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1. Introduction

For the last twenty years an important goal of financial research has been to

generalize theinsights of the simple one-period Capital Asset Pricing Model (CAPM)
to a multi-period setting. Such a generalization is difficult to achieve because the multi-

period consumption and portfolio choice problem is inherently nonlinear. A compictc
solution is obtained by combining the consumer's Euler equation with the interteinporal

budget constraint, but the budget constraint is a nonlinear equation except in very
special cases.

In response to this difficulty Merton (1969, 1971, 1973) suggested reformulating
the consumption and portfolio choice problem in continuous time. Doing this in effect

linearizes by taking the decision interval as infinitely small, so that the model becomes
linear over this interval. But this kind of linearity is only local, so it does not allow

one easily to study longer-run aspects of interternporai asset pricing theory.
In this paper I take a different approach. Instead of assuming that the time

interval is small, I assume that variation in the consumption-wealth ratio is small.

This makes the intertemporal budget constraint approximately loglinear, allowing me
to solve the consumption and portfolio choice problem in closed form. My approach
clarifies the relation between the time-series properties of market returns and the time-

series properties of consumption. It also leads to a simple expression relating assets'

risk premia to their covariances with the market return and news about future market

returns. This formula unifies the large body of research on time-series properties of
aggregate stock returns with the equally large literature on cross-sectional patterns of
mean returns.

The formula for risk premia derived in this paper can be tested without using data

on consumption. This is potentially an important advantage, for empirical work using
aggregate consumption data has generally rejected the model restrictions or has esti-

mated implausible parameter values. These problems occur both with a simple power

specification for utility (Hansen and Singleton 1982, 1983, Mehra and Prescott 1985,
Mankiw and Shapiro 1986) and with more elaborate specifications that allow for habit

formation (Constantinides 1990, Ferson and Constantinides 1991) or for a divergence

between the coefficient of relative risk aversion and the elasticity of intertemporal sub-

stitution (Epstein and Zin 1989, 1991, Giovannini and Jorion 1989, Weil 1987, 1989).

The difficulty may well be inherent in the use of aggregate consumption data. These
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data are measured with error and are time aggregated, which can have serious con-

sequences for asset pricing relationships (Breeden, Gibbons, and Litzenberger 1989,
Grossman, Melino, and Shiller 1987, Heaton 1990, Wheatley 1989, Wilcox 1989). More

fundamentally, the consumption of asset market participants may be poorly proxied by

aggregate consumption. Predictable movements in aggregate consumption growth are
correlated with predictable growth in current disposable income, which suggests that

a large fraction of the population is liquidity-constrained or fails to optimize intertem-

porally (Campbell and Manlciw 1989), and micro evidence shows that the consumption

of stockholders behaves differently from the consumption of non-stockholders (Mankiw

and Zeldes 1991).

Of course, the approach of this paper does not resolve all measurement issues. The

formula for risk premia derived here requires that one be able to measure the return on

the market portfolio, which should in general include human capital. The difficulties

with this have been forcefully pointed out by Roll (1977) in his critique of tests of
the static CAPM. But at the very least the results of the paper enable one to use the
imperfect data on both market returns and consumption in new and potentially fruitful

ways.

The next section of this paper shows how to obtain a loglinear approximation to

the intertemporal budget constraint. Section 3 develops implications for asset pric-
ing when asset returns are jointly lognormal and homoskedastic, and when consumers

have the objective function proposed by Epstein and Zin (1989, 1990) and Weil (1987).
This objective function implies that the consumption-wealth ratio is constant when-
ever the intertemporal elasticity of substitution is equal to one, so it provides a natural

benchmark case in which the loglinear approximation of this paper holds exactly. Im-

portantly, the intertemporal asset pricing model differs from a one-period asset pricing

model even in this benchmark case. This section of the paper derives several alternative

expressions for risk premia and discusses how they might be tested empirically. Section

4 allows for changing second moments of asset returns. Section 5 assesses the accuracy

of the approximation to the intertemporal budget constraint, and section 6 concludes.
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2. A Loglinear Approximation to the Intertemporal Budget Constraint

I consider a representative agent economy in which all wealth, including human
capital, is tradable. I define Wj to be total wealth, including human capital, at the

beginning of period t, Cj to be consumption at time ,and Rmg+i to be the gross simple
return on wealth invested from period I to period I + 1. The subscript m denotes the
fact that total invested wealth is the "market portfolio" of assets. The representative

agent's dynamic budget constraint can then be written as

= Rm,t+i (W — Ct). (2.1)

Labor income does not appear explicitly in this budget constraint because of the as-
sumption that the market value of tradable human capital is included in wealth. The

budget constraint can be solved forward, imposing a condition that the limit of dis-
counted future wealth is zero, to obtain the highly nonlinear present value budget
constraint

W = Cj+ . (2.2)
1=1 (n)1

The loglinear approximation begins by dividing (2.1) through by Wi, to obtain

____ ,' C 23= Rm,e+it1 —

or in logs (indicated by lower-case letters)

Awg+i = rmj+1 + log(1 —exp(ct — wg)). (2.4)

The second term on the right hand side is a nonlinear function of the log consumption-

wealth ratio. Consider this as a function of some variable xj = log(Xj), and take a
first-order Taylor expansion around the mean The resulting approximation is
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log(l — exp(xj)) log(1 — exp(2)) —
1 (_)(Xi

— (2.5)

If xj is a constant x = log(X), then the coefficient —exp(i)/(1 — exp(±)) equals
— X). In the present application, when the log consumption-wealth ratio is

a constant the coefficient equals —C/(W— C), the constant ratio of consumption to in-

vested wealth. Of course, when zg is random then by Jensen's Inequality the coefficient

no longer equals the average ratio of consumption to invested wealth.

Figures 1 and 2 give a visual impression of the approximation (2.5). In each figure

the horizontal axis measures the consumption-weaith ratio, using a log scale. The ver-

tical axis measures the "net growth rate of wealth", that is the growth rate of wealth

less the market return Awj+i — rm,I+I. The solid line shows the exact relationship
— rm,i+j = log(1 — exp(cj — wg)), while the dashed straight line shows the

approximation (2.5). These lines are plotted over a horizontal range three standard
deviations on either side of the mean log consumption-wealth ratio, where the standard

deviation of the log consumption-wealth ratio is calculated for an example calibrated

in section 5 below using equation (5.2). Figure 1 assumes that the consumer has an

elasticity of intertemporal substitution in consumption equal to 2 (or zero, since the
standard deviation of the log consumption-wealth ratio depends on the distance of this

elasticity from one), while Figure 2 assumes an elasticity of intertemporal substitution

equal to 4. In this example the approximation is clearly very accurate when the vari-

ability of the log consumption-wealth ratio is as low as implied by an elasticity of 2,

but much less accurate when the variability is as high as implied by an elasticity of 4.

Section 5 of the paper discusses approximation accuracy in greater detail.
It will be helpful to rewrite the coefficient —exp(2)/(1 — exp(±)) in (2.5) as 1— i/p

where p 1—exp(2). When the log consumption-wealth ratio is constant, then p can be

interpreted as (W—C)/W, the constant ratio of invested wealth to total wealth. Putting

together (2.4) and (2.5), the approximation to the intertemporsi budget constraint is

tm,ti + Ac + (i — !)(c —Wi), (2.6)

where the constant Ac can be calculated directly from (2.5).

The next step is to use the trivial equality
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= tkCg+1 + (c — tug) — (cg+l — wgi). (2.7)

Equating the left hand sides of (2.6) and (2.7), one obtains a difference equation in

the log consumption-wealth ratio, cg — tug. This can be solved forward, assuming that

lim1....,, pi(cj1 — =0, to yield

cg—wg = + 1p (2.8)

This equation is the loglinear equivalent of the nonlinear expression (2.2). It says that

a high consumption-wealth ratio today must be followed either by high returns on
invested wealth, or by low consumption growth. This holds simply by virtue of the
intertemporal budget constraint; there is no model of optimal behavior in equation

(2.8).
Equation (2.8) holds cx post, but it also holds cx ante; if one takes expectations

of (2.8) at time 2, the left hand side is unchanged and the right hand side becomes an
expected discounted value:

cg—wg = Ezp'(rm÷j—Acj+j) + 1'• (2.9)

Equation (2.9) can be substituted into (2.6) and (2.7) to obtain

— Ejcg1 =

(2.10)

Equation (2.10) says that an upward surprise in consumption today must correspond to
an unexpected return on wealth today (the first term in the first sum on the right hand
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side of the equation), or to news that future returns will be higher (the remaining terms

in the first sum), or to a downward revision in expected future consumption growth
(the second sum on the right hand side). This is similar to the equation discussed in
Campbell (1991a) for an arbitrary stock portfolio. Here consumption plays the role of

dividends in the earlier analysis; aggregate wealth can be thought of as an asset whose

dividends are equal to consumption. In the next section, a loglinear Euler equation

will be used to eliminate expected future consumption growth from the right hand side

of (2.10), leaving only current and expected future asset returns.
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3. Intertemporal Asset Pricing with Constant Variances

In this section I explore asset pricing relationships assuming that the conditional
joint distribution of asset returns and consumption is homoskedastic. This assump-
tion is unrealistic, since there is strong evidence that asset return variances change

through time, but it simplifies the analysis considerably. In the next section I allow for

heterosicedasticity.

The loglinear approximate budget constraint of the previous section can be com-
bined with a loglinear Euler equation. To obtain such an Euler equation, I further
assume that the joint conditional distribution of asset returns and consumption is log-
normal. Below I show that this is an approximate implication of the more fundamental

assumption that returns and news about future returns are jointly lognormal. The log-

normality assumption can also be relaxed if one is willing to work with a second-order

Taylor approximation to the Euler equation.1

Along with these distributional assumptions, I use the non-expected utility model

proposed by Epstein and Zin (1989, 1991) and Weil (1987) to generate a loglinear Euler

equation that distinguishes the coefficient of relative risk aversion and the elasticity of

intertemporal substitution. In the standard model of time-separable power utility,
relative risk aversion is the reciprocal of the elasticity of intertempc,ral substitution,

but as we shall see these concepts play quite different roles in the asset pricing theory.

The non-expected utility model also allows intertemporal considerations to affect asset

prices even when the consumption-wealth ratio is constant, something which is not

possible with time-separable power utility.

1Conditional joint Iogncs,naIity and homo.kedasddty art also assumed by Hansen and Singleton (19). Note that con-
ditional lognonnality don not imply tsncondjtia,aJ lo.cnmality unit., conditional expected returi are conMant through
time. Constant expected retuns and unconditional lognonnality are assumed in Merton's (1969, 1971) continuous-time
model, where .11 asset return, follow jeometric Brownian ,notio the assumption used here is weaker.

—7--



3.1. The Euler Equation for a Simple Non-Expected Utility Model

The objective function for a simple non-expected utility model is defined recursively

by

1_I _j__
Ut = {(t_fl)c4 +

=
{(Ifl)c1i1 + s7)5}T. (3.1)

Here 7 15 the coefficient of relative risk aversion, a is the elasticity of intertemporal sub-

stitution, and 8 is defined, following Giovannini and Weil (1989), as 9 =(1 — )/(1 — 1).
Note that in general the coefficient 6 can have either sign. Important special cases of the

model include the case where the coefficient of relative risk aversion 7 approaches one,

so that 0 approaches zero; the case where the elasticity of intertemporal substitution
a approaches one, so that 6 approaches infinity; and the case where y = 1/c, so that
8 = 1. Inspection of (3.1) shows that this last case gives the standard time-separable

power utility function with relative risk aversion 7. When both and a equal one, the
objective function is the time-separable log utility function.

Epstein and Zin (1989, 1991) have established several important properties of this

objective function. First, when consumption is chosen optimally the value function

(the maximized objective function) is given by

cr—c 2V1 = maxUj = (1—$) — . (3.2)

The objective function (3.1) has been normalized so that the value function is linearly

homogeneous in wealth (for a given consumption-wealth ratio). It is conventional to

normalize the time-separable power utility function so that wealth appears in the value

function raised to the power 1 — , but the normalization in (3.1) turns out to be
convenient here. Naturally the normalization makes no difference to the solution of the
model.2

2Thc notation used here is similar to that in Epstein and Zin (1991). Howewr theirparazneterp corresponds to I —(1/e)
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Second, the Euler equation corresponding to (3.1) can be written as

1
0 1 1—0

1 = E [{s(——) '} {+} i+]. (3.3)

For the market portfolio itself, this takes the simpler form

1 = (3.4)

These equations collapse to the familiar expressions for power utility when 8 = 1.
When asset returns and consumption are jointly homoskedastic and lognormally

distributed, the Euler equations (3.3) and (3.4) can be rewritten in log form. This
rewriting can also be justified as a second-order Taylor approximation if asset returns

and consumption are jointly homoskedastic. The log version of (3.4) takes the form

0 = 8logfi — + BEjrm1g+i + [()2vcc+e2vmm_vcm]. (3.5)

Here lower case letters are again used for logs. V4 denotes Var(act÷i), and other
expressions of the form are defined in analogous fashion.

Equation (3.5) implies that there is a. linear relationship between expected con-
sumption growth and the expected return on the market portfolio, with a slope coeffi-

dent equal to the intertemporal elasticity of substitution a. The relationship is

= pm + aEtr,i÷i,

Pm = clogf3 + [()Vcc+8avmm_2ovcm]

18 1= clogfi + 1(—)variact÷i — crmi÷l . (3.6)

here. Their paraneter a correspont to 1 —, here. Tb.. the parajnetE 0 here is p/cs in their notation. Note also that
there are moe. in equations (10) through (12) of thefr paper. Equation (3.2) here ii acorrected version of their equation
(12). Cionnnii,i and Well (1989) also give the correct fonmila for the value function, although they nonnalize the objective
function in the convatIaaI manner for power utility.
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The intercept term Pm is related to the variance of the error term in the z post version

of the linear relationship (3.6), that is, the degree of uncertainty about consumption
growth relative to the return on the market. If 9 is positive, a high value of this
variance will cause consumers to increase the slope of their consumption growth path

by postponing consumption to the future. If 9 is negative, on the other hand, consumers

will accelerate their consumption in response to increased uncertainty.
The log version of the general Euler equation (3.3) can be used for cross-sectional

asset pricing. It takes the more complicated form

o = Olog/3 — .!E Act+i 4- (9— I)Etrm,g+i -f Etr1,j÷1

+ + (9 1)2 1/mm + Vu — — 1)V,,, — + 2(9 —
flVim]

.(3.7)

When the asset under consideration is a riskfree real return this expression

simplifies because some variances and covariances drop out. Subtracting the riskfree

version of (3.7) from the general version and rearranging, one obtains

VjjE r,t+i — Df,g+i =
2

+ 9-;- + (1 — $)Vim. (3.8)

Equation (3.8) is the implication of the model emphasized by Giovannini and Weil
(1989). In this expression all risk premia are constant over time because of the as-
sumption that asset returns and consumption are homoskedastic. (3.8) says that the
expected excess log return on an asset is determined by its own variance (a Jensen's
Inequality effect) and by a weighted average of two covariances. The first covariance is

with consumption growth divided by the intertemporal elasticity of substitution; this
gets a weight of 9. The second covariance is with the return on the market portfolio;

this gets a weight of 1 — 9•3

Three special cases are worth noting. When the objective function is a time-
separable power utility function, the coefficient 9 = 1 and the model collapses to the

3Ches, (1991) discussa & similar result in a model with a von Neiunann-Morgenstem utility (unction that i. directly
affected by the level of wealth.
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loglinear consumption CAPM of Hansen and Singleton (1983). When the coefficient of
relative risk aversion = 1, 8 = 0 and a logarithmic version of the static CAPM pricing

formula holds. Most important for the present paper, as the elasticity of intertemporal

substitution a approaches one the coefficient 9 goes to infinity. At the same time
the variability of the consumption-wealth ratio decreases so that the covariance Vj

approaches Vim. It does not follow, however, that the risk premium is determined only

by 14m in this case. Giovannini and Weil (1989) show that the convergence rates are
such that asset pricing is not myopic when a = 1 unless also y = 1 (the log utility
case). In the next section I give an exact expression for the risk premium in the a =1

case.

3.2. Substituting Out Consumption

The loglinear Euler equations derived above can now be combined with the ap-

proximate loglinear budget constraint of section 2. Substituting (3.6) into (2.9), one
obtains

cg—wj = (1—a)Ej Erm+j + p(k—pm)
(3.9)

The log consumption-wealth ratio is a constant, plus (1—a) times the discounted value

of expected future returns on invested wealth. If a is less than one, the consumer is
reluctant to substitute intertemporally and the income effect of higher returns dom-
inates the substitution effect, raising today's consumption relative to wealth. If a is
greater than one, the substitution effect dominates and the consumption-wealth ratio
falls when expected returns rise. Thus equation (3.9) extends to a dynamic context the

classic comparative statics results of Samuelson (1969) and Merton (1969).

Note that the coefficient of relative risk aversion 1 does not appear in (3.9) except

indirectly through the parameter of linearization p. Kandel and Starnbaugh (1991) have
used a numerical solution method to show that a rather than is the main determinant

of the variability of expected market returns in a model with exogenous consumption

and endogenous returns. Equation (3.9) provides a simple way to understand their

finding.
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As discussed above, the case a = 1 is the borderline where consumption is a
constant fraction of wealth. As a approaches one, 9 approaches infinity and it is easy

to see from (3.6) that the variance terms in ji must cancel if expected consumption
growth is to be finite. This cancellation occurs when consumption is a constant fraction

of wealth. F\rthermore, by substituting the definitions of Ic and p into (3.9), one can

show that when a = 1 the consumption-wealth ratio equals 1 — , while the parameter
of linearization p equals (3. Since the consumption-wealth ratio is constant when a =1,

the approximate budget constraint and asset pricing formulas of this paper hold exactly

in this case if one sets p =

The approximation (3.9) can be used to restate the value function (3.2) in terms

of exogenous variables. Taking logs of (3.2), one obtains

vi = wi + (11 ) twz) = wi + Etp5r15. (3.10)

The value function is determined by the level of wealth and by the discounted value of

all future expected market returns, a measure of long-run investment opportunities.

(3.9) can also be used to express the innovation in consumption as a function of

the return on the market and news about future returns on the market. Substituting
(3.6) into (2.10), one obtains

— .E cjj = — E1 rmg+1

+ (1 —a)(Ej1 —Ei)rm,t÷i+j. (3.11)

The intuition here is much the same as for equation (3.9). An unexpected return on

invested wealth has a one-for-one effect on consumption, no matter what the parameters

of the utility function. (This follows from the scale independence of the objective
function (3.1)). An increase in expected future returns raises or lowers consumption

depending on whether a is greater or less than one.

Equation (3.11) can be used in several different ways. First, it shows the conditions

on the return process that are necessary to justify the original assumption of this section
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that consumption growth and asset returns are jointly lognormai. To a first approxima-

tion, consumption growth will be lognormal if the return on the market and revisions

•of expectations about future returns are jointly lognorinal; thus the assumption of joint

lognormality of consumption growth and asset returns can be approximately consistent

with equilibrium.

Second, the equation shows when consumption will be smoother than the return
on the market. There is some evidence of "mean reversion" in aggregate stock returns,

that is, a negative correlation between current returns and revisions in expectations of
future returns (Faxna and French 1988a, Poterba and Summers 1988). According to

(3.11), mean reversion reduces the variability of consumption growth if the elasticity
of intertemporal substitution a is less than one. Mean reversion amplifies the volatility

of consumption growth, however, if a is greater than one.

To understand this more clearly, it may be helpful to consider a simple example
in which the market return follows a univariate stochastic process: rmj+1 = A(L)ct+i.
Here the polynomial in the lag operator A(L) 1 + a1L + a2L2 + ..., where the
coefficients a are the moving average coefficients of the market return process. Simi-
larly, one can define A(p) E I + ap + ap2 +..., the infinite sum of moving average

coefficients discounted at rate p. Since p is close to one A(p) is approximately the

sum of the moving average coefficients, a measure of the impact of today's return in-

novation on long-run future weaith. In this special case (3.11) can be rewritten as
— Ejc(+i = t--i +(1 — c)(A(p) — 1)t÷i = cej+l +(1 —c)A(p)et+i. The innovation

in consumption is a weighted combination, with weights a and 1 —a, of the current
market return innovation €j4 and the discounted long-run impact of the return inno-
vation A(p)et+i. Mean reversion in the market return makes A(p) C 1, which reduces

the variability in consumption ifa .c 1.

Third, equation (3.11) can be used to clarify the interpretation of the intercept

coefficient Pm in the equation relating consumption growth and the expected return
on the market. Substituting (3.11) into (3.6), Pm can be written as

Pm = clogP + ()(i — c)2 (f)va.rt [E1+1 — Et
rm,÷l+j]

= clog$ + ()(1 — a)2 (!) Varg Vjj. (3.12)
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The summation in (3.12) runs from zero to infinity, since the uncertainty that affects

Pm includes both the variance of this period's market return and the variance of news

about future market returns. The second equality in (3.12) follows from the solution
for the value function (3.10). (3.12) shows that the conditional variance of expected
long-run investment opportunities (equivalently, the conditional variance of the value

function) is the correct measure of risk in this model. As discussed above, the sign of

B determines whether consumers will postpone or accelerate consumption in response

to this risk.
Finally, equation (3.11) implies that the covariance of any asset return with con-

sumption growth can be rewritten in terms of covariances with the return on the market

and revisions in expectations of future returns on the market.4 The covariance satisfies

Coy2 (r1,j+i, Acj+i) = V + (1 — c)Vih, (3.13)

where

Coy2 (ri,t+i, (Et+i — Et) E p1 rmt+i+4. (3.14)
j= I

11th is defined to be the covariance of the return on asset i with good news about future

returns on the market, i.e. upward revisions in expected future returns.5

Substituting (3.13) into (3.8) and using the definition of Bin terms of the underlying

parameters a and , I obtain a cross-sectional asset pricing formula that makes no
reference to consumption:

Et r12÷1 — rf,g+1 = + 7Vm + ( — flV. (3.15)

Equation (3.15) has several striking features. First, assets can be priced without

Equally1 (3.11) could be used to rewrite the covariance with the market in ten,.. of covaxiances with consumption and
revisions in expectation, of future investment opportunities. The contribution of (3.11) is to show that oniy two of these
three conrianc need be measured accurately in order to have a testable asset pricing theory.

5The notation V, is chosen to accord with Campbell (iSOla). It recall, the standard tenninolcgy of 'hedge portfolioC
(e.g. Ingersoll 1987).
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direct reference to their covariance with consumption growth, using instead their co-
variances with the return on invested wealth and with news about future returns on

invested wealth. This is a discrete-time analogue of Merton's (1973) continuous-time

model in which assets are priced using their covariances with certain "hedge portfolios"

that index changes in the investment opportunity set.

Second, the only parameter of the utility function that enters (3.15) is the coeffi-
cient of relative risk aversion y. The elasticity of intertemporal substitution c does not

appear once consumption has been substituted out of the model. This is in striking
contrast with the important role played by a in the consumption-based Euler equation

(3.8). Intuitively, this result comes from the fact that a plays two roles in the theory.
A low value of a reduces anticipated fluctuations in consumption (equation (3.6)), but

it also increases the risk premium required to compensate for any contribution to these

fluctuations (equation (3.8)). These offsetting effects lead a to cancel out of the asset-

based pricing equation (3.15). Kocherlakota (1990) and Svensson (1989) have already
shown that a is irrelevant for asset pricing when asset returns are independently and

identically distributed over time. This is not surprising, since with i.i.d. returns there is

no interesting role for intertemporal substitution in consumption. The present result is
approximate but is much stronger, since it holds in a world with changing conditional
mean asset returns.

Third, equation (3.15) expresses the risk premium (net of the Jensen's inequality
effect) as a weighted sum of two terms. The first term is the asset's covariance with the

market portfolio; the weight on this term is the coefficient of relative risk aversion y.
The second term is the asset's covariance with news about future returns on the market;

this receives a weight of 7—1. When 'y is less than one, assets that do well when there

is good news about future returns on the market have lower mean returns, but when

is greater than one, such assets have higher mean returns. The intuitive explanation is

that such assets are desirable because they enable the consumer to profit from improved

investment opportunities, but undesirable because they reduce the consumer's ability

to hedge against a deterioration in investment opportunities. When C I the former

effect dominates, and consumers are willing to accept a lower return in order to hold
assets that pay off when wealth is most productive. When > i the latter effect

dominates, and consumers require a higher return to hold such assets.

There are several possible circumstances under which assets can be priced using

only their covariances with the return on the market portfolio, as in the logarithmic
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version of the static CAPM. These cases have been discussed in the literature on in-

tertemporal asset pricing, but equation (3.15) makes it particularly easy to understand
them. First, if the coefficient of relative risk aversion 7 = 1, then the opposing effects
of covariance with investment opportunities cancel out so that only covariance with the

market return is relevant for asset pricing. Giovannini and Weil (1989) emphasize this

result, and it has been long understood for the special case of log utility, where not only

= 1, but also a = 1. Second, if the investment opportunity set is constant, then Vh
is zero for all assets so again assets can be priced using only their covariances with the

market return. Farna (1970) and Merton (2969, 1971) stress this result. Third, if the
return on the market follows a univariate stochastic process, then news about future
returns is perfectly correlated with the current return. Using the lag operator notation

introduced above, in this case V111, = (A(p)1)Vjm for all assets i, and the risk premium

(ignoring the Jensen's inequality term) is [-y + (y — 1)(A(p) — 1)]Vim. Giovannini and

Weil (1989) and Merton (1990, Chapter 16) present results of this type in discrete time
and continuous time respectively.

One obvious application of the formula (3.15) is to the equity premium, the risk

premium on the market itself. When the market return is serially uncorrelated, the

equity premium net of the Jensen's Inequality term is just 7Vmm, and the coefficient of

relative risk aversion can be estimated in the manner of Friend and Blume (1975) by

taking the ratio of the equity premium to the variance of the market return. However

this procedure can be seriously misleading if the market return is serially correlated.

With a univariate market return process, for example, the equity premium net of the
Jensen's Inequality term is fy + (y— 1)(A(p) —1)]Vmm. Mean reversion in stock returns

(the case A(p) c 1) reduces the equity premium when 'y > 1 but increases it when
c 1. The Friend and Blume estimate of risk aversion will be off by (7— 1)(.4(p) —1).

This error can be substantial, particularly if is very large as suggested by Kandel and

Stambaugh (1991) among others. Black (1990) also emphasizes that mean reversion
can affect the relation between short-run market volatility and the equity premium.

3.3. The Term Structure of Real Interest Rates

Real bonds, which make fixed payments of consumption goods, play a special role

in asset pricing theory because they have no payoff uncertainty. The only uncertainty in
their return comes from changes in the real interest rates used to discount their payoffs.
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In this section I show that in a lognormal homoskedastic model, the unexpected return

on a real consol bond is approximately equal to minus the news about future returns on

invested wealth. This means that the covariance with good news about future returns

can also be written as minus the covariance with the return on a real consol.

Let P6 denote the log price at time i of a real consol bond paying 1 unit of the

consumption good each period, with no maturity date. The log return on this bond is

E log(1 + exp(p6 ÷i)) — Po. (3.16)

Linearizing this expression with a first-order Taylor expansion in the manner of section
2, one obtains the approximation

!c, + PbPot+1 — (3.17)

where Pb is the reciprocal of the average gross, simple return on the consol: p = 1/R6.

This implies that Pbi is determined by the discounted value of expected future
returns on the bond, or equivalently by the discounted value of expected future returns

on invested wealth (in the homoskedastic model these are the same, up to a constant

risk premium):

Pbi = Ej Eprmj+j + 1c, (3.18)

for some constant P. Substituting (3.18) back into (3.17), one obtains

Tb,t+1
— = —(Ej+i — E ) rmj+1+j. (3.19)

In general Pb does not equal the parameter of linearization for the intertemporal
budget constraint, p. However the difference is likely to be small, and it will have
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little effect on a discounted value like the right hand side of (3.19) if news about future

returns on the market dies out fairly rapidly. Thus

Cov(r1j+i,r&÷i) V16 (3.20)

and the asset pricing equation (3.15) can be rewritten as

— rf,ji = + 7V1m + (1 7)V1a (3.21)

Equation (3.21) says that the expected log return on any asset is determined by its
own variance, and by a weighted average of its covariances with the market portfolio
and with a real consol bond. The weights on the market and the consol are and 1 —y

respectively, where as before y is the coefficient of relative risk aversion.

Equation (3.21) is reminiscent of the formula in Merton (1973) that expresses the

expected excess return on any asset as a linear function of its covariances with the
market and with the return on an asset perfectly correlated with changes in short-
term interest rates (loosely, a long-term bond).6 However the present model differs
from Merton's in t important respects. First, Merton's result depends on the as-
sumption that all changes in investment opportunities are summarized by the change
in a single state variable, the instantaneous interest rate. Here, the short-term inter-
est rate summarizes the current investment opportunity set (because all asset returns

move in parallel in the homoskedastic model), but it does not summarize all changes

in investment opportunities (because there can be many sources of news about future

returns). Another way to see the difference is to note that in Merton's model long-term

bond returns and changes in short-term rates are perfectly correlated instantaneously,

whereas this need not be the case in the present model.7 Second, Merton's model gives

the prices of the two sources of risk only in terms of the derivatives of the consumer's

value function, which are endogenous to the model. Here, the risk prices are explicitly

determined by the primitive parameters of the consumer's utility function.

6Thi. is equation (32) of Merton (1973), reprinted as equation (15.32) in Merton (1993). Bossae,t. and Green (1989),
Breeden (1986). and Rubinatein (1981) also emphashe the importance of real bonds in asset pricing.

1In another respect, howeva, Merton's model is more gena'al because it allow. variance, to depend on the interest
rate. In the next section I allow for changing variance, in the present framework.
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3.4. A Vector Autoregressive Factor Pricing Model

The results of the previous section would be useful for empirical work if real consol

returns were observable. Unfortunately such assets do not exist; the closest equivalent

may be finite-maturity index bonds in the United Kingdom, and even these have been

actively traded only in recent years. Another approach is needed to derive testable
implications of the basic asset pricing equation (3.15).

Here I adapt the vector autoregressive approach of Campbell (1991a).8 I assume
that the return on the market can be written as the first element of a K-element state

vector zj. The other elements are variables that are known to the market by the end

of period t + 1, and are relevant for forecasting future returns on the market. I assume
that the vector i4 follows a first-order vector autoregression (VAR):

= Az + f+1- (3.22)

The assumption that the VAR is first-order is not restrictive, since a higher-order VAR

can always be stacked into first-order (companion) form in the manner discussed by
Campbell and Shiller (lOSSa). The matrix A is known as the companion matrix of the
VAR.9

Next I define a K-element vector ci, whose first element is one and whose other

elements are all zero. This vector picks out the real stock return tm,g+j from the
vector zj+1: rm,g+1 = el1zj÷i, and rm+1 —Et rm,j+1 = el'ej+l. The first-order VAR
generates simple multi-period forecasts of future returns:

Eg rmf+1+j = ei'A'4'zt. (3.23)

It follows that the discounted sum of revisions in forecast returns can be written as

tCampbell uses this aprroadi to decompose the overall market return into news about dividends and news about future
market return. In the present homoskedanic context the latter component is just the return on a real consd, as discussed
above. Equation (3.15) says that the dividend news component of the market return has risk price i while the return
news component has risk price I —

As is well known, VAR systems can be normalized in different ways. For exampie, the variables in the state vector can
be orthogonslized so that the nzianc.conriance matrix of the enor vedor c is diagonal. The results given below hold
for any observationaily equivalent nonnalatIon of the VAR system.
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(Ej+i =

= el'pA(I —

= :+i, (3.24)

where A' is defined to equal el'pA(I — a nonlinear function of the VAR cod-

ficients. The elements of the vector A measure the importance of each state variable

in forecasting future returns on the market. If a particular element Ak is large and
positive, then a shock to variable k is an important piece of good news about future

investment opportunities.
I now define

E Covg (r;,g+i, k,i+1)' (3.25)

where ks+1 is the k'th element of eg.. Since the first element of the state vector is
the return on the market, V = v1,. Then equations (3.24), (3.25), and (3.15) imply
that

Et rI,+j — = — + -1V11 + (-y— 1) A114k, (3.26)

where Ak is the k'th element of A. This is a standard K-factor asset pricing model,

and its general form could be derived in any number of ways: perhaps most straight-

forwardly by using the Arbitrage Pricing Theory of Ross (1976).
The contribution of the intertemporal optimization problem is a set of restrictions

on the risk prices of the factors. The first factor (the return on the market) has a risk
price of 'y + (-y— 1)Ai. A positive value of A1 means that the return on the market is

positively correlated with revisions in expected future returns, while a negative value
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of A1 means that the market return is "mean reverting". These serial correlation
properties of the market return affect the risk price of the market factor; if the market

is mean reverting, for example, its risk price is reduced if y is greater than one.

The other factors in this model have risk prices of (y — 1)Ak. Factors here are
variables that help to forecast the return on the market, and their risk prices are
proportional to their forecasting importance as measured by the elements of the vector
A. If a particular variable has a positive value of Ak, this means that innovations in
that variable are associated with good news about future investment opportunities.

Following the analysis in section 3.2, such a variable will have a negative risk price if
the coefficient of relative risk aversion i' is less than one, and a positive risk price if the

coefficient of relative risk aversion is greater than one.

Thus the intertemporal model suggests that priced factors should be found not by

running a factor analysis on the covariance matrix of returns (Roll and Ross 1980), nor

by selecting important macroeconomic variables (Chen, Roll, and Ross 1986). Instead,
variables that have been shown to forecast stock market returns should be used in
cross-sectional asset pricing studies. Recent empirical work suggests that dividend

yields, interest rates and other financial variables are likely to be important (Campbell

1987,1991a, Campbell and Shiller 1988a,b, Fama and Schwert 1977, Fama and Ftench

1988b,1989, Keim and Starnbaugh 1986).
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4. Intertemporal Asset Pricing with Changing Variances

In this section I relax the unrealistic assumption of the previous section that all
variances and cova.riances of log asset returns and consumption are constant through

time. Relaxing this assumption has no effect on the log-linearization of the budget
constraint in section 2 or the formulation of the intertemporal optimization problem in

section 3.1. What it does do is change the log form of the Euler equations for this prob-

lem. If asset returns and consumption are jointly lognormal, but heteroskedastic rather

than homoskedastic, equations (3.5) through (3.8) hold with time t subscripts on the
variances and covariances; constants of the form become variables of the form V,,1.

These modified log Euler equations also hold as second-order Taylor appraimations if
asset returns and consumption are not lognormal.

The more general form of equation (3.6) is

E Act÷i = p,nj + aEj rm÷1,

= clog$ + [ + OcVmmt —
2evcmi]

= clog$ + a)Vart[ct÷1 (4.1)

The intercept Pmi, which was previously constant, now changes over time with the
variance of consumption growth relative to the market return. This means that when

(4.1) is substituted into the approximate loglinear budget constraint (2.9), extra terms

appear in the formulas for the log consumption-wealth ratio and the innovation in log

consumption. Equation (3.11) becomes

— = rm,t÷1 —

+ (1—c)(Ej+i —Ec)rm.i+i+j

— (Eg÷i_-Et)Ep)p,+. (4.2)



The new term in equation (4.2) reflects the influence of changing risk on saving. The
variable Pm is proportional to the conditional variance of consumption growth less a
times the return on invested wealth. As this changes, consumers may be induced to

accelerate or postpone consumption. The difficulty is that equation (4.2), unlike the
homoskedastic equivalent (3.11), still makes reference to consumption growth on the
right hand side through the variable /1m1 which is a function of the second moments of

consumption. Thus equation (4.2) cannot be used to substitute consumption growth
out of the intertemporal asset pricing model without further assumptions.

There are, however, several special cases in which consumption can be substituted

out of the model with changing variances. First, if the coefficient of relative risk aversion
= 1, then 0 = 0 and Pin remains constant even in the heteroskedastic case. Thus

when 'y = I a logarithmic version of the static CAPM holds with changing conditional

variances. Second, if the elasticity of intertempora2 substitution a = 1, 0 is infinite

and the conditional variance in (4.1) must be zero. In this case the intertemporal
asset pricing formula (3.15) continues to hold with time subscripts on the conditional

variances. Presumably this formula is a good approximation if a is not too far from
one or if conditional variances are not highly variable or persistent. Third, the asset

pricing formula (3.15) describes any asset returns that are uncorrelated with revisions

in expectations of future intercepts Pmt+j• Restoy (1991), building on the analysis
of this paper, has shown that (3.15) describes the equity premium if the variance of
market returns follows a GARCH process that is uncorrelated with the return on the
market.

A final special case assumes, in the spirit of Cox, Ingersoll, and Ross (1985), that

the intercept Pint is a linear function of the expected return on the market. Suppose
that

Pm,t = /10 + Etrt+i (4.3)

for some coefficient Then the innovation in consumption can be rewritten as

"This condition is slightly probkmatic in • discrete time mode!, because strictly speaking itis inconsistent with the
normality of conditional expected returns on the market and the positivity of the variances defimng /m \VlietI. this it
a serious proWem wili depend on the parameter values of the model.
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— Egc+, = rmf+1 —

+ (1—c — — Ej Dmt+l+j. (4.4)

It follows that the covariance of any asset return with consumption growth can be

written as

Coy1 (r1,j+i, c1+i) = — (1 — — V')"in,t, (4.5)

and the expected excess return on any asset is given by

E1 rit+l — rj,11 = + 7m,1 + [(7
1) — Vih,t. (4.6)

This formula for the risk premium is the same as before, with the addition of a term
involving the sensitivity of the consumption intercept to the expected return on the

market, b. This term may be positive or negative in general, and it is interpreted as

follows. A 1% increase in the expected return on the market lowers consumption by

% through the precautionary saving channel. The market price of consumption risk
is 9/a, so the market price of investment opportunity set risk includes a term —9'/a.

It is important to find conditions on the exogenous process for asset returns that

justify the assumption on Pint (4.3). One can show that Pint will satisfy (4.3) if the

variances and covariance of the return on the market and news about future returns on
the market are linear functions of the expected return on the market. In other words,

if for {r,y} = {rn,h} we have that

= + VJEtr,t+i, (4.7)

then (4.3) is satisfied." This assumption on returns is a discrete-time analogue of the

assumption used in Cox, Ingersoll, and Ross (1985).
" However some v.Ju of the slope coefficient, in (4.7) maygive a compicx tether than real .oluticn for .
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In this model the variance-covariance matrix of the return on the market and news

about future returns on the market changes with one underlying variable, the expected

return on the market. This means that the expected excess return on the market, as

given by equation (4.6) for asset I = in, can be written as a linear function of the
conditional variance of the return on the market. Substituting (4.7) into (4.6) for asset
= in, one obtains

Eirm+i —rp÷i = o + PiVmm.i

Pa = ____

1 /
th (4.8)

This result sheds new light on the large empirical literature that estimates a linear
relation between the conditional mean and variance of the return on the aggregate

stock market (for example Bollerslev, Engle, and Wooldridge 1988, French, Schwert,
and Stambaugh 1987, and Merton 1980). It is sometimes argued that linearity will hold

in a fully specified intertemporal asset pricing model only if agents have log utility. The
model of this section provides a counter-example to this claim. It is important to note,
however, that the market price of conditional volatility, given by the coefficient P1 in
equation (4.8), does not generally equal the coefficient of relative risk aversion 7.
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5. How Accurate is the Log-Linear Approximation?

Earlier sections of the paper. have stated some strikingly simple results about
the determination of expected asset returns. These results are based on a log-linear

approximation to the intertemporal budget constraint that will be accurate when the
log consumption-wealth ratio is "not too" variable. In this section I try to characterize

more precisely the circumstances under which the approximation works well. To do

this, I assume a specific market return process and consider alternative parameter
values for the representative consumer's objective function. For each set of parameter

values I calculate optimal consumption functions numerically and compare them with
the approximate analytical solutions derived above.

To reduce the complexity of the problem, I first specialize the model of section

3 to a simple example discussed in Campbell (1991a). In this example, the expected
return on the market portfolio follows a univariate AR(1) process with coefficient ,
while the realized return is the expected. return plus a white noise error. This should
not be confused with the special case discussed in previous sections in which the market

return itself is a univariate process. The model considered here is

= E1 rm,g+1 + E1,t+1

Et+i tm,j+2 = t/E1 rm,j+1 + 2t+l• (5.1)

The free parameters of this model are the coefficient and the second moments V11, 1(12,

and V22.

The next step is to pick reasonable values for these parameters. Campbell (1991a)

estimates persistence measures for expected returns using CRSP monthly data on value-

weighted U.S. stock returns over the period 1927-1988. The persistence measures are

estimated using a VAR system of the type discussed in section 3.4, rather than the sim-

ple AR(1) model (5.1). However it is straightforward to calculate the AR(1) parameter

that would correspond to any VAR persistence measure. Campbell's estimates imply
= 0.79 over the full 1927-1988 sample period, and a similar value of = 0.83 in the

postwar 1952-1988 sample period. Thus =0.8 is a realistic benchmark value to use
in the AR(1) model. This value of implies a haiflife for expected return shocks of
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just over three months.

Once one has a value of 4i, the innovation variance of expected returns can be found

by. using the fact that the variance of expected returns Var(Ej rm,j+1) =11221(1
—

The variance of expected returns is given by the variance of the fitted value in a

regression of returns on the relevant information, or equivalently by the overall variance

of returns and the R2 statistic from the regression. Campbell's (1991a) estimates imply

that Vjj = (0.0563)2 and V22 = (0.0063)2 in the 1927-1988 sample period. The implied
standard deviation for monthly expected returns, when = 0.8, is just over 1% at a
monthly rate. This compares to an overall standard deviation of the monthly ez post
return of 5.7%, implying a monthly J?2 statistic of just over 3%. Finally, the correlation

between innovations in expected returns and realized returns is estimated to be about
-0.8, and I pick this value for the example here. These estimates imply substantial

variability in expected returns, and also considerable mean reversion in the market

return process.
Approximate loglinear consumption rules are straightforward to derive in this ex-

ample. The log consumption-wealth ratio is

(1—c)p p(k—.um)ci — =
1— Etrm,t+i + 1— (5.2)

while the consumption growth rate is

= Pm + cEtrt+i + 61,1+1 + (5.3)

Note that negative correlation between i,i+1 and 2t+1 makes consumption smoother

if o- c 1 but more volatile if a> 1.

The exact optimal consumption function can only be calculated numerically. Build-

ing on the work of Tauchen and Hussey (1991), I use Gaussian quadrature to approx-

imate the normal distribution of the expected return in (5.1) by a nine-state Markov

process. r then use an iterative procedure to calculate the optimal consumption-wealth

ratio in each state and the corresponding value function. Full details are given in
Campbell and Koo (1992); here I simply summarize the results.

Table 1 shows the mean value function for a wealth level of 100 (that is, the mean
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value function as a percentage of wealth), calculated numerically for a grid of six values

of a and six values of y. a is set equal to 0.05, 0.50, 1.00, 2.00, 3.00, and 4.00, while

is 0.00, 0.50, 1.00, 2.00, 3.00, and 4.00. The smallest value of a is 0.05 rather than 0.00

because the program encounters some numerical difficulties when a is extremely small.

All the results reported assume that the mean market return is 6.5% at an annual rate

and that the discount factor /3 is the twelfth root of 0.94, giving the monthly equivalent

of a 6% annual discount rate.
Table 1 also shows the percentage losses in the mean objective function that result

from using the loglinear consumption rule (3.9). Since the objective function has been

normalized to be linear in wealth, these losses have the same units as reductions in
wealth. The first number in parentheses is the percentage utility loss when p is obtained

from (2.5) with the true optimal value of the mean log consumption-wealth ratio. The

second number in parentheses is the percentage utility loss when p is set equal to /3,

its value for the a = 1 case. The first procedure gives a more accurate approximation,

but it requires knowledge of the true mean log consumption-wealth ratio. The second

procedure is less accurate but more easily implementable in practice.

As one would expect, the utility losses from using loglinear consumption rules
increase as a moves further from unity. The losses are zero when a = 1, for then
the approximations are exact. When a = 0.5 or 2.00, the approximate consumption
functions cost less than 0.01% of wealth unless 7 is at its highest value of 4.00. When
a = 0.05, 3.00, or 4.00, the approximate consumption function with the correct p still

costs no more than 0.01% of wealth, but the approximate consumption function setting

p = /3 is noticeably less accurate. As an extreme case, when both a and 7 are at their

maximum values of 4.00, this approximation costs 1.2% of wealth.

Table 2 shows mean optimal consumption as a percentage of wealth. Since j3
and the expected return process are fixed, the mean consumption-wealth ratio varies
considerably as the parameters and a vary. The smallest value in the table is 0.237%

(2.84% at an annual rate) when a = 4.00 and = 0.00. The largest value is 1.05%

(12.6% at an annual rate) when a = 4.00 and 1 = 4.00. The table also reports
the differences between the exact and approximate mean consumption-wealth ratios,

expressed as percentages of the exact mean consumption-wealth ratio. These differences

are again zero when a = 1, but they increase quite rapidly as a moves away from one.

When the approximation uses the true p, the error is 0.05% to 0.25% of the exact mean

consumption-wealth ratio when a = 0.05 or 2.00, increasing to almost 1.5% of the exact

— 28 —



mean consumption-wealth ratio when a = 4.00. When the approximation uses p = /3,

the errors can be many times larger.

If one is interested in the dynamic behavior of consumption and its implications for

asset pricing, errors in the mean consumption-wealth ratio are relatively unimportant.

What is important is to approximate accurately the variation of the consumption-
wealth ratio and the consumption growth rate around their means. Table 3 gives
the standard deviation of the optimal log consumption-wealth ratio, along with the
percentage errors of the two approximations. The log ratio is used because this is
approximately normally distributed. The table shows that as a approaches one, the
approximation error for the log standard deviation goes to zero at almost the same rate
as the log standard deviation itself. Thus in percentage terms the approximation error

is almost constant and small at about 0.75% of the true standard deviation. Table 4

reports the standard deviation of the optimal log consumption growth rate, again with
the percentage errors of the two approximations. The consumption-smoothing effect
of mean reversion when a is low is clearly visible in this table. The approximations

tend to understate the variability of log consumption growth when a is low and to
overstate the variability when a is high. However the errors are quite small, never
much above 0.5% of the true standard deviation when the correct value of p is used.

The approximation setting p = /3 should be used more cautiously, as its maximum error

is four times greater than the the approximation error using the true p.
These results are encouraging for two reasons. First, they are obtained using a

model in which the expected return on the market is highly variable. Less extreme

variability in the expected return process would increase approximation accuracy by
reducing the variability of the optimal consumption-wealth ratio. Second, a number
of authors (Campbell and Mankiw 1989, Giovannini and Weil 1989, Hall 1988, Kandel

and Stambaugh 1991) have argued from direct evidence on consumption and asset price

behavior that a is more likely to be very small than very large. Tables 3 and 4 show that

a loglinear approximation to the interternporal budget constraint is workably accurate

when a is close to zero, even if the true value of p is unknown.
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6. Conclusions.

In this paper I have argued that intertemporal asset pricing theory has become

unnecessarily tangled in complications caused by the nonlinearity of the intertemporal
budget constraint. I have proposed a log-linear approximation to the constraint as a
way to cut this Gordian knot. In a simple example calibrated to U.S. stock return data,

the approximation seems to be workably accurate when the elasticity of intertemporal

substitution is less than about 3.
I assume that asset returns and news about future returns are jointly lognormal

and homoskedastic, and that there is a representative agent who maximizes the objec-

tive function proposed by Epstein and Zin (1989, 1990) and Weil (1987). This objective

function has many of the appealing features of the time-separable power utility func-

tion, but it separates the elasticity of intertemporal substitution a from the coefficient
of relative risk aversion rather than forcing these parameters to be reciprocals of
one another as in the power utility case. The log-linear approximation to the bud-
get constraint then yields some simple propositions about consumption behavior and

intertemporal asset pricing.

1. The log consumption-wealth ratio equals a constant, plus (1 —a) times the dis-
counted value of all future expected returns on invested wealth. The innovation

to log consumption equals the innovation to the log return on the market, plus
(1— a) times the revision in the discounted value of future market returns. As one

would expect, the coefficient a rather than governs the response of consumption
to changing expected asset returns.

2. The expected excess log return on any asset over the riskfree return is the sum of

three terms. The first term is minus one half the own variance of the log asset
return, a Jensen's Inequality effect. The second term is y times the covariance of
the asset return with the return on the market, as in a logarithmic version of the

static CAPM. The third term is 1—'y times the covariance of the asset return with

news about future returns on the market. As one would expect, the coefficient 7
rather than a determines the size and sign of asset risk premia.

3. In the homoskedastic model, the log return on a real consol bond is approximately

equal to minus the news about future returns on the market. Thus the expected
excess return on any asset, net of the Jensen's Inequality effect, can also be written

as a weighted average of the asset's covariance with the market and with the consol.
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The weights are 7 and 1 — 7 respectively.

4. If the return on the market can be written as one element of a state vector that

follows a homoskedastic vector autoregression (VAR), then the intertemporal theory

delivers a set of restrictions on the risk prices of a factor asset pricing model. The

factors are variables that are relevant for forecasting the market and hence enter
the VAR state vector. Their risk prices are proportional to their importance in
forecasting the discounted value of future returns on the market.

5. The results above can be generalized to allow a restricted form of heteroskedasticity

in asset returns. If the conditional variance-covariance matrix of the return on the
market and news about future returns on the market is linear in the expected return

on the market, then the asset pricing model goes through as before, except that the
price of covariance with news about future returns is no longer equal to 1— 'y. With

this form of heteroskedasticity, the expected excess return on the market is linear

in the conditional variance of the return on the market, as commonly assumed in

empirical work. The homoskedastic results also generalize straightforwardly if a or

'y are sufficiently close to one.

These results have pedagogic value as a simple way to understand the vast and
complicated literature on intertemporal asset pricing. They also raise the hope that

this subject can be brought into a closer relationship with the equally large body of
work on cross-sectional factor asset pricing models. An important topic for future
research will be to test the restrictions placed by the approximate intertemporal model

on cross-sectional factor risk prices.

The main difficulty in conducting such a test is that, as emphasized by Roll (1977),

the return on the market portfolio is imperfectly measured. If neither consumption

data nor market return data are adequate, then it may be necessary to develop a
more explicit general equilibrium model in which macroeconomic variables help to
identify the returns on physical and human capital. The loglinear approximation of this

paper has already been used to solve real business cycle models by Campbell (1991b),

Christiano (1088), King, Plosser, and Rebelo (1987) and others, and the application of

macroeconomic models to asset pricing promises to be another active area of research,
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Table 1

Mean Value Function with Percentage
Losses from Loghn ear Consumption Rules

0• =

-r = 0.05 0.50 1.00 2.00 3.00 4.00

0.00
0.608

(0.002)
(0.238)

0.612
(0.000)
(0.002)

0.617
(0.000)
(0.000)

0.629
(0.000)
(0.010)

0.646
(0.001)
(0.137)

0.670
(0.003
(0.724

0.50
0.574

(0.002)
(0.048)

0.576
(0.000)
(0.000)

0.578
(0.000)
(0.000)

0.583
(0.000)
(0.002)

0.589
(0.001)
(0.023)

0.596
(0.003
(0.102

1.00
0.540

(0.002)
(0.006)

0.541
(0.000)
(0.000)

0.542
(0.000)
(0.000)

0.543
(0.000)
(0.000)

0.544
(0.001)
(0.002)

0.546
(0.002
(0.008

2.00
0.473

(0.004)
(0.021)

0.474
(0.000)
(0.000)

0.475
(0.000)
(o.ooo)

0.477
(0.000)
(o.ooo)

0.479
(0.001)
(0.004)

0.481
(0.002
(0.016

3.00
0.407

(0.007)
(0.867)

0.412
(0.000)
(0.004)

0.417
(0.000)
(0.000)

0.426
(0.000)
(0.010)

0.433
(0.000)
(0.085)

0.438
(0.002
(0.268

4.00
0.341

(0.010)
(........)*

0.354
(0.000)
(0.029)

0.366
(0.000)
(0.000)

0.384
(0.000)
(0.055)

0.397
(0.000)
(0.426)

0.407
(0.001)
(1.21)

The first number in each block is the mean value function, expressed as a
percentage of wealth. The second and third numbers are losses from using
loglinear approximate consumption rules with the true p and p = j3,
respectively, expressed as percentages of the exact mean value function.

* Calculation of loss from approximate consumption rule failed to converge.



Table 2

Mean Optimal Consumption- Wealth Ratio with Percentage
Errors of Loglinear Consumption Rules

= 0.05 0.50 1.OÔ 2.00 3.00 4.00

0.00
0.603

(0.090)
(1.40)

0.561
(0.017)
(0.396)

0.514
(0.000)
(0.000)

0.421
(0.170)
(2.01)

0.329
(0.635)
(9.55)

0.237
(1.43
(27.9

0.50
0.571

(0.103)
(0.659)

0.544
(0.024)
(0.183)

0.514
(0.000)
(0.000)

0.455
(0.153)
(0.868)

0.396
(0583)
(3.76)

0.336
(1.30
(9.45

1.00
0.539

(0.117)
(0.228)

0.527
(0.032)
(0.063)

0.514
(0.000)
(o.ooo)

0.488
(0.134)
(0.265)

0.463
(0.535)
(1.08)

0.437
(1.21
(2.49

2.00
0.475

(0.151)
(0.439)

0.494
(0.049)
(0.127)

0.514
(0.000)
(0.000)

0.556
(0.103)
(0.393)

0.597
(0.470)
(1.59)

0.639
(1.10
(3.54

3.00
0.412

(0.195)
(2.44)

0.460
(0,068)
(0.642)

0.514
(0.000)
(o.ooo)

0.623
(0.078)
(1.97)

0.733
(0.427)
(7.42)

0.843
(1.04
(15.9

4.00
0.348

(0.254)
(6.95)

0.427
(0.091)
(1.68)

0.514
(0.000)
(0.000)

0.691
(0.059)
(4.77)

0.869
(0.397)
(17.5)

1.05
(0.991)
(37.6)

The first number in each block is the mean optimal consumption-wealth ratio,
expressed as a percentage of wealth. The second and third numbers are the
differences between the mean approximate consumption-wealth ratios and the
mean optimal consumption-wealth ratio, where the approximations use the true
p and p = fi respectively, expressed as percentages of the mean optimal
consumption-wealth ratio.



Table 3

Standard Deviation of Optimal Log Consumption- Wealth Ratio
with Percentage Errors of Loglinear Consumpiion Rules

= 0.05 0.50 1.00 2.00 3.00 4.00

0.00
0.048

(0.760)
(1.20)

0.025
(0.756)
(0.986)

0.000
(—)
(—)

0.051
(0.750)
(0.287)

0.103
(0.749)
(-0.178)

0.155
(0.748)
(-0.640)

0.50
0.048

(0.759)
(1.04)

0.025
(0.755)
(0.902)

0.000
(—)
(-.---—)

0.051
(0.752)
(0.454)

0.102
(0.755)
(0.156)

0.154
(0.760)
(-0.141)

1.00
0.048

(0.758)
(0.876)

0.025
(0.754)
(0.818)

0.000
(—)
(—)

0.051
(0.754)
(0.622)

0.102
(0.760)
(0.492)

0.153
(0.771
(0.361

2.00
0.048

(0.754)
(0.558)

0.025
(0.753)
(0.650)

0.000
(—)
(—)

0.051
(0.757)
(0.958)

0.101
(0.768)
(1.16)

0.151
(0.788)
(1.37)

3.00
0.049

(0.750)
(0.239)

0.026
(0.751)
(0.482)

0.000
(—)
(—)

0.051
(0.759)
(1.30)

0.101
(0.773)
(1.84)

0.150
(0.798)
(2.39)

4.00
0.049

(0.746)
(-0.078)

0.026
(0.749)
(0.314)

0.000
(—)
(—)

0.050
(0.760)
(1.63)

0.100
(0.775)
(2.52)

0.148
(0.802)
(3.42)

The first number in each block is the standard deviation of the optimal log
consumption-wealth ratio. The second and third numbers are the differences
between the standard deviations of approximate log consumption-wealth ratios
and the standard deviation of the optimal log consumption-wealth ratio, where
the approximations use the true p and p = $ respectively, expressed as
percentages of the optimal standard deviation.



ThbIe 4

Standard Deviation of Optimal Log Consumption Growth Rate
with Percentage Errors of Loglinear Consumption Rules

0 =
7 = 0.05 0.50 1.00 2.00 3.00 4.00

0.00
0.037

(-0.251)
(-0.394)

0.045
(-0.175)
(-0.228)

0.057
(0.000)
(0,000)

0.085
(0.260)
(0.100)

0.115
(0.401)
(-0.088)

0.147
(0.482)
(-0.392)

0.50
0.037

(-0.251)
(-0.341)

0.045
(.0.175)
(-0.209)

0.057
(0.000)
(o.ooa)

0.085
(0.260)
(0.158)

0.115
(0.403)
(0.087)

0.146
(0.490)
(-0.081)

1.00
0.037

(-0.250)
(-0.289)

0.045
(-0.175)
(-0.189)

0.057
(0.000
(o.ooo

0.085
(0.260)
(0.215)

0.115
(0.405)
(0.263)

0.146
(0.496
(0.235

2.00
0.037

(-0.249)
(-0.184)

0.045
(-0.175)
(-o.isi)

0.057
(0.000)
(o.ooo)

0.085
(0.261)
(0.331)

0.114
(0.408)
(0.620)

0.145
(0.506)
(0.882)

3.00
0.037

(-0.247)
(-o.oso)

0.045
(-0.174)
(-0.112)

0.057
(0.000)
(o.ooo)

0.085
(0.261)
(0.447)

0.114
(0.410)
(0.988)

0.144
(0.511)
(1.56)

4.00
0.037

(-0.246)
(0.025)

0.045
(-0.174)
(-0.074)

0.057
(0.000)
(o.ooo)

0.085
(0.261)
(0.565)

0.114
(0.410)
(1.37)

0.143
(0.512)
(2.29)

The first number in each block is the standard deviation of the optimal log
consumption growth rate. The second and third numbers are the differences
between the standard deviations of apprcccimate log consumption growth rates
and the standard deviation of the optimal log consumption growth rate, where
the apprSmations use the true p and p = $ respectively, expressed as
percentages of the optimal standard deviation.
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Figure 1: Loglinear Approximation for a = 2

The horizontal axis shows the annualized consumption-wealth ratio, using a log
scale from 1% to 10%. The vertical axis shows the annualized net growth rate of
wealth Awj+i — rmj+I. The solid curve is the exact relationship iwg — rmg÷1 =
log(1 — exp(ct — wj)), while the dashed straight line is the apprwcimation given by
equation (2.5) in the text. These curves are plotted over a range from three standard
deviations below to three standard deviations above the mean log consumption-wealth
ratio. The standard deviation of the log consumption-wealth ratio is calculated from
equation (5.2) in the text using the parameter values discussed in section 5 and assuming
a=2.



(N0
0

-c
-4-,

o.
4-0

0
-c-J

SaD
0.4I

I)
C

0
10_i

consumption wealth ratio

Figure 2: Loglinear Approximation for = 4

The horizontal axis shows the annualized consumption-wealth ratio, using a log
scale from 1% to 10%. The vertical axis shows the annualized net growth rate of
wealth Aw1 — rm,t+1. The solid curve is the exact relationship awj+i — =
log(1 — exp(ct — wg)), while the dashed straight line is the approximation given by
equation (2.5) in the text. These curves are plotted over a range from three standard
deviations below to three standard deviations above the mean log consumption-wealth
ratio. The standard deviation of the log consumption-wealth ratio is calculated from
equation (5.2) in the text using the parameter values discussed in section 5 and assuming
c=4.
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