A(q) = 0 for all q > Sx(;)' Hence « cannot maximize expected revenues
unless x([O,Sx(;)]) = y. But the definition of Sx implies that

x([O,S”(c)]) = ¢, and so that ¢ = y.
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Let the maximized value of sellers’ objective function be ly. We

next verify chat:
(3.4) 0<i<wo A(Q) s A for all q 2 0, and A(g) = A for some q > 0 .

We have just seen that A(q) > 0 for some q. Hence X > 0. On the other
hand, (3.1) and (3.2) imply that p(f) s a-IU'(g) - a'IU'(y) for all 4, so
cthat A{(q) s a-lU'(y) for all q, and thus Ay = [fA(p)x(dp) = a-lU'(y)y
< o, Hence A <=, If A(q) > 2 for any q, expected revenue could be
made to exceed Ay by choosing = such that =x({q)) = y. Hence A(q) < X
for all q. Finally, the facts that [A(p)x(dp) = Ay and [x(dp) =y

imply that A(q) = A for some g, which must be positive. This proves
(3.4).

In fact, the last two statements in (3.4) can be strengthened:
(3.%) A{q) = X for all q € supp x .

The statement "q € supp x" means either that x places an atom at q, or
that x(Nr) > 0 for every right neighborhood Nr of q, or that (N, >0
for every left neighborhood NI of q. If =x({q})) >0 and A(q) < A,
revenues could be increased by moving the atom from q to the point g of
(3.4). Hence A(q) = X for any atom q of x. Suppose, then, that
x({q}) = 0. Then u(#) = 0 for all (0|p(0)-q), and so A(q) =

qProb(p(8)=q). Note that lim pProb(p(#) = p) = qProb(p(8) 2 q)
Pq

lim pProb(p(d) = p). Hence A{q) < A 1implies qProb(p(#) = q) < X , which

Pia

in turn implies that there exists Loth a left neighborhood N

v

P of q (if q
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> 0) and a right neighborhood Nr of q (if q 2 0) such that pProb(p(§) =

p) <X for all p e N, U Nr' Hence A(p) < A for all pe N, U Nr' In

2 )]
fact, we can choose these sets so that A(p) < X for all p € Nl V] Nr' for
some X < A. Since either '(NI) or K(Nr) must be positive, it follows
that expected revenues can be increased by moving all goods with prices in
these sets to the price q. This verifies (3.5).

Note that (3.5) implies that supp » 1is bounded away from zero, since
qzA>0 for all q € supp «.

The next result together with (3.5) implies that sellers are never

rationed in equilibrium:
(3.6) q Prob(p(d4) 2 q) = X for all q € supp x .

If =x({q}) = 0, then (3.6) is immediate from (3.5) and the definition of A.
Suppose instead that =x({q}) > 0. In any event, q Prob(p(#) = q) = A(q) =

A. If q Prob(p(6) = q) > X, then by the argument used to prove (3.5) there
exists a left neighborhood Nz of q such that p Prob(p(f) z p) > A for

all peN (Recall that q € supp « implies that q > 0.) Since =

Iy

cannot place atoms at all points in the open set N!, there exists some p €

N2 with =«({(p}) = 0. This contradiction proves (3.6). It follows from
(3.6) that
(3.7 Jarzctalo) = anesy = o

for all q € supp n. Hence sellers are never rationed in equilibrium.

Next, we have:
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(3.8) p()Prob(4 = §) = A for all g <7 = 8

From (3.2), § = 3 implies p(§) = s”[c(i)], and since «c(4) >0, S_[c(8)]
€ supp x. Hence by (3.6), p(§)Prob(p(d) = p(§)) = A. Since p(:) is
non-decreasing, Prob(é = §) =< Prob(p(#) = p(F)), so p(d)Prob(sd = §) = 2.

Suppose Prob(d = ¥) < Prob(p(4) = p(f)). Then there is a set A C 8
with &(A) > 0 such that 8 < § and p(8) = p(d) for all 4 € A.
Furthermore, A and 6’ can be chosen so that ¢ < §' < § for all 4 € A.
From (3.1), 6 s4’'<§=s 3 implies c(8) < c(4’) < c(§) for all 4 € A,
Since p(#) = p(d), (3.2) implies =x([0,p(8)]) - c(8) = x([0,p(H)]) - c(¥) =
c(d) - c(d) >0 for all § € A. This fact together with the fact that
x({p(d)y)) = x((p(?))) 2 ®(A) > 0 implies that u(d) 1s bounded away from
zero on A. This contradicts (3.7) and proves (3.8).

We have now characterized the function p(§) wup to an unknown
positive constant XA, glven the distribution &. Equation (3.8) gives p(4)
on the interval [i,;]. Equation (3.2b) and the fact that g =y implies
p(d) = a-lU’(y) when 8 > ;. Moreover, A must satisfy:

(3.9) A[Prob(d = ;)]'1

s afu'(y) s A[Prob(s > )] L.

The first inequality follows from (3.2), (3.8), and the fact c¢ = y. If
a'lU’(y) = p(4), then the upper bound obviously holds. Suppose instead that
@l (y) > p(§). Then Aa 1U'(y)) = a 1V’ (y)Prob(p(8) = a V' (y)) -

1U’(y)Prob(0 > §), so the upper bound follows from the requirement that

o
-1,
Ala TU'(y)) s A,
With the problems of both consumers and firms thus characterized, we

turn to the characterization of temporary equilibria. For this purpose, it
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is convenient to use the shock distribution & to define a function G on

R+ as follows:

Prob(824')dé' , all =0,

Q
~
Y
~
]
O by, @}

G 1is continuous, increasing, and concave, with G(0) = 0 and G(;) = E(f).

Because G 1is concave, we can define its subdifferential 4G(¥):
3G(F) = (geRr | G(8)-G(F) < g(8-7) for all ¢ 2 0)

Then for all 7 > 0, 3G(§) 1is a non-empty, closed, convex set, and the

correspondence 4G 1s non-increasing and upper-hemi-continuous. Moreover,

3G(0) = [1,=) and inf 4G(8) = O.

Proposition 3,1 Let &, U(+), y, and a > 0 be given. Then there exists a

unique temporary equilibrium (TE) corresponding to each ¢ > 0 such that

(3.10) ;G%?;; G(Q) € ac(s)

and all TE are of this form.

Proof. We first show that for any TE, ¢ satisfies (2.22). For any ¢ €

[ﬁ,;], (3.1a) and (3.2a) imply

c(8)
6 -[s wax  and  S_(c(@) = p(®)
o "



24

We have also shown that p(f) > 0 for all § € 8. These facts imply that

for all ¢ e [g,6],

[
- —J— ’
(3.11) c(8) = <@+ { Sy

Consider first the case where § s 4. Then (3.1) and (3.2) imply
p(8)c(d) = 4, and then (3.11), (3.8) and the fact that ¢ = c¢(§) =y imply

that:
(3.12) y = % G(#8)
Consider next the case where § s §. Then (3.6) implies that p(§) =

inf supp «x, so that =«({p(f)}) = y. It follows that S*(c) = p(g) for all

0 < ¢ £y, and hence that

y
wm-o-rw>-#4wu-puw-a4www.

Using (3.9), a-lyU’(y), and we obtain (3.12) for this case as well.

But condition (3.9) can be rewritten:

~ \a A
Prob(é > 8) s RS) S Prob(d 2 4) ,
which is to say
da .
(3.13) € 3G(§)

U’ (y)
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The conditions (3.12) and (3.13) then imply that @ satisfies (3.10).
For the converse, let § be any solution to (3.10). We show that
exactly one TE can be constructed for this § value. Let A* =-G(8)/y.

~

*
Since 8 >0, X > 0. Then define <c(§) by

1 "
c(d) = K*G(ﬂ) for all § <8 s ¢ |,

c(f) =y for all 4 2 ¢

Then ¢ 1s a continuous, non-decreasing, non-negative function,
A A
monotonically increasing for all § < 8§ < 8. (If 4 < g, these conclusions
hold vacuously.)
Define p(d) by
-1
1

p(@) = A¥[Prob(s = 9) forall g<Fs4 |,

(@ = o lury for all ¥ >4 .

Then p(f) 1s a left-continuous. non-decreasing function, with p(§) > 0O
for all 4 € 8. Clearly the value X* and the functions ¢ and p are
uniquely defined.

Since G 1is monotonically increasing for all 0 < § < ;, G'l is
well-defined on the interval [O,A*y] and the functions c(f) and p(d)

just defined imply a unique function S‘(c) on the interval (0,y]:

5.() = A¥(prob(s = ¢ %oyt .
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Let Sﬂ(O) = 0 and S”(c) = +o on (y,»). Given Sx(c)' we define a

measure =« on Lntervals of the form [0,p] and [O,p) by:
x([0,p]) = suplc 20 ] S,(e) s p} for all p20,
x([0,p)) = inf(c = 0 | S,(c)y 2 p) for all p >0 .

This measure =« can then be uniquely extended to all Borel sets by the
operations of set union, Intersection, and complementation.

Finally, set u(#) = 0. Then it will be observed from our
characterization of consumer and seller optimization that the objects

(x,Sﬂ,p,c,u) so constructed satisfy all the requirements for a TE. O

Proposition 3.2 For any a > 0, there exists a unique TE, corresponding to
a unique ;(a) > 0. Furthermore, ;(a) is a continuous, non-increasing
function.

Proof. To prove the existence of a unique TE, we need only show the
existence of a unique solution to (3.10) for each a > 0. Since G(§) is
continuous and strictly increasing in 4, ;5$z;3c(a) has these same
properties as a function of 4. On the other hand, 8G(#) 1is non-increasing

in 4, with a closed graph, and the range [0,«). Hence there is a solution

§ 20 to (3.10) for any a > 0. Furthermore, since

F5 Gy 6O = 0 < inf 3G(0)

and
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a

yu' (y)

G(F) > 0 = sup 3G(§)

for all § > ;, all solutions must satisfy 0 < 4§ s § - sup supp ¢. If

I I

there are two solutions 01 < 02

which would contradict the fact that G 1is monotonically increasing for all

< ;, then one must have G(Gl) - G(bz),

§ < 6.
Thus the function 9:R++* (0,;] is well-defined, and we consider its

behavior as a varies. Let a, >a; > 0. Then ﬂ(al) is the unique §

a
-——l“~G(0) > sup

for which (3.10) holds, and hence for all # > d(a

RRNTICS!
a
36(¢). Since a, > a), it follows thac 567%576(’) > sup 3G(6) for all §
> ﬂ(al), Then (3.10) cannot be satisfied at a, for any 4 > ﬂ(al), which

proves that ;(az) < ;(al), or that ;(a) is non-decreasing.

We next show that ;(a) is continuous for all a > 0. For some
sequence (an) with a, > 0 for each n and a - a* > 0, suppose that
Gn - ;(an) for each n, and that 9* - ;(a*). We wish to show that ﬂn -
9*. That is, for any ¢’ such that §' < 0*, we wish to show that §’' < ﬂn
for all n large enough, and similarly, for any ¢" such that 4" > 0*, we

wish to show that §" > On for all n large enough. Consider first the

*
lower bound. Since a ~a and G(§ ) > G(#'), the inequality

must hold for n sufficiently large. We show that this inquality in turn

implies that Gn > §'. For if one had On < §', one could show that
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a a
5 —n R « S ’
iRf 060 s LT 6 s s G
* *
_a ,
< ) G(8’) = sup 8G(4d ) s inf 6G(0n) ,

which is a contradiction. The proof for the upper bound #" 1is identical.

a

4. Stationmary Equilibrium with Independent Monetary Shocks

We now embed the temporary equilibrium of the previous section in a
complete intertemporal equilibrium. We consider an economy operating in an
infinity of periods t = 0,1,2,... In each period, consumers exchange cash
for goods provided by sellers in exactly the manner described in Section 2.
Cash acquired by sellers is returned to consumers at the end of the period,
after the pricing game is completed, in the form of a dividend to
shareholders. The monetary authority uses beginning-of-period and end-of-
period transfers in such a way as to make consumer cash holdings 0t an
independent, identically distributed random variable. In this section we
spell out the details of this economy, and show that its stationary
equilibrium can be obtained by the same construction used to characterize
the temporary equilibrium in Section 3.

The economy we consider is made up of a continuum of infinite-lived

households, each of which seeks to maximize the expected value of

(.1 T (e
t=0
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where U is the same single-period utility function as above, and f 1is a
discount factor in (0,1). Note that there is no direct utility from cash
balances of the kind assumed in (2.10). The monetary authority is assumed
to choose a monetary injection 9t in each period t, the value of which is
agaln not known to producers until after all period t sales have occurred.
The state varilable (oc) is assumed to be identically and independently
distributed across periods, being drawn each period from the same

distribution as above. Hence the information of producers at the beginning

of period t is simply that b, will be drawn from the distribution ¢ on

8 = [ﬂ,;) [« R++. as in the temporary equilibrium of the previous section.
In this section, we also assume that § < 1.

In order to calculate the endogenously determined valﬁe of end-of-
period cash balances, we must consider how a different level of initial cash
balances would affect a given consumer'’'s budget constraint in the following
period. Let us return again to the finite game discussed at the beginning
of Section 2. Let us again assume a continuum of identical players who play
identical strategies, except that now a single (non-atomic) consumer i
will be assumed to begin the game with money holdings uéd (for some u > 0),
while all other consumers have #§.

As argued in Section 2, each consumer will bid for as many units as he
can (given the constraint (2.1)), at each stage prior to the last stage in
which he bids for any positive quantity. Furthermore, each of the other
consumers bids all of his remaining cash in each of the first n-1 stages.
Hence consumer 1 can bid anything up to 4 times what the others bid, in
each of the first n-1 stages. Thus the most that 1 can purchase in any

stage k < n is Heyd in stage n, consumer 1 can obtain any amount that



30

he bids for. The minimum expenditure required for i to purchase c¢ units
is therefore exactly u times the expenditure required for any other
consumer to purchase c¢/p units. In the limiting case of a continuum of

prices, the required expenditure is thus

c/b
pI win(s (x),p(#)]dx .
0

Note that if the supply function S. is defined as in (2.9), for some
measure =«, then min [S"(x),p] is an integrable function, and this
expression is well-defined.

Now let mt denote consumer 1i’s money balances at the beginning of

period t, before the period t monetary injection occurs. The law of

motion of this quantity will be

i,1
Co /by
i i I
(4.2a) LI pt[ﬂt - l min[S"(x),p(ﬂt)]dx] + Rt T
where
i -1, 1
(4.2b) by = 0t [mt + 0t - 1]

Each consumer receives a lump-sum transfer of Gt- 1 at the beginning of
period t , and a lump-sum transfer of r, at the end of the period. at
the end of the period, each consumer also receives as a dividend his

proportional share of the total sales revenues Rt of the firms. The end-

of-period lump-sum transfer is assumed to be
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(4.2¢) e = 1 - 5t .
Then, since in a symmetric equilibrium the revenues Rc equal the

expenditure of each consumer, if mé - 1 then mi =1 as well. We thus

t+l
consider an equilibrium in which mt = 1 forever, in which e, again
represents the money supply in period ¢t, and the expression in (4.2b)
indicates the ratio of {'s post-injection cash balances to those of the
typical consumer.

The problem of consumer i 1is then to choose a plan specifying
consumption purchases Ci in each period as a function of the history of
realizations (90,...,5c) of the monetary injections, so as to maximize the
expected value of (3.1), subject to the constraints that period ¢t
expenditure not exceed utﬁc, and that ”t+l 2 0, in all periods and under
all possible histories of monetary injections, given the laws of motion
(4.2). Here the determination of Rc as a function of the history of
monetary injections is also taken as given by the consumer, and similarly
the functions Sx and p, which may also depend upon the history of
monetary injections. Initial money balances mé = 1 for all 1 are given
as an initial condition.

We now gpecialize to the case of a gtatiopary equilibrium, in which
the functions (p,u,c,St) are the same for all t. As a result one will
have Rc - R(ﬂc), where the function R 1is also the same for all t. The
consumer’s problem then takes a stationary recursive form. Let v(mé)
denote the maximum attainable value for the expected value of (4.1) given

the constraints listed above, for any initial money balances mé z 1- 4.

This value function v must satisfy the Bellman equation
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(4.3a) v(m) = I[ma§ (U(c) + Bv(m))]®(dd)

c,m

where for each m=2> 1-4, 4 < 4§ < ?, (c,m) must be chosen such that

(4.3b) max[1-4,R(4)+r(6)] < @ < m+ 6 - 1 + R() + r(8) ,
c/p(m,8)

(4.3¢) T - s(m,0)(0 - | min[S_(x),p(6)]1dx) + R(8) + r(6)
0

if upy(m,8) >0 ,
(4.3d) c = 0 if u(m,8) =0 .

Here p(m,f) 1is the function defined in (4.2b), R(#) 1s the functicn
describing aggregate revenues introduced above, and r(f) 1s the function
defined in (4.2¢). Equation (4.3c) restates the law of motion (4.2a) The
lower bound 1-§ 1in (4.3b) follows from the requirement that “t+l 20

regardless of the realization of ¢ The lower bound R(#) + r(4)

t+l’
follows from the requirement that the household’s expenditure not exceed
“tat , as does (4.3d). Finally, the upper bound in (4.3b) follows from the
requirement that ct 20 .

This recursive formulation allows us to describe consumer behavior
each period by a choice of total purchases ct - c(mt,&t), where
(c(m,ﬁ),;(m,ﬁ)) is the solution to the maximization problem inside the
brackets in (4.3a). This will in turn allow us to describe a stationary

intertemporal equilibrium as a succession of temporary equilibria of the
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kind analyzed in the previous section. But since a stationary equilibrium
involves the value function v(m), before we can define a stationary
equilibrium we need to ensure the existence of a solution to (4.3)
(Proposition 4.1) and to establish its differentiability at m =1
(Proposition 4.2). These results develop some other properties of v and

the associated policy functions (c,m) as well,

Proposition 4.1. In the maximization problem (4.3), suppose that
(i) the function p(f) 1is bounded and left-continuous, with p(§) >
0 for all § € 8 ;
(ii) the function Sr(c) is non-decreasing and left-continuous, with
SK(C) > p(d) for all c¢ = 0, and with Sr(c) = +2  for all c >
Y
(iii) the function R(#) 1is continuous, with R(#) =2 0 for all ¢ <
8; and
(iv) the function U(c) 1is bounded, continuous, strictly increasing,
and concave, for all c¢ z 0.
Then there exists a value function v(m), defined for all m = 1-§, that
satisfies the Bellman equation (4.3a). Furthermore, v(m) is bounded,
continuous, strictly increasing, and concave.

Proof: See the appendix.

By a standard argument (see, e.g., Stokey and Lucas, Theorem 9.2), the
existence of a function v(m) that satisfies the Bellman equation Iimplies
the existence of a solution to the original infinite-horizon consumer

optimization problem, and optimal behavior consists of choosing each period
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i i
c. = c(mt,ﬂc) ,

i ~, 1
Dy ToRELE)

where c(m,§), m(m,f) are the functions that solve the single period
optimization problem in (4.3a). We accordingly turn our attention to that
single period problem.

In a stationary equilibrium, we wish to specify R(4) as

c(8)
(4.4) R(8) = J-min[Sx(x).p(ﬂ)]dx.
0

where c(§) = c(1,8). (Note that we have not yet proved that this is
possible, since we have only shown the existence of a function ¢(4) given
some specification of R(#)--we do not know that we can find a function
R(§) such that the c(f) that satisfies (4.3a) will also generate that
same function R(4) in (4.4).) Then given the initial condition mi -1

0
for all 1i, each household’'s optimal behavior will be to choose

c. = c(ﬂc) )

in all periods. (This follows from (4.3c).)
Hence it suffices to consider the single period maximization problem
in (4.3a) for the case m = 1 . Suppose that, as assumed in the previous

section, U(c) 1is continuously differentiable for all c¢ > 0, strictly



35

concave, and that 1lim U’(c) = +=. Suppose also that v(m) 1is
c=0

differentiable at m = 1. Then necessary and sufficient conditions for the
function <¢(4) to solve the single period maximization problem (given that

R(9) satisfies (4.4)) are

(4.5a) U'(e(8)) = pv'(l) min[Sx(c(ﬂ)),p(ﬂ)}
c(8)

(4.5b) Imin[sx(x),p(i)]dx < 0
0

for all 4 € 6, and that for each 4, either (4.5a) or (4.5b) holds with
equality. But these are just the Kuhn-Tucker conditions for the
maximization of (2.10a) subject to (2.10b) if the parameter a 1in (2.10a)

is given the value
(4.6) a = gv'(l)

Thus with this identification of a, consumer behavior each period in a
stationary equiliﬁrium is exactly of the kind described in the previous
section,

Sufficient conditions for the differentiability of the value function,
and hence for the characterization (4.5) of consumer behavior, are given by

the following resulec.

Proposition 4.2. In addition to the hypotheses of Proposition 4.1, suppose

that



36

(1) the function U(c) 1is continuously differentiable for all ¢ >
0, it is strictly concave (i.e.,U’(c) 1is monotonically

decreasing), and lim U'(c) = 4= ;
c—

(1i1) S“(c) <+« for some ¢ > 0 ; and
(iii) the function c(¢) that solves the maximization problem in
(4.3c) for the case m = 1 1is such that (4.4) holds, and

furthermore such that
(&6.7) SK(C(G)) s p(8)

for all ¢ € 8,
Then the value function v(m) that satisfies (4.3a) is differentiable

at m = 1, and the derivative equals
(4.8) vy = (1-p Mo e o)ye(or8(a0)
Proof. See the appendix.

Hence the characterization of optimal consumer behavior in the
previous section centinues to apply to a stationary equilibrium, with the
identification of the parameter a > 0 given by (4.6) and (4.8). We next
consider optimal producer behavior. Each producer j has a capacity
constraint y > 0 in each period. The producer chooses a supply measure
xi in period t that satisfies (2.2). This supply measure results in
revenues Ri(ﬂt) as a function of the realized monetary injection ¢,

given by (2.8).
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Producers distribute these earnings to the households (owners of the
firms) at the end of the period, and producer J chooses xi so as to
maximize the value to the representative household of an increment in its
earnings distribution, contingent upon ﬁt, of the form Ri(&t). The value
to be maximized is an ex ante value, before the value of Gt is known, and
firm J cakes as given the aggregate earnings distribution function R(Bt)
in calculating the value of an incremental distribution. Then, under the
hypotheses of Proposition 4.2, xi is chosen so as to maximize

IRi(a)v'G(mt.a))o(da) - V'(I)J‘Rjt(l)o(dﬂ)

That is, it is chosen so as to maximize expected revenues, given that 8:
will be drawn from the distribution ®. Thus x 1s chosen each period in
exactly the way assumed in the temporary equilibrium of the previous
section, and the characterization of optimal producer behavior there applies
here as well.

Thus under the hypotheses of Proposition 4.2, the characterizations of
both producer and consumer behavior in the previous section continue to
apply. As a result, a stationary equilibrium will involve a succession of
temporary equilibria of the kind described earlier. But our previous
characterization of temporary equilibrium implies that the hypotheses of

Proposition 4.2 will indeed hold in such a case. Hence we may define a

stationary equilibrium as follows:
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Definition. A statjopary equilibrium is a constant a > 0, a measure =x &
M, a function SK:[O,y] - E+ defined in terms of x by (2.9), and a triple

of measurable functions p:8 - E+, u:6 - [0,1], and c:8 - i+, such that
(i) given a > 0, (x.Sx,p,u,c) constitute a temporary equilibrium in
the sense defined in Section 2; and

(1i) the constant a satisfies !

(%.9) a = 81-3) s lur (c(a))c(a)0(a0)

Here (4.9) follows from (4.6) and (4.8).
The following result shows that such an equilibrium exists for all

possible distributions of the monetary shocks.

Proposition &4.3. Suppose that the function U(c) is bounded, continuous,
strictly increasing, and strictly concave, for all c¢ 2 0, continuously

differentiable for all c¢ > 0, and satisfies 1lim U’(¢) = + . Then there
c~+0

exists a stationary equilibrium.
Proof. By Proposition 3.2, there is a unique TE for every a > 0, and

§(a), the unique solution to (3.10), is a continuous, non-increasing

A

function of «a, with R, - (0,;].
We next consider how the function c(#;a) in a TE with given «a
varies with a. Ror any a > 0, the comstruction used in the proof of .

Proposition 3.1 implies that
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[—G;\LL_' 1]
G(8(a))

c(f;a) = y min

Now for pairs (4,a) such that 4§ € 8, a > 0, and ;(a) > §, the continuity
of G(§), the continuity of ;(a), and the fact that G(;(a)) 2 G(8) =z G(&)
> 0 imply that G(&)/G(;(a)) is a continuous function of (4,a).

Moreover, this function equals 1 at all points on the boundary where ;(u)
= §. Hence c(f;a) 1is a continuous function of (§,a) on the domain

8XR++. Furthermore, if one defines
c(8;0) = y G(8)/G(4)

then c¢(f;a) 1is a continuous function on the domain 8xR+.
The function ¢(f;a) 1is obviously non-decreasing in both arguments on

that domain. Furthermore, one observes that for any ¢ € 8, lim c(§;a) = y.
-

Finally, the function is bounded and bounded away from zero on 8xR+,

insofar as

0 < yG(8)/6(8) s c(f;a) s ¥

for all § <6<, az0,

Now consider the right hAnd side of (4.9), as a function of a.
Because U(e) 1is continuously differentiable for all ¢ > 0, and ¢(§;a)
is continuous in both arguments, bounded, and bounded away from zero, the

function

c(8:a)U' (c(f:a))
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is a continuous function of (§,a) on the domain 8x2¥ that is both
bounded and bounded away from zero. Then by the Lebesgue dominated
convergence theorem, the integral of this function over © 1is a continuous
function of a on the domain a 2 0, and is both bounded and bounded away
from zero. Hence the right hand side of (4.9) is a function of a with
these properties.

It follows that both the left hand and right hand sides of (4.9) are
continuous functions of a, with the left hand side necessarily larger for
large enough a, and smaller for small enough a > 0. Hence there must
exist a solution for some a > 0. Given this value, the (x,Sl,p,u,c)
that describe the temporary equilibrium for this value of a then

constitute a stationary equilibrium. O

5. Discussion

We now consider some properties of the stationary monetary

equilibrium just shown to exist. The staticnary equilibrium consists of a
sequence of temporary equilibria of the kind characterized in section 3. In
each period t there is another independent drawing of the shock 8. tha:
determines the period’s money supply. The aggregate purchases that result
are given by c. - c(ﬁt), and the marginal price level (the highest price a:
which all goods offered for sale are sold) is given by P = p(ﬁt). The
distribution of transaction prices in period t 1is given by the measure «
truncated at the price Pe and total nominal spending is given by Rt -
R(Ht) - min(ﬁt,;). The i.i.d. random variations im dc thus give rise to

i.i.d. variations in spending, consumption, and prices.
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Under the interpretation in which producers begin with a productive
capacity rather than an endowment of goods and produce only to fill the
orders that they accept, the fluctuations in cy represent fluctuations in
real output. As promised, then, we have exhibited a model in which surprise
variations in the money supply affect not only nominal spending and prices,
but real activity as well. Because c¢(§) 1is a non-decreasing function,
monotonically increasing over the range ¢ < § < ;, low realizations of the
money supply are assoclated with low levels of output. Thus the model can
rationalize the association between low rates of growth of the money supply
and contractions of economic activity documented by authors such as Friedman
and Schwartz (1963). Indeed, a lower money supply necessarily means lower
output in this equilibrium, except if one is comparing values of 4 in the
range (4 > ;) for which nominal spending is unaffected by changes in the
money supply.5 The marginal price level is also non-decreasing in §, so
that higher realizations of the money supply are generally assoclated with

higher prices being reached. The average transaction price Et is given by

P, = p(ct), where

<
B - %{s,(xmx.

Because the supply curve S*(c) is non-decreasing, with S*(c) > S”(c(ﬁ))
for all ¢ > c(g), the function p(c) 1is monotonically increasing. Thus
the model predicts an upward-sloping Phillips curve relation linking
deviations of output from its average level (or from capacity) to
corresponding deviations of average transactions prices from the level that

would have been expected prior to realization of the monetary shock.
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In this model, as in that of Lucas (1972), variations in the money
supply affect real activity only because they are unanticipated. Consider,
by way of contrast, the consequences if the drawings of Ht were made
public before any trading occurred. Again a stationary equilibrium would
exist. Again a would be independent of the realization of Oc, and
consumers would purchase goods until the marginal price of goods reached the
value a'lU'(c). Producers would be able, however, to choose a supply
measure L contingent upon Fc,and since there would be no uncertainty
about the marginal price P, each producer would offer to sell y wunits at
the price Peo and none at any lower price. Furthermore, in equilibrium no

producers would be rationed; hence one would have c(§) =y for all 4. It

follows that the equilibrium price would be given by

p(o) - mind, O

Thus for all g <48 < ; (i.e., in the range over which changes in the money
supply affect nominal spending), prices increase proportionally with §.
The resulting equilibrium would in fact be identical to the equilibrium of a
cash-in-advance model with Walrasian spot markets (see, e.g., Sargent, 1987,
chap. 5).6

It is also worth noting that in this model, uncertainty about the money
supply results not only in more variable real activity, but in a lower
average level of output as well. As we have just argued, if there were no
monetary uncertainty, output would equal capacity in all periods. 1In the
equilibrium with unanticipated variations in 0t' output depends upon the

realization of #&_, but it never exceeds capacity. Hence on average it is

t’

below capacity, and so below its average value in the absence of such
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uncertaincy.7 This is an important difference between the present model and
models such as that of Lucas (1972), or the models in which producers are
committed to sell any amount demanded at & nominal price that is fixed in
advance. In those models, an unexpectedly high money supply results in
output greater than the equilibrium level of output in the absence of
monetary uncertainty, symmetrically with the output reduction induced by a
low momey supply, and monetary uncertainty reduces welfare mainly by
increasing output variability.

In the equilibrium displayed above, monetary shocks produce variations
in output that are unrelated to any change in inputs; hence they produce
variations in productivity as conventionally measured, even though the
production technology is not actually changing. Thus imagine a variation on
our model in which capacity is proportional to the firm’s number of
employees, each of whom works a fixed shift. Assume that each period’s
employment is chosen before orders begin to be taken, that labor contracting
occurs before the realization of 0c, and that households supply labor
inelastically. Whether or not we assume that the wages contracted for can
be made contingent upon the realization of 0c, each firm’'s wage bill will
be independent of its sales, and so the firm will price its output so as to
maximize expected revenues as assumed above. The equilibrium will be the
same as above, except that now there will exist no pure profits on average.
Since the quantity of labor hired will not vary with e the Solow residual
will equal the percentage change in sales. Thus monetary surprises will
produce variation in the Solow residual, correlated with output variation.
One could also extend the model to allow for variable inputs in addition to
the expenditure on capacity. In this case, inputs would vary with 9: but

the Solow residual would still move procyclically, because payments to the
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variable factors would on average be less than total revenues, due to the
positive price of capacity. (This kind of effect is discussed in detail by
Eden (1990a) and Rotemberg and Summers (1990).)

This result contrasts with models in which production is always
efficient and factors are competitively priced, and also with models in
which prices are fixed in advance, if the price is fixed at a level that
makes price equal expected marginal cost (as, for example, in King (1991)).
If instead prices are set to exceed marginal cost on average because firms
have market power (as in Svensson (1986) and Blanchard and Kiyotaki (1987)),
the variations in output resulting from monetary shocks will cause
procyclical movements in the Solow residual, for the reason stressed by Hall
(1988, 1990).8 The result occurs in the present model for somewhat the same
reason--price exceeds marginal cost in all states in which the capacity
constraint does not bind, so that the share of variable input costs in total
revenues is an underestimate of the true elasticity of output with respect
to variable input quantity--but here this outcome does not require market
power.

In the present model, as in that of Lucas (1972), producers’ imperfect
information about the state of nominal aggregate demand is crucial to the
non-neutrality of monetary shocks. But both the precise character of the
information that producers lack and the mechanism through which this
ignorance affects equilibrium activity are quite different in the two
models. In Lucas (1972), the real effects of monetary shocks depend upon
the existence of informationally isolated markets (islands). Sellers in
each market are aware of the price and volume of trade in that market, but
not of prices in the economy as a whole. In the present model, the real

effects of money do not depend upon informational isolation of this kind--
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as was noted in Section 2, we may assume if we like that all sales are
public, economy-wide.

The models also differ in the way that imperfect information affects
equilibrium output. In both models, a recession occurs in the case of an
unexpectedly low money supply because producers refuse to sell their output
at prices low enough to allow consumers to buy as much as they would in a
full-information equilibrium. But the reason that producers restrict supply
(compared to what they would do had they better information) is different in
the two cases. In the model of Lucas (1972), there is no misperception as
to the price at which any producer would be able to sell his goods, because
each producer knows the market-clearing price before accepting any orders.
What producers are mistaken about, instead, 1s the shadow value to them of
the cash that they would receive from additional sales. Sellers supply too
little at the equilibrium price because they fail to realize how low prices
generally will be in the following period, when they spend the cash obtained
from current sales, and thus how willing they should be in the current
period to supply goods at a low money price. They would know this if they
knew the current money supply shock, because the reduction in the money
supply is permanent, and prices fall proportionally after a one-period
delay. In the present model, by contrast, producers correctly understand
the shadow value of cash (Bv’(l) in our notation above); knowledge of the
current shock 5: would not affect their evaluation of this value. The
information that they lack, instead, is about how the price they charge will
affect the quantity that they will be able to sell. In a recession state.
producers offer to supply too few goods at low money prices, because they

overestimate the chance of eventually finding buyers who will pay a high
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price; if they knew the current state of nominal aggregate demand they would
know better.

Our observation that knowledge of the current money supply would not
affect producers’ estimate of the shadow value of additional cash in the
present model follows from our unrealistic assumption that the money supply
is independently distributed across periods. If we were to assume instead
that a higher realization of 8, implied higher money supplies, on average,
in all subsequent periods as well, then one'’s estimate of ¢, would affect
one's estimate of pv’(l), and misperception of the shadow value of cash due
to ignorance of the current money supply would indeed bear some of the blame
for the inefficient use of resources associated with monetary instability.
But a still more realistic model would recognize that each producers’ sales
are stochastic for many reasons independent of the current realization of
money growth, and as a result that there is little reason for producers to
revise their estimates of either the current or the future money supply on
the basis of surprise variations in their own current sales. Consider, for
example, a model with many submarkets each organized along the non-Walrasian
lines explained in Section 2, but with independent variations in spending in
the various submarkets superimposed upon the (possibly autocorrelated)
variation in aggregate spending. We would expect each submarket's
equilibrium to be similar to the kind described above, with producers
choosing a pricing strategy similar to the one that would maximize expected
revenues, even in the case of significant persistence {n the fluctuations in
aggregate spending.

There is an alternative interpretation of the equilibrium of Section
4, under which consumers--symmetrically with firms--learn the current

realization 4 only in the course of trading. Instead of assuming that §_
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is revealed to consumers at .the beginning of the period, when they receive a

single transfer that brings their cash balances to the level § suppose

e
that consumer cash balances are § at the beginning of trading in all
periods, and that additional transfers occur continuously during trading,
stopping when a total money supply of #,. per household has been reached.
The drawing of 7, by the monetary authority is thus not revealed to
anyone--consumers or firms--until the transfers stop. At each stage in this
process, consumers’ knowledge of 9: is limited to knowledge of the
distribution @ and of the fact that €t is at least as large as the
amount of cash already received in the current period. If in equilibrium
consumers spend all of the cash available to them as soon as they receive
it, up to the point where a'lU'(c) no longer exceeds the marginal price at
which goods are available, then the information of producers and consumers
will be the same at all stages: Each will know only the ex ante distribution
of possible money supplies, and the quantity of money transferred and spent
up to that point.

In such a symmetric-information variant of the model, equilibrium
transactions are the same as before. The only difference is that now
consumers have less cash with which to bid in the early stages of the
trading game, and so make bids that are proportionally smaller, to obtain
the same quantity of goods at the same prices as before. The equivalence of
the two models is most easily seen if one considers the case of a
distribution & with a finite support, (90,91,...,9N), with 0 < 90 < 61 <

L.< 9N. Suppose that consumers begin trading with cash balances of 60,
that subsequently an additional transfer of 91-90 is made with probability
%y, then a transfer of 92-91‘ with probability '2/'1 (conditional upon the

first transfer having been made), .and so on, until finally a transfer of




48

eN'eN-l is made with probability "N/”N-l (conditional upon the N-1 previous
transfers having been made), where 0 < my < Ty < -e- < x < 1. Suppose
furthermore that there is time between transfers for a complete bargaining
process of the kind described in Section 2 to occur; in each such stage
producers can offer to supply only that part of their capacity not already
committed, and consumers can spend only that cash already received and not
already spent.

It is obvious from our previous analysis that in each stage, all goods
sold will be sold at the same price (pk when the money supply is 8k, for k
=0,1,...,N). It is also obvious that all cash available will be spent in
each stage k prior to the last stage in which any goods are sold (call it
stage n); that the prices in the several stages will satisfy Pi™ ~ P for
each 1 < k < n; that the total quantity sold in the first n stages will
equal y; and that a'lU’(y) exceeds XLIPO for each k < n, is no smaller
for k = n (with equality if there is unspent cash in stage n), and is no
larger for k > n. Thus the equilibrium prices and quantities are the same
as if the the value of g, were revealed to consumers immediately, and a
single trading game of the kind described in Section 2 were played.

In this case of the sequence of symmetric-information trading games,
each stage's trading is equivalent to a Walrasian equilibrium. Thus the
symmetric-information model just described is equivalent to that of Eden
(1%90b, 1991), in which there is a sequence of Walrasian spot markets, one
after each new injection of cash.9 There is thus a sense in which our
results do not rely upon a non-Walrasian market structure, if the sequential
revelation of information about the state of nominal aggregate demand can be
motivated in some other way. We are attracted to the non-Walrasian

structure described in Section 2 because it seems to us to capture some

Q
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important elements of economic reality, but it is not required to deliver

the effects we derive from it,
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ndix: oofs of Propos Q 4 4

For convenience, we restate the propositions in the text.
Proposition &4.1. In the maximization problem (4.3), suppose that
(1) the function p(#) 1is bounded and left-continuous, with p(d) >
0 for all 4 € 8 ;
(ii) the function Sx(c) is non-decreasing and left-continuous, with
Sx(c) z p(g) for all c = 0, and with sx(c) - +o for all c >
Yy
(1iii) the function R(4) 1is continuous, with R(#) =2 0 for all ¢ €
8; and
(iv) the function U(c) 1s bounded, continuous, strictly increasing,
and concave, for all ¢ 2 0.
Then there exists a value function v(m), defined for all m 2 1-§, that
satisfies the Bellman equation (4.3a). Furthermore, v(m) is bounded,
continuous, strictly increasing, and concave.
Proof: The proof involves five parts. We first, (1), use the constraints
(4.3b)-(4.3d) to express the decision variable c 1in (4.3a) in terms of =
Then, (2), we define an operator T associated with (4.3) and show that
this operator takes the set of bounded continuous functions on [1-8,=) f{nto
itself. We show, (3), that T has a unique fixed point v in this set of
functions, the unique solution to (4.3). Then we show, (4), that v s
increasing and, (5) that v 1is concave.
(1) For each m21 -4, § €8, let I'(m,d) denote the interval of
values for m that satisfy (4.3b). Note that T 1is a continuous, compac::

valued correspondence. Let D denote the graph of I, i.e., the sec
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(m,#,m) satisfying the inequalities just mentioned. For any [ [1,;],

let Dg denote the set of (m,m) such that (m,§,m) € D, and for any

subinterval N C [1,;], let DN denote the subset of D for which 4 € N.

Note that for any 4§ € [1,3], D0 is a closed, convex set.

Now for any (m,ﬂ,ﬁ) € D, there exists a unique ¢ 2 0 satisfying
(4.3¢)-(4.3d). For all (m,4) such that u(m,f§) > 0, the right hand side of
(4.3¢c) is monotonically decreasing in c. When ¢ = 0 , it equals the upper
bound in (4.3b), while as c¢ 1is made arbitrarily large, it becomes an
arbitrarily large negative quantity. Thus for any value of m within the
bounds (4.3b), there exists a unique solution ¢ 2 0. Let this be denoted
c(m,ﬂ,ﬁ). We wish to consider further the continuity of this function.

For any § > §, there exists a left neighborhood N of § on which
p(#) 1is continuous. Let N be chosen so that # 1is bounded away from §.

Then u(m,f) 1is bounded away from zero on DN , and hence

J(m,d,m) = § - 2= —L

p(m,8)
is a continuous function on DN‘ Furthermore,

z
I(z,8) = Imin[S'(x),p(ﬂ)]dx
o]

is a continuous function for all 4 € N, z 2 0 , and monotonically

increasing in z. Hence the equation

(a.1) I1(z,8) = J(m,6,m)
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has a unique solution z(m,f#,m), and this latter function is continuous on
Dy Then the unique solution to (4.3c) is given by

c(m,d,m) = p(m, 8)z(m, é,m)

and this is continuous on DN as well., (Note that the above functions are
all well-defined at all points in D where u(m,8) > 0, but I(z,4),
z(m,§,m), and c(m,&,E) need not be continuous on this entire domain.)

Let us next consider the case # = §. 1In this case, I(z,8) = p(§)z.

Hence for all m > 1- § (so that u(m,§) > 0), the unique solution to (A.1l)

is

_ fm - B+ R@]
2mim - S Dmre -1

which implies

m - m+ R(4)

(A.2) c(m,d,m) (D)

On the other hand, if m = 1-§, (m,f,m) € D requires that m -
R(g) + 1 -4, so that the numerator of (A.2) is zero. In this case, (4.3d)
requires that ¢ = 0 , so (A.2) applies in this case as well. From (A.2) it
is evident that c(m,ﬁ,a) is a continuous function of (m,m) on Dﬁ'

(2) Let f(m) be any bounded, continuous function, defined for all m

2z 1-§. Then

F(m,f,m) = U(c(m,é,m)) + Bf(m)
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is a bounded function on D . Furthermore, it follows from our results
above that for any § > §, there exists a left neighborhood N of § such

that F i{s continuous on D and that F(m,f,m) is a continuous function of

N’
(m,m) on Dﬁ'

Now for any mz 1-§ , § < § < ;, define

¢(m,§) = sup_ F(m,§,m)
mel(m, §)
For any § > g, let N be the left neighborhood of § just referred to.
Then by the theorem of the maximum (Stokey, Lucas, and Prescott, Theorem
3.6), #(m,4) is continuous on the set m= 1-§ , § € N. Furthermore, for ¢
=4, ¢(m,§) is a continuous function of m on the set m 2 1-§. Thus we

observe that ¢(m,#) is a well-defined bounded function for all m > 1-4, §

<4 =< ;; that for every 4 € 8, ¢#(m,8) is a continuous function of m; and
that for every m > 1-§, ¢(m,d) 1is a left-continuous function of #.

Finally for any m = 1-§, define
(4.3) (Tf) (m) = I¢(m.9)°(dﬂ)

Since ¢(m,d9) 1is a bounded, left-continuous function of 4, it is
integrable, and the above expression is well-defined. It is also obviously
bounded as a function of m . We wish to show that it is also continuous.
Consider any sequence (mn) such that m o2 1-§ for each n, and m o
Since ¢(m,d) 1is continuous in m for every ¢, the functions (¢(mn,-))

converge pointwise to the function 4(m,«). All of those functions are
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integrable, and they are uniformly bounded; hence, by the Lebesgue dominated

convergence theorem,

lim f¢(mn,a)¢(d9) - f¢(m,0)‘b(d9)

n-+o

Thus Tf 1is a continuous function of m.

We observe that (A.3) defines on operator T , mapping the set of
bounded continuous functions on [l-§,+ =) into itself. The existence of a
function v(m) satisfying (4.3a) then follows if we can show that there
exists a fixed point of the mapping T.

(3) Let F denote the set of bounded continuous functions on
[1-§,+ =), with the sup norm. For any functions f,g,€e F, f =z g implies
that Tf z Tg. For any function f € F and any constant function a,

T(f+a) < TF + fa. Thus the Blackwell conditions are satisfied (recall that
0 <pg<1l), and so T 1is a contraction (Stokey, Lucas, and Prescott,
Theorem 3.3). Then since F is a complete metric space, T has a unique
fixed point v € F. This function v necessarily satisfies (4.3a).

(4) We next show that v(m) is monotonically increasing. Let F' C F
be the set of bounded, continuous functions that are also non-decreasing.

We wish to show that T maps F’ into itself as well.

Note that I 1is increasing in m, in the sense that m' = m implies
that I'(m,8) ¢ I'(m',d). Note also that u(m,d) 1is strictly increasing as a
function of m , as a result of which J(m,#,m) is strictly increasing in
o on the subset of D where u(m,8) >0 (so that J {is defined). Since
I(z,8) 1is strictly increasing in z, equation (A.l) defines a function

z(m,4,m) that is strictly increasing in m (on the domain of J). It
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follows that c(m,#,3) 1is also strictly increasing in m on this domain.
Consider now the unique point in D at which u(m,4) = 0, namely, m = 1-§,
§ =8, m=R(4)+1-4. If (m#é,m) takes these values, and m' > m,
then u(m’,8) >0, J(m',#,m) = ¢, 1(0,8) = 0, so that z(m',d,m) > 0 and
c(m’,§,m) > 0. But c(m,f,m) =0 , so that c(m’,d,m) > c(m,#,m). Thus
c(m,d,m) is strictly increasing in m, on the entire domain D.

Now let £f(m) be any function belonging to F’'. It follows that
F(m,6,m) is strictly increasing in m, on the domain D. Because I is

increasing in m, it follows that ¢(m,#) 1is strictly increasing in m, on

the domain m21-§, § 5 ¢ =< 9. Finally, it follows from this that (Tf)(m)
is strictly increasing in m, on the domain m 2 1-4. Thus T:F' - F', and
furthermore f € F' implies that Tf 1is strictly increasing. Since F’

is a closed subset of the complete metric space F, T must have a fixed
point in F’', which is the same function v(m) referred to above.
Furthermore, since v = Tv , v(m) must be monotonicaily increasing in m,
and not merely nondecreasing.

(5) Finally, we show that v(m) 1s concave. Let F" C F be the set
of bounded, continuous functions that are also concave. We wish to show
that T maps F" into itself as well.

We first show that the function c¢(m,4,m), defined above, is concave

in (m,m), for any 4§ € 8. Let us define
K(u,f,m) = 8y + R(8) + r(8) - m .

Then (A.l) can equivalently be written
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1(z,8) - &

which we can invert to obtain

- (K
z z(“,o)

Because Sw(c) is a non-decreasing function, I(z,8) 1is a convex function

of z, for any 4. It follows that ;(E,&) is a concave function of E.

Then

C(K,p,8) = u2<f.o)

is a concave function of (K,u), for any ¢. But

c(m, 8,7 = clK(u(m,0),0,m),s@,0),0]

Since K(u,4,m) is linear in (u,ﬁ), and p(m,d) is linear in m, for any
g, it follows that c(m,§,m) is concave in (m,m).

Now let f(m) be any function belonging to F". Then the concavity
of U(c) and c(m,8,m) imply that F(m,#,m) is concave in (m,m), for any
§ € 8. Furthermore, for any 4 € 6, D& is convex, from which it follows
that ¢(m,d) 1is concave in m. As this is true for all 4, the integral
over # must be concave in m as well, so that (Tf)(m) is concave in m.

Thus T:F" - F*, As F" 1is a closed subset of the complete metric

space F, T must have a fixed point in F", which must be the function wv.

Hence v(m) is concave in m. O
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Proposition 4.2. 1In addition to the hypotheses of Proposition 4.1, suppose
that
(1) the function U(c) 1is continuously differentiable for all c >
0, it is strictly concave (i.e.,U'(c) 1is monotonically

decreasing), and 1lim U’'(c) = 4« ;

c

(i1) Sx(c) < + « for some ¢ > 0 ; and ‘
(iii) the function c(§) that solves the maximization problem in
(4.3c) for the case m=l 1s such that (4.4) holds, and

furthermore such that
4.7 5.(e(8)) s p(8)
for all 4 € ©.

Then the value function v(m) that satisfies (4.3a) is differentiable

at m =1, and the derivative equals
(4.8) v = (-8 o Tur e (o))e(a)e(as)

Proof. (1) We first show that the function c(8) 1is continuous, and

bounded away from zero. The function c¢(4) 1s defined as

c
(A.48) c(8) = arg max V(c,§) = U(e) + ﬁv[1+R(&)-Imin[S’(x).P(ﬂ)]dX] ,
c 0

subject to
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c
(A.4b) max(l-4, 1-0+R(8)) = 1+R(€)-Imin[Sx(x),p(ﬁ)]dx < 1 + R(%)
0

Because of (4.7), (A.4) is equivalent to the following definition.

c
(A.5a) c(8) = arg max V(c,d) = U(c) + ﬁv[1+R(9)-IS”(x)dx] ,
c 0

subject to

c
(A.5b) max(l-4, 1-6+R(8)) = 1+R(€)-ISx(x)dx < 1+ R(#)
0

Condition (4.7) implies that V(c,8) < V(c,§) for all c¢ =0, § <8 =<4,

with U(c.8) = V(c,d) for all c < c(d). Note also that ¥(c,d), like

V(c,8), is a concave function of ¢, for all § <6 < ?. Hence c¢(§) 1is
greater than, less than, or equal to the unconstrained maximizer of V{(c,8)
only if it is respectively greater than, less than, or equal to the
unconstrained maximizer of V(c,f). Furthermore, each inequality in (A.4D)
implies the corresponding inequality in (A.5b), and if either inequality is
an equality, this implies the corresponding equality in (4.5b). Thus a
solution to (A.4) is necessarily also a solution to (A.5). Finally, because
of the strict concavity of U(c) and the concavity of v(m), the solutien
to (A.5) must be unique. Hence c(f) 1is equivalently defined by (A.3).
But the set of values for c¢ that satisfy (A.5b), considered as a
function of 4, constitute a continuous, compact-valued correspondence,

while ¥(c,d) 1is seen to be a continuous function of both arguments (given
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the continuity of v(m)). Hence, by the theorem of the maximum, c(4) 1is a
continuous function.

We next observe that c(§) > 0 for all §¢. For suppose instead that
c(d) = 0 for some § € 6. Then it follows from (4.4) that R(§) = O as
well. Then given that Sx(c) < +o for some c¢ > 0 (and hence for all lower
values of ¢ as well), (A.5b) is satisfied by all small enough ¢ > 0. Let
c* > 0 be chosen so that (A.5b) is satisfied by all 0 < ¢ < c*. Then the
strict concavity of U(c), the concavity of v(m), and the convexity of

fgsﬂ(x)dx imply that

c
V(c,8) = U(c) + pv(l - J.Sx(x)dx)
0

cx

> U0) + Av(l) + c(LL(—“L)fJ—(—O—l -2 va-va - J-S’r(x)dx)])
0

cx

- F0,0) + U 2 vayva - [s o))
0

Because U’(c) becomes unboundedly large as c¢ approaches zero, the
expression in curly brackets must be positive for small enough ¢ > 0.
Hence V(c,d) 1is not maximized at c=0, a contradiction. Then since c(4)
is a continuous function on the compact set 8, it is not only everywhere
positive, but bounded away from zero.

(2) Now for any oy = 1-4, and any sequence of monetary injections 4
- (€t), let sequences (Et(mo;d),;t(mo;d)) be defined recursively by the

relations
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Eo(mo;a) -z o,
By (gi0) = BB (m;8),8 ) [L-RM)-r(8)] + RO + r(8)
c (myid) = p(m (my;8),6.)c(f)

Note that for any o, and any sequence of monetary injections, the
sequences (Et(mo;é),ﬁt(mo;é)) represent a plan that satisfies (4.3b)-
(4.3d) in all periods. Furthermore, when o, = 1, this is the optimal
plan, namely Et - c(ﬂt), Et+l =1 for all t. Then let ;(mo) denote the
level of utility obtained under this plan, i.e.,

©
F(my) = El T ATUE (myif)))

t=0
where the expectation is over the different possible histories of monetary
injections §. It is easily seen that for each t, Et(mo;ﬂ) is a
continuous function of §, so that U(Et(mo;ﬂ)) is a bounded continuous
function, with the same bounds for all t. Hence the integral involved in
the above definition is well-defined for each t, and the uniform bounds
imply that the infinite sum of integrals must converge. Hence ;(mo) is
well-defined for each zy 2 1-49.

We wish to show that V(m is differentiable at m; = 1. For

o’
ez -4, ¢ #0, let us define

ple) =
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Then we wish to show that the function p(¢) 1s continuous at ¢ = 0; the

limiting value p(0) 1is then v'(l). From the definition of the processes

(EC,EC), it is obvious that
v(my) = E(U(u(my,f4)c(dy))
+ BV(u(my,00) [1-R(4g)-r (6501 + R(84) + 7(8)))

where here the expectation is over the possible realizations of 00. This

implies that for any e 2 - §, ¢ ¥ O,

(A.6) p(e) = f[u(¢,9) + Bp(A(8)e)]®(d9)
where

A(p) = MR@e)

we, ) = 2uEHe) - ue]

Note that (4.3b)-(4.3c), together wicth (4.4), imply that 0 < R(4) s 8 for
all 4, so that 0 5 A(8) =1 for all ¢. And the facts that U(c) 1is
continuously differentiable for all ¢ > 0, and that c(8) is a continuous
function bounded away from zero, imply that if we adjoin to the above

definition the stipulation

w(0,§) = LU (c(f))
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then wu(e,f) 1is a continuous function on the domain ¢ 2= - §, § < 4 < 7.

Finally the concavity of U(c) implies that for any g4 < § =< ?,

Ulc(8)) - UQY

0 = u{e,d) = 7

for all e 2 - §. As the right hand expression is a bounded function of 4,
it follows that wu(e¢,f) 1is a bounded function,

Now for any bounded continuous function £(e¢) on the domain ¢ = - §,

let
(A.7) (Tf) (e} = I(u(!.ﬂ) + BE(A(F)e) ) ®(dE)

From the properties just mentioned, it is evident that wu{e,8) + Bf(A(d)¢)
is well-defined for all ¢ = - f§, # € ®, and that it is furthermore a
bounded continucus function on this domain. It then follows that (Tf)(4)
is well-defined for all ¢ =z - g, and furthermore a bounded continuocus
function of ¢ on this domain. Thus (A.7) defines an operator T that
maps the set of bounded continuous functions on the domain ({-§,+=) into
itself. As it satisfies the Blackwell conditions (with the sup norm), it is
a contractien, and so has a unique fixed point. Comparison of (A.7) with
(A.6) shows that the fixed point coincides with the function ps(¢) defined
earlier, for all ¢ ¥ 0. Since the fixed point is a continuous function,
p(€) 1is continuous at ¢ = 0. Thus v(m) is differentiable at m = 1, and
the derivative is ¥/(1) = 5(0).

From (A.7) we observe that the fixed point, evaluated at ¢ = 0, must

satisfy
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00 = [1900,0) + 8p(0))8(c0)
so that
(a.8) Ty = @-p ol e))enren

(3) Since (Et(mO;O),Et(mo;e)) represents a feasible plan, it

follows that Vv(m) < v(m) for all m 2 1-§. Furthermore, (1) = v(1).

One also observes that Et(mo;O) is a linear function of o, for each

g,

as a result of which V(m) is a concave function of m. Then the fact that

v(m) 1is differentiable at m = 1 implies that v(m) is differentiable at

that point as well, by the lemma of Benveniste and Scheinkman (Stokey,
Lucas, and Prescott, Theorem 4.10), and that the derivative is v’(l) =

V'(l). Then (A.8) implies (4.8). O
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1 In the symmetric equilibria that we characterize below, each player of a
given type chooses the same quantity, so that the integrals exist (and equal
the common quantity chosen). When an individual player considers choosing a
different quantity, he expects to have no effect on the value of the
integral.

2 Given the strategies of the other players and i's choices in the earlier
stages, the history (cli""’ck-l,i) is also a function of §. Hence we
could simply have consumer 1 choose a sequence of functions xki(e). But
in this case we would not be able to define i’s strategy set independently
of the strategies chosen by the other players. The definition used here
allows us to define each player's strategy set independently, and to define
a payoff function on the product of these strategy sets.

3 We describe the producer's strategy as a measure rather than a sequence in
order to suggest the generalization to the case of a continuous price set,
treated below.

4 We assume furthermore that even if “all sales are public,” this only means
that the functions zkj and €y &re revealed up to the equivalence class
of almost everywhere identical functions (with respect to Lebesgue measure)
to which these functions belong. Thus an individual player who chooses to
deviate from equilibrium play does not expect that other players can observe
his action, and cannot expect their strategies to respond to it.

5Note that in this model, beyond a certain point a higher realization of the
money supply has no effect on elither prices or real activity. The

additional money is simply hoarded. This kind of "liquidity trap" is a

typical feature of cash-in-advance models, and has nothing to do with the
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special market structure proposed here. See, for example, the discussion of
the corresponding equilibrium with Walrasian spot markets in the next
paragraph.

6Of course, real effects of anticipated money growth are possible in such
models, if there are possibilities for substituting away from cash
transactions. Such effects are entirely due to the fact that higher
anticipated inflation increases the cost of using cash, and so increases the
resort to inefficient alternatives. In this paper, we abstract entirely
from this source of monetary non-neutralicy.

7Ve do not consider here whether average output is monotonic in some measure
of the degree of uncertainty. In reality, of course, capacity production is
determined by choice, not given as we assume here, and calculating the
response of average equilibrium output to changes in the level of
uncertainty would require taking the choice of capacity into account as well
as the extent to which existing capacity is utilized.

8The predicted procyclical movements in production are even greater if one
allows for the use of intermediate goods in production, as shown by Basu
(1992).

9Eden’s model differs from ours in that successive monetary injections are
received by different consumers, but this has little consequence for the

real effects of monetary shocks in his model. In particular, the conditiorns

for optimal pricing by producers are unaffected by this change.
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