NBER WORKING PAPERS SERIES

OUTPUT FLUCTUATIONS AT THE PLANT LEVEL

Timothy F. Bresnahan

Valerie A, Ramey

Working Paper No. 4105

NATIONAL BUREAU OF ECONOMIC RESEARCH
1050 Massachusetts Avenue
Cambridge, MA 02138
June 1992

We are very grateful to the following research assistants who helped in the construction and
analysis of the data set: Mary Jo Arboleda, Subir Bose, Devajyoti Ghose, Shane Greenstein, Joao
Issler, Diana Nguyen, Timothy Taylor, Michael Turner, and Wendy Wilson. We also benefited
from helpful comments from Ana Aizcorbe, Frances Hammond, Joao Issler, Patrick McAllister,
Garey Ramey, Glenn Sueyoshi, and participants at the 1991 NBER Summer Institute and
seminars at The University of Chicago, The Wharton School, and the Federal Reserve Board.
Timothy Bresnahan thanks the Sloan foundation and Valerie Ramey thanks the UCSD Committee
on Research and the National Science Foundation grant SES-9022947 for financial support. This
paper is part of NBER’s research program in Economic Fluctuations. Any opinions expressed
are those of the authors and not those of the National Bureau of Economic Research.



NBER Working Paper #4105
June 1992

QUTPUT FLUCTUATIONS AT THE PLANT LEVEL

ABSTRACT

This paper studies weekly output fluctuations from 1972 to 1983 at fifty final assembly
plants in the U.S. automobile industry. The study makes use of a new data set that contains
detailed information on plant operations. The main findings of the paper are: (1) Even at the
simplest fabrication and assembly plant, there are a variety of margins on which production
quantities are adjusted; (2) The production adjustment margins appear to have very different
dynamic characteristics; and (3) The analysis of plant level data can lead to conclusions that are
dramatically different from those reached using aggregated data, even though the data are driven

by industry-wide shocks.

Timothy F. Bresnahan Valerie A. Ramey

Department of Economics Department of Economics, D-008
Stanford University University of California, San Diego
Stanford, CA 94305 9500 Gilman Drive

and NBER La Jolla, CA 92093-0508

and NBER



The nature of output fluctuations across time and across firms is a central theme
of macroeconomic analysis. Outstanding questions include the nature of the shocks
hitting the economy, the importance of returns to scale for magnifying or dampening
shocks, and the role of adjustment costs in propogating those shocks across time. Most
empirical studies of production dynamics have used aggregate or industry—level data on
outputs, inputs and factor prices. The results, while. natural for addressing
macroeconomic questions, have limited informational content. Aggregation obscures
fundamental facts about fluctuations at the plant level in two ways. First, and familiar,
is the point that different events may be happening at different plants. That is, not only
may individual plants experience different kinds of external shocks, but they may react to
the same shock in different ways because they started in different "states." In this paper,
we provide new evidence for the importance of individual plant heterogeneity in states
and responses. Thus, this paper contributes to the growing literature that uses plant level
data to analyze aggregate movements (e.g., see Davis and Haltiwanger (1989),
Bartelsman and Dhrymes (1992)).

A second, and less familiar, point about aggregation concerns the focus of the
analysis. Most economic models of production focus on cutcomes, not processes. The
outcomes include the evolution of output, employment, materials, and capital stocks over
time. The production process itself, however, is a "black box" (Rosenberg (1982}). The
typical macroeconomic approach is to infer the nature of the economic problem facing the
manager by observing the outcomes, and to ignore completely the workings of the black
box. This approach is standard even in studies based on individual plant data, where the
economic analyst often treats the plant level data as if it were aggregate data and leaves
the plant as a black box. Outcomes do not convey all the relevant economic information
that process choices reveal. In particular, information about what the plant’s- managers
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actually decided to do and why they thought they were doing it contains information
about dynamically important decisioné. While data about the decision process are
sometimes proprietary, they are often publically available, and thus constitute an
important source of information.!

For this paper, we have assembled a weekly panel data set revealing plant level
production decisions for 50 U.S. automobile plants over 626 weeks from 1972 to 1983. We
used only public sources for the data. Entries for each plant consist of data on the hours
of operation, overtime hours, the line speed, the number of shifts, the days closed, and the
reasons the factory was closed. We have also gathered data on actual production by
nameplate, and sporadic data on employment numbers, layoffs, and hires. We know of no
other data set that covers as great a number of firms, at so high a frequency, in such
detail.2 We have chosen the automobile industry because (1) automobiles are
manufactured using a fabrication and assembly process, which is the single most
important technology in manufacturing; (2) the industry displays substantial cyclical
volatility; and (3) fuel price shocks have had a particularly dramatic effect on the
industry. We believe that a detailed analysis of the production dynamics in the
automobile industry will provide insight into the nature of output fluctuations in general.
Further, our use of information on the short—run decision process differentiates this work
from that of others who have studied the automobile industry (e.g. Abernathy, Clark and
Kantrow (1983), Blanchard (1983), Bresnahan (1981), and Ramey (1991)).

The main findings of the paper are:

1See Chew (1988) as an example of the successfully exploitation of this type of information.
2Ana Aizcorbe has collected monthly data for twelve assembly plants covering a later
period. While her data set is not as detailed in some aspects, it does contain monthly
proprietary employment statistics. See Aizcorbe (1990) and Cooper and Haltiwanger
(1991) for analyses using those data.
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(1) Even at the simplest fabrication and assembly plant, there are a variety of

margins on which production quantities are adjusted.

(2) The production adjustment margins appear to be have very different dynamic

characteristics.

(3) The analysis of plant level data can lead to conclusions that are dramatically
different from those reached using aggregated data, even though the data are

driven by industry—wide shocks.

The paper proceeds as follows. Section 1 will present a more detailed description
of the data and how it was collected. Section 2 will analyze the margins along which
production is varied and the dynamic characteristics Section 3 will discuss the

implications for conclusions reached using aggregate data. Section 4 will conclude.

1. Data Description

The data were gathered from several automobile industry publjcétions. The main
source of data is the weekly periodical Automotive News. Each issue contains an article
describing the production of cars during the previous week, as well as a table of
production numbers by model. The article gives detailed information on which plants
had overtime, both during the week and on Saturday, whether plants were closed down
and for what reason, and any changes in line speeds and shifts. An example of a
particularly informative article is the January 13, 1975 production article (Automotive

News, page 22):

"Eleven plants were idle last week due to the current sales slump. Closed
3



were: American Motors’ Kenosha plant, Chrysler’s Newark and St. Louis facilities,
Ford’s Chicago, Dearborn, Kansas city, Mahwah, Metuchen and San Joge car
operations and General Motors’ South Gate plant and the Pontiac home plant.

"Chrysler, with four plants reopened for the first time since Thanksgiving,
produced 7,000 cars last week...

"American Motors’ Kenosha plant, which has been idle since Dec. 20, will
reopen today and begin production of Pacer, the new small car....

"Saturday work was scheduled for the (GM) Corvette line at St. Louis....

"GM’s South Gate facility is idle for all of January, and the Doraville,
Fairfax and Willow Run plants will be reduced to a single shift effective today...

"Also, (GM) Lordstown will begin single—shift Vega—Astre operation Jan. 20
at a rate of 100 units per hour. Earlier, it had been announced that Lordstown
would dip from 100 to 85 units per hour on two shifts Jan. 20. The new one—shift
operation will result in the indefinite layoff of an additional 2,100 employees.

"GM said indefinite hourly layofs will be about 92,000 by the end of
January..."

Other sources of data that were used to identify line speed and shift changes that were
not reported in the Automotive News articles were Wards’ Automotive Yearbook and
Wards’ Automotive World.

Perhaps the most unique aspect of the data set is the set of reasons given for plant
shutdowns. We have classified these reasons into four categories: (1) model changeovers,
(2) holidays and vacations, (3) inventory adjustments, (4) supply distuptions. The first
category, "model changeovers," contains the days closed due to adjustments for model
changeovers. As pointed out by Cooper and Haltiwanger (1990), this category represents
an important part of production volatility. The second category, "holidays," is the days
closed for holidays and vacations specified in the union contracts. The category labelled
"inventory adjustment" represents the times the company shut the plant down because
the dealer inventories of the model produced at that plant were "excessive." The "supply
disruption" category contains shutdowns due to strikes, both onsite and offsite, parts
shortages, inclement weather, earthquakes, fires in the paint facility, and general
machinery breakdowns.

The one difficulty with the data set is that the operations data are at the factory



level, while the actual production data are at the model level. There are some seventy
models during the period, with most factories producing several models and most models
being produced by several factories. Therefore, matching the production data with the
factory is difficult in all but a few cases. We have matched production data to six plants
so far. For those plants, we analyze actual production. For the universe of plants,
however, we must analyze variations in short—run posted output, which differs from actual
output by deviations from posted line speed.

We should also mention that there are likely to be measurement errors in the data.
In some cases, we knew a line speed change occurred, but did not know exactly what day
it occured. In these cases, we tried to use the actual production numbers to pinpoint the
date. In a few instances, we knew the number of plants that had closed down but not
which ones. Again, we tried to use the actual production numbers to identify which
plants closed down.

In all, we study 50 assembly lines. When a plant had two lines, we treated each
line as a separate plant. Nineteen of the plants had missing values over some part of the
period. The missing values occurred if there was a permanent shutdown of the plant, a
conversion to light truck production, or if the plant opéned during the sample period.
GM plants Bowling Green, Oklahoma City, and the new Pontiac plant opened during the
sample, while GM plants Fremont, Lakewood, Pontiac, Southgate, St. Louis Chevrolet,
St. Louis Corvette, and the second line at Detroit closed near the end of the sample, most
in 1981. Ford Los Angeles, Louisville, Mahwah, San Jose, and Twin Cities closed or
converted at the end of sample, while Norfolk converted in the middie of the sample.
Chrysler Hamtramck, Jefferson Avenue, and Lynch Road also closed, typically near the

end of the sample.



2. Multiple Margins of Output Variation
A Overview

In this section we will use the data set to show that there are a variety of margins
on which to adjust production quantity, and that those margins have fundamentally
different dynamic properties. In our analysis, we will work with a particular definition of
output that relates to the margins that plants adjust. Actual production Qit by factory i

for week t is given by the following identity:

(1) Q= (RHit + OHit) X (Lsit - eit) x SH;,

where
RH = regular hours, the number of hours the plant runs each shift per week
for which it pays a straight—time wage to its workers.
OH = overtime hours, the number of hours the plant runs each shift per
week for which it pays an overtime premium to its workers.
LS = posted line speed, i.e., potential output per hour per shift
¢ = deviations from the posted line speed

SH = number of shifts, either one or two

Regular hours are usually varied by shutting the plant down for a day or a week.
Overtime hours are usually varied by scheduling Saturday work or adding an hour or two
to each shift; eight hours on Saturday is by far the most common form of overtime. A
change in the line speed always involves a change in the number of workers, as does a
change in the number of shifts.

The decomposition in equation (1) immediately illustrates how the focus of this



paper differs from the usual approach. None of the hours or shift variables refers to hours
per worker, or total employee hours. Rather, the hours and shift variables measure the
workweek of the plant.3

What is wrong, or incomplete, in thinking of production managers as "choosing
Q"? Much of the task of production scheduling at an assembly plant is making decisions
about how best to meet a production plan. The production plan embodies a choice of Q
already, but does not yet determine how to attain it. The circumstances affecting this
choice in the short run are dynamic. Looking backward, the managers know the number
of workers affiliated with the plant, the technical capabilities of the plant itself, and
materials suppliers’ capabilities and contractual obligations. In the short—run, these
factors appear as constraints. The dynamics of the constraints are not at all the same.
Asking existing workers to work overtime is an expensive way to expand Q because it
requires the payment of hourly wages that are fifty percent higher. Overtime, however,
has few dynamic implications. Adding workers or whole shifts, however, requires more
time and involves making contractual commitments that are somewhat costly to reverse.
Changing the throughput rate of operations (the "line speed” in an assembly—line based
facility like the car plants we study) is difficult ("there ain’t no 'go faster’ switch on the
wall of this factory" one manager told us) and has permanent implications. On the
dowmside, plants face a variety of contraints on how they decrease production. IFor
example, labor contracts specify that if the plant is in operation for part of a week,
workers must be provided 80 percent of their wage multiplied by the difference between

the number of hours paid and 40. Thus, shutting a plant down for less than a week does

3The number of workers and hours per worker do vary, of course, but those variations are
the result of changes in the workweek of the plant, the number of shifts, or the line speed.
It is the latter variables that the managers manipulate directly; it is the effect on the labor
variables that generates mruch of the cost.
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not reduce labor costs proportionately.

The same set of decisions about meeting a production plan has forward looking
dynamic implications as well. To add workers or shifts is to have larger productive
capabilities for the near future. To change line speeds, with all the reorganization, job
redefinition, and other changes that accompany it, conditions the production scheduling
decisions for years. At the other extreme, working a day of overtime costs money now,
but neither increases nor decreases the plant’s capabilities. One would expect, therefore,
that forward looking plant managers would use different mechanisms to respond to
dynamically different circumstances. Overtime, for example, might be used to respond to
transitory (or possibly transitory) increases in desired output. More permanent (or
apparently more permanent) increases would be met using long—run cheaper, though
short—run more expensive, changes, like adding shifts.

We seek to gain a better understanding of the complexities of these margins and
their differences across horizons by analyzing the components of Q given in equation (1).
We begin by investigating the frequency of the use of each margin, and its importance in
the overall variation in output. We then study the dynamic aspects of the manipulation

of the margins.

B. Frequencies and Variance Decompositions

We analyze the importance of each margin in two ways. We first compute simple
statistics that tell us how often each margin is used. We then decompose the variance of
output into changes in the different margins. Periods during which a plant is
permanently closed are not included in the analysis. In this paper, we do not study plant
closings and openings, which we interpret as a firm production margin, rather than a .

plant production margin.



Table 1 quantifies how often plants use each of the margins by showing the
percentage of weeks during which each margin was manipulated. The first row shows the
weighted average of the universe of all plants, the second row shows the calculation for
the same sample, but with closures for holidays excluded, the third row shows the
weighted average of the six matched plants, and the following six rows show the data for
each of the six matched plants. The weights used for the averages are based on a plant’s
total output for the entire sample period. Thus, plants that were open for only part of
the period received less weight in this and all later calculations.

Consider first the averages for the universe of plants. The results show that on
average, each plant is shut down for at least a day twenty—five percent of the weeks.
Each plant is typically shut down for an entire week thirteen percent of the time or
almost seven weeks per year. Overtime hours (per worker per shift) in excess of four
hours per week are also frequent, occurring on average seven weeks per year. Thus the
use of overtime hours is as frequent as the use of shutdowns of a week. On the other
hand, both changes in shifts and in line speeds are very infrequent, occuring substantially
less than once per year. The second row shows the frequency of shutdowns for reasons
other than holidays. The frequency of shutdowns of at least‘ one day drops by half, while
the frequency of shutdowns of one week falls a small amount. It is clear that most
non—holiday shutdowns are shutdowns of one week, and they occur ten percent of the
time.

The remaining rows calculate the same frequencies (including holidays) for the six
matched plants. The data are better for these plants because we were able to use the
actual output data to detect overtime hours that were not reported in our sources and to
detect deviations from linespeed. The average frequencies for the subset of plants are

similar to those for the universe of plants. The only exception is overtime hours, which



TABLE 1
Frequency of the Use of Different Margins

Percent of Weeks During which a Plant Experienced:

Shutdown  Shutdown  Overtime Changein  Changein

> 1lday of 1 week > 4 hours  number line speed
per week of shifts
Weighted avg. 248% 12.9% 14.3% 0.61% 0.85%
of all plants
Weighted avg. 11.6 9.8 14.3 0.61 0.85
of all plants,
holidays excluded
Weighted avg,. 25.9 13.0 31.9 0.71 0.86
of six matched
plants
GM Bowling
Green 24.4 13.3 12.6 0 0
GM Lordstown 27.2 13.7 17.9 0.96 0.96
GM Norwood 27.2 14.2 31.3 0.32 0.64
GM St. Louis 17.8 4.6 61.1 0.20 0.40
Ford St. Louis 26.5 13.3 38.8 0.64 0.48
Ford Wixom 23.3 12.0 47.9 0.96 1.44
Decomposition of Shutdowns
Percent of Days Closed Due to:

Model Holidays Inventory Supply

Changeovers Adjustment Disruption
Weighted
Average of

all plants 33.3% 34.2% 25.2% 7.1%




are used twice as often. This increase in the calculated frequency in overtime is due, in
part, to our ability to detect unreported overtime using the output data. Finally, looking
down the columns, one can see that there is a good deal of heterogeneity across plants in
the frequencies.

The bottom of Table 1 decomposes shutdowns, or idle time, into each of the four
reasons given: model changeovers, holidays, inventory adjustment, and supply
distuptions. It is important to decompose idle time in this way, because two of the
categories, holidays and supply disruptions are not directly manipulated by the managers
of the plant. The breakdown shows that on average a third of the idle time is due to
holidays, another third is due to model changeovers, twenty-five percent is due to
inventory adjustment, and seven percent is due to supply disruptions. Thus, sixty
percent of the idle time is, for the most part, due to direct manipulation of that margin.

In order to give an idea of the patterns in the use of each margin, figures 1 — 6
show graphs of overtime hours, days closed for various reasons, and changes in line speeds
and shifts, aggregated over all plants. The graphs illustrate the patterns brought out
from the tables. In general, overtime hours and days closed, especially for inventory
adjustment, are frequent events. Line speed and shift changes, on the other hand, occur
relatively infrequently.

The graphs also show some interesting dynamic patterns. Note, for example, that
the occurrences of days closed for inventory adjustment and overtime hours tend to come
in clumps. Furthermore, as one would expect, the overtime hours tend to occur during
those periods classified as booms while days closed for inventory adjustments tend to
occur in those period classified as recessions. It is clear, however, that there are many
periods in which some plants are using overtime while others are shutting down for

inventory adjustment.
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The frequencies calculated above do not reveal directly the importance of each of
these margins for the short—run variation in output, because thé effect of a change in each
margin is different. For example, each shutdown involves a large variation in output,
with the decline in weekly output ranging from 20 percent in the case of one day to 100
percent in the case of a week. Overtime hours, which often take the form of Saturday
work, typically involve a twenty percent increase in output, so their impact is less than
that for variations in regular hours. On the other hand, the addition of a shift doubles
output. The magnitude of line speed changes varies from plant to plant.

Before decomposing the variance of output, we must discuss the measure of output
we use. Recall that actual production is only publicly available at the model level. Thus,
for the universe of plants we study posted output, which is Q in equation (1) when e is
equal to zero. We also present results for the six matched plants, which contain data for
actual production and e. The results show that in most cases ¢ is not an important source
of fluctuations in output.

The decomposition of variance is not straighforward because, as equation (1)
shows, capacity equals the product of the components, so we do not have a linear
relationship. Furthermore, we cannot take logs because the hours components are
frequently equal to zero. Therefore, we use a Taylor series approximation to decompose
the variance, and eliminate covariances by orthogonalizing the components. For the
orthogonalization the variables are ordered as follows: (1) regular hours (2) overtime
hours (3) shift changes (4) line speed changes. Different orderings changed the
percentages by less than one percentage point. For the matched group of plants, we also
included the deviation from line speed in the variance decomposition in order to assess its
importance.

Table 2 shows the results of the variance decomposition. Consider first the results
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Variance Decomposition of Output

TABLE 2

Percent of Variance Explained by:

Regular Overtime Number of Line Deviations
Hours Hours shifts Speed from line
speed

Weighted avg. 70.8% 3.4% 195% 6.3% —

of all plants

Weighted avg. 65.1 4.0 23.1 7.8 —

of all plants,

holidays excluded

Weighted avg, 58.9 6.4 23.5 5.8 54

of six matched

plants

GM Bowling

Green 63.8 44 0 0 318

GM Lordstown 62.4 3.0 21.1 8.0 5.4

GM Norwood 67.0 5.8 14.9 5.3 7.0

GM St. Louis 55.2 13.5 10.5 18.0 2.8

Ford St. Louis 48.8 10.2 38.1 1.2 1.6

Ford Wixom 50.5 9.0 31.2 3.2 6.0




for the universe of plants, presented in the first row, We find that variations in regular
hours account for most of the variation in posted output, amounting to over seventy
percent. If we multiply this number by the percent of regular hours variations caused by
inventory adjustment and model changeover, which are directly controlled, we find that
forty percent of the variation in production comes from the decision of managers to
manipulate regular hours. Furthermore, most of those controlled changes in regular hours
involve shutting the plant down for a week. Second in importar-xce is changes in the
number of shifts, which account for almost twenty percent. Overtime hours and line
speed changes each account for very little of the variation.

The second row performs the same decomposition when variations due to holidays
are eliminated. The importance of regular hours falls by six percentage points, and the
importance of the other categories rises somewhat. The overall picture, however, is
unchanged.

For the matched plants, vanations in regular hours still tend to account for the
bulk of variation in actual output, but the average is somewhat lower. The contribution
of overtime ranges from 3 percent at Lordstown to 10 percent at GM St. Louis. The
weighted average for overtime is 6 percent which is double that for the average for the
universe of plants, but still low. Changes in shifts and line speeds contribute amounts
similar to the universe of plants. Finally, deviations from line speed contribute a little
over five percent of the variance on average. The number for Bowling Green is very
atypical; the plant experienced many problems in the year after it was opened.

These results support the following interpretation. The primary way in which
managers vary production is by changes in regular hours. Many (non holiday) related
changes in regular hours involve closing the plant down for a week. Thus, managers

manipulate production by varying the number of weeks its labor force works. The second
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most important way managers vary production is by adding or dropping a shift. We
think of this as adding or dropping the second "team" of workers. Overtime hours, while
used frequently, are less importance in the overall variance of output. Finally, changes in
the line speed, which can be interpreted as changes in technological layout that lead to 2

change in the size of a "team," are relatively unimportant.

C. Dypamic Characteristics of Changes on Different Margins

We now turn to an analysis of the different dynamic implications of changes on
different margins. To see whether plant managers appear to be forward—looking in their
behavior, and to begin to see what their behavior might reveal about the short run
dynamics of cost and of desired production, we conducted two investigations of
persistence. For both analyses, we first isolated several states of the world in which a
plant might be in a given week. Plants can be in either one— or two— shift operations.
For each of those, there are four statuses. Plants can operate 4 or fewer (including 0)
days, reporting the reason as "inventory adjustment" or "model changeover". That is
status A. Status B is 0 to 4 days of operation because of holidays or supply disruptions.
We distinguish between statuses A and B because status A is more "voluntary" — the
events in status B are mostly unavoidable, those in status A, chosen by the managers.
The regular hours status, C, is defined as operations for more than four but less than five
and a half days. This definition treats small amounts of overtime as part of normal

operations.t ‘Status D, overtime, is defined as more than 5.5 days operations.®

4These definitions incorporate a few of our judgement calls that may not be obvious. For
example, when a plant has a shutdown one day during the week but then works just one
weekend day of overtime to make it up, we classify the plant as regular hours. More than a
day of weekend overtime to make up the lost day leads to a classification in overtime
status. There is an obvious conflict here between a marginal cost view of what the states
should be (which would call paid overtime for a whole shift an indicator of high shadow
value of the plant’s capacity) vs:-a planned—production view. There are so few of the
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We first examine the transitions between states in order to understand the
permanence of the states themselves. We use a framework with eight states,
corresponding to one— or two—shift operations, each with four possible statuses A through
D above. We estimated the full 8—by-8 transition probability matrix, but in Table 3 we
report only the two 4-by—4 on—diagonal blocks. The transitions from 1 to 2 shift
operations and back are infrequent enough that the offdiagonal blocks are basically
matrices of zeroes.

The blocks on the diagonal tell a very interesting story, however. First, look down
the diagonal to see which states tend to persist into the next week. The most clearly
persistent state is regular hours, in either one or two shift operations. Depending on
shifts, the probability of persisting in that state is around 70%. The next most persistent
state is "voluntary" short days, with about a 50% probability of persistence. The
overtime state is mot far behind, with persistence probabilities in the forties. The
exception is the "involuntary" or "supply shock" short days state, which is not very
persistent at all.

The interpretation is simple. An automaker’s dream life, the whole point of mass
production, is persistent regular hours. “That is the cheapest way to make vehicles, and
the goal of the marketing, forecasting, and production planning functions is to get the
piants into that state and keep them there. Even in the highly uncertain economic
environment of our sample period, that is a very persistent state. On the other hand,
supply/demand imbalances that lead to voluntary operations at inefficiently low (status

A) or inefficiently high (status D) levels are persistent, as well. Note that movements

ambiguous cases that we cannot usefully give them their own separate state.

iThe overtime data here are based only on the reports in Automotive News. As a result,
they should be interpreted as plant overtime, not worker overtime. We believe that we
underestimate overtime because many small events go unreported. A closer investigation
of our six matched plants reveals that this is in fact the case.
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Table 3

Transition Probability Matrix

Status A: Status B: Status C: Status D:
Status Short Week Short Week Regular Week  Overtime
at t IA or MC Holid or SD
Status
at t—1
1 Shift
Short Week 0.522 0.078 0.377 0.007
IA or MC
Short Week 0.081 0.213 0.609 0.083
Holid or SD
Regular 0.059 0.151 0.728 0.052
Week
Overtime 0.008 0.096 0.430 0.464
Probability of
each state 2.8 3.8 16.6 2.2
2 Shifts
Short Week 0.510 0.083 0.385 0.004
1A or MC
Short Week 0.074 0.207 0.546 0.169
Holid or SD
Regular 0.056 0.161 0.677 0.103
Week
Overtime 0.004 0.096 0.488 0.412
Probability of
each state 7.0 113 45.1 11.2




————— .

from status C to statuses A and D usually involve a change in production of at least
twenty percent. Thus, although the automaker prefers to remain near forty hours a week,
his manipulation of the margins leads to a great deal of volatility in actual production.
The only really transitory state is low production from supply shocks — those are mostly
holidays, strikes, and weather interruptions, so it is no surprise that they appear to be
quite transitory. The bottom line is that output fluctuations at the monthly (or longer)
frequencies appear to be mediated through persistent choices by managers.

The off—diagonal elements reinforce this view. First, consider the rows and
columns of the matrices which do not involve status B. Then, the pattern is simple.
Most events are stasis, staying in the same state. Most transitions are to adjacent states,
with "state skipping" transitions fairly rare. This is consistent with, though it obviously
does not prove, a "one—factor" model of the underlying desired production. Desired
production moves slowly over time, only occasionally crossing the boundary between
statuses A and C, or C and D, and causing a change in plant status. This view is
incomplete, however, in that it ignores status B, the reported supply shocks. Status B
can occur anywhere in a plant’s transitions among statuses A, C, and D, but it is a very
transitory state.

To investigate this view further, we took the full 8x8 transition probability matrix
and raised it to the fourth power. If the states follow a first—order markov process, that
matrix should look a lot like the transition probability matrix four weeks forward. How
do they differ? Table 4 shows the diagonals of each of the matrices. We quickly noted
two major differences. First, M1t underpredicts the persistence of statuses A, C, and D.
It is clear that these statuses seem to be characterized by positive duration dependence.
Second, the the first—order markov model overpredicts persistence in state B. Looking at

the transitions, it is easy to see what is driving this. Contrast the probability of being in
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Table 4
Two Measures of Monthly Persistence:
Diagonal of Transition Probability Matrix

Status A: Status B: Status C: Status D:
Short Week Short Week Regular Week  Overtime
IA or MC Holid or SD
1 Shift
Given stat 0.306 0.117 0.674 0.377
at week t—4
(M4)
Implied by 0.150 0.142 0.628 0.119
first—order
Markov Model
(M1**4)
2 Shifts
Given stat 0.261 0.098 0.645 0.410
at week t—4
(M4)
Implied by 0.136 0.149 0.598 0.160
first—order
Markov Model

(M1**4)




status B next week, conditional on being in status B this week, under two different
further conditioning events. (i) Conditional on not having been in status B last week, the
probability of staying in status B is much higher than (ii) the same probability
conditional on having been in status B last week. One week transits through status B are
the norm, with longer stays very much less likely. Supply shocks are not only transitory
at the weekly frequency, they display substantial negative duration dependence.

We then investigate what the transitions between states predict about future
movements in output.. Working from the definitions of the states given above we
identified "events” as movements between states. For movements between states C and
D we distinguished whether the firm had one or two shifts; in no other case did it make a
difference. We also defined as separate events the changing of the numbers of shifts and
changing the line speed. The residual event was staying in the same state with no change
in shifts or line speeds. Movements from A to D and D to A were grouped in the residual
category because those movements were very infrequent.

Using dummy variables for these events, we ran the following set of regressions on

the pooled data set for all plants:
Q(t+i) —Q(t-1) = constant + A{Q(t) — Q(t~1)]x event class dummmies,

for i = 4 weeks and i= 13 weeks. The estimated coefficients 4 reveal the permanence of
the change in output resulting from a change in states. That is, the f's give the fraction
of the original change in output Q that is still in effect in one month and in one quarter.
We ran the regressions with and without 52 weekly dummies. We will report the results
of these regressions in a descriptive sense together with a preliminary interpretation of

what they might mean economically. This is for our readers’ convenience, rather than
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because we believe that the descriptive results prove the economic case.

The results are shown in Table 5. Let us begin with the simplest result, that
called "no change." In the first column, this has a coefficient of .68. Descriptively, this
means that a change in quantity that does not lead to a change in plant status tends
systematically to be partially (32%) reversed four weeks later; only 68% of any change up
or down persists the whole four weeks when the managers accomodate it without a plant
status change. Adding week dummies mai-&es within—status changes look even less
persistent (column 2, coefficient of .60) and looking an entire quarter ahead (columns 3
and 4) leads to smaller estimates of persistence. The economic interpretation is relatively
straightforward. When the managers do not change the plant’s status, they have not
incurred any adjustment costs. Thus we see no endogenous forces that might have led to
persistence. Why, then, is there substantial reversion? When plant status does not
change, we have moved on one of the locally flat portions of the SRMC curve. If most
small shocks to desired output are transitory, one would expect them to be accomodated
by transitory shifts in actual behavior. An alternative theory posits somewhat more
clever managers. If changes in desired output vary in their predictable permanence, then
the very fact that the managers chose not to change plant status may indicate that they
thought the shock was transitory.

Now contrast these results with those for adding and dropping shifts, and for
increasing and decreasing line speeds.® Changes in quantity associated with these
decisions are more persistent. A change in the number of teams or in the composition of a
team certainly involves adjustment costs, so these sorts of decisions are not immediately

reversed. The shift and line speed results are symmetric in both directions for horizons up

sSome line speed changes are due to changes in the type of car produced, and thus are due
to technological changes rather than short-run changes in desired output.
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Table 5
The Effect of Operations Choices on Predicted Persistence
Pooled Data Set

Dependent Qe Qs Qg U3 Qi@
Variable

Constant —48 * —-106 *
AQ(t+1)x included included
52 weekly
dummies
No Change 0.68 0.60 0.61 0.55
(-.02) (-02) (.03) (.02)
Add Shift 0.74 0.75 0.80 0.81
(.07) (.07) (.08) (.08)
Drop Shift 0.80 0.80 0.80 0.77
(.08) (.08) (.10) (.09)
Increase 0.84 0.72 0.84 0.71
Line Speed (.06) (.05) (.08) (.06)
Decrease 0.74 0.70 0.78 0.75
Line Speed (.06) (.05) (.o7) (.06)
AtoB 0.84 0.90 0.94 0.97
(.05) (.05) (.06) (.06)
AtoC 0.77 0.74 0.84 0.79
(.01) (.01) (.02) (.02)
BtoA 0.38 0.25 —0.05 —0.02
. (.04) (.04) (.05) (.05)
BtoC 0.46 0.47 0.77 0.62
(02) (02) (03) (02)
BtoD 0.22 0.32 0.58 0.54
(.03) (.03) (.04) (.03)
CtoA 0.32 0.35 0.18 0.26
(.01) (.01) (.02) (.02)
CtoB 0.27 0.29 0.11 0.29
(.02) (.02) (.02) (.02)
CtoD 0.42 0.69 0.22 0.86
1 shift) (.27) (.25) (.31) (.28)
to D 0.24 0.33 —0.43 -0.14
(2 shifts) (.05) (.05) (.06) (.06)
DtoB 0.44 0.27 0.38 0.40
(.04) (.04) (.05) (.08)
DtoC 0.76 0.43 0.44 -0.23
(1 shift) (.26) (.24) (.30) (.27)
DtoC 0.95 0.82 1.34 1.12
(2 shifts) (.05) (.05) (.06) (.05)

A: Short week, due to inventory adjustment or model changeover
B: Short week, due to holiday or supply disruption

C: Regular week

D: Overtime



to a quarter.

The rest of the results are remarkable for their asymmetry. For example, the
persistence of an output change resulting from a move from A to B is in most cases over
ninety percent, while the persistence of the output change involved in a move from B to A
is zero after a quarter. When two shifts are working, the movement from a regular week
to overtime hours has no persistence over the quarter, while a movement from overtime
hours to a regular week actually forecasts an even larger output drop one quarter ahead.

We believe that these changes are much more short—term in nature than the line
speed and shift changes, and that movements between states A through D involve much
lower adjustment costs. Since they are shorter—term, higher frequency events, they are
involved in the complex short run dynamics of the plant’s evolution. The plant transits
through a complex series of state changes as shocks of various transitoriness and
predictabilities hit the plant.

The various production margins appear to be quite differently dynamically. We do
not see how it is possible to construct a theory of these differences without assuming that
(i) managers have forecasts of the persistence of changes in desired quantity which vary
over time, or (ii) the decisions themselves change the future production dynamics of the
plant. While our estimates do not let us distinguish between the purely statistical versus
the endogenous capability theories, we believe that both are substantially true. To add a
shift or to change line speeds is, we believe, to affect one’s own future decisions. Sensible
managers will do that only if they think that there is some persistence to the underlying
change that shifted desired output.

We draw several conclusions from the dynamic analysis. First, the knowledge of
how a given change in output was attained has significant predictive power for the future

path of output. This point goes back to the issue we raised in the introduction concerning
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the information contained in managers’ decisions. Not only does the manager’s method
for realizing a given change in production contain information about his predictions about
the future, but it also affects the path of output in the future. Second, there are three
relatively "stable" states in which the plant may be. The most stable state is one where
hours are around forty hours a week. Two other states that display a surprising amount
of stability are the voluntary short—day state and the overtime state. Both states involve
large departures of production from the forty hours a week rate. Finally, movement
between the states seems to follow ‘a process that is more complicated than first—order

markov.

3. Implications for Aggregation

Finally, let us consider the implications of the behavior that we have uncovered for
aggregate dynamic studies. We do this by presenting three simple examples that
illuminate which types of phenomena at the plant level are, and are not, revealed in the

aggregate data.

Ezample 1

Consider the following pair of questions: (1) How often and by how much does
output deviate from "normal" capacity? and (2) When output adjusts, does it follow a
smooth adjustment path or does adjustment occur in lumps? These questions are of
interest because they can reveal the form of the production and adjustment cost functions
that a plant faces. The form of those functions is a topic of considerable debate because
they determine how shocks are propogated through the economy. We will answer each of
these question in two ways, first using a pooled sample of the plant level data and second

using an aggregate of our data. To answer the first question, we define normal capacity
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as the quantity of output the plant would produce if it ran the plant for forty hours at the
given line speed and the mode of the number of shifts (equal to two for most plants). The
output variable is adjusted to exclude variations that are due to holidays and model
changeovers. For the aggregate answer, we aggregate normal capacity and production
across plants. Figure 7 shows histograms of the ratios of cutput to normal capacity. The
top graph shows the frequency distribution of deviations for the pooled plant level data,
while the bottom graph shows the distribution for the aggregate data. The aggregate
distribution looks nothing like the plant-level distribution. For example, the plant—level
data shows that output is within five percent of normal capacity over sixty percent of the
time, while the aggregate data show that output is within five percent of normal capacity
only thirty percent of the time. On the other hand, the plant level data shows that when
output does deviate from normal capacity, it deviates by twenty percent or more. Almost
a quarter of the time, output is fifty percent or more away from normal capacity. The
distribution of the aggregate data is more compressed. Thus, infrequent but large
deviations at the plant level appear as frequent, but small deviations at the aggregate
level.

Moving to the question on output adjustments, we calculated percentage changes
in posted output from week to week, excluding changes involving holidays and model
changeovers. We calculated these changes for the plant level data and for aggregate
output.” Figure 8 shows a histogram of output changes. The first two graphs, which
show the pooled plant—level data, display interesting patterns. The vast majority of data
points on the tall spike at zero are identically equal to zero, implying that most weeks

there is no change in posted output. To illuminate the distribution of points other than

TThe denominator in the percentage change is line speed (t—1) x number of shifts (t—1) x 40.
We could not use posted output in period i—1 as the denominator because it was frequently
equal to zero.
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at zero, the middle graph shows the histogram of the nonzero changes in output. Most
changes are approximately twenty percent, but close to a quarter of the output changes
are 100 percent in either direction.® In contrast, the bottom graph shows that most of
the changes in the aggregate data are very small, with the majority being much less than
twenty percent in absolute value. The average (absolute) nonzero change is 43 percent
for the plant data and only 5.7 percent for the aggregate data. This calculation makes the
same point for output that Hamermesh (1989) made for employment: plant level
dynamics suggest nonconvex costs of adjustment while aggregate dynamics suggest
convex costs of adjustment. Thus, adjustment cost parameters estimated on aggregate
data do not bear a direct relationship to the adjustment cost parameters for the
individual plant. An implication is that the high convex cost of adjusting production
found by Blanchard (1983) and Ramey (1991) for the automobile industry is not reflective

of plant level costs.

Frample 2

The histograms in figures 7 and 8 clearly show important plant-level events which
are not reflected in aggregate data. To put this in perspective, we undertake a simple
statistical investigation of aggregate and idiosyncratic shocks to plant posted output in an
analysis of variance framework. This will reveal the extent to which output is correlated
across plants, which is a distinct question from the amount of information lost in
aggregation.

The plants are of different capacities; line speed can be as low as 15 in a luxury or

specialty car plant or as high as 100 in a compact car plant. This will likely make the

§There were a few percentage changes that were greater than 100 in absolute value in the
plant level data, but these were excluded from the histogram because they amounted to
less than 0.1 percent of the nonzero changes.
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plant—level data heteroskedastic. For the analysis of variance, then, we divide posted
output by planned, one—shift capacity, which is line speed times 40 hours. Our dependent

variable at plant i in week t is Rit’ where:
R, = Q / (LSit x 40).

The denominator measures how many units a plant would make at its line speed during
one shift regular operations, so that Rit measures percentage deviations from one—shift
normal operations. (See equation (1).)
The simplest analysis of variance model is
R g

it = Uy T Gy

where u, and & a1e independent with standard deviations o and g respectively. Of
course, this "model" is merely an interpretation of the variances and covariances of all the
plant—level outputs. It does serve, however, to offer a descriptive summary of output
movements which is closely related to the question of whether plant level events are
aggregate phenomena: the larger is 7y relative to T the more important the correlated
(industry—wide) portion of the individual plant shock to output.

In our data, the estimated variances are 0121 = 860 and ai = 4154. These figures
have two different impliéations. First, let o be the fraction of the individual plant
4

variance accounted for by the common factor u, i.e., Ty = aﬁ/(aﬁ + 0,

this is 0.172, which corresponds to a 17.2% r1—squared in a regression of plant-level Rit

. In our data,

on time dummies.

Second, let A be the fraction of the variance in average plant Rit (or in the
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aggregate) accounted for by the common shocks. The variance of the average Rit is
2 I 2 2
gy = var (i—_z—_lRit/I) =0, + /L

The fraction of this variance explained by the aggregate shocks, u, is:

02
u

AT ot + o/l
u £
In our data, I=50 and this fraction is .912.9°10 Thus, 91.2% of the variance in aggregate
(or average) capacity utilization is explained by the common shocks, even though they
explain only 17% of the plant level variance. As you can see by examining the formulas
for 7, this is simply a law of large numbers result; the plant errors drop out in the
aggregate. An exactly analogous calculation leads to the fraction of aggregate output, Qty
which is explained by the aggregate shock:!!

2
XiXJ.LSit LSjt Ty

T =
Q(t) ) )
EELS;, LS 0; + 518, o

901 course, some of the high covariance is seasonal. When we adjust the data for holidays
and model changovers, estimated TA is 0.88. Thus, nonseasonal industry—wide shocks

dominate nonseasonal movements in the aggregates.

107t is not clear that I should equal 50, because 50 plants were never open at the same time.
The fraction is similar, though, for I = 40.

uThis calculation assumes that line speeds may be taken to be exogenous in the run in which
the shocks occur. This assumption is an innocent one for the week—to—week fluctuations

we study. Line speed changes are typically either substantial (and infrequent) changes in
plant process or changes in the type of product the plant produces. Below, we will show
evidence on the limited supply substitutability (in the relevant run}) of plants making
vehicles in different segments.
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In a hypothetical week in which all 50 plants were operating at their sample average line
speed, this would be 89%, since Eizj LS, LS_j [ % LS? = 40. The same law of large
numbers point is at work here, of course.

The simple statistical relationship among Tas Tpo and TQ contains an economic
phenomenon. Low 7p is a familiar fact: plant level data are extremely noisy (e.g. see
Griliches and Mairesse (1983), Clark and Hayes (1986)). High 7, and Q is another
familiar fact; aggregate data are driven by the nomlocal, systematic (econcmy-— or
industry~wide) part of plani-level shocks. There is no tension between these two
statements, as the law of large numbers works against the importance of plani-level
shocks in the aggregate.

Our example, shows, however, that high Ty Or TQ is no evidence for the utility of
aggregate data in drawing inferences about "representative plant" phenomena. We
exhibit an industry in which the aggregate data are driven by the common shocks, and
yet in which the lumpiness of the micro adjustments is completely washed out in the
aggregates. The right condition for the utility of aggregate data in drawing behavioral

inferences is high Tp- Unfortunately, this condition is very rarely met.

Ezample 8

In this example, we will conduct a comparison of the histories of two plants and
discuss the broader implications of that comparison. One of the points we will highlight
is how shocks that are considered to be macroeconomic shocks can have very different
consequences for plants in a narrowly defined industry.

Figure 9 shows the behavior of adjusted output and short—run capacity for Ford
St. Louis, which produced intermediate and full sized cars and GM’s Lordstown, which

produced compact and subcompact cars. Output is adjusted by removing the variance
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caused by holidays and model changeovers; short—run capacity is line speed times the
number of shifts times 40 hours. During 1972 and 1973, output at both St. Louis and
Lordstown was gemerally above short—run capacity, with heavy use of overtime; the
deviations below capacity tended to be due to parts shortages or strikes. The first oil
shock hit at the end of 1973, shifting demand from large cars to small cars. At the
beginning of 1974, St. Louis began closing 'down for periods of inventory adjustment, and
followed with the elimination of its second shift in February. Lordstown, on the other
hand, maintained high production (except for strikes in August 1974) until November
1974, when it began to close down for inventory adjustment. On the other hand, in the
first half of 1975 when the economy begain recovering and queues at gasoline stations
dwindled, Lordstown reduced its line speed while St. Louis began scheduling overtime. In
1976, St. Louis increased its output further by adding a second shift and scheduling heavy
overtime, while Lordstown eliminated its second shift. Thus, output at Lordstown
declined during the recovery from the recession. Both plants operated at high levels in
1978 and 1979. During 1980 in the aftermath of the second oil shock, however, St. Louis
cut its output substantially, while Lordstown did not undertake significant cuts until the
beginning of 1982. Both plants kept output low through 1982, and then increased it in
1983.

These graphs show the important differences across plants producing different size
cars. They also give insight into how oil shocks affect the economy. In the case of
automobiles, the oil shocks served to shift demand back and forth across size classes,
leaving firms with mismatched capacities. After the first oil shock, a number of plants
were idled for long periods of time in order to convert them to small car production.
When these plants came on line, though, demand had already shifted back to large cars,

and the plants were significantly underused.
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To see whether this "capacity mismatch" story was systematic, we undertook
another analysis of variance of R, (defined in example 2). Each plant’s products were
assigned to one of five automotive market segments, s(it).1? The analysis of variance was

extended to include segment effects and segment*week effects:

Ry =u v +wg + ¢

where the four error components are once again assumed, for descriptive purposes, to be
orthogonal. We use this model for two purposes. First, as a descriptive statistical
matter, can the segment*week effects (wst) be excluded? They cannot: The
F(2500,24013) is 1.91, which is highly significant.

The second purpose of the model is to see the generality of the point about the
price of fuel and demand. The mean predicted segment*week effects from the ANOVA
are plotted in Figure 10.12 This shows time on the horizontal axis and the estimated
value of the average of Wi for the two small—ar segments and for the three large—car
segments on the vertical axis. Note that the segments move both together and apart.
The fuel price crises mark periods of capacity shortage in the subcompact and compact
segments, and of severe excess capacity elsewhere in the industry. Other time periods, for
example that in between the two fuel-price crises, show the reverse tendency. Thus the
simple demand story we told about the two specific plants is general to the entire

industry.

12The five segments are subcompact, compact, midsize, fullsize, and luxury. Some plants
changed the segments they produced in. In the analysis of variance, they are classified at
each time according to their current products.

13These are not calculated as the coefficients one would obtain for segment*week dummies in
a regression. Instead, they are the predicted means in each segment and each week. Thus,
they need not sum to zero.
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What is going on here is the interplay between firms’ fixed competitive capabilities
and highly variable demand. Firms must commit not only to the aggregate capacity they
have, but also to their product line and, to a very considerable extent, to the capacity for
each product. In a run of a year or more, capacity is largely fixed, and not very fungible
between products in different market segments. On the demand side, rapid changes in
the price of fuel in our period altered the composition of the demand for automobiles as
well as its level. Thus firms found themselves with perennial mismatches between the
composition of their capacity and consumers’ desired purchases. The resulting loss in
productivity compared to a more predictable or stable demand environment is

considerable.14

The three examples have shown how answers provided by aggregate data can lead
to incomplete or different conclusions from those provided by the plant level data. Some
of our discussion is related to an important new literature arguing that the smooth
behavior of some aggregates is the result of very lumpy behavior at the individual level.
As discussed above, Hamermesh (1989) has shown using plant level data that employment
fluctuations are very erratic, and are best described by nonconvex costs of adjustment.
Further, Blinder (1981), Caplin (1987), Caballero (1991) and others have investigated the
implications for aggregate data of individuals who follow S—s type of rules. Several of our
conclusions are similar to their conclusions.

In the previous section, we demonstrated that the various margins for increasing or
decreasing output in the short run are different predictors of the future. We have not

distinguished between the two distinct theories of: (i) heterogeneous, mostly correct,

4This conclusion is similar to the point made by Ramey and Ramey (1991) that planning
mistakes can have negative consequences for economic performance.
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expectations about future economic circumstances at different plants or (ii) endogenous
state dependence resulting from the plant level choices. What we want to observe here is
that both theories can be problematic for analysis at the aggregate level.

Let us begin with theory (ii), and our extension of Hamermesh’s story. Suppose
that, in the short run, the supply curve for output is smoothly rising not because any
plant has a smoothly rising SRMC, but because there is a smooth distribution function of
the heterogeneous costs of a lumpy change. This is Hamermesh’s story of employment
adjustment, and in our data it corresponds to the adjustments associated with shutdowns,
shift changes or line speed changes. What is wrong with doing analysis on the aggregate
supply curve in these circumstances? Hamermesh’s point is that the resulting inferences
reveal nothing about the plants’ SRMC if they are interpreted in a representative plant
framework.

The story quickly gets worse with multiple margins. In particular, consider our
plants with dynamically distinct margins. Suppose that in some period, aggregate
production has increased. We want to predict future movements of aggregate quantity
and shipments based on this fact. Yet the same increase in quantity could come from (a)
an added shift at one—fifth of the plants or (b) an added day of overtime at all plants or
(c) anything in between. Estimation a model of aggregate quantity dynamics without
knowing which of these events occurred can lead to seriously biased estimates of the
parameters of interest. There are no stable aggregate dynamics in such a system; the
analyst has gone beyond mislabelling the macro phenomenon as a micro one to estimating
a relationship that has no relationship to the underlying dynamic production technology
at either the plant or industry level.

The problem is not all that different with expectational heterogeneity. Suppose

now a variety of plants all want to increase quantity, but with different expectations
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about the permanence of the increased run—rates. The event in which oneplant thinks its
demand is up by 300% is not at all the same as the event in which each of three plants
thinks its demand is up by 100%. The shock to aggregate desired quantity is exactly the
same (desired quantity after the shock is three times that before) but the visible resulting

event is not at all the same.

4. Conclusions

Our investigation of weekly production dynamics at the plant level has uncovered
characteristics of output volatility that are not apparent in aggregate data. Furthermore,
by analyzing operational aspects of production we have been ‘able to provide a more
complete picture of output fluctuations.

Our most important overall finding is that adjusting production is a more
complicated process than simply "changing Q." Of the multiple margins used by the
managers of an automobile assembly plant, varying regular hours by shutting the plant
down for a week is one of the most important. Second most important is adding or
dropping a shift. These margins are very different dynamically. How managers chose to
adjust output contains information about the permanence of the output change. Probably
because the different output adjustment margins involve different amounts and lumpiness
and irrevesibility, the recent history of output alone (as opposed to the margins used to
édjust it) is an incomplete summary of the plant’s state. The transitions of plants
through high and low output states is not a process that can be readily characterized by
standard time series methods.

We also examined the relationship between plant—level events and aggregate ones.
A key analytical distinction is that (i) the usefulness of aggregate data for drawing

conclusions about costs, demand, or expectations is not the same as (ii) dominance of
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aggregate data by shocks that are common across all plants, In an industry where (if) is
quite true, we found two kinds of economically important departures from ().
Aggregation hid heterogeneous shocks, as when the same change in the price of fuel
shifted some plants’ demand up, others’ down. Heterogeneous responses are lost as well,
as when some managers choose to make a lumpy adjustment, others to wait or temporize.
The predictive importance of agggregate shocks is logically unrelated to the analytical
value of aggregate data.

Our analysis has been descriptive, but it serves to illustrate the value of operations
data in economic production analysis. By analyzing not only the usual output data, but
also the "black box" data on the managers decisions, we feel that we have been able to

paint a more accurate picture of output fluctuations.

30



References

Abernathy, William J., Kim B. Clark, and Alan M. Kantrow, Industrial Renaissance:
producing ¢ Competitive Future for America, New York: Basic Books, 1983.

Aizcorbe, Ana, "Procycical Labor Productivity, Increasing Returns to Labor and Labor
Hoarding in U.S. Auto Assembly Plant Employment," Bureau of Labor Statistics
Working Paper No. 203, March 1990.

Automotive News, various issues from 1972 to 1983.

Bartlesman, Eric and Phoebus Dhrymes, "Productivity Dynamics: U.S. Manufacturing
Plants, 1972-1986," February 1992 Center for Economic Studies working paper,
U.S. Bureau of the Census.

Blanchard, Olivier, "The Production and Inventory Behavior of the American
Automobile Industry," Journal of Political Economy 91 (June 1983): 365—400.

Blinder, Alan, "Retail Inventory Behavior and Business Fluctuations," Brookings
Papers on Economic Activity 2 (1981): 443—505.

Bresnahan, Timothy, "Departures from Marginal-Cost Pricing in the American
Automobile Industry," Journal of Econometrics 17 (November 1981): 201-227.

Caballero, Ricardo, "Durable Goods: An Explanation for their Slow Adjustment,"
Columbia University mimeo, 1990a.

Caplin, Andrew, "Varability of Aggregate Demand with (S,s) Inventory Policies,"
Econometrica 53 (1985): 1395-1409.

Chew, Bruce, "No—Nonsense Guide to Measuring Productivity," Harverd Business
Review 66 (January/February 1988): 110—-118.

Clark, Kim B. and Robert H. Hayes, "Why Some Factories are More Productive than
Others," Harvard Business Review (September/October 1986): 66—66.

Cooper, Russell and John Haltiwanger, "The Aggregate Implications of Machine
Replacement: Theory and Evidence," May 1991 manuscript.

Davis, Steve and John Haltiwanger, "Gross Job Creation and Destruction:
Microeconomic Evidence and Macroeconomic Implications," in NBER
Macroeconomics Annual 1989.

Griliches, Zvi and J. Mairesse, "Comparing Productivity Growth: An Exploration of
French and U.S. Industrial and Firms Data," European FEconomic Review 21
(March/April 1983): 89-119.

Hamermesh, Daniel "Labor Demand and the Structure of Adjustment Costs," American

31



Economic Review 79 (September 1989): 674—689.

Ramey, Valerie, "Nonconvex Costs and the Behavior of Inventories," Journal of
Political Economy 99 (April 1991): 306—-334.

Ramey, Garey and Valerie Ramey, "Technology Commitment and the Cost of Economic
Fluctuations, " NBER working paper 3755, June 1991.

Rosenberg, Nathan, Inside the Black Boz, Technology and Ecomomics, Cambridge:
Cambridge University Press, 1982.

Wards' Automotive World, various issues.

Wards Automotive Yearbook, various years.

32





