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Exact Solutions for Expected Rates of Return under Markov Regime
Switching:

Implications for the Equity Premium Puzzle

In one of the best-known applications of the Lucas model of asset
pricing, Mehra and Prescott (1985) examine whether this model can
reasonably account for the average rates of return on stocks and short-
term bills in the United States. They find that over the period 1889-
1978 the average real rate of return was 6.98% per year on stocks but
only 0.80% per year on short-term bills. The 6.18% per year excess
return on stocks relative to bills--the equity premium--is much larger
than Mehra and Prescott could account for using a simple version of the
Lucas model. In fact, Mehra and Prescott found that the Lucas model
predicts an average equity premium of no more than 0.35% per year when
attention is confined to the range of parameter values that Mehra and
Prescott deemed to be reasonable. The inability of the Lucas model to
account for the average equity premium has been dubbed the "equity
premium puzzle." Subsequently, Weil (1989) has emphasized a "risk-free
rate puzzle" in which asset pricing models that can produce a large
equity premium also produce a riskless rate that is much higher than the
historically observed average riskless rate.

Several papers have attempted to resolve the equity premium puzzle
by changing various aspects of the model used by Mehra and Prescott. In
this paper, I will focus on modifying two aspects of the Mehra-Prescott
implementation of the Lucas model. First, in the model used by Mehra
and Prescott, as in Lucas’s original model, dividends on unlevered

equity are identically equal to capital income, which is identically



equal to total income, which is identically equal to consumption. In
contrast, Cecchetti, Lam, and Mark (1991) allow aggregate consumption
and aggregate dividends to differ from each other.t They argue that
aggregate consumption can deviate from aggregate dividends in a general
equilibrium model if there is labor income in addition to capital
income, but they do not formally include labor income in their model.
The model presented below will explicitly include labor income in a
competitive economy that uses capital and labor to produce output. In
this model, dividends and capital income remain identically equal, and
total income and consumption remain identically equal. However, the
introduction of labor income breaks the equality between capital income
and total income so that in equilibrium dividends and consumption are no
longer identically equal,

The second aspect of the Mehra-Prescott implementation of the
Lucas model that I focus on is the stochastic process generating
consumption and dividends. Cecchetti, Lam, and Mark (1990,1991), and
Kandel and Stambaugh (1989,1990) have assumed that the conditional
growth rates of consumption and dividends depend on an underlying random
state of the world according to a Markov regime-switching process of the
sort discussed by Hamilton (1989). 1In this paper, I will derive simple
closed-form solutions for the conditional and unconditional expected
rates of return on stocks and short-term riskless bills in the presence
of technological uncertainty that follows a Markov regime-switching
process. In addition to applying to a more general class of Markov

regime-switching processes, the solution procedure utilized in this

In contrast, in a previous paper, Cecchetti, Lam, and Mark (1990)
assume that dividends and consumption are identically equal, and use
three different empirical measures of the gquantity that represents both
consumption and dividends: consumption, dividends, and GNP.



paper allows computation of conditional and unconditional expected rates
of return without using the state transition probabilities required in
the procedures used by Cecchetti, Lam, and Mark (1990) and Kandel and
Stambaugh (1989,1990). Although the solution procedure delivers simpler
expressions for first moments of rates of return and applies to a more
general class of stochastic processes, it does not provide simple
expressions for higher moments of rates of return.

An important substantive payoff from the closed-form solutions is
the derivation of analytic results comparing unconditional expected
rates of return under Markov regime switching and under conditional
i.i.d. distributions. I show that the unconditional riskless rate is
higher under Markov regime switching than under conditional i.i.d.
shocks, which further exacerbates the risk-free rate puzzle pointed out
by Weil (1989). In addition, I show that under conditional lognormality
the added stochastic richness of the Markov regime-switching process
will generally reduce the size of the equity premium predicted by the
asset pricing model, and thus will exacerbate rather than resolve the
equity premium puzzle. This result indicates that further exploration
with different parameterizations of Markov regime-switching processes
will not help solve the equity premium puzzle with a time-separable
constant relative risk aversion utility function.

Section I discusses the model of production, income, and
equilibrium asset returns. The model is used in section II to calculate
closed-form solutions for expected rates of return under constant
relative risk aversion. Then equilibrium expected rates of return are
related to underlying technological shocks in section III. Section IV

compares expected rates of return under the Markov regime-switching



process and under conditional 1.i.d. technological shocks and shows that
Markov regime switching exacerbates the equity premium puzzle and the
risk-free rate puzzle. Results presented in section IV include both
theoretical and empirical findings. Concluding remarks are presented in

section V.

I. The Model
I.A. Production

Consider an economy that produces a homogeneous non-storable

consumption good according to the production function

ye = E(keng,ep) (1)

where y. is output per capita, k. is the capital stock per capita, n, is
the amount of labor per capita, and e, 1s a vector of stochastic
productivity shocks in period t. The production function f(ke,ne,ep) is
increasing, concave, and homogeneous of degree one in ke and n.. Output
is completely perishable; it cannot be stored from one period to the
next, nor can it be used to augment the capital stock. Capital is
assumed to be perfectly durable so that the capital stock is fixed. The
fixed capital stock is normalized to ke = 1. In addition, the supply of

labor is completely inelastic and the fixed labor supply is normalized

to ng = 1.



I.B. Competitive Factor Markets

The services of the two factors of production, capital and labor,
are rented in competitive factor markets. Each factor is paid the value
of its marginal product. Let d, be the dividend, or capital income, per

capita and observe that
dp = £,.(1,1,e0) (2)

Similarly, labor income per capita, W, is given by

we = £.(1,1,ep) (3)

Because the production function is homogeneous of degree one in capital

and labor, total factor payments, d. + w, equal total output Ve

I.C. Consumers

The economy is populated by a large number of identical

infinitely-lived consumers, each of whom maximizes
Et(Ej‘Ow /SJu(ch)) (+)

where c, is per capita consumption in period t, # > 0 is the time
preference discount factor, and the utility function u() is strictly
increasing and strictly concave. The operator Et() denotes the
expectation conditional on 0., the information set at the beginning of

period t. Notice that leisure does not enter the utility function,



which is consistent with the assumption of completely inelastic labor
supply.

The representative consumer chooses how much output to consume,
how much stock to hold, and how much of riskless one-period bills to
hold. A share of stock pays a dividend d, in period t to a holder of
the stock at the beginning of period t and then sells for an ex-dividend
price of p.. The well-known first-order condition for a consumer

considering buying a share of stock (ex-dividend) in period t is

Peu’(ee) = FE((peyytdeglu’ (epyy)) (5)

The interpretation of eq. (5) is straightforward: A consumer can
buy a share of stock in peried t by giving up py units of consumption in
period t, thereby reducing utility by pru’(cy) in period t. 1In the
following period, the consumer receives the dividend dy,1 and can sell
the share of stock at a price Py4+1- Therefore, the consumer can
increase consumption in period t+l by Pry1tdey] units, thereby
increasing utility by (pt+l+dt+l)u’(ct+l). The expected value of this
increase in utility, discounted one period to account for time
preference, appears on the right hand side of eq. (5) and is set equal
to the reduction in utility in period t which appears on the left hand
side of eq. (5).

Each unit of output that is used to buy a riskless one-period bill
in period t will be worth RF,t+l in period t+l. We refer to RF’t+l as
the riskless rate of return. The well-known first-order condition for a

consumer considering buying a riskless one-period bill in period t is



u'leg) = BEC(RE ¢41u' (cpy1)) (6)

The left hand side of eq. (6) is the reduction in utility in
period t caused by reducing consumption by one unit to purchase the
bill. The right hand side of eq. (6) is the discounted expected
increase in utility in period t+l due to increasing Ceil by RF,t+1

units.

I.D. Equilibrium

Because the homogeneous good is non-storable, all output is

consumed in each period. Therefore, goods market equilibrium implies
ce = ye = £(1,1,e) %)

Note that with the capital stock and labor supply fixed
exogenously, output y. depends only on the realization of the
productivity shock e, and thus is exogenous with respect to the
decisions of consumers and firms. Substituting eq. (7) into egs. (5)

and (6) yields equations characterizing asset market equilibrium
Pe = PE{(Pry1 eV (Ve /0 (9e)) 8
Rp t41 = LAEC(W (v /w ()] 7T %)

In the Lucas model of an exchange economy used by Mehra and

Prescott, all income is capital income so that the dividend dy would be

set equal to in eq. (8). However, in the general equilibrium model
Ye g



presented here, there is labor income in addition to capital income so
that the dividend is not equal to y.. Nevertheless, both the dividend
and output (which equals consumption) have the convenient property that

they are exogenous with respect to the decisions of consumers and firms.

II. Expected Rates of Return Under Constant Relative Risk Aversion

Many of the studies of the equity premium puzzle, including the
original study by Mehra and Prescott, have assumed that (1) the utility
function displays constant relative risk aversion; and (2) the process
for (the logarithms of) consumption and dividends has a unit root. I
will now adopt both of these assumptions. Assuming that the coefficient
of relative risk aversion is constant and equal to a yields

u'(e) =@ a>0 (10)

To describe the unit root process for (the logarithms of)
consumption and dividends, define the gross growth rates of consumption
and dividends as Be t4l = Cry1/Ce = Ye41/Y and Bd,c+l = dey1/de-

Recall from (7) and (2) that Cry1 and dt+l depend only on the
technological shock e, ;. Therefore, the vector of gross growth rates,
8r4l = (gc,t+l’ gd,t+l)' depends only on the technological shocks e, and
Cetl-

Now assume that the underlying technological shocks are governed
by a Markov regime-switching process, such as the process described in
Hamilton (1989). Specifically, there is an underlying state vector s,
that governs the conditional distribution of g,,;. The conditional

distribution of g., | is denoted by Fg(gt+llst). The state vector s,



evolves according to a Markov process with conditional distribution
function Fs<st+l|st)' The information set at the beginning of time t,
Q. includes Sg-j and Bt-j for j = 0,1,2,.... Following Cecchetti, Lam,
and Mark (1990) and Kandel and Stambaugh (1989,1990), assume that (1)
the joint distribution of s 1 and g ,1 conditional on {J depends only
on sy, and (2) conditional on s

5
independent of each other.“'3

¢» the vectors s ,; and g ., are

That is,

Fo s(Bra1 Seallf) = Fp s (Bey1:Sea1lse) = FglegirisedFslseyylsy) 11

The Markov regime-switching process in eq. (ll) contains as
special cases the processes used by Cecchetti, Lam, and Mark (1990) and
by Kandel and Stambaugh (1989,1990), but is considerably more general.

Those papers assume that the state vector s, is a discrete random vector

t
with a finite number of possible values. However, the process in eq.

(11) allows the state vector S¢ to be either a discrete random vector or

a continuous random vector.

ZAlthough the notation in Cecchetti, Lam, and Mark (1991) makes it
appear as if this conditional independence is not assumed, the
stochastic process in that paper actually does display this conditional
independence. However, the information set upon which asset prices are
based in Cecchetti, Lam, and Mark (1991) is different from the
information sets used in Cecchetti, Lam, and Mark (1990), Kandel and
Stambaygh (1989,1990), and in this paper. See footnote 4.

Wizman and Fullenkamp (1992) analyze asset pricing under Markov
regime switching. They introduce the concept of "surety" to mean that
s¢ 1s in the information set (. of investors/consumers at time t. Surety
is distinect from "certainty" which Wizman and Fullenkamp define to mean
that g1 is in the information set O, of investors/consumers at time t.
Wizman and Fullenkamp analyze asset prices both in the absence of surety
and in the presence of surety. In this paper, as in Cecchetti, Lam, and
Mark (1990) and Kandel and Stambaugh (1989,1990), we confine our
attention to the case of surety.
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Under the assumptions in (10) and (1l), it is easy to calculate
the expected rates of return on stocks and bills. First, define the

stock price-dividend ratio V(Qt) as

v(8) = p/dg (12a)

Under the assumptions in this paper, all of the information about
future distributions of consumption growth and dividend growth is
contained in the current state vector sy so that the price-dividend

ratio depends only on s Thus, v(Q.) = v(s,) so the price-dividend

t

ratio in eq. (l2a) can be rewritten as

v(sg) = Pe/d, (12b)

Substituting the marginal utility function from eq. (10) and the price-

dividend ratio from eq. (12b) into eq. (8) yields

V(sg) = BE((V(se 4108y c41Be,cel ) (13)

Equation (13) is a fairly standard equation for the price-dividend
ratio v(st) of a share of unlevered equity. For example, it is the same
as eq. (9) in Cecchetti, Lam, and Mark (l99l).a It is also the same as
equation (8) in Cecchetti, Lam, and Mark (1990) if the distinction

between dividends and consumption is ignored as in that paper. After

“There is an important difference between eq. (13) in this paper
and eq. (9) in Cecchetti, Lam, and Mark (1991). 1In contrast to this
paper (and in contrast to Cecchetti, Lam, and Mark (1990) and Kandel and
Stambaugh (1989,1990)), the information set upon which asset prices are
based in Cecchetti, Lam, and Mark (1991) includes s i=1,2,3,...

and er-j j=0,1,2,..., but does not include S¢-

t-i



deriving this equation, the standard approach when using a finite state
Markov regime-switching process is to solve for the price-dividend ratio
v(s.). Then the solution for v(s. ) can be used to compute the
conditional and unconditional expected rates of return on equity. Below
I present an alternative procedure for calculating conditional and
unconditional expected rates of return on equity without having to solve
for V(st)' In addition to its simplicity, this alternative procedure
has the important advantage that it can be used for both discrete and
continuous distributions of the state vector Sp. Furthermore, this
procedure requires only the unconditional distribution of the state
vector s, but not the state transition probabilities F (s . 1ls.).
Avoiding the use of transition probabilities has the advantage of
simplifying the computation of expected rates of return. In addition,
estimated unconditional probabilities may have more precision than
estimated transition probabilities. For a discrete state vector that
takes one of N possible values, there are N-1 independent unconditional
probabilities to be estimated, but N(N-1) state transition probabilities
to be estimated.

To calculate the conditional expected rate of return on equity,
first observe that the conditional independence of s ., and g.,; in eq.
(11) implies that conditional on a., v(st+l) is independent of 84, t+1

and g, ., so that eq. (13) can be written as

V(sg) = BEL(v(sgp1)*l) Eclgg ci18c tel ) (14)

Equation (14) along with the fact that v(s.) is in O, implies that

11



-1 (15)

Ec([v(sgy)+L1/v(s)) = [BELlBg, te1Bc,e41 )]
Let RS,t+l denote the gross realized rate of return on stocks

between period t and period t+l, and observe that

Rg 41 = (Peyrtdes1)/pe = [(V(spyp)+D)/vispdleg v (16)

Using the conditional independence of s ,; and B4, t+1 and using
eq. (15), eq. (16) implies that the conditional expectation of the

return on stocks is

EcRg t41) = Ecl8g e41)/[FEclBY 418, e41 V) an

Notice that the conditional expected rate of return on stocks in
eq. (17) depends only on the conditional moments of the exogenous joint
stochastic process for consumption growth and dividend growth, That is,
the expression for the conditional expected rate of return depends only
on the stochastic process of the underlying fundamentals in the economy.

The riskless rate of return is calculated by substituting the
marginal utility function from eq. (10) into eq. (9) to obtain

Rp e+l = [ﬂEt(gc,c+1_a)] (18)

Now use egs. (17) and (18) to write the conditional expected

equity premium in ratio form as

—a .
Ec(Rg ¢41)/RF t41 = Ecl8a, c41)Bct8c, vl 1/EclBg, e418c, e % a9

12



Note that if dividend growth B4, t+1 and consumption growth Bc,t+l
were conditionally independent of each other, the right hand side of eq.
(19) would equal 1, and the conditional expected rates of return on
stocks and riskless bills would be equal. However, if dividend growth
and consumption growth are conditionally positively correlated, then the
right hand side of eq. (19) is greater than one and there is a positive
conditional expected equity premium on stocks relative to riskless

bills.

III. Relating Asset Returns to Underlying Technological Shocks: A
Parametric Example
I have derived expressions for the conditional expected rates of
return on stocks and bills in terms of the conditional moments of the
distributions of consumption growth and dividend growth. As discussed
in section II, these growth rates depend only on the technological

shocks e, and e In this section I present a parametric example and

t t+1-
derive expressions for expected rates of return directly in terms of the
distributions of these technological shocks.

Suppose that output is produced according to the following CES

production function
e = Aplrgke? + Qorpn 1P o<1 (20)

where A. and vy, are random productivity shocks comprising the vector e,
in eq. (1). The shocks Ac and v, may be correlated with each other.

Recall the normalization that kg = n. = 1. Thus, in equilibrium

13



cp = Ve = Ag (21a)
de = 7¢¥e = Tebe (21b)

Equations (2la,b) suggest the interpretation of A, as a scale shock and
Yy as a share shock.

Let ga,t = A /A 1 and By ¢ = Y¢/Y¢.1 and suppose that,
conditional on Qt, the vector (ln gA,t+l' In gv,t+l) is normally

distributed.® It follows directly from eq. (2la,b) that
In go pe1 = In 8y t41 (22a)
In gg,ee1 = 10 By e1 * In 8yt (22b)

Because 1n Bc, e+l and 1n Bd, 4] are linear combinations of 1ln
A, t+l and 1n By, t+l’ it follows that, conditional on g, In c,t+l and
In B4, t+] 2T Jjointly normally distributed.6 In this case, the
expression for the conditional equity premium in ratio form in eq. (19)

can be rearranged to yield

SThe capital share Y¢ must lie in {0,1]. With a normal
distribution for In(ye /7)), Y41 Will not be confined to [0,1].
However, by making the conditionai variance of In(vy;;/7,) sufficiently
small, the conditional probability that Yesl is not in [0,1] can be made
arbitrgrily small.

Suppose that, conditional on ﬁt, (In 8A, t+l In gv,t+l)’ is
normal with mean by and variance I where 4y 1s a 2 x 1 vector and Z, is
a 2 x 2 matrix. It follows from eq. (22a,b) that, conditional on ﬁt,
(1In gc’t+l,ln gd,t+l) is N(Mpt,MEtM’) where

1 0]



In [Et(RS,t+l)/RF,t+l] - aCovt(ln Be, e+l In gd,t+1) (23)

It will be convenient to refer to the expression on the left-hand
side of eq. (23) as the conditional equity premium. To motivate the
focus on eq. (23) as the conditional equity premium, I will show that
the expression in the right-hand side of eq. (23) is equivalent to an
expression for the equity premium derived by Grossman and Shiller

(1982). First observe from eq. (16) that

1In RS,t+l = In [(v(sg,)+1)/v(se)] + 1In 84, t+l (24)
Now use eq. (24) and the fact that s ,; is conditionally independent of

in Be,t+l (so that Covt(ln [(v(st+l)+l)/v(st)],ln gc,t+l) = 0) to

calculate the conditional covariance of 1ln RS,t+l and In Bc,t+l as

Covi(ln go ry1, In Rg ¢y1) = Covilln g 41, 1n gg ¢41) (25)

Substituting eq. (25) into eq. (23) yields

In [Ec(Rg +41)/Rp t41] = aCovi(ln e, t+1r 10 Rg ryp) (26)

The expression on the right-hand side of eq. (26) is equivalent to eq.

(11b) in Grossman and Shiller (1986, p. 202).7 However, the derivation

/Equation (11b) in Grossman and Shiller (1982) shows the
conditional expected excess return between any two assets. Applying
that equation to stock returns and the riskless rate of return gives an
expression for the conditional equity premium that is equivalent to the
right hand side of eq. (26).

15



in Grossman and Shiller assumes that asset returns and consumption
growth are conditionally i.i.d., whereas the derivation in this paper
allows for variation in the underlying conditional distributions and
hence allows for variation in the conditional distributions of
consumption and asset returns.

Now we can express the conditional equity premium directly in
terms of the distribution of technological shocks by observing from

(22a,b) that

Covelln go t41s In gy c41) = Var (ln gy ¢y1)

+ Cov.(ln BA, t+l In gy,t+l) (27)

Substituting eq. (27) into eq. (23) yields

In [E(Rg t41)/Rp ¢41] = aVar (In e, t+1)

+ aCov _(ln Ba t4l 1n gy,t+l) (28)

Notice that if the scale shock A.,] and the share shock Yp4l are
conditionally independent, the conditional equity premium is simply
aVar, (1n gA,t+l) = aVar, (1ln gc,t+l) which is identical to the
conditional equity premium that would prevail in the absence of labor

income, as in the Mehra-Prescott implementation of the Lucas model.

IV. Comparing the Equity Premium under Markov Regime Switching and
Conditional i.i.d Shocks

The Markov regime-switching process was introduced into asset

pricing models by Cecchetti, Lam, and Mark (1990,1991) and Kandel and

16
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Stambaugh (1989,1990) in an attempt to improve the ability of these
models to account for the empirically observed behavior of asset
returns, including second moments of rates of return in addition to
first moments of rates of return. In this section I will focus on the
first moments of asset returns and will compare expected rates of return
under Markov regime switching with expected rates of return under

conditionally i.i.d. shocks.

IV.A. The Riskless Rate

In a large sample, the average observed riskless rate equals the
unconditional expectation of the conditional riskless rate in eq. (18).

Letting E{Rp) denote this unconditional riskless rate yields
E(Rp) =  E({E (g, ¢y )] 7H) (29)

Now suppose that instead of taking account of the Markov regime-
switching process, the riskless rate is calculated under the assumption
that all shocks are conditionally i.i.d. so that the conditional
distribution of shocks is the same as the unconditional distribution.

In this case, the conditional and unconditional riskless rate is
* . -
E(Ry") = [BE(g 917t (30)

where the asterisk denotes a rate of return under the assumption of

conditionally i.i.d. growth rates.
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It is straightforward to compare the unconditional riskless rates
in eqs. (29) and {(30) using Jensen’'s inequality and the law of iterated
projections to obtain

E(Rp) = E([fEqlge y1 ™17 H

-1 -1

- - *

> [BE(E (g, wq1 "N = [BE(g 41 1177 = E(Rp) (3D)
Thus, taking account of Markov regime switching increases the riskless
rate relative to the case of conditionally i.i.d. shocks. Although this

result is derived for the case of constant relative risk aversion, it

holds for any utility function u(c.) with u’ > 0 and u" < 0.%

IV.B. The Equity Premium

In a large sample, the average conditional equity premium defined
in eq. (23) will equal the unconditional expected value of eq. (23).
Taking the unconditional expectation of both sides of eq. (23) yields an

expression for what I will call the unconditional equity premium

Etln [Eg(Rg t11/Rp ¢41)]) = oE(Cove(In go c40 10 8g 1)) (32)

Notice that the unconditional equity premium defined here is not
E(RS,t+1 - RF,t+1) but is the expression on the left-hand side of eq.
(32). As explained above, this expression for the unconditional equity
premium is consistent with the expression for the equity premium in

Grossman and Shiller (1982).

7o prove this more general result, replace g, .. "% in eq, (31)
by u’(egyq)/w (c) to obtain E(Rp) = E([ﬂEt(u'(ct+ii/u'(ct))]; } >
[BE(E, (u' (cpy)/u/ ()] 7T = [BE(u' (cpy)/u' (e)T] - = E(Rg).




To examine the impact of Markov regime switching, it is useful to
calculate the unconditional equity premium under the assumption that (Iln
8c 41010 &g ¢+1) 1s conditionally i.i.d. normal. A direct application

of eq. (32) yields
Elln [Ep(R¥g £41/R%p c41)]) = aCov(ln go vy, In gy 4q) (33

where Cov( , ) denotes the unconditional covariance, and, as earlier, an
asterisk denotes a rate of return under the assumption of conditionally
i.i.d. growth rates.

To compare the unconditional equity premia on the right hand sides
of eqs. (32) and (33), use the fact that for any random variables Xesl

and Zeg1s
E(Cove(Req1,2e41)) = Covixeyq,zeyy) - CoviEilxey) Eglzgy))  (34)

Subtracting eq. (33) from eq. (32) and using eq. (34) yields

E(ln [E¢(Rg ¢41)/Rp, e41)]) - Elln [Eg(R¥g (41)/Rép ()])

- aCov(E {1n gd,t+l)'Et(ln gc,t+l)) (35)

Equation (35) shows that allowing for variation in the conditional
distribution of (ln gc,t+l'1n gd,t+l) reduces the unconditional equity
premium by aCov(Et(ln 84 t41)sEglln 8c t+1)). Provided that the
conditional expected values Et(ln gd,t+l) and Et(ln gc,t+l) have a
positive covariance, allowing for variation in conditional distributions

reduces the average equity premium and thus exacerbates the equity

19
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premium puzzle. If consumption and dividends are identically equal, as

in the Mehra-Prescott application of the Lucas model, then

Cov(Et(ln gd,t+1)'Et(1n gc,t+l)) - Var(Et(ln gc’t+1)) >0 (36)

In this case, a Markov regime-switching process reduces the
unconditicnal equity premium relative to the case with conditionally

i.i.d. growth rates,

IV.C. Empirical Examples

I have derived analytic results in subsections IV.A and IV.B
comparing unconditional expected rates of return under Markov regime
switeching and under conditionally i.i.d shocks. In this subsection, I
present three empirical examples taken from the literature to gauge the
magnitude of the effect of Markov regime switching on expected rates of
return. All three examples are based on lognormal shocks and can be
exposited using the notation presented below.

Suppose that there are N possible realizations of the state vector

s and let n,_ be an N-element vector containing the unconditional

t)
probabilities of each state. The state vector Sy = (“c,t’ By g Yo,

%4, e Py where

be, ¢ = Eglln (egyq/ep))
By ¢ = Bglln (dpiq/dp))
oo ¢ = Var (In (cpyy/ep))®?

[Var, (In (dgyq/d0)110°°

Pr = correlationt (ln(ct+l/ct), 1n(dt+1/dt))



Example I uses the Markov regime-switching model for the bivariate
process for consumption growth and dividend growth in Cecchetti, Lam,
and Mark (1991). Example II uses the Markov regime-switching process
for consumption growth in Cecchetti, Lam, and Mark (1990), and Example
III uses the Markov regime-switching process for consumption growth in
Kandel and Stambaugh (1989). In Examples II and III, only consumption
data were used and, following Cecchetti, Lam, and Mark (1990) and Kandel
and Stambaugh (1989) the sequence of dividends is assumed to be
identical to the sequence of consumption. Table I specifies n. and s,
for each state in each of the three examples.

I have shown in eq. (35) that the difference between the equity
premium under Markov regime switching and the equity premium under
conditional i.i.d. lognormality is aCov(E.(ln gd,t+l)'Et(ln gc,t+l))'
Table II illustrates the size of this covariance for each of the three
empirical examples. In particular, Table II illustrates three
statistics for each empirical example. The statistic A is defined as
E(Covt[ln(ct+l/ct), ln(dt+l/dt)]); observe from eq. (32) that the
unconditional equity premium under Markov regime switching equals aA.
The statistic B is defined as the unconditional covariance
Cov[(ln(ct+l/ct), ln(dt+l/dt)]; observe from eq. (33) that the
unconditional equity premium under conditional i.i.d. lognormality is
aB. The statistic C is defined as Cov[Et(ln(ct+l/ct)),Et(ln(dt+l/dt))];
note that C = B - A so that the difference in the equity premium under
Markov regime switching and conditional i.i.d. lognormality is aC.

Table II shows that for Example I the covariance of

Et(ln(ct+l/ct)) and Et(ln(dt+l/dt)) is large enough so that there is a
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substantial difference between the equity premium under Markov regime
switching and under conditionally 1.i.d. growth rates. As indicated in
the final column, the equity premium under Markov regime switching is
only 46.5% of the equity premium under conditional 1.i.d lognormality.
In contrast, the equity premium is virtually thé same under Markov
regime switching and under conditional i.i.d. lognormality in Example
III. The results for Example II are intermediate between those of
Examples I and III.

Under a Markov regime-switching process with conditionally
lognormal shocks, the unconditional distribution will not be lognormal.
If one were to calculate expected rates of return under the assumption
that the shocks are conditionally i.i.d., then the (non-normal)
unconditional distribution should be used to calculate the moments in
egs. (17) and (18). These calculations for unconditional expected rates
of return are shown in Table III along with the unconditional rates of
return using Markov regime switching. The four panels of Table III
present unconditional expected rates of return for different pairs of
preference parameters (a,B8). The bottom panel of Table III uses the
values of the preference parameters o = 28.55 and 8 = 0.997 used by
Kandel and Stambaugh (1989).9 With these values of the preference
parameters Kandel and Stambaugh compute an unconditional riskless rate
of return E{rp) = 0.791% and an unconditional rate of return on

aggregate wealth E(rg) =~ 4.426%; these unconditional rates of return

“As noted in Table III, Kandel and Stambaugh (1989) use B =
0.99975 for monthly data which is equivalent to § = 0.997 on annual
data.



are very close the values of E(rF) = 0.844% and E(rs) = 4 _4B0% reported
in Table 111.10,11

The expected rates of return in Table III illustrate the
theoretical results derived earlier in this section. The unconditional
riskless rate under Markov regime switching (E{rp)) is always higher
than the unconditional riskless rate calculated using the unconditional
distribution (E(rF*)). The unconditional equity premium using the
unconditional distribution is always greater than the unconditional
equity premium using the Markov regime-switching process.12 Notice
that, consistent with the results in Table II, using a Markov regime-

switching process rather than the unconditional distribution leads to a

lUE(r } is the unconditional net riskless rate which equals E(RF)
- 1, Similarly, E(rs) is the unconditional net rate of return on stock,
which E Rs) -1.

There is no check on the calculation of the unconditional
expected rates of return for Examples I and II. Cecchetti, Lam, and
Mark (1991), on which Example I is based, assumes that s, is not in the
information set (1., and thus expected rates of return cafculated in that
paper will differ from those presented in Table III. Cecchetti, Lam,
and Mark (1990), on which Example II is based, does not report
unconditional expected rates of return.

12For all of the parameter values in Table III, E{Rg) > E{Rg¥*}.
However, this result does not hold in general. Consider the special
case in which there is no labor income so that ¢, = d. and hence B, t+l
= By, 4l Suppose that conditional on S¢, In &c,t+l is N(ut,az) with
the a time-varying conditional mean ke and a constant conditional
variance 02. Under these assumptions, equation (17) implies E(Rg 1)
- ﬁ'lexp[a(l-a)az][Et(gc,t+1)]a, and the unconditional expected raée of
return is E(Rg) = ﬁ'lexp[a(l-a)az]E([Et(gc't+1)]a). Alternatively, if
In 8, t+1 is conditionally i.i.d., the unconditional expected rate of
return on stocks is E{Rg*) = ﬂ_lexp[a(l-a)az][E(gc,t+1)]a. It follows
directly from Jensen’'s inequality that E{Rg} > (=) (<) E(Rs*) as a > (=)
(<) 1, so that Markov regime switching can raise, leave unchanged, or
reduce the unconditional expected rate of return on stocks relative to
the unconditional expectation under the assumption of conditionally

i.i.d. growth rates of consumption,

23
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substantial difference in expected rates of return using the stochastic
process in Example I but makes a rather trivial difference using the

stochastic process in Example III.

V. Conclusion

This paper has presented an alternative method for calculating
conditional and unconditional expected rates of return in the presence
of shocks generated by a Markov regime-switching process. The method is
attractive because it provides simple closed-form expressions for
expected rates of return and applies to a more general class of Markov
regime-switching processes than has been examined in the asset pricing
literature. The numerical application of these closed-form expressions
does not require calculation of equilibrium equity prices. Nor, given
the unconditional distribution of the state vector, does the method
require use of the state transition probabilities.

Analysis of the closed-form expressions for expected rates of
return indicates that taking account of Markov regime switching in an
asset pricing model exacerbates both the equity premium puzzle and the
risk-free rate puzzle. Specifically, for given preferences, a Markov
regime-switching process increases the unconditional riskless rate of
return, and--under conditional lognormality and constant relative risk
aversion--tends to reduce the unconditional equity premium relative to
the values that would emerge from an asset pricing model using the
unconditional distribution of shocks. More precisely, if the
conditional expected growth rates of consumption and dividends are

positively correlated with each other (as they must be in models that



don’t distinguish between consumption and dividends), then introducing a
Markov regime-switching process reduces the unconditional equity premium
under conditional lognormality and constant relative risk aversion.
Empirical examples in the literature illustrate that the effects of
introducing a Markov regime-switching process may be either large or
small depending on the stochastic process generating shocks.

Should one conclude that Markov regime-switching processes are to
be avoided in asset pricing models because they exacerbate the equity
premium puzzle and the risk-free rate puzzle? No, if the underlying
shocks are well described by a Markov regime-switching process, then
such a process should be incorporated in asset pricing models. However,
the results of this paper provide advance notice that such models will
be less able to explain empirical first moments of rates of return for

conventionally accepted values of the preference parameters.
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Table I
Specification of Stochastic Process

Example I

Consumption and Dividends from Cecchetti, Lam, and Mark (1991)

elements of state vector Sg cmmtie-eee-

state Te Be k4, ¢ %t %4, ¢t Pr
1 0.95788 0.0218 0.0255 0.0333 0.1030 1 0.2732
2 0.04212 -0.0614 -0.2953 0.0333 0.1030 0.2732
Example II

Consumption from Cecchetti, Lam, and Mark (1990)

elements of state vector S

state Te Fe Ba, ¢ 9.t %9, ¢ Pt
1 0.95181 0.0228 0.0228 0.0320 0.0320 1.0
2 0.04819 -0.0698 -0.0698 0.0320 0.0320 1.0
Example III™
Consumption from Kandel and Stambaugh (1989)
R elements of state vector Sg cmmocmieoo-
state T Feo e Bg, ¢ %,¢ %4t Py
1 0.08374 0.00111 0.00111 0.00915 0.00915 1.0
2 0.08899 0.00153 0.00153 0.00915 0.00915 1.0
3 0.08374 0.00194 0.00194 0,00915 0.00915 1.0
4 0.15899 0.00111 0.00111 0.01023 0.01023 1.0
5 0.16908 0.00153 0.00153 0.01023 0.01023 1.0
6 0.15899 0.00194 0.00194 0.01023 0.01023 1.0
7 0.08374 0.00111 0.00111 0.01144 0.01144 1.0
8 0.08899 0.00153 0.00153 0.01144 0.01144 1.0
9 0.08374 0.00194 0.00194 0.01144 0.01144 1.0

* .
The parameters of the stochastic process for Example

monthly data.

III are based on
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Table II
Decomposition of Unconditional Expectation of Conditional Covariance:
Implications for the Unconditional Equity Premium

A = E{Cov [In(c. j/c), In{d1/d00])
B = Cov[(In(cg,3/ce), In(de,q/d0)]
C = Gov[E (In(cyyq/ce)) Ep(In(dy,1/d))]
Note: A =3B - C
Unconditional Equity Premium
Markov regime switching: E{ln {Et{RS,t+1)/RF,t+1)]) = qA

Conditional i.i.d. Shocks: E{ln [Et(RS t+1)/RF t+l)]) = aB

A B o A/B
Example I 0.0937% 0.2014% 0.1077% 46.5%
Example IT 0.1024% 0.1417% 0.0393% 72.3%
Example III* 0.1272% 0.1273% 0.0001% 99.9%

*The entries for A, B, and C for Example III have been multiplied by 12
to annualize monthly returns.



Table III

Unconditional Rates of Return
under
Markov Regime Switching and Unconditional Distribution

E(rF) = E(RF) - 1 = unconditional riskless rate under Markov regime
switching

E(rs) = E(Rs) - 1 = unconditional stock return under Markov regime
switching

E(rF*) = E(RF*) - 1 = unconditional riskless rate under unconditional
distribution

E(rs*) = E(RS*) - 1 = unconditional stock return under unconditional
distribution

preference parameters: a = 5.0 and 8 = 1.0

E(rg) E(rg) E(rp) E(rg™)
Example I 8.405% 8.914% 7.642% 8.763%
Example II 8.674% 9.232% 7.597% 8.402%
Example III® 7.596% 8.236% 7.592% 8.233%

preference parameters: a = 10.0 and 8 = 1.0

E(rp) E(rg) E{rg") E(rg™)
Example I 14.852% 15.934% 11.5533 14.177%
Example II 15.867% 17.059% 11.173% 12.971s
Example I11% 12.0273 13.313% 12.013% 13.300%

preference parameters: a = 20.0 and 8 = 1.0

E(rg) E(rg) E(rp") E(rg™)
Example I 19.660% 21.924% 4.966% 11.480%
Example II 23.334% 25.886% 2.120% 6.077%
Example TII® 11.286% 13.855% 11.218% 13.7922

preference parameters: o = 28.55 and g8 = 0.997

Elrg) E(rg) E(rp") E(rg™)
Example I 14.398% 17.500% -15.696% -6.141%
Example II 21.024% 24.615% -22.253% -17.243%
Example III2:P 0.845% 4.481% 0.677% 4.324%

%The entries for Example III have been multiplied by 12 to express
gonthly returns on an annual basis.

For this example, B = 0.99975 on monthly data, which is equivalent to 8
= 0.997 on annual data.





