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Asset Pricing Model

1. Introduction

The investment return is the marginal rate at which a
firm can transfer resources through time, by increasing
investment today and decreasing it at a future date, leaving
its production plan unchanged at all other dates. This
paper examines whether  cross-sectional and time-series
variation in asset returns can be explained by a factor
pricing model with investment returns as the factors.  The
basic idea is to infer the presence of systematic shocks by
watching  firms’  investment  decisions, just as  the
consumption-based model tries to infer the presence of
systematic shocks by watching consumption decisions.

This paper extends the work in Cochrane (1991a), which
only tried to explain time-series variation in a single
asset return. The techniques I use to estimate and test
dynamic, conditional factor models are derived from the work
of Hansen (1982), Hansen and Singleton (1982), Hansen and
Richard (1987) and Hansen and Jagannathan (1991a). Knez
(1991) and Snow (1991) use similar techmiques to study
factor pricing models; Braun (1991) uses them to investigate
consistent pricing of asset and investment returns; DeSantis
(1992) uses them to study international capital market

integration. Cochrane (1992) contains a more detailed



presentation of the methodology, and its connection to more
traditional  specification and  testing of asset pricing
models.

The investment return factor model is an example of a
production-based asset pricing model. Section 2 explains
the idea and philosophy behind production-based asset
pricing models. Section 3 shows how to construct investment
returns from investment data. Section 4 describes the
factor model that wuses investment returns as factors.
Section 5 describes the empirical methodology, which is a
straightforward application of GMM.  Section 6 extends the
analysis to include conditioning information; it shows how
to test a dynamic, conditional factor pricing model by
including scaled returns and scaled factors. Section 7
shows how the stochastic discount factor representation used
in the paper is equivalent to traditional statements in
terms of factor betas and risk premia; it shows how the
scaled factor models are equivalent to quite general
variation in conditional factor betas and risk premia.
Section 8 estimates and tests the investment return model,
and section 9 compares it with the consumption-based model,
the CAPM and the Chen, Roll Ross model. Section 10 contains

some concluding remarks.



2. Motivation for Preduction-based asset pricing models

Every asset pricing model that precludes arbitrage can

be summarized by
p = E(m x)

where

price today

random payoff at a future date
m = stochastic discount factor,

or, since we usually use returns,

1 = EmR) . @
Asset pricing models differ in how they relate the
stochastic discount factor m to observables. For example,

the capital asset pricing model (CAPM) is equivalent to
m = a + b market return é)

the APT and observable factor pricing models are equivalent

to
m = linear combination of factors; 6)

the consumption-based model and general equilibrium models

are based on
m=p u’(ct)/u’(ct_l).

Production-based  asset  pricing models have two
distinguishing characteristics: - 1) They relate the

stochastic discount factor m to a function of production



data--output, investment, capital stock, inventories, etc.
2) They use as few preference assumptions as possible. They
are, as much as possible, based on firms' adjustment of
investment, output, etc. to changes in asset markets, rather
than consumer’s saving and asset allocation decisions.

The purpose of a production-based asset pricing model
is to explain and model the relation between asset returns
and economic fluctuations. There is a great deal of
empirical evidence for such a link: the same variables
forecast stock returns and GNP, stock returns are associated
with contemporaneous and subsequent economic activity,
expected returns are related to the covariances of returns
with macroeconomic variables. For this purpose, there is
reason to hope that production-based models may perform
better than other asset pricing models currently popular in
finance and macroeconomics.

In traditional asset pricing models, such as the CAPM
and APT, expected returns are explained by the behavior of
other returns. Though these models may successfully capture
variation in expected returns, they will never help to
explain it. To say that the expected return on a given
asset varies over the business cycle because (say) the
expected return on the market varies leaves unanswered the
question, why does the expected return on the market vary?
To explgin variation in prices, it is necessary to examine
models that tie prices to quantities,

Asset pricing models that use ad-hoc macroeconomic



factors in combination with asset return factors,are also
used to capture business-cycle related variation in expected
returns (for example, Chen, Roll and Ross (1986), Ferson and
Harvey (1991)). The investment return model derives the
variables that should be the true "macro factors”, and uses
no "proxies” for factors based on asset returns. It thus
has the advantages and disadvantages of any
economically-derived model when compared to ad-hoc models.

The consumption-based model ties asset returns to
non-durable consumption data (see among many others, Lucas
(1978), Hansen and Singleton (1982); Ferson (1992) contains
a review). In principle, it is exactly the framework we
need to tie asset returns to economic  fluctuations.
However, despite a tremendous specification search, the
consumption-based model has not fared well empirically. In,
part, this poor performance is due to the facts that
non-durable consumption growth barely moves over the
business cycle, and it is very poorly correlated with stock
returns.

A hunch motivating production-based models is that
aggregate consumption may be de-linked from asset returns at
business cycle frequencies due to small transactions costs,
as it is at a minute-by-minute level. (Cochrane (1989),
Cochrane and Hansen (1992) and Luttmer (1992) contain
calculations and literature reviews). If this is true, no
transformation of nondurable and services consumption

growth, by any utility function, will provide a useful



benchmark for asset returns. Consumption data will simply
be uninformative about high frequency movements in asset
returns.

Production-based models exploit the firm’s first order
conditions as the consumption-based model exploits the
consumer’s first order conditions. The model in this paper
basically inverts a return version of the q theory of
investment to read expected asset returns from investment
data, as the consumption-based model inverts the standard
theory of consumption and saving to read expected asset
returns from consumption data. One can hope for better
empirical performance, since production variables do display
a substantial cyclical fluctuation (they define it), and
they are more highly correlated with stock returns than is
non-durable consumption. Furthermore, it is reasonable to
hope that the transactions and information costs that seem
to de-link consumption from asset returns at business cycle
frequencies are less important for firms, due to their
larger size.

General equilibrium asset  pricing models with
production are derived by substituting equilibrium relations
between consumption and production variables into the
consumption-based model. (A few examples related to the
concerns in this paper are Brock (1982), Balvers, Cosimano
and MacDonald (1990), Rouwenhorst (1990), Sharathchandra
(1991), Detemple and Sundaresan (1991).) They do tie asset

returns to production variables. However, they impose



preference structures (typically log utility and
frictionless 1mmarkets) that are rejected wusing consumption
data, and it is hard to trace what part of their predictions
are due to preference vs. technology assumptions. They both
allow and require us to take a stand on the ultimate sources
of shocks (Technology? Money? ..), rather than infer the
effect of shocks on asset markets through consumption or
investment behavior,

Understanding the link between asset returns and
economic fluctuations, by identifying and modeling the
economic risk factors that determine expected returns, is
the central task of asset pricing. There is an enormous
literature that documents and characterizes variation in
expected returns over time and across assets, but as yet no
completely satisfactory class of models for the risk factors
that drive this variation in expected returns. As a result,
much of empirical finance winds up in a fruitless debate
over whether variation in expected returns is due to
as-yet-unnamed risk factors, or due to “fads” (see Cochrane
(1991b) for an extended discussion). A new class of models
for risk factors is obviously useful for finance.

The relation between asset returns and economic
fluctuations is also a long-standing concern of
macroeconomics. Most  obviously, macroeconomists are
interested in how changes in the stock market affect
investment, A comparison of this paper with the empirical

q-theory literature (for example, Abel and Blanchard (1982);



sce Hubbard and Kashyap (1992) for a recent example and
literature  review) suggests that investment responds to
changes in risk premia that the empirical finance literature
has found to dominate changes in expected returns. Most
g-thecory models specify constant risk premia, and try,
without much success, to explain changes in investment from
changes in risk-free rates. The large residual in standard
q tests is often interpreted as evidence for asymmetric
information problems or credit constraints; the relative
success of the model presented here may help to rehabilitate
the neoclassical view.

More generally, macroeconomists are interested in the
links between asset returns and fluctuations for the
information they can provide about preferences, technologies
and market structures that will be useful in the
construction of macroeconomic models. Production-based
asset pricing models can provide information  about
technologies and market structures faced by firms, just as
consumption-based asset pricing models are a proving ground
for preferences and market structures faced by consumers.
For example, one lesson of this paper is that an adjustment
cost (or some wedge between the price of installed and
uninstalled capital), currently not included in most real
business cycle models, is necessary to reconcile investment

and asset returns.



3. Investment Returns: Definition and Construction

To construct investment returns from production data, I

use adjustment cost technologies of the following form,

yt = f(kt,lt) - c(lt,kt) (7)

kt+1 = (1-5)(1:t + lt) (8)
where

yt = output

f(kt’lt) = production function
kt = capital stock

1t = labor input
it = investment
Jd = depreciation rate

c(it’kt) = adjustment cost function.

The adjustment cost reflects the fact that it’s hard to
produce in periods of high investment. For example, it’s
hard to write papers when the painters are in your office.

The one-period investment return is the amount of extra
output the firm can sell at t+1 if it invests an additional
unit at t, leaving sales at t+2 t+3, .. unchanged. Section
1 of the Appendix goes through the algebra to show that the
one-period investment return for the technology specified in
(7)-(8) is given by

1 + fk(t+1) + ci(t+1) - ck(t+1)
Rt+1 = (1-9) .9
1 + ci(t)




etc.

The denominator 1+ci(t) in (9) reflects the fact that
some output is lost to adjustment costs when increasing
investment at time t. The extra time t investment gives
rise to extra capital stock at t+1; fk(t+1) is the extra
output that results from the extra capital stock. ck(t+1)
represents the change in adjustment costs at t+1, since the
capital stock at t+1 is higher. At t+1, the firm must lower
investment, to restore the capital stock at t+2 to its
original value., The lowered investment means that more can
be sold. 1+ci(t+1) represents these lowered investment
expenditures.

I use the following parametric specification of

technolo gy:2

i
_ o t .
Y, = mpk l(t + mpl 1t ) [i(—t ]lt. (10)
In this case, the investment return (9) becomes
Rl T+mpk+al | /k  pra2G, / t+1)
Ry~ - 11
1+c\z(it / kt)

Though this function is mnot pretty, the investment return is
approximately proportional to growth in the

investment/capital ratio, or, since capital does not vary
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much, growth in investment. J and mpk control the mean
investment return; « affects the mean and the variance.
Ad-hoc models using either investment growth or growth in
the investment/capital ratio in place of the investment
return (11) perform similarly, so the precise functional
form is mot crucial to the results, Since this technology
is linear in capital, the (marginal) investment return
defined in (11) is also equal to the return from holding a
claim to the capital stock of the firm over the period (see
Cochrane (1991a)).

For given values of the parameters {a,0,mpk}, I form
investment/capital ratios by accumulating capital according
to equation 8) starting from the steady-state
investment/capital ratio. That ratio is the solution to (8)
with constant investment growth equal to the mean investment
growth,

i 't

= E[i—]/(l-é) -1;

t-1
Then, given « and mpk, I construct the investment returns

from their definition (11).

4. Factor model.
As mentioned above, absence of arbitrage implies that

there exists a strictly positive stochastic discount factor

m, such that any asset return R obeys

11



1 = EmR (12)

E can be interpreted as a conditional or unconditional
expectation. I will be specific about conditioning
information below.

Absence of arbitrage between asset markets and real
investment opportunities (the firm’s first order condition
for profit maximization) implies that the investment return
RI of any production technology (a function of investment,

output etc. data) must also obey

] = Em RY, a13)

or, more precisely, that there is a discount factor m that
satisfies both (12) and (13). (Section 1 of the Appendix
presents a derivation of (13).)

This observation leads immediately to two sets of
testable implications. First, one can expand the space of
returns on which one tests any asset pricing model (model
for m) to include investment returns. Second, ome can test
for absence of arbitrage or consistent pricing between the
set of asset and investment returns, by trying to construct
positive m’s that satisfy equations (12) and (13). Braun
(1991) follows this approach.

This paper concentrates on gssef pricing. What can we
learn about asset returns R from investment returns RI? The
restriction I study is a factor pricing model, namely: The

investment returns are factors for the asset returns.
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Stated more formally, the law of one price (two
identical payoffs must have the same price) implies that
there is always a discount factor m that is a linear
combination of the investment and asset returns and that
prices both:3 there is always an
1

m = ZbiRi + ijRJ

1 ]
such that

1 = E(m Ri) and 1 = E(mR?) .

for all asset returns Ri’ investment returns Rj'
The factor pricing xnodcl4 is the restriction that the
discount factor is only a function of the investment

returns:

m = TbR! (14)
.

(This is equivalent to the traditional statement in terms of
factor betas and risk premia; see section 7). It is also
equivalent to the statement that the investment returns span
the mean-variance frontier of investment and asset returns.

Why should investment returns be factors for asset
returns?  There are two ways to derive any factor pricing
model, First, one can assume that the space of returns
(payoffs) under study has a factor covariance structure, and
then appeal to arbitrage arguments. For example, we could
assume that the firms on the NYSE are claims to different

combinations of N production technologies, plus
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idiosyncratic components that have small prices. Second, we
could invoke assumptions on preferences under which the
returns on the N active production processes, which are the
only non-diversifiable payoffs in the economy and add up to
aggregate wealth, are the factors that price all other
assets (for example, see Cox, Ingersoll and Ross (1985)).5

Motivated either way, the factor model studied in this
paper is not a pure production-based asset pricing model. A
pure production-based model would use no assumptions on
preferences or restrictions on the space of asset returns,
and read any asset return off producer’s first order
conditions, just as the consumption-based model uses no
technology assumptions (i.e. is valid for any production
technology) and reads  asset prices off consumer’s
first-order conditions. Such models are possible, but the
model described here does not quite reach this ideal.

The number and nature of the intertemporal technologies
that drive asset returns, or, equivalently, the appropriate
level of aggregation of the capital stock, is a modeling
choice. "My car” and "your car” are both ways of getting
consumption services from today to tomorrow, but hopefully
their behavior across states of nature that affect asset
returns is sufficiently similar that we can aggregate them
into "cars”. However, there is no reason to believe a
priori that all the intertemporal investment opportunities
in the economy will be summarized by one or two aggregated

production functions.  This paper follows the "spirit of the
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APT” that there are only a few factors, but this is an
additional modeling assumption, not a prediction of the
theory; models with  highly  disaggregated  investment

opportunities may turn out to be more useful for some

purposes.

5. Empirical Methodology

The above statement of the factor pricing model maps
naturally into the GMM framework for estimation and testing.
I use excess returns (return differences, not necessarily
returns less a risk-free rate proxy) to focus on variation

in risk premia. Therefore, the moment conditions are

0= E(ch) R® = vector of excess returns. (15)
Using excess returns, the mean discount factor is not
identified: if 0 = E(mR®), then 0 = E((constant * m)R%). It
is convenient to normalize so the sample mean discount

factor is 1. Thus, we can reexpress any factor model
m = b f = vector of factors

in terms of mean zero factors as
m=1+ b
f = f-E(f) = vector of de-meaned factors (16)

Following the standard GMM procedure (Hansen (1982),

Hansen and Singleton (1982)), we choose the parameters b to

15



minimize a weighted combination of the sample moments (15).

Using Hansen’s notation,

min J. = g . Wg an
T ! " &1
{b}
where
gr = EL@R") = E.®° (1 + TD);

T

E sample mean, % Y
t=

T

1
W = weighting matrix.

Since the parameters b enter linearly, we can find

their estimates analytically6 rather than by search,

b =-ccwolow ET(RC) (18)
with
= %>
C = ET(R 7).
This estimate has a natural interpretation. The moment
condition
0 = EmR®% = ER® + ER*F)b (19)

states that mean returns should be a linear function of the
covariances of returns with factors, The estimate of b in
equation (18) is the coefficient in the GLS regression of
expected returns ET(RC) on covariances C -- a natural way of
making expected returns "as close to” linear in covariances
as possible.

The GMM distribution theory (Hansen (1982)) gives an

16



asymptotic joint normal distribution for 3.7 Hence, t tests
on individual b’s or x2 tests on groups of b’s can be used
to test whether a factor or group of factors is priced. If
a factor is not priced, it does not affect m, so its b
should be zero. The GMM distribution theory also provides a
x2 test whether the minimized value of the objective (17) is
significantly different from zero, i.e. of the null that the
moments E(mRe) are equal to zero 0. This test is known as
the JT test or the overidentifying restrictions test. It is
the basic test whether we can statistically reject a given
observable factor model against a non-specific alternative.

It is also interesting to test a model against specific
alternatives, i.e. to ask “given factors a,b,c.., is factor
x (or are factors x, y and z) priced?” There are two ways
to perform such tests, corresponding to Wald and Likelihood
ratio philosophies. Start with a general model that
includes both sets of factors. First, we can use the t or
x2 tests for b=0 to test if a given factor or group of
factors is not priced in the presence of the other factors.
Second, we can compare the overidentifying restrictions of a
restricted system that excludes a given set of factors to
the overidentifying restrictions of the unrestricted system
that includes all factors. If the excluded factors are not
priced, the JT should not rise much. Precisely, if we use
the same weighting matrix to estimate both systems (I use
the weighting matrix from the unrestricted system) the

difference in JT statistics has a x  distribution, with

17



degrees of freedom equal to the number of omitted parameters
(Newey and West (1987b)).

When the factors are investment returns, I additionally
estimate the production function parameters. Since these
parameters enter nonlinearly, a search 1is required. The
programming is harder, but the GMM methodology extends

trivially.

6. Conditional estimates and conditional factor models

So far, I have considered unconditional factor models,
and estimates of unconditional moments. The effects of
conditioning information are easily included by scaling the
returns and/or the factors by instruments. Specifically, to
test the conditional moments

0 = E(m,, ,R®

e+ 1Re+1 1 1> (20)

we expand the set of returns to include returns scaled by
instruments, and then proceed as before; i.e. we use the

moment conditions
_ e
0 = E(mH_1 (Rt+1 ezt)). ztEIt 1)

where @® denotes the Kronecker product (multiply every asset
return by every instrument), To test a model in which the

factors conditionally price assets, we¢ e¢xpand the set of
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factors to include factors scaled by instruments,

m

= V', 22

t+1 t

To show how scaling returns works, or that (21) tests
(20), multiply both sides of (20) by z, and take
unconditional expectations.8 Conversely, if (21) holds for
all variables z, in an information set It’ then (20) holds.9
Thus, expanding the payoff space to include scaled returns
as in (21) can test all of the implications of (20), so that
no generality is lost in principle. Of course, the wusual
instrument selection problem remains, since we cannot in
practice test (21) with every variable observed at time t.

To motivate scaling factors, note that we have supposed
so far that the discount factor m is a fixed linear
combination of a given set of factors. However, the
discount factor m might be a linear combination of factors
with weights that vary as a vector of instruments z varies

across different information sets,

m o4y = bEE Ly

Again, it is sufficient to consider b’s that vary linearly
with the instruments, since nonlinear functions can be
expressed as linear functions of additional instruments.
Thus, with one instrument 2z, and dropping the time

subscripts, the conditional factor model is
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m = (bO + zb.)’f,

1

But scaling the factors f by the instruments z achieves the

same result. The last equation is equivalent to

m = bOf + bl(fz).

= b'(fez).

Therefore, given the choice of instruments, performing
the GMM estimation and testing with scaled factors is in
principle a completely general test of a dynamic,
conditional factor pricing model based on the instruments.
Again, the only complaint one can make is that more or other
instruments (or functions of instruments) should have been
included.

One can form any combination of conditional and
unconditional estimates (including scaled returns or not)
and conditional and unconditional factor model (including
scaled factors or not). For example, scaled factors without
scaled returns tests the unconditional implications of a
conditional factor model. These are different than the
unconditional implications of an unconditional factor model,
since  the latter does not include scaled factors.
Henceforth, I will refer to "scaled factor models” rather
than “conditional factor models” to distinguish the two
cases.

The models with scaled factors do not eliminate the

20



problem that consumers may observe finer information sets
than we do. A conditional factor pricing model with respect
to a fine information set does not imply a conditional
factor pricing model with respect to a coarser information
set, or an unconditional factor model. Equivalently,
conditional = mean-variance  efficiency  does not  imply
unconditional mean-variance efficiency, though the converse
is true (Hansen and Richard (1987)). Thus a rejection of
any factor model that is derived as a conditional factor
model with respect to consumer’s information may still be
attributed to an insufficiently rich set of instruments.
However, scaling factors does provide a very easy method for
estimating and  testing  generally  specified  conditional

factor pricing models given an information set,

7. Relation to traditional statement of factor models

The statement that the discount factor m is a linear
function of factors is equivalent to the conventional
statements of factor pricing models in terms of betas and

factor risk premia. Precisely, the scaled factor model

m = (fez)’b, (22)

together with the conditional pricing relation

1 = EmRI|D (23)

for an information set I such that z € I, implies the

21



traditional statement of a factor pricing model.

ER®|D = cov®Se | D) EGP | D7) (1) EGfm | 1) / Em | D).
ER°|D) = pay AD :
i.e., B(I) = multiple regression coefficients of R® on f,
conditional on I, and A({) = vector of conditional factor

risk premia.  The p1'oof10 just consists of recognizing b as
the (conditional) regression coefficient of m on f
substituting the formula for the regression coefficient in
the pricing relation (23), and rearranging.

Conversely, if expected returns are linear in the
conditional regression coefficients of returns on  some
factors, then there exists an m of the form (22) that prices
assets, (23). (It is not unique, since one can add any
random variable conditionally orthogonal to returns to m.)

In this way, the inclusion of scaled factors can model
arbitrary variation in conditional betas and factor risk
premia A, subject only to the choice of instruments. Most
tests of factor pricing models include auxiliary
assumptions, such as constant conditional betas, constant
conditional factor risk  premia, constant conditional
covariances, etc. Furthermore, the factors do not have to
be conditionally mean zero (white noise), conditionally or
unconditionally orthogonal, or conditionally or

unconditionally homoskedastic, as is often assumed.

22



8. Estimation and testing of the investment return factor

model.

8.1 Set-up

I use a simple specification of the investment model.
There are two investment technologies, corresponding to
gross  private  domestic  nonresidential and  residential
investment (CITIBASE series GIN82 and GIR82. (Section 2 of
the Appendix details the sources and transformations used
for all data series.) I assume that each investment series
corresponds to a technology of the form (10), so that its
investment returns are given by (11).

For asset returns, I use the 10 portfolios of NYSE
stocks sorted by market value (size) maintained by CRSP.
There is a large spread in the mean returns of these
portfolios: the small firm decile’s mean excess return is
almost twice that of the large firm decile. Any asset
pricing model must explain this spread in mean returns by
spread in assets’ covariance with risk factors.

Since the investment returns are based on quarterly
average investment, I transformed the asset returns to
quarterly average returns rather than use end-of-quarter to
end-of-quarter returns. I include moment conditions for
investment returns along with the moment conditions
generated by asset returns, since both sets of returns
should be correctly priced. I created excess returns by

subtracting the three month t-bill rate in each case.
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I use two instruments: the default premium (yield on
BAA corporate bonds - yield on AAA corporate bonds), and the
equally-weighted dividend/price ratio. These instruments
are popular forecasters of stock returns. In the
first-stage estimation, the moments corresponding to scaled
returns are treated equally with the non-scaled returns, so
it is convenient that the scale of the two is roughly
comparable. To this end, I transformed the instruments to
have a mean of 1 and a standard deviation of 0.2, To avoid
overlap with the averaged return series, 1 lagged the
instruments twice.

If we allow all of the production function parameters
{a, J, mpk} to vary, the system is over-parameterized.
Examining the definition of the investment return (11), the
parameters d and mpk basically affect the mean of the

investment return, while o« affects the mean and standard

deviation. None of the parameters substantially affects the
cross-correlation of investment returns with other
variables; these are basically given by the

cross-correlation  of  investment growth  with the other
variables. Furthermore, the mean and standard deviation of
the factors are not separately identified,11 so three
parameters contrcl one  moment. As a result, the
minimization surface has a wvalley in it, and the program
soon crashes with a singular gradient matrix
agT([a,é,mpk])/a[oz,é,mpk]. Therefore, 1 present results in

which « and & are held fixed, minimizing only over mpk. I
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tried choosing each of the parameters, and the pricing
results are very similar, though the actual parameter values
are obviously different. Also, choosing the parameters
sequentially (first @, then mpk, etc.) leads to the same
general results,

The tables present results using 4 Newey-West (1987a)
lags (k=4 1in the notation of footnote 7) to construct
standard errors.  The standard errors are generally a little
smaller with k=0, but the results overall are not much
changed, indicating little autocorrelation of the residuals.
The tables present only the iterated GMM estimates and
tests. In most cases the first-stage and second-stage

estimates and tests yield similar results.

8.2 Estimates and tests of the investment model

Table 1 presents estimates and tests of the investment
return  factor model. Start with the simple unconditional
estimate of the non-scaled factor model, panel 1A. The
marginal product of capital parameters mpk are plausible and
highly significant. = They have about the same value (0.05 -
0.06) and are highly significant in all the following

estimates. The estimates and tests of the b’s measure
whether the investment return factors are priced.12 The
residential factor is significantly priced (t = -2.78),
while the nonresidential factor is not (t = 1.10). They are

jointly significant (p-value for joint b=0 is 2.08%).

Finally, the JT test of overidentifying restrictions does
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not reject the model (p-value 54.3%)

The conditional estimates (panel B) are formed by
adding scaled returns. Since there are two instruments and
a constant, this triples the number of moment conditions,
which should sharpen the estimates. It also asks the
interesting question whether the model can account for
variation in expected returns over time as well as across
assets. In this estimate, both investment return factors
are now individually significant (¢ on b 3.47 and -9.78),
and jointly highly significant (p value < 0.000%). However,
the JT statistic now convincingly rejects the model (p-value
0.006%).

The natural solution is to include scaled factors, to
test a conditional version of the investment return factor
model,13 panel 2. Now there is a factor and a coefficient b
corresponding to each factor multiplied by each instrument.
These scaled factors are individually and jointly highly
significant. Also, the residential and nonresidential
factors are significant as sub-groups, as are the scaled and
non-scaled factors. Now, the JT test does not reject
(p-value 24.9%).

Figure 1 presents a graphical measure of the non-scaled
factor model’s fit. It plots the model’s predictions for
expected returns vs. the sample expected returns. The solid
dots are the predictions of the unconditional estimates
(panel 1A table 1), so each dot corresponds to a size decile

portfolio or an investment return. The triangles correspond
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to the predictions of the conditional estimates (panel 1B
table 1), so each triangle represents a size decile return
or investment return scaled by an instrument (including
one). The figure shows how the model does a pretty good job
of predicting the cross-sectional variation of expected
returns by variation in the covariances of returns with the
investment returns (the dots lie pretty close to the 45°
line), and how the model does a less good job of explaining
the variation in expected scaled re:turns.14

The returns on the bottom left of Figure 1 are the
investment returns. Their placement is not an essential
feature of the model. It is easy to produce investment
returns that lie farther apart or at different places along
the line in Figure 1, yet price about as well, by different
choices of the fixed parameters « and §.

Figure 2 presents the mean excess returns vs. model
- predictions for the scaled factor model. Comparing Figure 2
with Figure 1, the scaled factor model looks much better,
especially at pricing the scaled returns, i.e. in its

implications for variation in expected returns over time.

9. Comparison with other models

The overidentifying restrictions d test the

T
investment return model against no specific alternative.

But all currently available non-trivial models (including
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the investment model) can undoubtedly be rejected if one
uses a sufficiently rich set of assets and instruments.
Therefore, in evaluating a model and learning how one might
improve it, it may be more interesting to compare a given
model to plausible competitors, rather than simply reject or
fail to reject it.

In this section, I compare the investment return model
to the CAPM, the Chen, Roll and Ross factor model, and the
consumption-based model. In each case, I estimate and test
the competing model, in the style of table 1 and Figures 1
and 2. Then, I estimate models that include both
investment return and the other factors, to see which set of

factors is priced in the presence of the other.

9.1 CAPM
The CAPM is a single factor model with the market

1
return RIn as factor, >

m constant + Rm b.
Thus, it trivially maps into the factor pricing-GMM
framework outlined above.

Table 2 presents GMM estimates and tests of the CAPM.
The CAPM behaves about the same way as the investment model.
In the unconditional estimate of the non-scaled model, the
market return is significantly priced (see t and xz on b)
and the  unconditional 7, test of  overidentifying

T
restrictions does mnot reject. In the conditional estimate,
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the market return is more strongly priced, but the JT test
rejects the model. When we include the scaled market return
factors, the Db’s are jointly significant. Unlike the
investment model, the overidentifying restrictions  are
rejected.

Figure 3 and Figure 4 show that the CAPM performs about
as well as the investment model, Figure 1 and Figure 2. As
is traditional, the worst performance occurs with small
firms--the top dot, which 1is the first decile, is the
farthest nonscaled return (dot) away from the 45° line in
Figure 3. However, the small firm effect disappears
entirely once we include scaled market returns as factors,
Figure 4. Thus, the apparent small firm effect may simply
be due to inadequate treatment of conditioning information.
Most derivations of the CAPM specify that the market is
conditionally, but not unconditionally, mean-variance
efficient, so this result is not too surprising. (It may
also be due to a failure of the CAPM--none of the other
models display a small firm effect.)

Do the investment returns drive out the market or vice
versa? In a factor model that includes both the market and
the investment returns, which are significantly priced?  The
row marked "VW” in Table 3 presents tests based on a model
that includes both investment return factors and the market
to address this question, as explained above.

In the wunrestricted model, the b’s corresponding to

scaled investment returns are highly significant (p value



0.003 %). However, the scaled market returns are not priced
in the presence of the scaled investment return (p value
29%). The "likelihood ratio” test, formed by the rise in x2
statistic for constrained vs. unconstrained models, tells
the same story. The model that excludes the scaled
investment returns is rejected (p-value < 0.000%), while the
model that excludes the scaled market returns is not
rejected (p value 29%). Thus, the investment returns drive

out the market return, and not vice versa.

9.2 Chen, Roil Ross model

The Chen, Roll Ross (1986) (CRR) model was explicitly
designed to link stock returns to economic fluctuations, and
Chen, Roll and Ross claim that their model drives out the
market return. Thus, it is an important alternative model
to examine. Chen, Roll and Ross advocate a five-factor

model, in which the factors are

MP = growth in industrial production

DEI = change in inflation forecast

UI = inflation forecast residual

UPR = return on corporate bonds - return on 10 year
government bonds

UTS = return on 10 year government bonds - return on

bills.

They advertise these variables as “macroeconomic factors”,

though in fact all but MP are based on asset returns, just
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like the CAPM (the inflation forecasts are based on T-bill

returns).

Table 4 presents GMM estimates and tests of the CRR
model.16 In the unconditional estimate, the CRR factors are
individually and jointly (barely) insignificant. However,

in the more powerful conditional estimate, three factors are
individually significant, and all the factors together are
jointly significant. Both models are not rejected by the JT
test for overidentifying restrictions.

It is not clear whether Chen, Roll and Ross intend
their model as a conditional or unconditional factor model.
Their test allows some variation in betas, but imposes
constant factor risk premia (lambdas), and they only attempt
to explain unconditional expécted returns. Nonetheless, I
include a scaled Chen, Roll and Ross model in table 4, and
compare the scaled investment model to a scaled CRR model.

This model is suspiciously overparameterized, since it has

15 scaled factors to explain 30 moments. The factor b’s
are mostly individually insignificant, However, they are
jointly significant, The scaled factor b’s are significant

and the unscaled factor b’s are not, suggesting that scaling
is important for the CRR model. The overidentifying
restrictions test is in the “too good to be true’ tail
(p-value 96.8%).

Figures 5 and 6 present mean returns vs. model
predictions for the Chen, Roll and Ross model, to allow

comparison with the investment model and CAPM.17 The CRR
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model performance is very similar to the investment model
and CAPM.

The row marked "CRR” in Table 3 presents a comparison
of the investment model with the CRR model. As with the
CAPM, the scaled investment return b’s are significant,
while the scaled CRR b’s are not. Similarly, we reject
dropping the investment return factors but not dropping the
CRR factors. Thus, the investment model drives out the CRR

factors and not vice versa, as with the CAPM.

9.3 Consumption-based model

The consumption-based model is perhaps the most
appropriate comparison. Like the investment model, the
consumption-based model relates asset returns strictly to
macroeconomic data rather than other asset returns. It is
based on a measure of consumers’ intertemporal marginal rate
of substitution where the investment model is based on a
measure of  firms’®  intertemporal — marginal rate  of
transformation.

Table 5 presents GMM tests of the  basic
consumption-based model, and Figure 7 gives the mean return
vs. predictions of the consumption based model.18 The
consumption-based model performs much worse than any of the
other models studied so far. The expected return scatter is
dramatically larger in the figures. While the conditional
J.. test is not rejected,19 the probability value is lower

T
than for the other models. The table shows the large point
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estimate of the risk aversion coefficient familiar from the
equity premium puzzle literature.

The row marked “consumption” in Table 3 presents a
comparison of the investment model with the
consumption-based model. The unrestricted model here
contains the scaled investment returns and consumption
growth raised to a risk aversion coefficient. The
coefficient of m on the consumption factor is not
constrained to one. Again, the “"likelihood ratio” test
finds that the investment returns drive out the
consumption-based model. The b=0 test finds that the
investment returns are priced at ridiculous levels of
significance (x2 = 479 with 6 degrees of freedom), but also
finds that the consumption-based discount factor is priced.
However, the latter result is not stable: in the first stage
estimate the test for consumption b=0 yielded a p-value of
29% rather than 0.11%, and in the second stage it was 53%.
Furthermore, the risk aversion coefficient in the iterated
GMM estimate was -269, making it harder to take the

. . 20
consumption factor seriously.

10. Concluding remarks
The simple investment return model performs

surprisingly = well, The investment return factors are

significantly priced, the model is not rejected, it is able
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to explain a wide spread in expected returns. The model
performs about as well two standard finance models, the CAPM
and the Chen, Roll and Ross factor model. In comparison
tests, the investment return factors drive out both the
market return and the Chen, Roll and Ross factors. The
investment return model performs substantially better than
the standard consumption-based model.

Even if the investment returns did not drive the other
factors out, the fact that any model whose factors are
derived from economic theory and are based solely on
quantity data is even in a position to challenge the
empirical success of traditional finance models may be
regarded as an encouraging initial success.

In all cases, the scaled factor models perform
substantially better than the non-scaled factor models.
This suggests that time-variation in the parameters of asset
pricing models, which can be handled by the simple expedient
of including scaled factors, is an important ingredient for

their empirical success.

34



Appendix

1. Derivation of investment returns from the production

function.

This section derives the investment return from the
production technology and shows that the firm’s first order
conditions direct the firm to remove arbitrage opportunitics
between investment and asset returns. This derivation
follows that of Braun (1991); Cochrane (1991a) presents a
derivation of the investment return directly from its
definition as the marginal extra sale possible tomorrow from
a marginal investment today.

The firm has the production technology given by
y, = fk,l) - ol k) )

kt+1 = (1-5)(kt + lt) ¢))
The firm maximizes its present value,
o
max E Y m . (y, .- ,.
St t,t+j t+j t+
Subject to (7) and (8).

In a complete market, m are the contingent claims

) (24)

prices divided by probabilities, so this present value is
the firm’s time-t contingent claim value. If markets are

less than complete, the firm still maximizes (24), but m is
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now an extension of the stochastic discount factor that
prices asset returns, rather than the stochastic discount
factor for the whole economy.

We derive the first order condition by varying it'
Note that

81:t +J./81

Hence,

a-6y .

t

Oy gyl = (@, 10k, ) @k, Joi)

= (18 @+ - o @+,

The notation fk(t) means "partial derivative with respect to
k, evaluated with respect to the appropriate arguments at
time t”, fk(t) = 9fk t,1 t)/ak % The first order condition

is then

[o, <] N
L+ c® = EtjEI M s (1-8y (E (4] - c t+D). (25)

Notice the left hand side is the relative price of a
unit of installed capital vs. output today; the right hand
side is the present value of its benefits.

We desire a model of returns, rather than price and

present value. Using m break the

tt+j - Tt 1Tt e+
right hand side of (25) into two pieces,

1 + ci(t) = Et[ mt,t+1 (1-5)[ fk(t+1) - ck(t+1) +
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oo

DI N (1-0) (f (e +1+j) - ck(t+1+j))]]

Substituting (25) at time t+1 for the sum in the right hand
side,

1 + ci(t) =

Et[ mt,t+1 (1-(5)[ fk(t+1) - ck(t+1) + 1 + ci(t+1)]]

1 + fk(t+1) + ci(t+1) - ck(t+1)
1= Et[mtt+1 (1-6)
’ 1 + ci(t)

or

1 =E|m RI

TRt tt+1 e+l

with

I 1 + fk(t+1) + ci(t+1) - ck(t+1)

R4 = 10

1 + ci(t)

For some production technologies it is not possible to
summarize the price - vs. present value absence of arbitrage
(25) in a single period investment return. For example, if
the adjustment cost depends on p lags of investment, then a

p-period investment strategy must be considered.
2. Data description

All asset return data are from CRSP. NIPA data and
yield data are from CITIBASE. The two investment returns
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are based on CITIBASE series GIN82 and GIR82. The stock
return series are based on CRSP series EWRETD, VWRETD, and
the size decile return seriecs DECRETIL...DECRETI0. The
default premium is based on CITIBASE series FYBAAC-FYAAAC.
Quarterly data are obtained by using the last month of the
quarter. EW d/p is based on CRSP EWRETD and EWRETX, the
equally  weighted portfolio returns with and  without
dividends. @ The returns are cumulated for a year to avoid
the seasonal in dividends, then EW d/p = annual EWRETD /
annual EWRETX - 1. Again, the last monthly observation in
each quarter is the quarterly observation.

The investment data are quarterly averages, while the
asset return data are point-to-point, To correct for this
difference, I averaged monthly asset returns over the
quarter to correspond with the investment 1'<:tu1'ns.21 Thus
the second quarter return is an average of returns from the
last day in December to last day in March, last day in
January to last day in April, and last day in February to
last day in May. Instruments for the second quarter return
are all observed at the end of December (i.e., all
instruments are lagged twice). Figure A.l1 summarizes the
timing relations among the variables.

I constructed Chen Roll and Ross factors as follows:

MP: the grbwth rate of industrial production. CRR lead
this variable by one month to take account of the fact that
IP is a monthly average and returns are e¢nd-of-month to

end-of month. To make the same adjustment for quarterly
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data, I average IP growth in a similar way to returns.

Thus,
Q@2 MP = In [ IP(apr) IP(may) IP(j un))]
IP(jan) IP(feb) IP(mar
UI, unexpected inflation and DEI, change in expected

inflation. These variables require a expected inflation
series. CRR take their values from Fama and Gibbons (1982).
Therefore, I replicated the Fama and Gibbons procedure to
extend the data set. Fama and Gibbons start with the Fisher
equation
E @ = TB ;- B ®)
I = inflation
TB = T-Bill rate
R = ex-post real rate, Rt = TBt-l - It
They add a univariate time-series model for ex-post real
rates
Ro-Riyp = v+ 8y
Substituting,
E @ = TB ;- Ry
To construct this series, I take Fama and Gibbon’s value of

1-0ut.

8, 0.9923. 1 start with u = 0, then I construct u by

where TBt—l is the one month treasury bill rate and Et-lRt

is the expected real return on T-bills, given by

E R = E R + (1-0.9223)u
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Footnotes

1Substituting (5) or (6) in (4), and using E(ab) = E(a)E(b)
+ cov(a,b) one finds that expected returns are linear in
their covariance with factors. See section 7 for details.

2This technology may seem unduly simple, in that it ignores
imperfect substitutability = between capital and labor,
declining marginal product of capital, productivity shocks,
taxes, and many other features of a plausible production

technology.
As a partial defense for simplicity, many of these
features have second-order effects on the results. Braun

(1991) found this insensitivity in detailed experiments;
Sharathchandra (1991) models a concave technology with
production function shocks and no adjustment costs, and
obtains an essentially constant investment return.
Intuitively, production shocks, changes in the productivity
of capital induced by changes in the capital stock or
employment and tax changes are low - frequency changes to
the “dividend” component of the investment returns. The
adjustment cost is the ”price change” component, (price of
installed vs. wuninstalled capital) which swamps the other
components. Q theory tests based on price vs. present value
rather than returns are much more sensitive to these low
frequency corrections. :

However, this is only a partial defense. Other
features such as gestation lags, changes in the investment
tax credit or depreciation allowances may have large effects
on the results, and using more realistic if more complicated
technologies seems an important area for future research.

It is perfectly possible to include production shocks,
since they (unlike taste shocks) can be measured. One does
not have to believe that all or any shocks to the economy
are not productivity shocks in order to use a
production-based model.
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3Sec, among others, Hansen and Richard (1987). If one
imposes the stricter no-arbitrage condition, m must be
positive, and m in the next equation is not necessarily a
linear function of returns; one may have to include options
as well. See Hansen and Jagannathan (1991a).

4Equation 14 is a factor pricing model. A factor structure
on the covariance matrix of returns is sometimes used to
derive factor pricing, but factor pricing does not imply or
require a factor structure. If we write

R = ER) + ﬂ’RI + error,

factor pricing occurs if the errors have zero prices. A
factor  structure occurs if the errors are uncorrelated.
Uncorrelated errors may imply zero price errors, but the
converse is not true.

5 . .
The central assumption here is that preferences are

time-separable; if they are not, then past investment
returns could affect current asset returns. One could, of
course, account for potential non-separabilities by
including past investment returns as additional factors.
With general preferences in  discrete time, nonlinear
functions of investment returns might also enter m; one can
regard linearity either as an assumption on preferences or
as a first-order approximation.

The first order conditions to the minimization are

%61
ab
Solving, we get (18).

—_— erv,, — y c —_ -
W g = ELRT)Y Wegy=C W ER) + Cb) =0
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7The first-stage GMM estimates use an identity weighting
matrix. Thus,

61 - - cole ET(Re).
Next, construct an estimate of the spectral density at zero
of mR®

A

k
— k_ ljl e Y e "y T b
Sp = L T3 E®A + £b)) R4+ £,607]

i=k k t
The second-stage GMM estimates use this weighting matrix,
A -1 e -1
= - W % Wk . * =
b, (CW*C) CW E. R, W S -

The asymptotic covariance matrix of either estimate is
computed as

var(b) = — | ——— W* — 1 «<’ S-1 C)_1

T | db ab T )

The test for overidentifying restrictions is based on

1 [agT, g1 ];1 _

T JT =T g,i, W g~ xz (DF = #asset returns - #factors)

where is formed using the second stage estimates,

&

g = EqR (14D, ).

I iterated the GMM procedure, by forming a W* using
second-stage estimates, finding third-stage estimates and so
forth.,  Ferson and Forester (1991) find that this procedure
gives better small sample performance. It also produced
results that were more stable across small variations in the
model set-up.

8111 the more general case of returns rather than excess
returns, one must modify the moment condition to include
expected prices rather than 1 on the left hand side: 1 =
E(mR | I) implies E(18z) = Em(R ®2)).
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Note that if z, € I, then zf

in It means every variable, and every measurable function of

€ 1. Thus, "every variable”
t ry

every variable,

10Proof: Recall that the scaled factor model, m = (f®z)’b, is

equivalent to a model in which the factor b’s vary linearly

with z, m = {£b2). This implies that b(z) is the
conditional regression coefficient of m on f,
bz = B¢ | D Ecfm | D). (1)

where I is any information set containing z. Thus,
we can write the factor model for m as

m = fE({f II)‘IE(fm | ). )
The pricing equation (23) implies
(<
e _ 1 _cov(m,R”[|1)
ERID = g@Th "~ EmlD)

Substituting from (2), we obtain
ER|D - /Em |I) =
cov(R,f’ | I) E(ff’ | I)'1 (-1) E(fm | I)/E(m | I)
cmeeeeee BA) e em e A(I) e - -

If there is a conditionally risk free rate, it is Rf(I) =
1/E(m | I). Otherwise, this is the expected conditional
zero-beta rate.

Differencing the last equation for two assets, we can
similarly write a traditional model for expected returns,

ERY|D = cov@®R®f’ |I) E(P |I)'1 (-1) E¢fm | I)/E(m | I)
ER®[I) = ------- B(IY —ee e A - -

48



11Onc: can rescale the factors arbitrarily. If factors f
satisfy the model, i.e. if they satisfy

ER®) = - covRSP)E(F) LE(mf)/E(m)

then factors Af, where A is a diagonal matrix, also satisfy
the same restriction:

cov(R°P A")E(AEPA”) E(mAf/E(m) =
cov®R°P)AA EEr) 1A T AE(me)/E(m).

121t may seem initially surprising that the b’s come in pairs
with one strongly positive and the other strongly negative,
but this is the expected pattern. The discount factor m is
proportional to the minimum second-moment return, which is
on the lower portion of the mean-variance frontier. If the
investment returns are on the upper portion of the
mean-variance frontier, the discount factor m is expected to
be very short one investment return and very long the other.

1?"I'hc: unconditional estimate of the scaled factor model is
suppressed due to low degrees of freedom. Once each factor
is scaled by each instrument, there are ten parameters and
twelve moments. In all such estimates, the parameters were
insignificant and the  overidentifying  restrictions  not
rejected.
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14 . . . .
The figure shows results wusing first stage estimates

because the objective of first stage estimation is precisely
to make the points as close to the 45° line as possible.
The iterated GMM estimate has a different objective: it
wants to minimize statistically informative linear
combinations of the moments 0 = E(m R). Since the returns
are  highly correlated, the iterated estimation  values
differences and differences of differences (etc.) of moment
conditions more than levels.  Thus, it is happy to let the
points drift away from the 45° line in order to minimize
these linear combinations of moments (to make the line
joining them straighter). As mentioned in the text, the
first-stage and iterated estimates and the pricing tests are
usually very similar.

5One can equivalently specify the model with the excess
market return as the factor, or with the market return and
risk free rate or zero beta rate as factors. Note again
that we expect b<O0: the market is on the upper portion of
the frontier, and m is proportional to a return on the lower
portion.  Alternatively, the requirement 1 = E(mRm) implies

b<O.

16Sincc: two of the factors are bond returns, one should in
general also check that the model prices these bond returns
as well as the asset returns. Though I included the
investment returns and value-weighted return in tests of the
investment model and CAPM respectively, I follow Chen, Roll
and Ross in ignoring this implication of their model.

17The unconditional estimate of the scaled CRR model is not
identified, so the dots in Figure 6 refer to the non-scaled
returns in the conditional estimate, unlike the other
figures.
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181 limit my comparisons to the standard time-separable CRRA
formulation, which is about the¢ same level of simplicity as
the investment model. It is possible that one of the many
variations on the consumption-based model, such as habit
persistence, durability, etc. performs better. But it is
also possible that one of the many possible variations on
the investment model, such as production shocks, gestation
lags, etc. performs better still.
The consumption-based model predicts that

= Y
m p(ct/ct_l) ,

regardless of conditioning information, so there is no table
for “scaled consumption-based model”, and no scaled
consumption factors in the comparison tables that follow.

19Hansen and Singleton (1982) rejected this model, and
obtained much smaller estimates of the risk aversion
coefficient.  Hansen and Singleton used monthly data, fewer

assets, and more instruments. When the term premium is
added as an instrument, the consumption model quickly
rejects with very small p-values. If one drops the wide

cross-section of assets, a smaller estimate of yp is
obtained.

20 . . - .

Large risk aversion coefficients mean that the resulting
moments of m are driven by one or two data points, so the
distribution theory may be badly approximated.

211 thank Campbell Harvey for suggesting this transformation.
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Table 1. GMM estimates and tests of investment model

_ I I
1. Non-scaled factor model m = bNRRNR + bRRR
Parameter estimates Tests
mpkNR mka bNR bR mpk=0 b=0 JT
A. Unconditional estimates; 0 = E(mR®)
coef: 5.81 6.33 63.1 -52.7 xz 2580 7.74 6.94
t: 34.4 41.6 1.10 -2.78 DF 2 2 8
%p 0.00 2.08 54.3
B. Conditional estimates; 0 = E(m R®sz)
coef’: 5.93 6.27 77.0 =-66.7 xz 10364 142 72.2
t: 97 89 3.47 -9.78 DF 2 2 32
%p 0.00 0.00 0.006
2. Scaled factor model, conditional estimates; O = E(m Reez), m = b'(RI®z)

Parameter Estimates

e ™Kg Py PR Pypiger PRuger  PNRedasp PRedsp
coef: 5.82 6.34 358 -349  -92.1  90.2 -200 197
t: 121 74.3 4.64 -4.72  -3.60 3.57 -4.88  4.82
Tests
Joint b=0
all non-scaled scaled NR R JT
ey 626 22.3 301 24.0 25.8 32.6
DF: 6 2 4 3 3 28
%p:  0.000 0.001 0.000  0.002  0.001 24.9

Returns Be: 10 CRSP size deciles and 2 investment returns, less T-Bill rate

Investment returns BI: functions of nonresidential (NR) and residential (R)
gross fixed investment. (See equation (11).) Search over production
function parameters mpk, «=3.0, 8= 0.05 throughout. 100xmpk is reported in
the table, i.e. 5.61 for 0.0561

Instruments: constant, default premium (def), equally weighted dividend/price
ratio (d/p).

%p gives the percent probability value, i.e. the percent probability that a

statistic this high or higher is observed, given the null. (Rejection is a
number less than 5% or 1%.). 4 Newey-West lags are used throughout.
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Table 2
GMM test of CAPM

1. Non-scaled model; m = bVHRVV

Unconditional estimate; Conditional estimate;
0 = E(m R®) 0 = E(m R%z)
Parameter Parameter
estimate b=0 test JT test estimate b=0 test JT test
b: -5.54 x2: 15.1 5.30 b: -7.70 xz: 73.9 48.5
t: -3.88 DF: 1 10 t: -8.59 DF: 1 32
%p: 0.010 87.0 %p: 0.00 3.11

2. Scaled model, conditional estimate;

m = b'(vasz). 0 = E(m R%z)

Parameter estimates Tests
VW VW-def VW-d/p Joint b=0 JT
b: 0.47 3.18 -11.7 xzz 124 45.7
t: 0.07 0.97 -2.56 DF: 3 30
“p: 0.000 3.29

Assets Re: 10 CRSP size declles plus value-weighted return; excess returns
using t-bill rate.

Instruments: default premium, equally welghted dividend/price ratio.

4 Newey-West lags are used throughout.
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Table 3.

Model comparison tests

Joint b=0 "Likelihood ratio”
Other Exclude Exclude
Model Investment Others investment? others?
2
VW X 31 3.7 314 3.7
DF [ 3 8 3
%p 0.003 29 0.0 29
CRR xz 17 10 37 10
DF 6 15 8 15
%p 0.8 79 0.001 79
consum- xz 479 11 553 0.25
ption DF 6 1 8 2
%p 0.0 0.11 0.0 88

In each case, I fit an unrestricted model that includes both the investment
factors and the other factors. All models except the consumption model
include scaled factors, and are tested including returns scaled by
instruments.

Joint b=0 tests whether each group of factors is significantly priced in the
unrestricted estimate.

"Likelihood ratio" presents the increase in minimized JT from a model that
excludes a given set of factors over the unrestricted model, using the
welghting matrix from the unrestricted model.

%p glves the percent probability values: numbers less than 5.0 indicate
rejection. "0.0" means “less than 0.000".
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Table 4
GMM tests of Chen, Roll Ross factor model

1. Non-scaled factors; m = b’ (CRR factors)

Parameter estimates Tests

MP DEI 928 UPR UTs Joint b=0 .IT
A. Unconditional estimates; 0 = E(m R®)

b: =-1.71 -17.6 34.3 -50.5 =-13.8 xz 8.79 1.01
t: =-0.29 -0.25 0.87 -1.59 -1.58 DF 5 5
%p 11.8 96.2

B. Conditional estimates; 0 = E(m R%®z)
b: -8.21 -49.9 11.3 -6.27 -11.2 xz 37.4 24.7
t: -4.28 -2.17 1.29 -0.48 -3.66 DF 5 25
%p  0.000 47.7

2. Scaled factors, Conditional Estimates;

m = b’ (factors ¢ z); 0 = E(m Re@z)
Parameter Estimates
Not scaled Scaled by default Scaled by EW d/p

MP DEI UI UPR UTS MP DEI UI UPR UTSs MP DEI UI UPR UTS

b: -14 946 -779 371 113 12 -695 594 -59 -22 -3.7 -317 194 -360 -106
t: -0.3 1.8 -2.6 1.9 1.4 0.4 -2.1 2.9 0.6 0.4 0.2-1.21.6-2.2-1.5

Tests

Joint b=0
all scaled nonscaled JT
xz: 54.2 32.4 10.1 6.62
DF: 15 10 5 15
%p: 0.00 0.03 7.2 96.8

Assets R®: 10 CRSP size deciles
Instruments z: default premium, equally weighted dividend/price ratio.

4 Newey-West lags are used throughout.
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Table 5.

GMM tests of consumption~based model m = (ct+1/ct)7

A. Unconditional estimate; B. Conditional estimate;

0 = E(mR®) 0 = E(m R%z)
Parameter Parameter
Estimate JT test Estimate JT test
2 2
T -102 x : 5.87 7 -154 x + 37.8
t: -2.92 DF: 9 t: -6.53 DF: 29
%p:  75.3 %p: 12.7

Assets Re: 10 CRSP size deciles less T-bill rate.

Instruments z: default premium, equally weighted dividend/price ratio.
4 Newey-West lags are used throughout.
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Figure 1. Non-scaled investment model,

Mean returns and scaled returns vs. predictions of two-factor investment
model. The solid dots represent the non-scaled returns, estimated by
themselves (first stage estimates, corresponding to panel 1A, Table 1). Each
triangle corresponds to a size decile portfolio return or investment returnm,
multiplied by a constant, default premium, or equally weighted dividend/price
ratio (first stage conditional estimates, corresponding to pamel 1B Table
1). The returns are the CRSP size decile portfolios plus two investment
returns.
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Figure 2, Scaled investment model
Mean returns and scaled returns vs. predictions of the scaled two factor
investment model. CRSP size deciles and two investment returns.
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Figure 3. Non-scaled CAPM.
Mean returns and scaled returns vs. predictions of CAPM. CRSP
size deciles plus value-weighted NYSE.
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Figure 4. Scaled CAPM.
Mean returns and scaled returns vs. predictions of scaled CAPM. CRSP
size deciles plus value-weighted NYSE.
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Figure 5. Non-scaled Chen Roll Ross model
Mean returns and scaled returns vs. predictions of Chen, Roll and Ross
five-factor model. CRSP size decile portfolios.
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Figure 6. Scaled Chen, Roll Ross model.
Mean returns and scaled returns vs. predictions of scaled Chen, Roll and

Ross  five-factor

model.
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Figure 7. Consumption-based model.
Mean returns and scaled returns vs. predictions of the consumption-based
model with CRRA utility. CRSP size decile portfolios.





