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L. Introduction

Consider the problem orf a consumer who observes an unexpectedly high price at a gas
station. She must estimate how much of it is due to a common factor affecting all other
suppliers, such as an oil shock or high inflation working its way through the economy; and how
much of it reflects a specific supply or demand shock for this particular seller. If the first
explanation is deemed more relevant, it is not worth looking for a better deal elsewhere; in the
opposite case it may pay to do so. Similarly, when this consumer observes that an automobile
manufacturer is offering large rebates on new cars, she must resolve whether this reflects factors
which are specific to this particular brand and make the offer a truly good deal, or whether the
whole industry is having a sale. Again, her search behavior will vary with the inferences she
draws from observed prices. These inferences are inturn based on her knowledge of the relative
variability of idiosyncratic and aggregate shocks, inflation being one of the latter kind.

This problem of search with learning from prices is the main focus of the paper; it is
important on several counts. First, from a microeconomic point of view, the inferences which
buyers draw from prices underlie their demand functions, and should therefore play an
important role in determining how markets react to oil shocks, weather variations, technological
innovations, etc. Second, from a macroeconomic point of view, it has implications for what is
often thought to be an important source of welfare losses from unanticipated inflation: a
deterioration in the information content of prices, operating through increased relative price
variability. 1 According to this view, stochastic inflation constitutes a source of aggregate noise

in market signals, leading to inefficient allocation decisions. While this is well understood in

1. Several studies documenting the correlation between the variance of unanticipated
inflation and relative price variability (Vining and Elwertowski (1976), Parks (1978), Fischer
(1981)) seem to lend support to this idea. Hercowitz (1982), on the other hand, finds that
aggregate real shocks, not monetary shocks, explain relative price dispersion in the United
States. As the average rate and the variability of inflation are also correlated (e.g. Taylor
}1981), Pagan, Hall and Trivedi (1983)), high inflation is often seen as indirectly responsible
or any informational costs of unanticipated inflation. The em irical literature on these issues
is surveyed extensively in Fischer (1981) and Cukierman (1983).



models where the information structure is exogenous (e.g. Lucas (1973)), what happens when
agents can decide to acquire additional information, by searching or otherwise, has not been
explored. Finally, another common, but not previously formalized idea, is that sellers can "hide"
behind aggregate or inflationary noise to charge higher real prices, taking advantage of
consumers’ reduced information to increase their markups.2

In this paper we attempt a first exploration of these issues by analyzing the effects of
aggregate cost uncertainty, arising from real shocks or from unexpected general inflation, on the
efficiency of allocations in an oligopolistic search market.3

Lucas (1973) and Barro (1976) show that stochastic inflation can cause producers to
mistake aggregate price movements for relative ones, leading them to inefficient supply
decisions. Cukierman (1979) and Hercowitz (1981) show that if supply elasticities differ across
markets, these misperceptions will also manifest themselves through a correlation between the
variance of inflation and that of relative prices. Our paper shares these models’ central concern
with "signal-extraction”, but emphasizes the informational problems of consumers as well as
producers. More fundamentally, it departs from the traditional literature by recognizing that:

(1) informational costs realistically imply market power. Standard macroeconomic models
rely on an extreme asymmetry between informational costs within a market (zero) and across
markets (infinite) to sustain the coexistence of perfect competition with imperfect price
information. More plausible forms of informational imperfections will generate non-Walrasian
prices; the issue then becomes whether inflationary uncertainty will worsen or alleviate

preexisting distortions.

2. For instance, there is a debate over whether oil companies and gasoline retailers took
advantage of the confusion generated by the 1990 shutdown of the Alaskan pipeline and 1991
Persian Gulf war to increase their markups.

3. For arelated analysis of the effects of anticipated inflation, see Bénabou (1988), (1991).



(i) information is endogenous: agents’ incentives to acquire information and their pricing
strategies are determined jointly in equilibrium, and are both affected by the inflation process.4
For instance, a deterioration in the reliability of price signals due to increased inflationary noise
can spur agents to seek more price data, making them actually better informed in equilibrium.
Naturally, the costs of acquiring information, such as search costs, will play a central role.

To take account of these points, we build a model with a stochastic environment similar to
that of previous models, but with very different information and market structures. Duopolistic
firms observe their own production costs, then set prices. Since costs are correlated due to
common, inflationary shocks, buyers observing one firm’s price learn something about the price
of the other. Given these inferences and their knowledge of firms’ strategies, they decide
whether or not to search. Conversely, when setting prices firms take account of buyers’ search
rule, as well as of their own inferences about their competitor’s cost and price.

Ours is therefore a model of search market equilibrium with Bayesian learning: it
combines optimal adaptive search (Rothschild (1973), Rosenfield and Shapiro (1981)) with
strategic pricing. To our knowledge this paper, and independent work by Dana (1990) and
Fishman (1990) are the first such models. These two interesting papers have a different focus
from ours, namely the limited responsiveness of prices to cost shocks, due to partial or complete
pooling. They also use much more restrictive (two-state) stochastic cost structures.

Not surprisingly, the problem is quite complex, and this forces us to focus attention on a
single market, as opposed to a general equilibrium framework. The question then arises of how

to capture the effects of inflation in a microeconomic setting. We identify an increase in

4.  This can be viewed as more constructive restatement of the standard criticism of
"misperceptions" models, that agents need only obtain macroeconomic price or monetary
statistics to become fully informed.



inflation uncertainty with an increase in the variance of industry-wide cost shocks. In effect, we
take as given the fact that inflation impacts inter-industry costs, and examine how such shocks
affect intra-industry pricing behavior and market performance.

Of course, thisis only a partial and crude representation of inflation. First, inflation should
affect the demand side as well as the supply side. But this is mainly a timing issue: realistically,
when consumers see prices change unexpectedly, their resources have not yet been fully and
unambiguously affected by the inflationary shock (if they had, the price change would not be
unexpected, and there would be no difficulty in assessing relative prices). Similarly, when firms
discover unexpected changes in costs, they have not yet experienced the full increase in nominal
demand which consumers will eventually address to them. Second, our model has no money.
But if one takes as given that inflation affects nominal costs, there is no substantial problem with
calling the numeraire good money. Since all price changes are unexpected by agents given their
information (any inflationary trend has already been factored out), the dollar prices which they
observe are their best assessments of real prices, and may enter their utility and proﬁt
calculations without implying any money illusion.

Thus in spite of the model’s obvious limitations, we feel that what we learn from it about
the effects of real, aggregate cost shocks remains relevant for genuine, money-driven inflation.
The reader who does not share these convictions can maintain a purely "real" reading of the
paper; indeed the relationship between the stochastic structure of supply shocks and market
efficiency is of interest independently of any possible link to inflation.

The variability of joint cost shocks affects consumers’ signal-extraction problem, hence
their search rules. This in turn determines the elasticity of demand faced by each firm, hence its
pricing strategy and ultimately social welfare. This relationship between aggregate cost or

inflation uncertainty, monopoly power and market efficiency is the central focus of the paper.



We identify two major effects of an increase in the variance of inflationary shocks. We
refer to the first one as the correlation effect. In a market where search costs are high it reduces
search, resulting in higher real prices; when search costs are low, on the contrary, it fosters
search, hence lowers prices. The intuition goes as follows. As the variance of joint shocks
increases, firms’ costs become more correlated, and in equilibrium so do their prices. Bayesian
consumers then put more weight on the first observed price and less on their prior, when
forming their posterior beliefs about the second firm’s price. Thus a high first observation
implies a higher conditional mean of the price at the second firm; this lowers the value of search,
as it becomes less likely that the observed high price is truly a bad deal. Conversely, if the
observed price is low, greater correlation implies a lower conditional mean for the second firm’s
price. This increases the option value of search, as it becomes more likely thatan even better
deal can be found. If search costs are high, buyers’ reservation price is high, so through the
correlation effect inflation variability tends to increase it even more, and with it market power.
Conversely if search costs are low, so is buyers’ reservation price; inflation variability then tends
to decrease it further, making the market more competitive.

An increase in the variance of joint cost shocks affects notonly the correlation of costs, but
also the variance of their conditional distribution. This in turn increases the conditional variance
of prices, and thereby the value of search, as is well known. This is what we term the variance
effect; as the variability of inflationary shocks increases, it always promotes search and tends to
lower firms' market power.

These insights make clear the main result of the paper: whether inflation uncertainty
lowers or raises welfare crucially depends on how costly it is to acquire information. Thus when
it is recognized that informational imperfections give rise to market power and endogenous
information gathering, the case for information-related welfare losses from variable inflation

must be substantially qualified.



The paper proceeds as follows: Section Il describes the model and Section II1 contains the
construction of the equilibrium. The effects of changes in inflation variability are discussed in

Section IV, both through analytic examples and simulations. Section V concludes.

11, The Model

In this section we present a model of a duopolistic search market equilibrium with
Bayesian learning. Buyers’ search decisions depend on the inferences they make from observed
prices, taking into account firms’ strategies. Conversely, firms’ pricing decisions incorporate
their own inferences about their competitor’s prices, and their knowledge of buyers’ inference

and search rules.

1. Market and information structure. There are two identical firms, with constant marginal costs
¢, and c,, which are drawn from a symmetric joint distribution with support
[c™,c 1X[c™.c"], 0Sc™<c <+, For instance, each firm’s cost c¢; could be the sum 6r
product of a common cost shock 6 (e.g. inflation) and a private cost shock vy, (real cost). Firm
i observes its own cost c,;, but not its rival’s cost ¢, , although ¢, provides information about ¢,
3 Buyers do not observe cost realizations but the joint distribution of costs is common

knowledge. We denote by F(czlc,) and f(c.|c,) the distribution and density of firm 2's

5, Forinstanceif c¢,=8+vy,,i=1,2, c, containsinformation about c, even though firm

1 does not know © . This assumption fits well with the idea of aggregate uncertainty. Firms
are themselves buyers of inputs, and do not have perfect information on whether shocks to
materials and labor prices are specific to their own suppliers or economy-wide. In a richer
model, of course, firms could also decide to become intormed at some cost.



cost, conditional on firm 1's. We assume that f(c,|c,) is continuously differentiable in both

¢, and c, almost everywhere, and that costs are positively correlated in the following sense:

dF (cylcy)
Fy(cyle)) = -———-a: L < 0, ve,. (n
-1

L[ f(calcy)
dc i 1-F(ecalcy) cgmc,-0

Condition (1) is just first-order stochastic dominance. (2) is a local hazard rate condition

IA

0, Ve, )

which also means that a higher ¢, signals a higher ¢, . 6 It will ensure that a firm’s equilibrium
expected profit function (conditional on its own cost) is quasi-concave.

We now turn to buyers. There is a continuum of identical consumers, with measure
normalized toone. Let S(p)=/;D(r)dr be the surplus each of them derives from buying
at p,where D(p)=-S"(p) is her demand function in the absence of search. We make the
standard assumption lghat a firm's profit per customer M(p.c)=(p-c)D(p) Iis strictly
quasi-concave in p forall cin {c”,c”). Since N(p.c) isthe profit function of a monopolist
with cost ¢, let1,,(c) denote its maximum value, achieved at p,(c).

In addition to conditions (1) and (2), we shall require some more technical assumptions
on F, S and Ii. Since they offer little insight, we have gathered them in Appendix A at the

end of the paper.

6. If (2) were required atevery (c,. c2) , it would say that the hazard rate for finding ¢ . as
one moves from ¢~ to ¢’ , isdecreasingin ¢, . Such is the case for instance if f(cz1c1)
has the monotone likelihood ratio.property, i.e., if f(c2"1c,)/ f(cz1c,) increases in ¢, for
any c,” >c,. But(2)needonlyholdas c, tendsto c, from below, so it in fact quite weak.
Note also that (1) tends to make (2) hold.



2. Search and learning from prices. Initially, half the buyers observe firm 1's price and half firm
2's price, at no cost. Given the observed price, each buyer must decide whether to purchase or
tosearch and find out the other firm’s price. Searching entails a cost ¢ but allows the cansumer
to buy at the cheapest of the two prices. The assumption that the first offer can be recalled
costlessly means that ¢ is a pure informational cost, rather than a transportation or
comimunication cost.

Given the first observed price, say p,, a consumer must first infer the extent to which it
reflects a firm-specific shock or a joint shock. She then forms a posterior about the other firm's
price, with distribution G(p,| p,:) anddensity g(p.! p,) onthe price support [p~, p”].
Finally, given these beliefs, the consumer will decide that it is worth finding out p, before
buying if the expected benefit from search,

W(p) = [ 18(p-S(P)Ig(P2 1P, = [ D(pIG(P2IpIEP:. (3)

P
is larger than the search cost o ; otherwise she will just buy right away at p, .

Note from (3) that observing a high price has two effects on the expected return from
search. For a given distribution, a higher p, makes it more likely that a better deal can be
found, and this tends to increase I/ (p,); butif firms’ prices are correlated, a high p, is "bad
news" about the distribution G(p,|p,) of the other firm’s price, and this tends to reduce
IV ( p1). Asiswell-known from the literature on optimal sampling from an exogenous unknown
distribution (e.g. DeGroot (1970)), this learning effect can result in search strategies where a
price p, is rejected but a higher price p,” > p, isaccepted. To preserve the reservation price
property, Rothschild (1973) makes assumptions on the distribution of prices which ensure that

the learning effect is not too strong, so that W/ (p,) is monotone. Rosenfield and Shapiro



(1981) impose an alternative condition, namely that the return to an additional search never
cross the horizontal line W (p,) =0 from above. In an equilibrium model, however, the price
distribution is endogenous; therefore no such assumptions can be made.

We shall in fact follow similar lines of reasoning, but with respect to the exogenous
distribution of costs £ (¢, | ¢, ). We mainly focus on equilibria where buyers’ search rules have
the reservation price property. This is both because it is a rather natural property, required in
particular for demand functions to be downward-sloping, and because the model's
non-reservation price equilibria (if they exist) are too complicated for us to solve. We show that
a pure strategy reservation price equilibrium exists provided that either:

1) Firm'’s costs are not too correlated ( £, is not too large ),

ii) Buyers” search cost g is relatively small.
The first assumption will ensure that W ( p,) is monotonic. Alternatively, the second will

ensure that W/ (p,) never falls below ¢ once it has risen above.

HI. Equilibrium

1. General properties. We look for a symmetric, perfect Bayesian equilibrium of the game
between firms and buyers. We use the definition of Fudenberg and Tirole (1991), which
imposes the following consistency restrictions on beliefs off the equilibrium path. First, a
consumer's observation of firm 1’s price p, only directly affects her beliefs about firms 1's cost
¢, . Thus, if p, is off the €quilibrium path, there are no restrictions on the consumer’s beliefs
about c |; butin determining whether or not to search, she must use these arbitrary beliefs about
¢ to formbeliefs about ¢, which are consistent with the joint distribution of costs and Bayes'

rule. Seccndly, these beliefs about ¢, and the equilibrium strategy must be used to form beliefs



about p, . This will be important below; for example, if a consumer observes at firm 1 a price
less than the lowest price p~ played with positive probability, she will still put zero probability
on the other firm’s having a price less than p~ .

We identify four different types of equilibria. If search costs are sufficiently high, each firm
will be able to charge its monapoly price without triggering any search. If search costs are not
quite large enough to support this outcome, there may still be an equilibrium without search,
where firms with higher costs bunch at consumers’ reservation price to prevent search. These
two equilibria are qualitatively similar to those of the Reinganum (1979) model. A new type of
equilibrium arises for lower search costs: a pure strategy, reservation price equilibrium with
buyers searching at higher prices and firms’ markups decreasing to zero as their costs increase
toward the maximum c”. The fourth possible type of equilibrium involves mixed strategies.
High cost firms charge prices which make consumers indifferent between buying and searching,
and the fraction of consumers which search at any price makes this pricing rule optimal.

We prove the existence of the first, second, or third types of equilibrium under qﬁite
intuitive conditions. We do not have any existence result for the mixed strategy equilibrium.
Nor can we rule out the possibility that for some parameter values there exists more than one of
the four equilibrium types, or even some other, less intuitive type.7

The first proposition shows that all equilibria share an intuitive feature: low cost firms

charge their monopoly price.

7. For instance, one can not even exclude equilibria where a firm’s price p(c,) decreases
with its cost ¢, over some range. The usual revealed preference argument fails here because
¢, affects firm 1's expected demand function through its correlation with ¢, and p2. We

shall, however, restrict attention throughout the paper to equilibria where p(c) is
non-decreasing.



Proposition 1: In any equilibrium of the game, there exists an ¢ > 0 such that a firm with cost

celc”.c +€] setspriceequalto p,(c).

Indeed, since search costs are strictly positive, consumers who observe a price sufficiently
close to the lowest price p~ charged in equilibrium will not search. If p~ < p,(c”) the firm
charging p~ can deviate and raise its price without losing any customers, thereby increasing its
profits. This is true a fortioriif p™>pna(c™).

Given Proposition 1, it will be useful to define:
V..(C)'[_[S(P,..(Cz)‘S(P...(C))]I(Cz|C)dcz"ffD(P..(Cz))Pm'(Cz)F(CzIc)dcz- (6))

V n(c) is the value of search W/ ( p) when observing aprice p = pn.(c),if all firms with

cost below ¢ charge their monopoly price, and no firm with cost above ¢ charges less than
pn(c). We now move to a characterization of equilibrium, starting with the case of large search

costs.

2. Monopolistic equilibrium. When search costs are large enough, the range of monopolistic
pricing of Proposition 1 can cover all cost realizations, and consumers will still not search,

independent of the price observed at the first store.

Proposition 2 If V .(c)<o forall ¢ in [¢™.c¢”]. there exists an equilibrium in which each

firm charges its monopoly price p,(c). and consumers never search.

Given monopoly pricing, if a consumer observes p;€(p~. p~ ] at the first store, the value

tosearchis W(p)=V .(c,)<ao soitdoesnot pay to search. As a result, no firm can attract



more than 1/2 of all customers, no matter what price it charges. Therefore p_ (c) is the

optimal price, independently of consumers’ behavior off the equilibrium path.

3. No-search equilibrium with bunching. When search costs are not large enough to support the
equilibrium of Proposition 2, there may still be an equilibrium in which no consumers search.

Define ¢’ as the smallest solution to:
Vae= [ D(pn(c2)) P (€2)F(ealc I, = (5)

andlet p*= p,n(c') . A consumer is indifferent between search and purchasing at a store
charging p°, if all firms with cost ¢ < ¢ charge p.(c) and no firm with cost ¢ >¢" charges
less than p°, so that p"reveals c¢”. We shall focus on reservation price equilibria where
consumers accept prices p, upto p° but reject higher ones.8

Firms with ¢ < ¢” are still able to charge their monopoly price. Consider, however, a firm
with cost just above ¢” . If it charges its monopoly price, it will induce search; rather than accept
the resulting first-order loss in customers (they search and find a lower price with a probability
of at least F(c|c)), it prefers charging p°, which causes no loss of customers and only a
second-order effect on profits per customer. In fact, we show that if p">c”, there is an
equilibrium in which all firms with cost above c” charge p° . In this equilibrium, consumers do

not search but prices are constrained by the possibility of search.

8. It can be shown that any reservation price equilibrium with p(c) non-decreasing must
have the same form as those we examine (with p* simply replaced by p < p* ). Moreover
those with p < p " necessarily rest on very implausible out-of-equilibrium beliefs. Since the

basic features of the equilibrium and the spirit of the results remain unchanged, we do not
think it worthwhile to go into the complexities of equilibrium refinement, and simply

concentrate on the more natural reservation price equilibrium where p = p”.



Proposition 3: If search costs ¢ are suchthat 5* 5 ¢~ > ¢, there exists an equilibrium in which
consumers have reservation price p° and firms’ pricingrule is: p(c)= p.(c) for c<c" and
p(c)=p forc’'<c<c™.

Proof: See Appendix B.

This equilibrium can be sustained by any beliefs which make it profitable to search in
response to prices p, > p"; for instance, a belief that ¢, =c*. Any firm which deviates to such
a price then earns zero profits, while it could earn positive profits by playing its equilibrium
strategy. Therefore such deviations will not occur, and this allows the imposed beliefs. Each
firm chooses instead the price p < p° which maximizes its profit per customer and prevents
search. Finally, by definition of ¢”, accepting offers below p° is optimal for consumers.

The equilibrium types of Propositions 2 and 3 are analogous to those of the Reinganum
model, except that consumers’ reservation price p° depends here on the learning which results
from the fact that firms’ costs are correlated. The other essential difference with Rcinganl;\m
(1979) is that we analyze a duopoly instead of a continuum of firms; as shown below, this allows

search to take place in equilibrium.

4. Reservation price equilibrium with search. Smaller search costs lead to a new but much more

difficult case, in which consumers’ reservation price p’ is less than ¢~ . A firm whose cost
exceeds p° can then not avoid search, unless it makes negative profits. If the market contained
a continuum of firms, as in Reinganum (1979), such a firm would have to stay out, because its
consumers who searched would all find a lower price. However, with only two firms in the
market (more generally a finite number), it is possible to charge a price which induces search,

but still expect positive profits when one's rival, who follows the same strategy, has an even



higher cost, and hence an even higher price.

We now characterize a pure strategy reservation price equilibrium in which search
actually takes place. Firms’ pricing strategy is illustrated on Figure 1. For low cost realizations,
it is similar to that of Proposition 3: a firm with cost below c” charges p.(c) and a firm with
cost between ¢’ and some c®>c” charges consumers’ reservation price p = p,(c’). A
firm with higher cost realization c , however, charges a price p((c)> p". soall consumers
who visit this firm first will search.

We now derive p,(c). If firm i charges a price p; which induces search, it will sell to

all consumers if its rival has a higher price, and to none if its rival has a lower price. Therefore
firm i’s probability of making sales is the probability that firm j has a higher price, conditional on
firm {’s true cost ¢, ., and its expected profits are:

Y(poc)=M(pc) [1-Problp(c)<plc)]. (6
where” p(-) is the equilibrium pricing strategy. Assume for now that p(-) is increasing and

differentiable on [c*,c" 1, with p(c®)> p": this will be verified below. We can then rewrite:
Problp(c,)Sp,lel=Fp:'(p)ic]

and differentiate (6) with r.espect to p, to obtain the first-order condition which p(c) must

solve:?

o (c)= f(ele)  T(p(e).c)

= . 7
1-F(clc) Mp(p(c),c) e

This differential equation must be satisfied along the price path in the region of costs [¢*.c"]

which lead to search. The boundary condition is found by considering a firm with the highest

9. Since charging p> p° leads consumers to become fully informed, it is not surprising that
this pricing rule is quite similar to the optimal bidding rule in an auction with correlated values
(Milgrom and Weber (1982)). The difference, and source of difficulty, is that {1(5.¢)
cannot be expressed as a function U (p-c).



p(c)
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possible cost, -+ Such a firm makes no sales since consumers search and are sure to find a
lower price. Therefore, it must be the case that p(c”) = ¢”; otherwise the firm would lower its
price by a little bit and make positive expected profits, since it would make sales at a price above
cost whenever its rival’s price was higher. Because p(c”™)=c", (7) does not satisfy Lipschitz
conditions at (c¢”,c¢”), standard theorems are not applicablc.10 Instead, we construct the
solution as the fixed-point of a contraction mapping; this is where the technical conditions of

Appendix A are needed.

Lemma 1: The differential equation (7) on (c”, ¢”) , with terminal condition p(c”)=c" has
a unique solution p,(c), satisfying ¢ < pr(c) < pn(c) ., with equality only at c* . Moreover,
pe (c)>0, forall ¢ in[c™,c"].

Proof: See Appendix B.

While pr(c) solves the first-order condition (7), it remains to prove that it really
characterizes optimal prices for ¢ 2 ¢®. First, using condition (2) on the distribution of costs, we

show that equilibrium profits are strictly quasiconcave.

Lemma 2: Assume that buyers have reservation price p*= p . (¢"). If firms with cost above
some level c®>c” charge pr(c). while firms with cost ¢ < ¢’ charge min(pn.(c). ).

then a firm’s profits from charging any price p 2 p* are:
¥(p.c)= T(p.c).LI-F(p:(p)ic)]. (8)
They are strictly quasiconcave and maximized over pe[p®,c”]at p=pg(c).

Proof: See Appendix B.

10. The Lipschitz condition is also not satisfied at points (p(c).c) .
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The final step in characterizing firms’ strategies is to find the threshold cost s separating
those which prefer to charge p° from those which prefer to charge p.(c)> p". The first
strategy prevents search but the second yields greater profit per consumer, if they come back.

At ¢® afirm is indifferent between the two, so ¢’ is defined by:
1 s 5 . £ 3 5 s s
[I—EF(C lc )]'H(P €y = [1-F(c’ )] NI(pe(c).c). D]

The left-hand side represents profits from charging p~. A firm which does this sells to all
1/2 consumers who visit it first and to all consumers who visit the other firm first and observe a
priceabove p° . Given the symmetry of the pricing strategy, this is just 1/2 times the probability
that the other firm has cost above ¢* , i.c.%[ 1 - F(c*tc*)]. Theright-hand represents profits
from charging pr(c*). A firm which does this sells to all customers who visit it first, search,
find a higher price and return; given symmetry, this is %[ 1-F(c*tc®)] customers. It alsosells
to customers who visit the other firm first, search, and find its lower price, ie. to another

%[ 1 - F(c®|c*)] customers.

Lemma 3: Assume that buyers have reservation price p~ = p,(c’). There exists a unique
c*e(c*.c”}. such that the following strategies are mutual best responses for firms: they charge
pm(c) if ce[c™,c"], p if ce[c .c*).and p(c)if cefc*,c”]. Moreover, c* and
p’ = pg(c®) are continuous and non-decreasing in ¢” .

Proof: See Appendix B.

This result concludes the characterization of firms’ strategies: if there exists a pure strategy
equilibrium where consumers have reservationprice p° , itis uniquelydefinedbyc®. pf().
and c*, which are the unique solutions to (5), (7), and (9), respectively. It only remains to verify

that, given firms’ strategies, optimal buyer search is indeed characterized by the reservation



price p° ie.that 1/(p,)}>¢ ifandonlyif 5 > p* . Thisis where issues associated with
equilibrium learning will be most important.
Considerfirst p, < p" i thenW (p,)=V .(c,) <V .(c") =0, bydefinitionof ¢" in(5);

so consumers buyat p . Next,if p, = p*, consumers only infer that c; e{c",c*), so

W ()= [ D(ac)IPa’(e2)Feale” S < )dley

< [T D(pnlea)) pu (e F(ealey=c)de, =V p(c) =0

and they still do not want to search. For out-of-equilibrium prices p,e(p", p’), assume that

they lead to the belief that ¢, = ¢, so that:
1»’(P.)=[w D(pz)G(pzlp,)dpff_ D(p)G(P 1P )P+ [S(p)-S(PIG(R IP))
» 3

=V (c)+[S(PH-S(PNIF(c ) >0,
due to (4) and ¢”>c”. More generally, any out-of-equilibrium beliefs which put sufficient
weight on ¢, being closer to ¢ than to ¢* will lead to search at prices p, e (p", p*). 11

s

Finally, buyers will search at any p, 2 p* if and only if W (p,)>0 ; given firms’

strategies, this is equivalentto V' (c¢,)2 0 forall ¢, 2¢*, where:

11. The fact that consumers’ beliefs do not remain monotonic in the observed price as it
moves off the equilibrium path is admittedly unappealing. But one has to choose between
such monotonicity and the reservation price property. Indeed, due to bunching, consumers

who observe their reservation price p° strictly do not want to search; if observing p” + € did
not lead them to infer a lower ¢, hence a lower c, and p,, they would also not want to
search, a contradiction.
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V(Cx)"f_ D(Pm(c2))Pmn (€2)F(colc)de,+[S(PT)=S(P™)IF(c’Ic))

*[. D(pr(cz))pr'(cz)F(Cz|C|)dcz- (10)
Since o =V (c¢") by definition of ¢" , the condition for search becomes:

(S(P)-S(PIHIF(c ic)) + f D(pele))pr(ca)F(czle)de, >

fc D(pm(€2))Pm (c)[F(colc™)~F(cylc))lde,, Ve 2ct. (11)

The left hand side, which we shall denote as £(c,,0), is the direct effect of finding the

price p” instead of p:it is the additional incentive to search which results from the prospect
of finding aprice p* < p, < p, (conditional on c, ). The right hand side is the "bad news" from
inferring ¢, rather than ¢ *, about the likelihood of finding a price p, < p*; For buyers to have
areservation price rule, this disincentive to search at high prices must not be too large; we shall
denoteitas x(c,,0). From(11) weseethatx(c,,c) willbe smallin two intuitive cases, which
respectively extend the insights of Rosenfield and Shapiro (1981) and of Rothschild (1973) to an

equilibrium context.

The first one is when search is inexpensive, i.e. ¢ is small, making ¢” close to ¢~ . The

following proposition formalizes this intuition.

Proposition 4: If search costs are relatively low, there exists a pure-strategy, reservation-price
equilibrium characterized by critical cost levels ¢” and c¢*® ,with ¢” <c'<c®<c"' . Buyershave
reservation price p° = p,(c’). Firmscharge p,(c) if ce{c ,c"], p ifce[c .c*),and

pr(c)if ce(c®,c™], with cSp,e(c)Spn(c).



Proof: See Appendix B.

The second case in which a reservation price rule is optimal is when a firm’s cost does not
reveal too much informationabout that of its competitor, i.e., when F2(c» | ¢,) is not toolarge.

The two distribution functions in ¥ are then close to one another.

Proposition S; If firms’ costs are not too correlated, i.e., if,
F,=max{F,(c,lc,)lc eS¢, Sc”)

is not too large, there exists a pure-strategy reservation price equilibrium. For ¢ above some

Jevel o', it involves no search and corresponds to that of Proposition 2 or 3, depending on

whether V .(c") islarger or smaller than ¢ . For ¢ <¢", itinvolves search and corresponds

to the equilibrium in Proposition 4.

Proof: See Appendix B.

5. Mixed strategy equilibrium. If the assumptions of low search costs or low correlation do not

hold, there may be no reservation price equilibrium, as one should expect. Indeed, simulations
suggest that there exists an intermediate range of search costs in which none of the three types
of equilibria discussed above exists (see Section [V). We must therefore turn briefly to a fourth
type of equilibrium, which involves mixed strategies by consumers and generally does not have
the reservation price property.

In such an equilibrium, pricing at low levels of costs remains unchanged, ie,
p(c)=pn(c). for c<c'. From ¢" to ¢~ the pricing rule pg(c) makes consumers
indifferent between searching and not, and they will randomize this decision. Thus for ail

c,e[c . c’]:



—,.—

S,

[ (5(pate = S(pate (erlender = [ [1S(RiE)) = S(Pue DI (ealede,=a. (12)

Differentiating this expression with respect to ¢, yields p,"(c)) as a function of all

pe(c2) ,for c,<c, ;thisallows the function p.(.) to be constructed, moving up from the
initial condition p.(c’)=p" . The fraction w ,(p) of consumers who search at any price

p > p" must then make the pricing rule pg(c) optimal; forall ¢, € (c".c7]:

p,(c,)eargmax{l’l(p,c,)[l—w,(p)«ftl wl(Pl(Cz))f(Czlcl)dCz:l-PZP‘} (13)

Py ()

Note that in this type of equilibrium p,{(c”)>c” . The highest-cost firm makes positive

proﬁts because not all its consumers search; yet if it raised its price they all would search, and it
would then make zero profits.

Such an equilibrium is somewhat less appealing intuitively than the previous reservation
price equilibria. Itis also much more difficult to construct for a general specification: one must
show the existence of solutions pe(c) to(12)and w,(p)e(0,1] to(13), both of which
are extremely complicated. We have not established general conditions under which this
equilibrium exists, but report below on simulations using simple functional forms which indicate

that it does exists in the intermediate range where none of the other three types do.

1V. The Effects of Inflation Uncertainty

We are now ready to analyze how equilibrium pricing and search rules are affected by
changes in the underlying distribution of costs. Before doing so, however, it worth pointing out
the impact of individual cost realizations on firms’ markups. Consider the equilibrium depicted
in Figure 1. If an aggregate cost shock pushes both ¢, and ¢ from(c *,¢*) tosomewhat above

¢’ , both firms will significantly increase their markups, raising prices toward their respective
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monopoly levels. They know that this will trigger search, but each is betting on its competitors’
cost and price being at least as high as its own. This is an interesting feature of the model: in
response to an oil shock, retail markups on gasoline may jump up.

Let us now turn to our main subject of interest, and examine how an increase in the
uncertainty of the inflationary process impacts firms’ market power, the amount of search,
profits and consumer surplus.

First we demonstrate the two most important intuitions, regarding what we call the
correlation effect and the variance effect. This is done by analyzing the comparative statics of
¢” , using a particularly convenient specification where costs are log-linear and demand is
iso-elastic. As explained below, ¢” provides an intuitive but only partial indicator of monopoly
power in the model. So in the second part of this section, we present a variety of simulations.
These are carried out using an alternative specification, both for technical reasons and as a
check on the robustness of the results derived in the first part. They confirm that the correlation
and variance effects provide insights into the full equilibrium effects of inflationary uncertainty

in this model.

Recallthat ¢ ” characterizes consumer’s reservation price p* = ¢"),andis therefore
p m

" the cost above which firms are prevented from charging their monopoly price. In the no-search
equilibrium of Proposition 3, it is clear that an increase in ¢” to ¢”~ results in prices which are
equal up to ¢” and greater above. The effects accompanying an increase in ¢ in the search
equilibrium of Proposition 4 are more complicated, since the differential equation (7) giving
pr(c) is affected in a complicated manner by the underlying changes in the inflation process.

This is where we must resort to simulations.
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Case 1: -Normal Costs, Isg-Elastic Demand
Let us now denote firms’ costsas C; , i = 1,2, and assume that ¢, =logC,=c+0+ Y.,

where 8~N(0.vy), v,~N(O.v,)and 8,v,,y, areindependent.

The distribution of ¢ conditional on ¢, is therefore normal, with mean pc,+(1-p)c

and variance (1-p?)(ve+v,), where p=vg/(ve+ v,) is the correlation coefficient of ¢,
and c,. We shall examine how v, which measures aggregate cost or inflation uncertainty,

affects the conditional distribution F(c, |c;) and consumers’ return to search.

Assume that demand is iso-elastic, D(P)=P"", n> 1, so that the log of the monopoly

rice is: pn(c)=c+log|—). The unconditional distribution of p.(c) is normal, with
P 1

mean p=c+ log(“:'—l) and variance v, . The conditional distribution of p.(c;) , given

¢, =c ,isnormal withmean p(p.(c)) and variance s?, where we define:
n(p)=pp+(l-p)p: sZm(1-p?)(ve+uy) (14).
To better demonstrate the two effects of inflation uncertainty, let us for the moment

consider p and s?, rather than v, and v, . asthe parameters of interest. Consumer surplus

at the monopoly price is:
1
S(pm(c))=n_—lexr>[(l “Mpa(e)].

Therefore the return to search in the region of monopoly prices is:

1 Pmie) )
V’I" C =
() n~1J.-  J2ns

with p=p(p.(¢)) . Rewriting in terms of the distribution ¢ and density ¢ of a standard

(exp[(1=n)pa]-exp((] —n)pm(c)nexp[—“’—;}l}dpz :

normal:



vm(c>=ni_'1‘*xp['%(ﬂ- DI2p+2p(pmle)-p)~s*(n- 1)1].‘;{(1-p)(m(c)-?s)n’(n— 1)]
L

-nf——lexp[—(n—l>pm(c>1-¢[“—"’l‘~”s:(ﬂ'—”’]. (1s)
Hence:
oV (€) - 1 - -
o -(p,,.(c>-p>-exv-§(n— D2p+2p(pn(c)-p)-s°(n-1))

S

_¢[(1—o)(pm<c)—5)+s2(n— 1)]_

avm<c>=¢{(l —p>(pm(c>—5>+s2(n—1)]”(,‘_ ,)4,[(1-p)(pm(c)-;‘ms*(n-l)]

as s s

1 _ -
rexp-z(n=1)[2p+2p(pn(c)-p)=s*(n-D].

So finally:
oV . — -
sgn ap(c) = sgn(P-Pn(c)) = sgn(i-c) (16)
BV m(C)
—— > o. a7

The first result (16) shows what we call the correlation effect. Recall that the mean of the
distribution of c, conditional on ¢, = ¢ is a weighted average of the observation ¢ and the
unconditional mean ¢, with weights p and 1 -p , respectively. This conditional mean is thus
increasing in p ifc > ¢, and decreasing if ¢ < c . By increasing p, the first effect of an increase

in v, is therefore to raise the value of search at ¢ < ¢ ,and to lower it at c>c 12 This

12. Of course, what really determines search is not the conditional distribution of costc, ,
but the conditional distribution of surplus S( p2) ; see (3). The difference between the two

involves the equilibrium pricing rule p(c) as well as the convexityof S(p): The discussion
above is only meant to give the main qualitative intuitions.



correlation effect captures the idea that inflation or aggregate cost uncertainty makes people

search less when they see a high price, because they think it more likely that things are just as
bad elsewhere. However, it also makes them search more when they see a low price, because

they think it more likely that even better bargains can be found.

The second result (17) shows what we call the variance effect. Given that buyers can return
to the first store costlessly, an increase in the variance s> of the conditional distribution
increases the option value of search. But note that an increase in vy, the unconditional

variance of the joint cost shock, does lead to such an increase in the conditional variance:

as? 2 . ve \? ( ‘) v2 >0
=)= Vot U.) =™ —ee—s ;
3Ue 31/0 Ug* Uy e M (Ue*uy)z

This raises the value of search and tends to reduce the market power of firms.

We now examine how these two effects impact consumers’ reservation price and firms’
pricing. We focus on the case where search matters, i.e. wherec” = inf{c|V ,(c)=0} <=,

Then V ,,"(¢*)>0 ,s0(16) and (17) imply:

B . = .-
sgn% = sgn[p,(ec)-p] = sgn(c -c) (18)
o’
= <o. (19)

If ¢” exceeds c . the correlation effect tends to increase it further, resulting in monopoly

markups over a wider range of costs; the variance effect, however, works in the opposite
direction. By definition, such a configuration with ¢’ > ¢ occurs when search is relatively costly.
With a relatively low cost of search, on the other hand, c” is less than c; in this case both the

variance and the correlation effects reduce it even more, and the market becomes more

competitive.



While this log-normal case is very specific, the intuitions behind the correlation and
variance effects seem quite robust. One can think in general of the variability of inflation, or of
any common shock to firms’ costs, as having two effects on the conditionai distribution of costs
(and through equilibrium pricing, of surplus). First, by making costs more correlated, it shifts
F(ca]c,) ,upward for high ¢, ,downward for low c,; second, since it is a source of additional
uncertainty, it causes a mean-preserving spread in the shifted distribution. The generality of
these intuitions is also supported by the simulations, using a very different specification,
reported below.

In addition to these two central, information-related effects, inflationary uncertainty has
other consequences in our model. First, greater price variability in itself tends to increase
consumer surplus, which is convex in price; this is a feature of partial cquili.brium, where the
marginal utility of income is constant. Similarly, equilibrium profits may be positively affected
because they depend in part on monopoly profits, which are convex in cost.13 Neither of these
effects is really interesting; in particular, they have nothing to do with information, since they
occur even when search is impossible and consumers always buy at the monopoly price. When
performing comparative statics, we shall therefore normalize surplus, profits and welfare by
their respective values in a monopolistic market. This will allow us to isolate the effects which
are really due to the interaction of the inflationary process with the informational role of prices.

The last, and much more interesting effect of inflation uncertainty is the following. Even
though an increase in the value of search raises each firm’s elasticity of demand, an increase in
search activity shifts consumers and purchases toward the firm with lower cost. Since these firms
are more profitable, this tends to increase total expected profits and efficiency at the same time.

The log-normal specification used above yields very clear, closed-form results for the

13. Note however that firms face both ex-ante and ex-post uncertainty, because they set their
price after learning their cost, but before learning that of their competitor.



effects of inflation uncertainty on * . On the other hand it does not allow us to construct (even
numerically) a full equilibrium with search, This is because it does not satisfy the assumption
¢* <+, 50 that one can not use pr(c’)=c" as a terminal condition to solve (7). We
therefore turn below to an alternative specification; it also serves as a robustness check on the

insights just derived.

Case 2: Uniform Costs, Linear Demand

Let us now assume that costs are the sum of a joint cost shock and a private cost shock,
both uniformly distributed: c;=c+0+vy,, with 6~U[~a,a], v,~U[-b.bland v,,v,.0
independent. Demand is taken to be linear: D(p)=A-p.

We assume that a < b, which reduces the number of cases to analyze but is not essential;

a represents the volatility of inflation. The unconditional density of costs is the familiar,
trapeze-shaped, sum of two uniform distributions. But of greater interestis F(c,|c;) ,0r
equivalently the conditional distribution of 6, given ¢, . Inferring ¢, from a price observation
causes a consumer to update his beliefs about the joint shock 6 as follows:

if c,e[c-a-b.c+a~-b] the posterior of 8 is 6~U[-a.c,-c+b}:

if ¢, e[E+a-b.E—a+b] the posterior of 6 is 6~U[-a.a]l:

if ¢, 6[5—a+b.5+a+b] the posterior of 8 is 8~U[c, -¢c-b,a}.

Note that if ¢, falls in the intermediate region there is no learning, However, if c, falls
in the lowest region, the conditional expectation of c; = ¢+ 6 + v is less than ¢, and decreasing
in the variability a . On the contrary, if ¢, falls in the highest region the conditional expectation
of ¢, is above C, and increasingin a . Thus the correlation effect works here in a way similar
to the log-normal case. The same is true of the variance effect, since the supportsof 8 and ¢, .

given c,, always widen as a increases.



We now look at a number of simulations of this example, in order to get some feeling for
the relative size of the various effects of an increase in aggregate uncertainty. In all simulations,
D(p)=15-p, c=6.and b=3. We allowsearch costs o and the dispersion of the joint
cost shock a to vary. The results for low, intermediate, and high search costs are given in
Tables 1. 2, and 3, respectively. We define these terms so that low search costs lead toa ¢ well
below the unconditional mean of ¢ = 6 , intermediate search costs lead toa ¢ * near ¢, and high
search costs lead toa ¢ well above c.

Looking first at the effects of o (say, for a = [.50 or 2.0 ), we see that as it increases,

the equilibrium first involves reservation price strategies and search ("type 3"), then mixed
strategies ("type 4"), then monopolistic pricing plus bunching at p” ("type 2"), and finally
unconstrained monopolistic pricing ("type 1"). These results support the intuitive way in which
we associated, in Section 11, each type of equilibrium to a different range of search costs.

Next we turn to our main subject of interest: the effects of inflation uncertainty on
monapoly power and on the components of welfare in equilibrium.

Table 1 reports the case of low search costs; c¢” is decreasing in a , because both the
variance and correlation effects make search more valuable. This reduction in firms' market
power with increases in the variability of joint cost shocks leads to gains in consumer surplus,
both in absolute terms and relative to the monopoly level. Conversely, profits decrease, once
the convexity effect discused earlier is eliminated by normalizing 1 by the monopoly level T™

Finally, the reason why [1/[1™ does not fall more as a rise is that increased search raises the
likelihood that consumers will purchase at a low-cost firm, which has higher profits per
customer. The better matching of consumers to more efficient firms thus mitigates the decrease
in markups. This can be seen from the columns of Table 1 which report the price £(p) paid

by the average consumer and the cost £ (c¢) incurred for the average customer. At higher levels
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of a, the decrease in price is offset by the decrease in cost.

Table 2 reports simulation results for intermediate values of o . When ¢ isnear c, the

correlation effect affects it very little. The variance effect alone acts to reduce ¢’ as a

increases, but this reduction is very limited compared to Table 1. Similarly, the total effect of
inflation variability on consumer surplus and profits is small relative to the previous case. These
simulations also indicate that the determination of ¢ " is not the entire story, because for a > 1
c¢” is decreasing, yet (normalized) profits increase and consumer surplus decreases.
Interestingly, total expected profits can exceed the monopoly level: as explained earlier, search
transfers sales from the high cost to the low cost firm, so the relevant average cost is below the

average cost for a monopolist.

Table 3 reports the results when ¢’ is significantly greater than ¢ . Inall equilibria, there

is no search. Note that ¢ first decreases with a , then increases at higher levels: the correlation
effect eventually becomes dominant. In this higher range, (normalized) consumer surplus falls,
profits rise, and welfare declines.

The lesson from these simulations is that one needs to know a great deal more about
market structure before one can say that increases in inflation uncertainty reduce the
informativeness of prices and therefore decrease welfare. When observing additional prices is
cheap, it is possible for the benefits from an increase in the variance of joint cost'shocks to
outweigh the losses. At higher levels of search cost, on the other hand, we show that the
conventional argument is correct. Interestingly, Bénabou’s (1991) analysis of the effects of
anticipated inflation leads to rather similar conclusions about the importance of market

structure, and in particular the size of informational costs.



V. Conclusion

Aggregate cost uncertainty, whether due to common input prices or to stochastic inflation,
reduces the information content of prices by making it difficult to separate relative and
aggregate price variations. In this paper we explore how this mechanism operates in an
environment where agents can decide to enhance their information via search. We study how
the stochastic structure of shocks, consumer search and oligopolistic pricing interact in a single
product market.

The results indicate that the a priori case for welfare losses from inflation associated with
reduced informativeness of prices has to be substantially qualified when one allows for
endogenous information acquisition and price-setting. Indeed, inflationary noise can lead
‘agents to seek more information, so that in equilibrium they are in fact better.informed, and
prices reflect increased competition. We show that the decisive factor in whether inflation
uncertainty improves or deteriorates market efficiency is the size of informational costs.

Another contribution of this paper is that it develops an equilibrium model in which
Bayesian consumers search optimally from an unknown price distribution, and firms price
optimally. given the learning and search rules of consumers. We hope that this analysis will be
useful for attaining a better understanding of the relation between pricing and search behavior

in general.



ndix A: Technica itio
In addition to (1) and (2), we shall assume that the distribution of costs satisfies:
f(cle) > 0, vcel[c .c'). (A.1)
where f(c|c )= lim f(clc) and f(¢"|c)= lirq f(clc) . These limits can be positive even with
f(cTley)=0o0r f(c [c,)=0 forall ¢,e(s".c"). Note that (A1) implies F(c|c) > O,forall ¢>c”.
Turning now to the demand side, we assume that -D‘(p)=S°(p) is bounded on [c”,c"} , ie.
A=sup{-D’(p)|c € p<c’)<=. Thismayrequire c* > 0. Finally, strict quasi-concavityof f1(-, ¢) implies:

Ny(p.c)

PP b

0. Vp, c<p<p,(c).

This also holds in thelimit at p,(c),since It ,,(pn(c), c) < 0. Therefore, by uniform continuity on the compact
set K= {(c.p)le Secsc’.c<p<pa(c)):
O<m=min{p(p.c).(c.ple K}y <max{p(p.c).(c.pleK})=M<e, (A.2)

We shall assume:
. - . AN . L2
M,(c’) 2 S(c)-S(c)H)+M m (c'-c’) . (A.3)

This requires that monopoly profit functions II(p.c) be neither too fiat nor too spiked, that monopoly
profits for the most cfficient firm be sufficicntly large, and that the range of possible costs (¢~ ¢ *) not be too wide.
Condition (A.3) will ensure the existence of a solution to the differential equation defining the optimal price

strategy of firms with high costs.

Appendix B: Proofs
Proof of Proposition 3: In this equilibrium, consumers’ search rule is toscarch if and only if the first observed price
exceeds p°. By the definition of c °, no consumer wishes to search at prices below p*. At p”, all a consumer
knows is that c, € {¢", ¢”]. By thedefinition of ¢} she is indiffercnt between searching and not if she obscrves p’
and knows that ¢, = ¢*. However, in this equilibrium, obscrving p” only reveals that ¢, 2 ¢’ Given the positive
correlation in costs this implics that the consumer’s beliefs of c, arc at least as great as if she knew ¢; = c¢*. This

combined with the (weak) monotonicity of the pricing rule implies that she does not wish to search if she observes



3

p" in the proposed equilibrium. This shows that consumer search decisions are optimal on the equilibrium path,
where all prices are below p,,(c’). If aconsumer observes a price above p°, her beliefs must be such that it pays
for him to search, Believing that ¢, = ¢, or more generally that ¢, isclosetoc’ issufficient to ensure that she
does wish 10 search.

Pricing rules are clearly optimal. Ifany firm deviates to a price greater than p" it gets zero consumers, since
they search and find a lower price. Thus, so long as a firm charges a price no greater than p’, it gets haif the
consumers. Thus, the optimal price is p ,(c)unless it exceeds p"in which case (given the quasi-concavity of

profits) the optimal priceis p° Q.E.D.

Proofof Lemma 1; Let C, be the space of continuous functions on [0.c¢’]. We shall work within the subset:

C = (p()eCylplerele, palc)] Ye}. (8.1)
Denote by v(c)= I_“,‘(':l") the hazard rate entering (7); then p(-) solves (7) if and only if the function
I(cy=n(p(c).c) (8.2)
obeys the differential cquation:
I'(c) = M (p(e).c)p(e)=-D(p(c)) = v(c)i(e)-D(p(c)) (8.3)

with terminal condition f(c’)=H(c ,c')=0. Integrating (B.3) backwards:

- f' (y)ay

e = [Tocpene T ax « Jpe).0. (8.4)

This integral is convergent at ¢”,since p(x) 2 x implies:

I{e) < f D(x)dx = S(c)-S(c").
We have transformed the differential equation (7) into an equivalent integral equation:
J(p(-).c) = M(p(c).c). Yc. (8.5)
Byassumption M(-. c) is strictly quasi-concave, hence can be inverted from {0, M,.(c)}into (c. pn(c)]. Hence,

with obvious notation, the fixcd point formulation (clearly /(c) € {0, n( c))is:

p(c) = NC.e)'(J(p(-).e). (B.6)



R

We now show that the mapping T:p(-)- T p(-).Where Tp(c) is the r.hs. of (B.6), is a contraction on ¢
endowed with the sup norm: | p| = sup |p(c)| . Let p(-)eC; byconstruction, Tp(e)e(c, pa(c)l. Yec.
co.c’)

Moreover, it is easily verified that {1(-,c) ™' (i) is jointly continuous in (c.M), forallce[c . ¢ ] and for all
Ne(0.M,(c)].Since J(p(-).c)=I(c) isclearlycontinuousin c. T p is then continuous, hence Tp(-)eC .
Consider now (p.g)eCxC andany ce[c ,c’}. We have:

ITpCe)~Ta(ed)l = (M¢.e) ' (J(P().)=M(.e) " (S(q(-) e} (B.7)
Note that (-, c)™* hasderivative 1/11,(M(-.c)"', c). which is unbounded. Forall X.Y €{0.M,(c)}. with
X277 denote x=TM(-.c) ' (X), y=[M(.c)'(Y). Wechim:

1 X-Y
- < x-y
M pn(c)-y

1. _Xx-r
m po(c)-x’

(8.8)

Indeed there exists Z, X 2 Z2 Y, or z=M1(+.c) ' (Z). x 2 22 y such that == =l (z.c) . But, by (A.1), the

definition of mand M :

< My(z.c) <

Tpn(e)-z”
Incquality (B.8) then follows from y € z < x € p,(c). Next, apply the first inequality in (B.8) with X~ = [1,(c).
N =pa(e), Y =X,y =X
N, (c)-X M.(e)-Y
xPFrml —x2, .
[Pu(e)=x]P2 =" or pa(e)-x2y/ ——p (8.9)

Finally, replace (B.9) in the sccond part of (B.8), to obtain:

. i M X-Y )
. ! “Ti(- VY Y m v my € e B0
ne.o) ' (X)-n¢.e) ' (¥y~x-y m ok ( )

Therefore,

i U T - platendx

- _ M i
1T p(e)-Tq(c)l < p” T e

f( eAf‘ '“MIp(.\')-q(.\')ld_\'
.A < —
Yl (e)=J(p().c)

3|3)

A
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Am c'-c
<lp-q| WM. ____c°°
RN s e Tt (811

Thus 7" will be a contraction if, forall ce[0.c'].

2
ﬂ"(c)-—.l(p(~),c)>M(%) (¢ -cH)?. (B.12)

Indced, uniform continuity will then imply that (B.12) holds with M replaced by M /B .for some B e (0,1),

sothat | Tp-Tq|<P|p-q}.Butnote that we have,

ru(c)—J<p<->.c>-n,(c)-f‘"e'f‘"(”"o<p<x>)dx>n.(c)—f:' D(x)dx =Tl ()= S(c)+ S(c™),
since p(c)>c. Because, ,,(c)- S(c) is increasing, (B.12) then holds by assumption (A.3). This concludes
the proof of the existence and uniqueness of p,(c).

It remains o show that p,"(c)>0. Yce[c .c'}. Force[c ,c'). (ps(c).c)>0 by (B.4) while
J(clc)>0byassumption (A.1), hence the result, by (7) . The case of p, (¢ ) is more complicated because both
the numerator and denominator in (7) go 1o zeroas ¢ goesto ¢ . Forall e> 0,
fle'-arc’-)(p e’ -e)e’ - =[1-F(c -elc’ ~e)IN (pp(c -€)c ~e)p, (¢ ~€)=0.  (B.13)
But,

F(c'-elc’=€e)=F(c e’ )=[f(c e )+ Fplc Ic )} (~€)+a(e):
H(pe(e)e)-N(pelc -€).c €)= (pslc’~€)c -€)p, (¢ =€)+ N (p;(c’-€).c'~€)]e+o(€)
=[N, (c’ tc)p, (¢’ -€)+ T (c’.c))e+o(€).
Since F(e'|e¢’)=1 and N{p,(c’).c")~0,(B.13) becomes:
(e e~ (e 1e)p,y (e’ =€)+ D(e )= [f(c 1e™)+ Fp(c fe )N (" e )ps (" ~€) e =o(e).

or

prle —e)2f(c ety Fop(e 1 )T (e" e ) = f(c te™)D(e7)+ o(1)
which means that the limit p, (c¢* )= l'ifg pe(c’ - ¢)existsand, since 11 ,(c" |c”)= D(c").

fe'ie’)

et 1
P ey e ey 2

This proves the result. Q.E.D.



Proofof Lemma 2: Consumers observe p, > p* ; given that they search, they will come back only if the other firm
has p,> p, . Giventhat p,(c;)<p*if c;<c*and p,(c,) isincreasingin c, for ¢, 2 c*. thisoccurs if and
onlyil p,(c;)> p, and has probability F(p;'(p,)lc);: hencetheformof ¥( p.c). The first-order condition
for maximization ¥ ,(p.c)=0 is precisely the differential equation (7), to which p,(c) is the only solution.
Thus it only remains to show that ¥ ,,(ps(c).c) <0, implying that equilibrium profits (for ¢ 2 c*) are strictly

quasiconcave in p . But by the implicit function theorem,

) =¥, (pse).c)
Py o)
Given that p.°> 0. the sccond-order condition becomes ¥ ,.( ps(c).c)>0. But,

¥ (p.c)==-D(p)1-Flp:'(P)Ie)I-N(p.c)F,(p; (R)ic).

feley faolele) ,
5y (o) P TS TP (). O F (e 1)

Vo (ps(c).c)=-D(ps(eNl - F(cle)]* D(p,s(c))-
The first two terms are positive. Replacing p,"(c) from (7), the sum of the last two terms has the sign of:
“M,(psCe). ) falele)(1=F(ele))+ F(clc)f(clc)]>0.

from assumption (A1) and the fact that I1,(p(c).c)>0. QE.D.

Proof of Lemma 3: We first find c*®. the point of indifference between p” and p,(c) (when cf<c’). by

examining:,
. 1
6(c)=T(p 'C)[l —EF(CIC)J-H(P;(C)-C)U - F(cla)]. (8.14)

We first show thatif &6(c)= 0, then 6°(c) <0 . Indecd, 5(c) =0 ifand only if,

1-F(clc)

; M(ps(e).c)<N(p,(c).c}). (B.15)
1-3F(clc)

(p'.c)=

Then:



6°(c)= -D(P')[ 1 '%F(C i C)]— D(p,(en[i-F(ete)]-N (p,sle).c)[1-F(ecle)lp, (c)

i .
'[EH(P -C)‘"(P;(C)-C)][/(C 1e)+ Fa(cie))

p-c

1 .
p—,(‘c)—_z] EH(P .e)f(clc)

. 1
=-D(p )[I'EF(CIC)][I'

[reprere-zn 0o

where we used both (7) and (B,15). Now (B.15) and (2) imply that the last term is negative, and also that
p° < ps(c)since N(-, c) is increasingon [c. p,(c)]. whichcontains p'and p,(c). Thisin turnimplies that
the first term above is also negative. Since the second term is always negaltive, we have showed that 6°(c) <0
whenever §(c)=0.

Therclore, 6(-) can have at most one zcro. Moreover,
. . e 1 ., e . f oo
8(c)=Ni(p .c )[I-EF(C lc )]-H(P;(C Yoe)1=F(c [e)]>0

because p* = pa(c’)> pr(c’). 50 N(p'.c)>N(p,(c’).c’), while 8(c™)=iN(p".c")=3(p ~c)D(p")
has the sign of p"—c' . Thus two cases can arise:

(i) If p2¢’. 6(c")20, soall firms with costin [c", ¢ ] prefer charging p“to p,(c) and,
therefore, also (by Lemma 2) to any price above p° . Thus p’ maximizes profits.

(ii) If p'<c’. 6() hasaunique zero c*e(c’.c’). and a firm with ¢ 2c” prefers charging
ps(c) o p”: since c>c', p isits preferred price among those which do not induce search. By Lemma 2,
p«(c) isits preferred price among those which induce search. Thus p,(c) isthe globally optimal price for c 2 c* .
For ce[c',c*). 6(c)<O so the firm would rather charge p~ than p,(c).andalsothanany p < p°, since
there is no scarch below p' S pa(c) and N(-.c) increases on [c. pna(c)]. Finally, a firm with ¢ <c” clearly
will prefer charging p,.(c) . Note that the uniqueness of the solution ¢ * to 8(c) = O ensures that it is continuous
in c’. Morcover, forc>c’. p < pn(c)soli(p’.c)and 8(c)increascin p”or c’. Therefore, c * increases

in ¢, andsodoes p'= p,(c’). since p,(-) isincreasing and independent of ¢'. QED.



Proolof Propoasition4: Weshall make the dependenceof ¢, ¢+, etc., on o explicit, by denoting themas .° .1
¢+ Co
etc. To show that (14) holds when o is small enough, we examine more closely the determination of ¢” and ¢*

forsmall o . Recall that,
V()= [ D(palen))Pa’(e)F(csle dde, 0.

Evenif V . (-)isnot monotoniconallof {¢™,c"}, itis monotonic up to some (maximal) c'e¢(c™.c’], because
Va'(c7)>0. Moreover, V,(c)>0 in [c'.c”]. s0 V() is bounded away from zero on this interval, i.e.,
Va(c)2V, >0. Since V4(c")= 0. thereexistsa unique c¢*"€[c™.¢'] such that: Veele™,¢'] V()2 V,

.

ifandonlyif c2c¢'. Let o™ =V (c™")=V, . Thenforaill a<¢™, 31c,e[c . ¢ ]Vee[c ¢ ], Vn(c)>a
ifand onlyif ¢ > c; . namely ¢, = max{ce(c’.c"']|V (c)So). Thusfor o o', monopoly pricing can be
sustained up to the cost ¢’ . and not above. Clearly, as o decreases from o** 10 zero, ¢ decreases 1o ¢~ . In
particular, we shall assume that ¢, <c,(c). ie, p,= pa(ci)<c’.

Let us turn next to the determination of ¢} . The differential equation (7) and its solution p,(-) do not

depend on o, while ¢} is deflined by (see Lemma 3):
. 1
Nepi e 1- 1t 1ed = nep (e et - Feedien].

(Recall that p, <c¢” ensurces that a unique solution ¢} € (¢,.c ) exists). As o decreases 10 zero, p, decreases

10 po= pm(c”) so by Lemma 3, ¢ decreases to a limit ¢ 2 ¢” . In fact ¢ remains bounded away from ¢~

otherwise in the limit: (pn(c ).¢™)=N(p,(c ).c”). which is impossible since ¢” < p,(c )< pn(c’) and
fI(-.c") is strictly quasiconcave.

We are now ready to examine (14) for low values of o . First, forall ¢, 2 ¢} :
x(c,.c)Sf_ D(p,\(cz))p,\'(cz)F(cz[c')dcz-d (B.16)

50 x(c,.0) goes tozero (uniformly in ¢ ) with o . On the other hand we show that:
g(o)=min{&(o.c,).c,e[c;.c’]}>0 (B.17)

for o lowenough. First note, thatforall s S¢'"and ¢, 2 ¢} 2 ¢}
1€(0.¢)~E(0. ¢, ) ISIS(P)~S(P)I+ IS(P:)‘S(PB)Pf_ D(ps(c2))ps (cr)de,

=S(P)-S(P)I+21S(p)-S(p)I. (B.18)
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SO £(o,c,) convergesto £(0,c,) uniformly in ¢, as o goes to zero. Therefore, by continuity (B.17) will hold if

£(0)>0.ie,forall c,efcg.c]:
5(0.€,)=(S(p) - S(p,(edNIF(chlens [ ' D(p ey (e)F(esle)de;>0.  (5.19)

Since py= p(ci)> po= Pn(c’) . the first term can only be zero if F(c§|c,)=0. which by assumption (A.1)
requires ¢, > ¢ - The second term in (B.19) can then only be zero if the integrand
D(ps(cz))ps (c2)F(c,|c,). which is continuous and non-negative, is identically zero on [c5.c,}. But
D(ps(c,))2D(c’)>0:byLemmatl, p,"(c,)> 0. and by assumption (A.1), F(¢c, {c,)> 0,50 this cannot be
for ¢, nearc, . and (B.19) must therefore hold. Thus (B.17) holds, which, with (B.16), implies that for o low

cnough (belowsome a”€(0,0'"]), V(c,)~0~E(0.¢c,)-x(0.¢,)>0.V¥c,efc}.c’]. QED.

Proof of Proposition §: We consider distributions F(c,{c,) satisying (1),(2), and (A.1), and for which
Fomsup{Flc,lc,;). ¢ Sc$¢c,Sc’) issmall. Forinstance,if c, = c+0+vy,.i=1,2, where 8~U[-a.a)
, ¥,~U[-b.b],0, v, are independent and O <a < b, oncan show that F,s .I‘. ; so it suffices that b be large
cnough. We first show that if F , is low enough:

(i) V (c,) . the returns to search under monopoly pricingat p = p,(c). is increasing.
This defines ¢, umiquely; if p,(c’)>c” the equilibrium corresponds to cither Proposition 2 or Proposition 3;
if pa(c'y<c’ . wecanconstruct p,(-) and define ¢’ e(c’.¢']. Then for F , low enough, we show:

(ii) V(c,). the cquilibrium return to search at p= ps(c).c2c’,is increasing;

(iii) I/(c*)> o . sothat searching above p* is optimal,
This will prove the theorem.

As before with o . we shall make the dependence of ¢*, ¢® , ete., on F explicit by denoting themas ¢ . ¢ .

ete. Since,
V(e D(Pm(ﬁ))i’,.'(cl)F(C;IC.)‘f_ D(pa(c2))pn’(€2)F (cylc,)de,,

(i) will holdifforall ¢, e (c".c"]:

F.< D(pm(c1))Pn (c1)F(c, IC.).

2% - (B.20)
S(Pn(c))-S(Pulcy))




We can impose (B.20) directly because the r.h.s. is a continuous, positive function of ¢, . and therefore bounded
away from zefo. Indeed, the rh.s. of (B.20) is strictly positive for ¢, > ¢” , and applying L'Hopital’s rule, it has

limit f(c”[c7)>0 at ¢, = c” . Alternatively, using the convexity of S(p).(B.20)is implicd by,

F(D(P.(C')) mi [Pn'(cu)F(Culcu)} (821

1T D(Pn(€)) el PalC) = Pale])
where similarly the term in brackets is bounded away from zero on(c”, ¢" ], due 10 (3) and L'Hopital's rule.

For ¢, 2 ¢}, we have:
V'(C,)-D(p,(cl))p,'(cl)F(Cl|C|)*f_,D(p,‘(CZ))pm'(CZ)FZ(CZ|C,)dcz

‘[S(P;)_S(P;)]Fz(c;|C|)‘f' D(pe(c )P, () F (e, 1e))de,

2D(p(e NP (e )F(e,16)=FolS(Palc )= S(Pn(ci))* S(pr)~S(pi)* S(pi) - S(ps(c))]
2D(p(e NP (e IF(c e )= Fo[S(pnalc )~ S(c)]
But,

fleiley) .n(Pr(Cl)-c|)> f(eiley) .n(Pn(Cl)-Cl)_ f(eiiey) . n,(c,)
L-F(eplc) np(pl(cn)vc|)_l'F(Cl|C|) D(pe(ey)) L~F(eyle)) D(prle))’

Pe(ey)-

50,

f(eate)F(eiley)

Vi(e,)2 = Feile)) H,(c))-F[S(p)-S(c].
Thus, (ii) will hold if:
_ /(c]c)F(cIc)} Male?) .
< . 22
F"uff-.'.?'l[ 1=FEIe) ) S(pate - S(¢) (820

By assumption (A.1), the r.h.s. is strictly positive, but both sides of (B.22) involve the distribution F. Nonetheless,
if we consider a one paramcter family of conditional distributions FMeqple,), A e[0.N] which salisfy
assumptions (1), (2) and (A1), and such that F*, f* depend continuously on A, with £°=0 ; thenas A goes
10 zero, 50 does the Lhus. of (B.22) whercas the minimum in the r.h.s. converges to (by L'Hopital’s rule):

min 1eledEeie) o
afgre] E-FoCele)
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since ¢10 > -, Therefore, (B.22) holds for * with A small enough.

Finaily, by (14), (iii) will hold if:

V(C';)'[S(P})‘S(P})]F(C}IC’;)Ef_ D{pn(e)IPn (e Flerler)= Fez)cl)]dc,.
for which it suffices that:

F.<S(PE)-S(ph) _ F(chlch)
: ci-c; S(p)-S(pi)’

(B.23)

Again, this condition involves F on both sides; morcover, it requires that the function p,(-) be computed, 50 as
tofind e - Nonetheless, given a family of distribution F*(c, | c,) with the properties described above, for small
A the Lh.s. of (B.23) will be small, while the r.h.s, will be close to the finite value corresponding t0 F°. Thisis
because the equality (12) defining ¢} always requires pi > p; . unless [1(p'.ct) =0, ie, ci=p" = p4: but
¢ = p,(c) isonlypossibleat c= ¢’ . Thus pi.= p;. would require P ;o= ¢’ which can be excluded by focusing

(as we have) on the case where fj: D(Pm(c2))Pm (€2)F%(cslc )de,>0. QED.
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