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|. Introduction

Long-term iliness threatens the financial health as well as the
physical health of elderly families. Despite existing coverage provided
by Medicare, Medicaid, and private health insurance, the risk of a
catastrophic medical expense is large. Out-of-pocket medical
expenses for the elderly in 1988 were estimated to be $2,394 per
person, or roughly 18 percent of average per capita income for the
elderly (US Congress, 1989).

There is some evidence from cross-sectional data about the
financial risk of medical expenses in a given year. But there is little
evidence on the extent of lifetime out-of-pocket medical expenses.
If catastrophic medical expenses are highly correlated over time, then
even modest levels of health costs -- in any given year -- can
gradually deplete a family’'s entire nest-egg of retirement saving.
Furthermore, the greater the persistence of medical expenses, the
greater the value of catastrophic medical insurance.’

We estimate the time-series properties of health expenditures
using panel data on taxpayer returns collected by the IRS. We use
data from the late 1960s and early 1970s when taxpayers who
itemized could deduct medical expenses above a floor of 3 percent of
adjusted gross income {AGl). The reporting of medical expenses over
a six-year period 1968-73 allows for accurate measures of long-term
persistence, as well as providing the information about the
catastrophic costs likely to have the largest impact on the financial

health of the elderly.

1 It is straightforward to show that for a concave utility

function, the value of actuarially fair insurance per dollar of premium
is greatest for low-probability/high-cost events.



2

We observe medical expenses only for households that
itemize and that experience expenses above 3% of AGl. Hence we
must account for these selection criteria in estimating the dynamic
model. The estimation problem is a classic tobit problem, albeit with
a variable lower limit and in higher dimensions. Because of the
difficulty of evaluating the implied four-dimensional normal
distribution function we use the ingenious smoothed simulated
maximum likelihood (SSML) approach developed in Borsch-Supan and
Hajivassiliou {1992), and based in turn on the Geweke-Hajivassiliou-
Keane simulation method.?

The SSML approach evaluates multi-dimensional distribution
functions (and hence the multidimensional tobit) by the use of
simulated error terms drawn multiple times for each observation. By
averaging over the realizations of the simulated draws, a "simulated”
likelihood function can be calculated.® Given that the same
simulated draws are used at each iteration of the likelihood function,
one may then use standard hill-climbing techniques to solve for the
maximum likelihood coefficient estimates. We seek to further
improve the sampling properties of the SSML by using a method of

pseudorandom sampling of error terms due to Halton (1960).

2 See Hajivassiliou, McFadden, and Ruud (1991), Geweke
(1989), Keane (1990), Deak (1980a), and Gassmann (1988). Our
primary reference is Borsch-Supan and Hajivassiliou {1992), which
contains a clear exposition of the simulated maximum likelihood
method and contrasts it with alternative approaches.

3 This approach differs from the method of simulated moments
(MSM) that minimizes the weighted "distance" between the moments
of the simulated data and the implied moments of the parameter
vector (McFadden, 1989; Pakes and Pollard, 1989; Stern, 1992).
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Empirical results from the tax data suggest that out-of-pocket
medical expenses are income inelastic; the burden of such costs is
substantially higher for lower to middle income elderly families than
for higher income families. The estimated coefficients also indicate
persistence in medical care expenses; a one-dollar unexpected
increase in current medical spending signals an overall discounted
future increase of $2.80 in additional out-of-pocket expenses.
Furthermore, the annual innovation in out-of-pocket expenses is
substantial; a one-standard deviation positive shock to medical
expenses is estimated to increase spending by $3000 in present value
terms. Given that the median family holds only $6600 in liquid
assets (Venti and Wise, 1991), these results suggest that many
elderly families are at considerable financial risk from health costs.

In recent years, there has been increasing attention paid by
politicians and the public to catastrophic medical expenses (Haas,
1988; Kosterlitz, 1988). While the risk of large-scale medical
expenses have been documented for a single year, the more relevant
measure of risk -- lifetime risk -- has not previously been measured.
Using the estimated measures of medical care risk, we show that
over a five-year period, persistent medical expenses can easily
account for more than 20 percent of average annual income for an
elderly family with an annual income of $15,000. Higher income
families do not experience the same risk because out-of-pocket
medical spending for elderly families is income inelastic. In light of
this finding, the public outcry over federal catastrophic health
insurance legislation in 1988 may have been a consequence of the
highest income groups bearing the largest burden of the additional

tax, but experiencing the least risk to disposable income.
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The next section examines measures of existing out-of-pocket
medical risk. Section lll develops a simple ARMA model of medical
spending, and describes how the model is estimated using the
simulated likelihood estimator approach applied to a quadravariate
tobit. Results are presented in Section 1V, with simulations of the

results shown in Section V. The paper concludes in Section VI.

Section |I: Cross-Sectional Measures of Medical Care Spending

There have been recent efforts using cross-section data to
gauge the importance of out-of-pocket medical expenses. The
National Medical Expenditure Study (NMES) sampled roughly 14,000
households in 1977 to determine total and out-of-pocket expenses.4
The distribution of out-of-pocket {OOP) medical expenses (including
insurance premiums) in excess of 3 percent of family income are
shown in Figure 1 for populations aged less than 65 and for those
over age 65. We restrict the sample to families with incomes over
$5000 (in $1987) to emphasize that high ratios are not the
consequence of low income levels.®

The difference in OOP spending for elderly and non-elderly
families is not dramatically different except for catastrophic expenses.
For the population under age 65, 4.3 percent of the population spent
at least 20 percent of their income on out-of-pocket medical

expenses. By contrast, 7.9 percent of elderly families, and 14

4 A more recent survey from 1987 exists, but the expenditure
data has not yet been prepared for public use.

S The sample is further restricted to those who provided full
survey information on insurance premiums, income, and other
demographic data. A total of 9658 households remained in the data,
of which 1963 were above age 64 (and with income above $5000).
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percent of families with income less than $10,000, spent more than
20 percent of income on medical expenses (Figure 1).

Statistics from a study by the House Select Committee on
Aging suggested that in 1977, average spending on out-of-pocket
medical care was 12.3 percent. Why are the NMES statistics so
much lower than the Congressional estimates? One reason is that the
NMES neglects perhaps the most important uninsured medical care
risk -- nursing home costs. Nursing homes are rarely covered by
private insurance, and Medicare typically covers at most the first
month. Many nursing home patients subsequently become eligible for
Medicaid, but this is only after they have entirely spent down nearly
all (nonhousing) wealth. The survey excluded all nursing home
residents entirely, and costs for nursing homes were excluded even
for respondents who had spent part of the year in a nursing home.

Nursing home costs are extensive and largely uncovered by
any insurance. Cohen, Tell, and Wallack (1986) calculate that an
individual at age 65 has a 45 percent chance of being admitted to a
nursing home at least once before his or her death. Rivlin and Weiner
(1988) estimate that single elderly men have a 30 percent chance of
being admitted to a nursing home in any give year. While fewer than
one-third of all admissions are for more than one year, the average
(undiscounted) cost per admission is $36,125 assuming a daily cost
of care equal to $85 (e.g., Rivlin and Weiner, 1988).° The

advantage of the tax data is that, at least theoretically, uninsured

8 Although most patients are discharged within 3 months, enough
remain for lengthy stays (e.g., more than 5 years) that the average
length of stay exceeds one vyear.
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hospital, physician, and nursing home costs should be reflected in the
declared medical expenses.

Consider first the sample of taxpayers age 65 and over who
were exogenous itemizers (i.e., they would have itemized even if
medical expenses had been zero) and who were either single or filing
jointly.  Figure 2 shows the distribution of medical expenses
expressed as a fraction of AGI for elderly itemizing taxpayers with
taxable income in excess of $2000, for tax years 1970 and 1988.
Because the limit for medical expenses in 1988 was 7.5 percent of
AGI, we focus only on medical expenses in excess of 7.5 percent in
both years.7 Note that these figures may not be entirely consistent
with the NMES survey since social security payments are largely
untaxed and would not be reflected in AGI. Still, the figure implies
that 21.6 percent of elderly families in 1970 spent more than 7.5%
of their income on out-of-pocket medical expenses, with 5.8 percent
having spent more than 20 percent. By 1988, 25.4 percent of
families spent more than 7.5% of income on medical expenses, with
7.8 percent having spent more than 20 percent. A more dramatic
change in spending occurred for elderly families with AGI between
$10,000 and $25,000 (expressed in 1987 dollars). Figure 2 shows,
for example, that the percent of families in this income class spending
between 20-40% of AGI on medical costs rose from 6.1 percent in
1970 to 11.5 percent in 1988. That is, the largest burden of
increased out-of-pocket medical expenses appears to be on lower-

middle income elderly families.

7 In 1970, 18.5 percent declared expenses between 3-5% of

AGl, and 10.4 percent declared expenses between 5-12.5% of AGI.
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The overall level of medical spending in the tax data appears
low relative to statistics from US Congress (1989). One reasonis the
higher income levels of those who itemize; in 1970, AGI for elderly
itemizers, $35,055, (in $1987) was nearly double AGI for the elderly
sample as a whole (see Tables 1 and 2). Calculations from the NMES
indicate that the average propensity to spend income on out-of-
pocket medical services (including insurance premiums) falls
dramatically as income rises, from an average of 11.2 percent for all
households with income between $5-10,000, to 4.8 percent for
households with income between $40-60,000. Hence itis likely that
the sample of itemizers will, on average, report lower medical
expenses as a fraction of income than the representative household.

While the cross-sectional studies provide a measure of the
pervasiveness of medical expenses in any given year, and trends in
medical care spending over time, they cannot provide a measure of
the lifetime risk of catastrophic medical care costs. To address this
issue, we must turn next to a more structural model of medical care

costs.

lll. Time-Series Structure of Out-of-Pocket Medical Expenses

Health care expenditures reflect, but may not perfectly
measure, objective changes in health status. As is well established,
medical care expenses are the outcome of a complicated endogenous
decision involving current health, investments in future health (e.g.,
Grossman, 1972), income, and relative prices determined by
insurance coverage. Let the unobservable "health status” for
individual i in period t be written y;,; log medical spending h;t is
assumed to be

hiv = 9@ Vi X (1)
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where g is a function mapping into h;, intrinsic health status g,
individual tastes v; (which may also include unobservable permanent
characteristics such as private insurance coverage), and observable
characteristics X,; such as age and the tax-price of medical care.
Taking a first-order approximation around population means

yields

hy < [8(0,0,X) +g5(X,~X)] + [, ¥, +&5v;] + [84(W,-¥)]
(2)

where g; is the derivative of the function g with respect to the jth
element, E/i is the individual-specific level of permanent health status,
X is the population mean of the observable characteristics, and we
normalize the population mean of v and ¢ to be O.

Log health spending is expressed in (2) as the sum of three
bracketed terms. The first is the variation in health spending as a
function of observable characteristics such as age, marital status, the
tax price of medical deductions, and income. The second bracketed
term measures the "fixed effect” of an individual family owing to
either permanent differences in health status g,y; or permanent
differences in tastes towards medical spending g,v;, perhaps as a
consequence of differences in health insurance coverage. The final
term measures time-specific differences in medical spending as a
consequence of differences over time in health status. Of course, if
there are time-specific changes in the function g(), such changes
would also be reflected in this final, time-varying error term.

Letting ¢, be the fixed effect in the second brackets of (1),
and v, the time-specific variation in medical costs {shown in the third

bracket of (2)), we may write the model as
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hiv = Xi +@; + Vi (2)
where v;, is assumed to be an ARMA(p,q) error process. Assuming
for the moment an ARMA(1,2) process, v;, can be written

Vit = PVit1 TM&iq M8y + &

where p is the autoregressive term, m,; and m, the moving average
terms, and &, is the current white-noise shock assumed to be
distributed normally. The overall error term is denoted U, = @ + Vi
This general structure can capture serial correlation which decays
geometrically over time (correspondingtop > Oand m; = m, = 0),
a "random walk" combined with "transitory” errors in medical
expenses (0 = 1 and my; < 0), or a model in which most errors
simply reflect permanent individual differences in health status (aﬁ,
>> 02).

In the typical case when all data are observed, this model may
be solved by first estimating f using OLS, and then estimating the
ARMA model from the covariance structure of the residuals using
standard minimum distance estimators (e.g., Abowd and Card, 1989).
The drawback of the taxpayer panel is that information on medical
spending is available only for those who both (i) itemized and (ii)
spent more than 3 percent of adjusted gross income on medical care.

The problem of estimating an unbiased parameter vector 6 =
{,B,af,,p,m1,m2,02€} is that medical spending will be underreported
when it is low (i.e., less than 3 percent of AGI) or when other
deductions are sufficiently low that even high medical expenses are
not sufficient to justify itemizing. That is, writing the model of
medical expenses as

H = X8 + U
where H” is the true Tx1 vector of medical spending in the T years,

Xy is the (stacked) vector of independent variables for T years, and
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U is the Tx1 vector of error terms. Observed log medical spending is

H, where the element of H is defined as

hy = by if h; > In(03xY,)
and d, > S, (4)

h. =0 otherwise

i

That is, observed medical spending is zero unless (i} total itemized
deductions d;; exceeds the standard deduction in year t, S, and (ii)
log medical spending h;t exceeds the (log) limit equal to 3 percent of
AGI.

The covariance matrix Q = E{uu’} is a function of the time-
series parameters of the dynamic model. For example, in the
ARMA(1,2) model considered above, the diagonal elements of Q are

written

2 2 2
o2 - o2 . [1 +mj +m2+2[pm1+m2(m1+p)]}oe (5)
¢ 1_p?

Itis clear from the model above that we cannot simply restrict
our attention to those who itemize, since the selection criterion for
whether medical expenses are observed depends on total deductions
d;;, of which medical spending is an element. Put another way, an
unusually large error term in h;t will increase the probability that the
taxpayer itemizes, which in turn biases the estimated coefficients. To
correct for this potential bias, we restrict the sample to taxpayers
who are "exogenous” itemizers: in the absence of medical expenses,
they would have itemized anyway. This means that the error term u,
will have no impact on the selection of the data. Of course, some

efficiency is lost by restricting the sample to itemizers. A more
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complete model would include an equation explaining the decision to
itemize, a topic beyond the scope of this paper.

Another issue is whether tobits are an appropriate estimation
approach in light of the restriction that the structural estimates
predict both the probability of observing positive medical expenses
and the amount of medical expenses conditional on being observed.
This assumption is clearly violated if, for example, there are large
fixed costs to recording medical expenses above 3 percent of AGI, in
which case a muitidimensional version of the Heckman (1979)
procedure might be preferred. Medical deductions, however, are one
of the few cases where tobit estimators may be appropriate. In the
sample of taxpayers, individuals are itemizing already, so there is no
additional cost of keeping, say, state tax records. Furthermore, there
is rarely a threshold cost of spending more than 3 % of AGI
(assuming that individuals even know what their AGI will be). The
only case in which there could be fixed costs of filing for medical care
is if record keeping is costly.8

The estimation of even this simple model is nontrivial. Letting
T be the number of years in the panel, there are y2l possible
combinations of being above, or below, the 3 percent cutoff point.
For example, consider the case in which T = 4 and the first two
years are observed but the last two years are not; the likelihood of

observing M given X and the vector of parameters 8 is

8 Another possible shortcoming of the model is that some

taxpayers may not itemize even if they are eligible because of the
compliance cost of record-keeping (Pitt and Slemrod, 1989).
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P(HIX-Q) = ﬂu1,u2{Q)F(a3—x3B,a4—x4BIQ,u1,u2) (6)

where f is the density and F the distribution function. Solving for the
likelihood function is straightforward but tedious when the distribution
function F (conditional on u; and u,) is of dimensionality less than 3
(in the case above, it is bivariate). The problem comes when the
distribution function F is in four or more dimensions, making
numerical evaluations infeasible (Deak, 1980b).2

To address this problem, Borsch-Supan and Hajivassiliou
(1992) use the SSML method to integrate out the n-dimensional
distribution functions using simulation methods. (A discussion of this
and other approaches to Monte Carlo simulation methods is provided
in Appendix A.) Their method is easiest to see when medical
expenses in all years lie below 3 percent of AGl. Then we known
that

U<A-Xg=A (7)

That is, the unobserved error terms are in a 4-dimensional
region bounded from above by the vector {a;} = In(.03xY,) - X,8
where Y, measures adjusted gross income for individual i in year t
(individual subscripts have been dropped for simplicity).

The trick in evaluating the four-dimensional distribution
function in (7) is to note that it can also be expressed as the product

of conditional univariate distribution functions ¢(°);

F(A) = ®(adu_yUy 5y g) D(a,_4lU,_5U,_5) B(3y o, o) ®(a 5

® Although see Hausman and Wise (1978).
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By appropriate sampling over the unobservable error terms u,
it is possible to approximate F(A") by simulation methods. But it is
difficult to sample randomly from a truncated arbitrary covariance
structure. To do this, first take the Cholesky decomposition, L, that
satisfies L'L = Q. Then one can express samples of correlated
random terms u as u = Le, where Var{u) = Q and e is a vector of
independent standard normal random draws. A slightly harder
problem is to draw random error terms from the truncated region in
(7). The SSML approach does this by exploiting the lower triangular

structure of L. Because

t
u, = ;Q:kek (8)

where Zii is the (lower triangular) element of L, the inequality

constraint (7) can be rewritten as

/1 a
0y U4
Up—l1ey  az-lrey
€2 0 L, e
22 22 (9)

*
Uz—ly1€4-l3065 . az — 31613265

las U35

=a3



14

That is, the distribution function FIA"!Q) is transformed to
Fla’ |1) where | is the (4x4) identity matrix. It is easier to simulate
this latter distribution function; one simply samples univariate
truncated normal error terms by use of the appropriate inverse
cumulative density function.’® The recursive nature of L implies a
sequential process for random sampling; first e, from ®(a,), then e,
from ®(a,), and so forth. Given R random draws of the Tx1 vectors,

the probability of the observed data given X and @ are

R
PEIXE) - 1 Y To@) (10)
R 7 |s-1
Preliminary results from Hajivassiliou, McFadden, and Ruud (1991)
suggest that this approach yields accurate approximations relative to
other simulation methods.

The model is easily extended to the case of a tobit. Suppose
that medical spending is observed only in the second vyear.
Conditional on the first draw, we can derive the implied (nonrandom)

error term €y

u,-0,,€
e, = —2 2171 (11)

lop

where u, has been calculated from the observed data conditional on

6. Note that e, still varies over the R random draws because for a

% In the case considered, Borsch-Supan and Hajivassiliou draw
on results by McFadden and Ruud to show that setting
e, = F1(F(A)e,,),
where e, is uniform on (0, 1), ensures a random normal iid draw from
the truncated distribution.
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given u,, e, depends on the random draw e,. Since u, is known, the
distribution function ®{a,) is replaced with the density function
V(2o f(uzla') where ¢ is the standard error of u, conditional

on e;."

Of course, if all T years are observed, then the
contribution to the likelihood function reduces to a standard T-
dimensional density.

The standard approach to simulated methods of estimation is
to use Monte Carlo or antithetic variance methods of sampling error
terms. The crude Monte Carlo approach is generally not the most
efficient means of numerical approximation because it does not
prevent the "bunching” of draws in a particular region of the function,
especially when the number of draws is small. As a consequence,
Monte Carlo sampling converges slowly at a rate of 1MN. Antithetic
variance methods, in which e (with mean zero) is randomly chosen
but the next draw .1 = "€ improves the efficiency somewhat. But
there are a number of more efficient procedures that provide a faster
convergence rate for a broad class of well-behaved functions. We
adopt the classical Hammersly points which Halton (1960) has shown
has a worst-case convergence rate on the order of (In n)4'/n where
d is the dimensionality of the integral. In the average case, however,
the core convergence is much faster (Wozniakowski, 1991).

Halton (1960) sequences are sometimes referred to as

"pseudorandom” because they are not randomly drawn sequences,

1 |n general, the conditional variance is

G: - otv1—R1,...,t-1

where R; 4 is the partial R2 of the tt" error term conditional on
knowing the previous t-1 error terms.
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but are predetermined so as to provide an efficient span of the
probability space. However, they are designed to be independent
both within a particular sequence and across sequences. Each Halton
sequence is calculated based on a different prime number. In our
case, we require a 3-dimensional vector of random draws, so we
construct Halton sequences for prime numbers 3, 5, and 7. The
sequences are shown in appendix B along with the GAUSS computer
program to generate them. Gassmann {1988) presents evidence
suggesting that a similar technique for improving the simulation of a
multinomial can lead to substantial efficiency gains relative to the

traditional Monte Carlo or anitithetic variance approach.

1IV. Data and Estimation

The data are a panel of 21,343 tax returns for the tax years
1967-73, although we can only use the four years (1968, 1970,
1972, and 1973) in which medical deductions are reported.
Membership in the panel is determined by the last four digits of the
primary taxpayer’'s Social Security number (two four-digit numbers
were chosen, leading to a 2-in- 10,000 sample). With this design,
taxpayers may enter or leave the sample in any year, unlike the usual
panel that experiences only attrition. In particular, women leave the
sample upon marriage and re-enter if widowed or divorced. The
information available for each taxpayer includes virtually all the
entries on the 1040 form plus many items from supporting forms.
These data were matched by Charles Clotfelter to social security data
on the primary taxpayer’s age.

The data from the IRS has advantages and disadvantages
relative to survey data. One disadvantage (aside from the censoring

problem) is that taxpayers may overstate medical expenses, since



17

there are clear financial incentives to do so. On the other hand, there
are also clear financial penalties for overstating medical expenses.
Relative to survey data, we expect to find an upward bias in the level
of out-of-pocket medical expenses, but also lower measurement error.
Medical expenses allowed by the IRS encompass a wider range of
services than standard cross-sectional surveys. However, this more
comprehensive measure of the cost of medical iliness may be more
appropriate for measuring the financial impact of long-term illness.

The balanced sample is limited to those who filed for each of
the four years. We miss households who did not need to file for any
of the years, or households who filed very late. Losing nonfilers will
bias the sample towards higher income families. However, for many
of the elderly in the sample, we will also tend to understate total
income since social security was not included in AGI at the time.

Married couples filing separately are excluded, as are
households with age or sex missing, or with adjusted gross income
less than zero. All dollar amounts are converted to $1987 using the
GNP consumption deflator. The dummy variable for sex is equal to
one if the taxpayer is an unmarried female, and the variable for
marital status is equal to one if married filing jointly or a surviving
widow filing in that year. The excluded variable is a male single head
of household.

Summary statistics are provided in Table 1 for the entire
sample of households aged 55 or older in 1968. Average income
declined during the period from $25,178 in 1968 to $21 ,248,
probably as a consequence of retirement among some of the sample.
Perhaps the most notable change during the period of analysis is the
sharp drop in itemized deductions between 1970 and 1972. As Peele

(1991) has noted, this is the consequence of an increase in the
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standard deduction from $1000 to $2000 in the 1972 tax year. This
contributed to a decline in taxpayers taking a medical deduction (from
53 percent of all taxpayers in 1970 to 34 percent in 1972) and an
increase in the value of medical deductions conditional on taking the
deduction.

Table 2 presents summary statistics for the balanced sample;
those who are exogenous itemizers (i.e., they would have filed even
if medical deductions had been zero) and with AGI in excess of
$2000 for each of the four years. Average income for itemizers is
nearly double that for the general population of older filers. Roughly
three-quarters of these itemizers declared medical expenses in each
year.

As a first step, we run univariate tobit regressions for each
year. This allows us to include a larger sample of taxpayers because
we need not exclude observations if they were missing from other
years. Table 3 presents the coefficient estimates from the univariate
tobits for taxpayers who were exogenous itemizers and reported AGI
in excess of $2000. The income elasticity of medical expenses is
usually quite low; in all years expect 1970, the coefficient estimate
is less than 0.35. The net of tax price for these same three years is
significant’and greater than one in absolute value. The coefficient in
1968, for example, can be interpreted as implying that a 10
percentage point increase in the marginal tax rate will lead to a 14
percent increase in medical spending.12

Oné difficulty with including the marginal tax rate is that it is

essentially a nonlinear function of AGI, so that the tax price may be

2 The date of death (through 1976) was also tried in these
regressions, but the estimated coefficients were insignificant.
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reflecting nonlinear effects of income (Feenberg, 1987). The
divergence in the income and price elasticities between 1970 and
other years, for example, could be the consequence of instability in
coefficient estimates for two highly correlated variables. However,
similar regressions that exclude the tax price yield the same pattern;
the income elasticity in 1970 is considerably higher than in other
years.

Chesher and lIrish {(1987) and others have suggested that
synthetic residuals from limited dependent variables may be used to
test for omitted variables and distributional assumptions. While such
residuals cannot be used to estimate unbiased covariance structures,
they are still useful for assessing graphically the extent of covariance
over time in medical expenses. As before, suppose that u, is the
residual for family i in year t conditional on medical expenses being
reported. The residual for those who did not report medical expenses

can be imputed as the expected value of the error term;

i f(a,: _xaﬁ)
1 - Fla;-x,p)

Using the coefficients from the univariate tobits, we compare
the actual or imputed residuals in 1972 and 1973 using Figure 3a.
Both the horizontal and vertical axis are in log scales, and the
diamonds are the residuals for families that did not declare any
medical expenses in either year. The empty circles measure positive
medical spending in 1972, the crosses positive medical spending in
1973, while the filled circles represent positive medical spending in
both years. It is apparent from Figure 3a that there is a very strong

year-to-year correlation in medical expenses conditioning on the
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exogenous factors such as income, age, and filing status. Relatively
few households declared medical expenses in one year but not in the
other.13

How persistent are these medical expenses for the 5-year
span 1968-73 provided by the panel? Figure 3b graphs both actual
and imputed residuals for the years 1968 and 1973. While the
covariance structure is not nearly as pronounced (i.e., there are more
residuals in the northwest and southeast quadrants), there is still
evidence of long-term correlation.

Table 4 presents results from the full quadravariate tobit
estimation with the pooled panel data, using 10 draws of the error
term.’® Column [1] begins with the regression equation similar to
the single-year tobits in Table 3, although individual year dummy
variables are included. Rather than estimating the ARMA model, we
simply estimate the unrestricted covariance matrix. The income
elasticity, 0.06 is very small (and insignificant), while the tax price
effect is large and significant. While the age coefficients are not
significant individually, they predict a generally rising profile of
medical costs. Finally, presence of a spouse increases log medical

expenses by 0.416 (or a more than 50 percent increase), while the

13 Note that the correlation between 1972 and 1973 for the
diamonds (those who did not report medical expenses in either year)
is a consequence of the time-series correlation in X, the independent
variables, rather than the correlation in the error term u.

14 We drew from the 11-20th elements of the Halton sequences
to avoid a potential problem with the first few elements of the
sequences (see Appendix A). Increasing the number of draws, R, to
50 had no effect on the coefficient estimates.
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difference in medical spending between a male-headed and female-
headed (single) household is estimated to be only 2 percent.

The implied covariance structure of the model is shown in
Figure 4 by the symbol I, ranging from the log variance (at year O)
to the 5-year covariance (at year 5).'°  There is considerable
correlation over time; the correlation coefficient in out-of-pocket
medical spending between 1968 and 1973, for example, is 0.40.
This contrasts with similar calculations by Newhouse et al (1989) for
total medical spending using data from the Rand Health Insurance
Experiment. The overall 5-year correlation coefficient was only
0.045, although the equivalent correlation coefficient for outpatient
services was 0.45. Their results are somewhat consistent with ours
if outpatient services are largely uninsured, and hence paid out-of-
pocket. (Also, the Rand data was drawn from the entire population
rather than being limited to those over age 54.)

We begin by estimating an general ARMA(1,2) model without
a fixed effect, with coefficients reported in Column [2] of Table 4.
The estimated coefficients suggest considerable persistence; the
AR(1) component is 0.908 (and significantly different from both O
and 1). The coefficients m, and m, are -.401 and -.122 respectively,
implying that roughly half of a health shock in year t is dissipated
within two years. The estimates also imply a relatively large annual
innovation in medical expenses; the log standard deviation of € is
0.435.

15 The coefficients (and t-statistics), ranging from E(u.u,) to
E(uu, , ) are .367 (17.37); .251 (11.58); .208 (10.25); .189 (8.71);
.194 (8.78); .146 (6.52).



22

To see whether this specification captures the covariance
structure of the error terms, we compare in Figure 4 the predicted
covariance terms (the diamond) from column [2] with the unrestricted
covariance (the I). Except for the 4th and 5th vyear, the
correspondence is nearly exact. Alternative specifications, such as
an ARMA(2,0) with a fixed effect, yields lower log likelihood values.
Hence we restrict our attention to the ARMA(1,2) specification.'8

As noted above, it is not entirely possible to jointly estimate
the tax price and the income elasticity of medical spending. Column
[3] therefore excludes the tax price, yielding an income elasticity of
.38, which is highly significant; other coefficients were unaffected.

The question remains whether the large degree of estimated
persistence in the ARMA model is just a consequence of permanent
differences across individuals. In Column [4], the full model with
individual-specific variation ag is introduced, although to ensure that
the estimated variance of ¢ is positive, we actually calculate Iog(ag))).

The point estimate of the individual-specific variation is e 13-7

, and its
exclusion has no effect on the log likelihood function (i.e., column [3]
vs [4]). There is no evidence suggesting the presence of a fixed
effect in medical spending.

A more general model of health status and medical expenses
would include the joint determination of medical spending and

income. Costly illness may precipitate early retirement, or depletion

16 The potential gain from expanding the ARMA(p,q) model is
limited by the difference in the likelihood function between [1] and
[2], 2.6. Hence any additional autoregressive or moving average term
is unlikely to reject a x2 test. We also resisted more complicated
ARMA models, such as an ARMA(2,2), because of the exceedingly
complicated and nonlinear covariance terms.
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of existing assets for medical expenses could then reduce subsequent
income. Testing for such endogeneity is difficult given that the
truncated nature of the data. Still, we can allow for this potential
endogeneity by simply excluding annual income, and allowing
differences in permanent income to be reflected in the individual
effect. The estimated coefficients, presented in Column [5] of Table
4, suggests even greater persistence in medical expenses, with the
AR coefficient equal to 0.936. The individual-specific effect,
however, is still essentially zero. Finally, Column [6] presents results
for the sample of families with a household head at least 65 in 1968.
Out-of-pocket medical spending rises past age 65, and unmarried
single women are predicted to spend more on medical expenses than
their unmarried male counterparts. The ARMA parameters are quite
similar to those estimated for the full sample, with only somewhat
less persistence in medical expenses.

To see the implied time-series patterns of medical care
spending implied by these estimates, consider a shock in the
innovation £, equal to one standard deviation. Figure 4 traces out the
incremental effect of this shock on u,; j > O, for the estimated
ARMA coefficients in column [4], the asterisk, and column [5], the
empty box. Note that the vertical axis now corresponds to the log
error term u, (rather than the log variance, as in the discussion
above). Both sets of coefficients imply substantial short-term
fluctuations in medical spending; for the coefficients from column [4]
the log standard deviation of the innovation € is 0.435. Evaluated at
the predicted mean (log) medical spending for a married couple age
64 with an income of $25,178 (in 1968, from Table 1), the one-

standard-deviation range in predicted next-period annual spending is
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between $962 and $2,295. For any given shock to spending,
roughly one-quarter remains after 5 years.

There are two other ways of quantifying the degree of
persistence in medical spending. One is to note that a $1 shock in
medical spending is predicted to cause a $2.80 increase in additional
medical spending in the future, discounted at a 3% interest rate.
Alternatively, a one-standard-deviation positive "shock” in the
innovation € generates, on average, a more than $3000 increase in
the present value of out-of-pocket medical expenses (also discounted
at 3%). Since the median family at ages 60-65 own only $6,600 in
liquid financial wealth (Venti and Wise, 1991), it is clear that the
persistence of out-of-pocket medical spending represents a
substantial risk to retirement saving by the elderly.

The next section uses the estimated coefficients from Table
4 to compare the risk of medical expenditures -- over a 5-year period -
- for lower and higher income families. The differences in both the
level and the risk of out-of-pocket medical expenses among income
groups could explain why 1988 catastrophic health care bill met with

such resistance.

V. Annual and Lifetime Medical Spending Risk

This section simulates the lifetime risk of out-of-pocket expenses
using coefficients from column [4] in Table 4 for two income groups;
those with AGI of $15,000 and those with $30,000. We assumed
that each household was married with a male head. To calculate
medical expenses over a 5-year period, we used the monte-carlo
program @RISK to trace out the distribution of medical costs,
averaged over the five-year period. The random error term chosen in

the initial age, assumed to be 66, was from the unconditional
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distribution, while subsequent error terms were chosen from the
distribution conditional on the previous year.

Figure ba shows the distribution of the predicted average
medical spending over 5 years, expressed as a ratio of the assumed
constant income level of $15,000 (in $1987). Average spending on
medical services is 11 percent, with 9.8 percent of families spending,
on average, more than 20 percent of income on out-of-pocket
medical expenses. By contrast, average out-of-pocket medical
spending for those with an income of $30,000, shown in Figure 5b,
is only 7 percent. Furthermore, the distribution is much narrower,
with less than 2 percent of families spending, on average, more than
20 percent of their income on out-of-pocket medical expenses.

The differences in both the mean and the variance of
spending may provide one explanation for why the 1988 catastrophic
health care legislation was revoked only months after being passed.
The tax structure was progressive, with higher income families paying
up to $1600 per year in premiums. Given that such families are at
less risk from catastrophic medical expenses, relative to their
incomes, the insurance value of catastrophic medical care may not

have justified their increased tax bill.1”?

VI. Conclusion

Catastrophic medical expenses are perhaps the most
important economic risk facing the elderly. This paper addresses the

question of whether out-of-pocket medical expenses are persistent

7 The catastrophic health bill also did not cover long-term care,
perhaps the source of the greatest financial risk to upper-income
families.
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over time. We use information on medical deductions drawn from a
survey of taxpayer returns during 1968-73 supplied by the IRS.
Medical expenses can only be deducted in excess of 3 percent during
the period of our study, so we use a quadravariate tobit, estimated
using a smoothed simulated maximum likelihood technique, to correct
for censoring bias. We find considerable persistence in medical
expenditures; a one dollar shock in annual medical expenses will, on
average, be followed by an increase in medical spending of $2.80 in
the future.

There are some indications that the multivariate tobits may be
missing a substantial fraction of the catastrophic health spending
because such families may not file taxes in such years or be excluded
from the sample as endogenous itemizers. For example, in the
sample of 354 exogenous itemizers, the maximum out-of-pocket
medical expense in any year was $14,096, while the maximum
payment among endogenous itemizers was $43,868. Hence we may
be truncating the top tail of the distribution.

The impact of uninsured risk affects more than the demand
for catastrophic health care. Kotlikoff (1986) developed theoretical
models suggesting that health risk could generate precautionary
saving. Levin (1990) found evidence suggesting that families who
were not well-insured against health risks also tended to maintain
higher levels of precautionary saving. Palumbo (1991) has used the
Panel Study of Income Dynamics to estimate empirically a model of
consumption and saving subject to health risk. Finally, Hubbard,
Skinner, and Zeldes {1992) have attempted to use parameters of
health expense risk and earnings risk to explain the skewed
distribution of wealth holdings. The estimated parameters of health

risk estimated from tax data may provide a better picture of the true
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dynamic risk faced by the current elderly as well as the future

financial risks of currently younger families.
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Table 1: Summary Statistics: All Households
Age 55 and Above in 1968

Variable 1968 1970 1972 1973
Average 25,178 23,5%0 22,496 21,248
Adjusted Gross (21,367) {20,180) (20,693) (20,593)
Income {(AGI)

Median AGI 20,533 18,504 16,851 15,242
Tax Rate 20.78 21.26 18.71 17.54
(8.54) (9.80) (9.67) {10.09)

Age 62.5 64.5 66.5 67.5
(7.0) (7.0) (7.0) (7.0)

Itemizers 0.588 0.772 0.384 0.364
{0.49) (0.42) {0.49) (0.48)

% Medical 0.485 0.533 0.336 0.322
Expenses > 0O {0.50) (0.50) (0.47) (0.47)
Aver. Med. 1906 1896 2400 2526
Expenses ' (2046) (2289) (3126) (3700)
Number of 0.36 0.27 0.20 0.16
Dependents (0.80) (0.70) (0.59) (0.52)

Notes: N = 1675. All dollar amounts normalized to $1987.

! Average of medical expenses conditional on itemizing (includes "endogenous”
itemizers)
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Table 2: Summary Statistics: Exogenous Itemizers
Age 55 and Above in 1968

[t ——————

Variable 1968 1970 1972 1973
Average 44,140 41,148 41,115 39,468
Adjusted Gross (31,067) (28,569) (30,203) (31,583)
Income (AGI) ]
Median AGI 35,656 35,055 32,799 30,774 ,
Tax Rate 26.27 2712 26.02 24.20

{(10.12) (11.05) (10.14) (10.94)

Age 61.0 63.0 65.0 66.0
(6.1) {6.1) (6.1) (6.1)

% Medical 0.754 0.788 0.799 0.819
Expenses > O (0.43) {0.41) (0.40) (0.39)
Aver. Med. 2331 2121 2157 2050
Expenses ! (1788) (1519) (1613) (1280)
Number of 0.61 0.46 0.32 0.27
Dependents {(1.01) (0.89) (0.74) {0.65)

Notes: N = 354. All dollar amounts normalized to $1987. Balanced

sample limited to those who itemized in each of the 4 years and with AGI
> $2000 in each year.
} Average of medical expenses conditional on itemizing.
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Table 3: Univariate Tobit Regressions

Variables 1968 1970 1972 1973
Log (Adjusted 0.338 1.179 0.227 0.152
Gross Income) (5.92) {18.86) (3.35) (1.99)
Age -0.037 -0.018 -0.065 0.023
(0.93) (0.44) (1.58) (0.54)
Age? (x107? 0.034 0.016 0.059 -0.009
(1.16) (0.51) (1.93) (0.29)
Sex 0.256 0.375 0.093 0.109
(3.17) (4.22) (0.89) (0.97)
Marital 0.516 0.490 0.375 0.432
Status {5.99) (5.33) (3.73) (3.94)
Log (Net of Tax -1.405 -0.390 -1.308 -1.464
Price) (4.16) (1.15) (4.00) (4.00)
Constant 3.540 -5.439 5.818 3.658
(2.41) (3.46) (3.75) (2.25)
a? 0.489 0.974 0.341 0.402
(43.88) (47.28) (36.25) (36.99)
N 1328 2262 910 945

Notes: Dependent variable is log of medical care expenses. All dollar amounts
normalized to $1987. Absolute value of t-statistics in parentheses. Net of tax
price is (minus) the first-dollar tax on medical expenditures.
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Variables (1] (2} {31 (4] [5] (6]
Age > Age > Age > Age > Age > Age >
54 54 54 54 54 64

Log (Income) 0.061 0.065 0.384 0.384 0.349

(0.96) (1.24) {13.33) (15.23) (7.29)

Age (x10'2) -0.899 -1.356 0.540 0.102 -2.180 -16.650

(0.38) (0.46) (3.86) (0.31) (0.40) {1.27)

Age2 (x10'4) 2.392 2.014 0.702 1.026 2.776 12.574

©0.66) | (0.95) | (3.28) (3.04) | (0.71) (1.48)

Sex 0.021 0.012 0.064 0.064 0.018 0.416

(0.19) (0.12) (0.60) (0.65) {0.15) (2.35)

Marital 0.416 0.404 0.257 0.257 0.332 0.502

Status (4.61) (5.25) (3.26) (3.41) (3.94) {3.93)
Net of Tax -2.29%5 -2.300
Price (5.68) (6.80)

Inlo2) * -13.678 |-15.550 | -76.68

(1.16)! | (0.67)] (1.36)!

p * 0.916 0.908 0.908 0.936 0.892

(39.83) (34.01) (50.53) (49.26) (15.79)

my * -0.401 -0.440 -0.440 -0.358 -0.598

(5.74) (6.53) (7.33) {4.80) (4.71)

m d -0.122 -0.058 -0.058 -0.165 0.073

(1.72) (0.64) (1.33) {1.86) (0.53)

Ui * 0.180 0.189 0.189 0.193 0.208

(18.56) (17.99) {21.72) (15.82) (11.29)

Constant 8.306 8.083 2.509 2.657 7.318 8.855

(4.25) (7.48) (8.23) (8.23) (4.02) (1.78)

Year = -0.099 -0.099 -0.067 -0.067 -0.081 -0.098

1970 {2.82) (3.09) (1.65) (3.05) {(2.23) (1.40)

Year = -0.047 -0.048 -0.041 -0.040 -0.062 -0.021

1972 (1.17) (1.25) (0.94) (3.03) (1.46) (0.25)
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Year = -0.031 -0.034 -0.034 -0.033 -0.071 -0.122
1973 (0.67) (0.82) (0.60) (2.68) (1.52) (1.35)
Log - - - -1033.6 - -235.2
Likelihood 1014.7 1017.3 1033.6 1107.3

Notes to Table 4

N = 354 for age > 54 and N = 79 for age > 64. The dependent variable is log of

medical care expenses. All dollar amounts are in $1987. Absolute value of t-

statistics in parentheses. Net of tax price is {(minus) the first-dollar tax on medical

expenditures.

* Unrestricted covariance shown in Figure 4.
1 t-statistic of the log variance.
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Appendix A: An Informal Introduction
to Simulated Probability Estimators

This appendix is intended to provide a very simple
introduction to the use of Monte-Carlo methods to integrate the
multidimensional normal density functions often necessary in
estimating limited dependent variable models. The discussion is
informal so that, for example, we restrict our attention to one or
two-dimensional integrals rather than treating the n-dimensional
problem in full generality.

All Monte-Carlo integration methods are based on the
observation that over the unit interval:

1 R
-1

Lf(u)du ~ 7‘? flu;) (u;~ Ul0,1) (A1)

J

That is, the integral of flu) = f(u]X,Q) on a unit interval can be
approximated by the average value of the function over a random
sample of y; uniformly distributed over that same interval. The
accuracy of this approximation improves at the rate R*%,
independent of the dimensionality of u. Quadrature techniques can
only be expected to converge at a rate inversely proportional to the
dimensionality of f, necessarily slow for four or more dimensions.
The generalization to indefinite integrals can be easily
accomplished by the use of weighted samples of random numbers
distributed across the region of integration. Consider the one-sided
indefinite integral from -o to a. Suppose p(u) is an arbitrary density
function chosen by the experimenter with P(a) (=prob{u<a)))
known. Then the sample of u;s are drawn from p(u) (conditional on

y;<a), and the numerical approximation becomes
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¢~ FluiPla) (A.2)
-1

1
R piu,-f

a
_L fludu = /

Effectively the integral is approximated by the experimental
mean of f(u) -- weighted by the sampling distribution p(u), with an
adjustment for the conditional nature of the sample. There are a
few restrictions on p{u) but broadly, it needs to be non-zero where
f(u) is non-zero. For efficiency, the function p should be chosen by
the experimenter so that it is highly correlated with f(u); by
inspection of A.2, when the sampling function is highly correlated
with the integrand the variance of the individual elements is
minimized, thereby increasing the accuracy of the estimate of the
sum (There are other methods as well to reduce the variance of
the simulator such as the Halton sequence or antithetic variates
procedures that induce negative correlations among the draws).
Such variance reduction techniques constitute the bulk of a vast
literature on Monte-Carlo methods, but here we take note only of
methods proposed by Lerman and Manski (1981), Stern (1992),
and the smoothed simulated maximum likelihood {SSML) of Borsch-
Supan and Hajavissiliou (1992). These methods are specific to
integrating the normal density function.

An early attempt to simulate the multivariate normal
distribution function was by Lerman and Manski (1981). For p(u)
L&M picked the multivariate normal — this is attractive because it
is easy to sample from this distribution (using the Cholesky
transformation outlined below) and because it makes the variance
of f(u)/p(u) equal to zero, conditional on knowing P(a). This is of

course too good to be true, since one is trying to estimate the
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value of P{a)! So L&M set the region of integration to [-o, + o]

and set the integrand to zero outside the region of interest, i.e.:

a

problu<a) - I fluxQ)du -

1 ZRZ Flux,Q) * ilu; < a)
R ;3

flu,x,Q) (A.3)

| &
- Fi; ilu; < a)

where f(u,x,Q) is the multivariate normal density and the indicator
function i{") returns zero for false and one for true. This is called
simple frequency simulation, and it is particularly inefficient to use
in evaluating likelihood functions, for two reasons. First, the
relative accuracy of the integral estimate is poor when a is small,
including the real possibility that the probability estimate will be
zero if no draws fall within the relevant region. Since the likelihood
function evaluates the log of the probability, assigning a zero
probability to an option that is actually chosen in the sample will
cause the likelihood function to explode. Second, the estimate is
not continuous in the parameter space, so that a small change in x
or Q does not necessarily change the (finite) likelihood function.
Specialized and not necessarily efficient hill-climbing techniques are
required to optimize a function that is flat almost everywhere.
McFadden (1989) discussed a number of alternative
smoothing weights to sidestep the discontinuities of the simulated
function, including a smooth unbiased simulator equivalent to A.2.
One of the more promising approaches was developed by Stern
(1992) who developed .a smoothed simulator that appears to be
quite efficient in approximating the true function with a limited
number of draws. He suggests dividing u up into the sum of two
random normal deviates, w, and w,, where w; ~ N(O,D) (with D a

diagonal matrix) and w, ~ N(x,Q-D). (The optimal choice of D is
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discussed in detail in Stern). Denoting the density of wy by f(u)

and that of w, by f(u,x,Q) this allows us to write:

+ 00

prob{w;+wy<3a) - I prob(wqy <a-ws)fiwy,x,Q -D)dwy)

-0

+ 00

- an(a—wz)ﬂwz,x,n-o)dwz
“e (A.4)

L 1 Pla-wflwy,x,Q-D)
Fj_1 f(W2,X,Q—D)

P (a-wy)

]
Xl =
'Mm

-

pa
where draws of w, are from N(x,Q-D). The resulting sum varies
smoothly with changes in Q or x, and is never zero for any set of
draws.

This is an example of a more general technique of
variance reduction, namely splitting the integrand into the product
of an easily integrable function (in this case a standard normal
density) and a density function (in this case a general normal
density). By sampling out of the same density function, an easily
integrated function remains.

The simulated likelihood estimator developed by Borsch-
Supan, Geweke, Hajavissiliou, and Keene use this strategy to go
one step further. They depend on a remarkable property of the
multivariate normal distribution, namely that if e,,e, are
independent normals with unit variance, and L={£;} is the

Cholesky decomposition of Q, then:
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up - 2104
(A.5)
us = L1687 + 1787
defines (uq,u,) as multivariate normals with covariance matrix
Q=L‘L (see the text for more details.) Solving for e:
ey - U]/l”
(A.6)

8y = (Up-L2161)/ 227

Consider a single observation from a two-equation simultaneous

Probit estimation with both dependents observed zeroes:

U < x18 = a

(A7)
Uy < x28 - a3
The likelihood of this particular realization is:
prob(uy <&y and uj <aj) (A.8)
= probley <a1/ly1 and e <(a3-L31€61/253)) (A.9)
a1/l (az-tnllty
- j I fle1)fleg)deqde (A.10)
81/111
- [ Fle)® ((up-L2161)/822)des (A.11)

- 00

Like (A.1) this integral can also be approximated by a weighted

average equivalent to (A.2):

12": Fle1,) P (lag~ 221 61,)/ £22) (A.12)
_Rj_1 fle1)/®(a1/2841)
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where the e4; are sampled from a normal distribution conditional on
e, < a;. Here fis selected as the sampling function (playing the
role of p(x) in (A.2)) especially for its ability to reduce the variance

of the individual terms in the sum; i.e., (A.11) simplifies to:

R
43(81/111)1 O ((az-221097)/L22) (A.13)
F/‘-‘l

As shown in (A.13), the ingeneous choice of the weighting matrix
p(u) that is both continuous in the parameter space and that
appears effective at reducing the variance of the simulated terms
may be one reason why the method appears to simulate accurately
relative to alternative approaches (Hajivassiliou, McFadden, and
Ruud, 1991).



42

Appendix B: Halton Sequences

The following Gauss program generates an nx1 Halton
sequence using a prime number q; the first 15 outcomes are
reported in Table A.1. See Halton (1960) for a schematic diagram
of the sequences.

proc halton(n,q);
local phi,i,y,x;
phi=reshape(O,n+1,1);
i=1;
do whilei<n+1;
i=i+1;
y=1/q;
x = 1-phili-11;
do while ((x) le (y + 1.e-11));
y=v/q;
endo;
philil =phili-1]1+(q+ 1)*y-1;
endo;
retp(phi[2:n+ 1]);
endp;




a3

Table A.1: Example of Halton Sequences

Sequence q=3 qg=>5 q=7
No. !
1 1/3 1/5 177 |
2 2/3 2/5 217
3 1/9 3/5 377
4 4/9 4/5 4/7

l 5 7/9 1/25 5/7 |

{ 6 2/9 6/25 6/7 I
7 5/9 11/25 1/49

i 8 8/9 | 16/25 8/49

L 9 1/27 21/25 15/49
10 10/27 2/25 22/49
11 19/27 7/25 29/49
12 4/27 12/25 36/49 |
13 13/27 17/25 43/49
14 22/27 | 22/25 2/49 |

l 15 7127 3/25 _9/49_]




