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We take advantage of the panel nature of our data to test for
a number of potential biases: autocorrelated injuries,
plant-specific fixed-effects which are correlated with both
inspections and injuries, and endogeneity of inspections {injuries
causing inspections). These biases lead us to use the percentage
change in injuries, rather than injury levels, as the dependent
variable for our estimation. Our analysis shows that the estimated
effect of inspections on the percentage change in injuries is not
significantly affected by these biases, and thus seems to reflect a
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DO OSHA INSPECTIONS REDUCE INJURIES? A PANEL ANALYSIS*
1. Intcoduction

Since the Occupational Safety and Health Administration (OSHA) was
founded in 1970, there has been considerable doubt about its ability to improve
workplace safety. OSHA inspects only a small fraction of all plants in a given
year, and imposes relatively small fines, so that the expected penalty for a
violation is too low to induce firms to comply with OSHA regulations (Smith,
1976). In addition, OSHA's safety regulations cover few of the potential
causes of injuries, so that even perfect compliance would have a limited effect
on injuries {Mendeloff, 1979). Empirical studies of OSHA's impact on injuries
have had mixed results, some finding no effect while others find significant
(usually small) effects,

This study extends the literature by analyzing a unique database with
panel data techniques. We have data for 1979 to 1985 on injuries and OSHA
inspections at 6,842 manufacturing planés. We use a method from Chamberlain
(1982, 1984) to control for econometric problems which affect plant-level
enforcement studies, especially the endogenous effect of injuries on
inspections from OSHA's targeting its inspections towards high-injury plants.
We alsc have data allowing us to identify those inspections which impese
penalties, unlike earlier studies which treat all inspections alike.

We find that plants experience significantly declining injuries after
being inspected. This decline is almost entirely due to inspections that

impose penalties; Inspections without an associated pemalty have little effect
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on injuries. The average plant in our sample that is penalized in a given year
reduces its injuries by 22 percent over the following three years. These
results probably overstate the impact of a typical OSHA inspection on a typical
manufacturing plant: the plants in our sample are inspected relatively
frequently, so they may be more sensitive to OSHA enforcement, and only about
one-third of inspections impase penalties. Still, the existing level of OSHA
enforcement in our sample is predicted to reduce injuries by about 2 percenc,

In section 2 we survey prior empirical studies on the impact of OSHA
enforcement on injurles. We describe our dataset in detail in section 3 and
compare our sample with all of U.S. manufacturing. We consider the connection
between inspections and injuries in Section 4, using an ordinary regression.
Section 5 discusses potential sources of bias, and a method proposed by
Chamberlain to correct them. The results of this method are reported in

section &; section 7 presents a summary and areas for future research.

2, Survey of Past Research

Studies of OSHA’s impact on injuries have been done using both industry
and plant-level data. Industry studies have regressed injury rates on
inspection rates, controlling for a variety of industry characteristics. Some
plant-level studies compare injury rates of plants inspected early in the year
with injury rates of plants Inspected later in the year, others simply regress
injury rates or changes in injury rates on recent inspections of the plant.

All of these studies are based on the idea of deterrence: OSHA inspections
make plants less likely to violate OSHA standards because violations are

detected and penalized. We should distinguish between two types of deterrence:
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‘specific deterrence’, where plants make an effort to comply after they have
been inspected and ‘general deterrence’, where those plants that are especially
likely to be inspected will make an effort to comply even before they are
inspected. The increase in compliance from deterrence could reduce injury
rates, although both the enforcement-compliance and compliance-injury links
have been questioned (Mendeloff, 1979, Bartel and Theomas, 1985}.

The relative usefulness of industry and plant-level data depends in part
on the relative magunitudes of specific and general deterrence. If specific
deterrence is more important, industry data which includes both inspected and
uninspected plants may fail to observe deterrence in the industry average. If
general deterrence is more important, industry data may be better at capturing
deterrence effects, to the extent that plants base their subjective probability
of being inspected on the industry average probability.

Among existing industry studies, Viscusi (1986) uses two-digit industry
data for 1973-1983 and finds that 0SHA inspections significantly reduce
injuries, although the reduction is smwall: only about 2 to 3 percent of all
injuries are prevented by OSHA énforcement. Bartel and Thomas (1983) use
three-digit industry data for 1974-1978. They find that OSHA enforcement does
significantly increase compliance 1 {a total of 26 percent, relative to mno
enforcement), but that there is only a weak link between compliance and injury
rates (perfect compliance would reduce injuries by only 10 percent). Note that
a point estimate of OSHA's impact based on the Bartel and Thomas results
{reducing injuries by 2.6 percent) is similar teo Viscusi's,

A variety of plant-level studies have also found that OSHA enforcement

affects injuries. Cooke and Gautschi (1981}, in a study of plants in Maine,

regress the change in lost workdays between 1970 and 1976 on the number of OSHA
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citations issued to that plant during the same perfod. They find that injuries
tend to decline in plants with more citations, although this result is only
significant for large plants (200+ workers). Robertson and Keeve (1983) use
detalled data on the injury experience of individual workers in three plants
for 1973-1980 to construct expected injury rates, finding that actuwal injury
rates are significantly lower than expected in the year following an OSHA
inspection of the plant. In earlier work with our data {Scholz and Gray,
1990), we find significant (and large) general deterrence effects, calculating
the expected enforcement effort faced by each plant and regressing changes in
injuries at the plant on changes in expected enforcement. These studies
suggest OSHA substantially reduces injuries, by as much as 10 percent,

Alternative results, that OSHA inspections have no effect on injuries,
come from a set of plant-level studies. These follow Smith (1979) in
constructing a ‘natural experiment’, comparing injury rates at plants inspected
In March or April with injury rates at plants inspected in November or
December. If OSHA inspections reduce injuries, plants inspected earlier in the
year should have lower injury rates, geteris paribus, because the inspection
has had a longer time to affect that year’'s injuries. Smith (1979) finds that
1973 inspections significantly reduced injuries, by as much as 16 percent, but
that 1974 inspections did not have a significant impact. Later studies using
the same method find little or no impact: McCaffrey (1983) with data for 1976-
1978, and Ruser and Smith (1991) with data for 1981-1985.

Why does the Smith methodology give different results? One possible
explanation lies in the ‘month inspected’ variable used in these studies, taken
from an injury survey. Our dataset also includes OSHA's own inspection data,

which disagrees with the 'month inspected’ value more than 20% of the time.
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These errors in measuring the inspection date will tend to blas OSHA's
estimated impact towards zevo. Qur data also show that earlier-inspected
plants are more likely to have multiple inspections during the year. Since
multiple inspections tend to happen at high-hazard plants, any tendency for
early-inspected plants to be high-hazard could offset a tendency for OSHA
inspections to reduce injuries. Much of the motivation for the present paper
15 the attempt to control for the endogeneity of Lluspections in a large, plant-

level dataset without relying on the Smith methed.

3. Data Description

The dataset used in this project consists of 6,842 manufacturing plants
with annual data from 1979 to 1985. The sample comes from the Bureau of Labor
Statistics (BLS) amnual injury survey, and contains only those plants which
were in the BLS sample for each year from 1979 to 1985 (Ruser and Smith, 1991).
Those plants which were located in states with federal OQSHA enforcement were
then matched with data from OSHA's Management Information System database
(HIS).2 The BLS data includes the number of employees, the total hours worked
in the year, the number of lost workday injurles and the total number of lost
workdays. The MIS data includes all inspections of these plants, with
information about the type of inspection, cltations issued and penalties
assessed during the inspection. The plants in our sample averaged 2.7
inspections, although 1,566 plants (23 percent) were never inspected,.

Table 1 compares our plants to manufacturing averages. The BLS survey
oversamples large plants and rotates the sample, so that small plants are much

less likely to be sampled for the seven consecutive years needed to be in our
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data (since the BLS sampling is based solely on plant size, not on injury rates
or OSHA inspections 1t should not induce any ’‘sample selection’ problem in our
analysis). Our plants are almost ten times as large as the average
manufacturing plant (523 to 54 workers). Furthermore, sample plants are six
times more likely to be inspected (.51 to .08 inspections per plant) because
OSHA inspects large plants more frequently than small ones. Uhile not
representative of all plants, our sample includes a large part of the
manufacturing sector that is important for OSHaA: only 2% of all plants, but
20% of employees and 12% of all OSHA inspections in manufacturing.

Our data has both advantages and disadvantages relative to datasets used
before. The results are most applicable to large plants and may not generalize
to smaller, less frequently inspected plants. Also, the data is restricted: to
guard the anonymity of plants in the BLS sample, the BLS and OSHA datasets were
merged at BLS under our direction, and all identifying variables removed before
the data was released to us. Thus, we can use only employment, hours worked,
and OSHA inspection data to explain injuries. On the other hand, the panel
nature of the data allows us to control for any consistent differences across
plants in demographics, technology or management practices. We also have more

information on the inspections and a longer time-span of data.

Injury Measures

A standard measure of the frequency of injurfes at a plant is the lost
workday incidence rate, defined by the Bureau of Labor Statistics as the annual
number of injuries (involving lost workdays) per 100 'full-time equivalent'
workers (200,000 hours wofked). Graph 1 presents this measure for the

manufacturing sector from 1975 to 1985, and for our sample from 1979 to 1985.
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A second standard measure, which reflects the severity of injuries rather than
Just their frequency, 1s provided by the number of workdays lost due to injury
per 100 full-time workers, also shown in Graph 1.

Both injury rates move in tandem during the period, declining sharply from
1979 to 1982, then holding steady and rising slightly at the end of the perilod.
This pro-cyclical movement of injury rates (also seen Iin the rising injury rate
before 1979 in the manufacturing data) could be attributed to changes in the
qualicy of workers and the number of hours per worker. In recessions, only
experienced workers remain on the job, and more safety-related maintemance can
be done; in expansions, less experienced workers are hired, overtime work leads
to exhaustion, production lines run faster, and safety gets less attention.

Plants in the sample appear safer than the manufacturing average, with 13
percent fewer injuries and 16 percent fewer lost workdays per 100 employees.
This is probably due to the larger size of plants in the sample, since larger
plants generally have lower injury rates. There is a strong plant-specific
componient to injury levels throughout the period, with a correlation of .68
between the injuries at a plant in 1979 and the injuries at the same plant in
1985, For our analysis, we transform the injury measures into percentage
changes.3 The percentage change in injuries shows much less long-run
persistence than the levels of injuries, with correlations of less than .06
between distant years, although there is a strong first-order negative

correlation of -.34, induced by the construction of percentage changes.

OSHA Inspections
The inspection experience of the sample plants from 1979 to 1985 is shown

in Graph 2, and compared to the experience for the entire manufacturing sector
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from 1975 to 1985.% The number of inspections done on sample plants declines
substantfally, with a smaller decline for manufacturing as a whole. This
suggests that OSHA has used its enforcement resources more broadly in recent
years, since plants in our sample are much more heavily inspected than the
average plant. The decline occurs primarily in multiple inspections of the same
plant during a year, as the fraction of plants with any inspection &urihg the
year rtemains relatively stable,

The fractions of inspections which had penalties imposed, which found
sericus violations, and which found any violations, aré also shown in Graph 2.
All of these measures were stable in the sample, but declined for manufacturing
as a whole. This indicates that plants curside our sample, which accounted for
a growing share of OSHA inspections, either had fewer problems or received less
rigorous inspections than plants in our sample (perhaps just because our plants
were larger). For inspections which had some penalty imposed, there was a
sharp decline in the average penalty for both the sample and for all of

manufacturing between 1979 and 1981, with some increase after 1984,
4. Inspections and Injuries - A First Look

A simple cross-section test of the connection between inspections and
injuries is to examine the correlation between the injury experience at a plant
and its inépecticn experience throughout the sample period. These correlations
are presented in Table 2, looking at four measures of enforcement and both
levels and changes in injuries. The different enforcement measures distinguish
between all inspections and only those which impose penalties, and between the

total number of inspections and the number of years Iin which an inspection
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occurred.? The top section of the table shows that the enforcement measures
are strongly correlated with cach other. In the middle of the table, we see a
strong positive correlation between injury levels and OSHA enforcement. This
comes as no surprise, as OSHA's policy of programmed inspections is designed to
target high-hazard plants.6 The lower section, locking at the percentage
change in injuries, shows that plants facing more enforcement during the sample
period had & greater decline in injuries. In our analysis we use the
percentage change Iin injuries, rather than injury levels, because of the
endogeneity of inspections and injury levels (this issue is examined in more
detail in section 5).

Consider an ordinary regression designed to explain the annual percentage
change in lost workday injurles, PCHNUM. We control for changes in the plant's
workforce with the percentage change in the number of workers at the plant
(PCHEMP) and the percentage change in the number of hours worked at the plant
(PCHHOUR), and also include year dummies. Our primary interest is in the
amount of OSHA enforcement (ENF) directed at the plant in this year and the
past two years, The regression equation is

2
(1) PCHNUMje = «y + oF PCHEMPyy + oM PCHHOUR;( + 2 51, ENFje.j + uje,
j=0
estimated for 6,842 plants on 1981-1985 data (34,210 observarions in all).

Table 3 presents the results from estimating equation (1) using four
measures of annual enforcement: NINSP is the number of inspections during the
year; INSP is a dummy variable for having any inspection during the year; NIPEN
and IPEN are similar, but count only those inspections that impose a penalty.
In linés 1-4, we find that current and past enforcement is associated with

declining injurfes, with little difference in the performance of the four
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enforcement measures. However, when we separate penalty and non-penalty
inspections in line 5, we find that the impact of inspections om injuries comes
exclusively from penalty inspections., In line &, when we separate penalty
inspections inco the first penalty inspection during the year (IPEN) and
subsequent inspections (24PEN), we find the impact 1s concentrated on the first

inspection. As a result, we will use IPEN to measure OSHA enforcement.

5. Econometric Issues and the Chamberlain Method

The major econometric issue {n any plant-level study of the impact of QSHA
inspections on injuries is the endogeneity of inspections. OSHA tries to
target its inspections on high-hazard plants, and there is every evidence that
they succeed: there {s a strong positive correlation between injury levels and
inspections (as seen in Table 2). This correlation switches sign (and becomes
much weaker) when we consider injury changes rather than injury levels,
suggesting that the endogeneity problem could be reduced (or eliminated) by
switching the analysis to imjury changes.

Consider three factoers which could lead inspections and injuries to be
correlated. The first ('deterrence’) is that inspections (current and past)
cause plants to reduce hazards, thereby reducing injuries. The second
('endogeneity’) is that injuries (current and past) cause plants to get more
inspections. The third ('fixed-effect’) is that plants which are high-hazard
(for reasons of technology, managenent style, worker quality, or whatever) tend
over a number of years to have both more inspections and more injuries. In
‘order to get a good estimate of the ‘deterrence’ factor (which is likely to be

negative), we must also account for the other two factors (which are likely to
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be positive). Distinguishing between 'deterrence’ and 'fixed-effect’ 1s based
on the timing of inspections and Injuries. For example, a tendency for an
inspection to occur exactly one year after a high-injury period suggests
‘endogeneity’'. A tendency for high-injury plants to have more inspections on
average throughout the period, with the Inspections sometimes occuring before
high-injury years and sometimes occuring after high-injury years, suggests a
'fixed-effect’ interpretation.

We used the Chamberlain procedure (described below) to test for these
three factors, comparing the results for the percentage change in Injuries with
the results for injury levels (actually log{injuries)). For the percentage
change in Injuries, we found a small fixed-effect but no evidence of
endogeneity (plants with increasing injurles have slightly more inspections,
but the inspections are as likely to come before a big increase in injuries as
after). For injury levels, we found a very large fixed-effect term, and
evidence of significant endogenelty (high-injury plants have many more
inspections, and the inspections are more likely to follow high-injury years).
For both levels and changes we found a negative and significant deterrence
effect after controlling for fixed-effects. However, the estimated deterrence
effects in the injury levels model were much more sensitive to the
specification of the rest of the model, particularly the fixed-effect term.
This coefficient instability for the injury levels model, combined with the
evidence of endogeneity, persuaded us to concentrate on the percentage change
form of Injuries presented here.’

We consider three sources of bias that could affect the estimated impact
of OSHA enforcement on injuries in the models of Table 3. These biases could

arise from (1) serial correlation in the dependent variable (injury changes),
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(2) endogeneity of inspections (with respect to injury changes), and (3)
omitted plant-specific effects (corralated with both injury changes and
inspections)}. The Chamberlain method allows us to test for thesa biases, and
we consider each blas in turn, using an abbreviated form of equation (1):
2
(') yie =ag + 2% zgp + 2 ﬁIj *e-j t vie
j=0
(y refers to injury changes, x to inspections, and z to the other controls).
The significant negative impact of lagged inspections on injury changes

could be biased due to ;he negative autocorrelation of injury changes. If
injury changes follow a partial adjustment model,

(2) yir = #Xj¢t + 6¥4¢.] + efp, with 4<0,
we could find a spurious negative coefficient for past inspections when
regressing current injury changes on current and past inspections. In effect,
we would misinterpret the actual effect of past Injury changes on current
Injury changes as an effect of past inspections on current injury changes.

Table 2 shows that OSHA inspects high-injury plants more frequently, If

inspections are also more common for plants with inereasing injuries, it could
bias our results. Suppose that we believe inspections cause injury changes,
but in fact current inspections are caused by past injury changes:

(3) %je =z 53yg.e-y + eit-r
If we regressed current injury changes on current and lagged inspections, we
could get spurious negative coefficients on current inspections, due to the
negative autocorrelation of injury changes. In this case, we would be
misinterpreting the actual effect of past injury changes on current inspections

as an effect of current inspections on current Injury changes.

Finally, other characteristics of the plant not measured in our data
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could cause both injury changes and inspections., We model this with a fixed
plant-specific effect, ¢y, driving both inspections and injury changes:

(4) yir = pcy + ey and XKit = ac{ + eq¢t.
We would get a bias (equal to sg*a) in the estimated effect of inspections on
injury changes. A negative bias means the measured effect of inspections on
injury changes could be spurious; a positive bias means the measured effect
understates the impact of Inspections on injury changes.

The estimation method used here, developed by Chamberlain (1982, 1984), is
able to test and correct for these three sources of bias. Instead of
estimating a single-equation, panel dataset (as we did in Table 3) with several
years of data for each plant, we estimate a six-equatien model, regressing each
year of the dependent variable on the values of the independent variables for
all the years (past, present and future). The r-th equation would be:

6

(5) yi, = 1, + (o, e)Xie * Ui,

t=1
This gives us a 6x6 matrix of coefficients, =, on each independent variable in
the regression, with each row consisting of the coefficients from cne of the
equations (for ease of notation we will concentrate on the case with one
independent variable; with several independent variables, we get a n matrix for
each of the variables). Thus =1 3 is the coefficient on x at time 3 in the
equation for y at time 1.

Chamberlain shows that restrictions on the » matrix can be imposed using a
minimum distance estimation method. First, express the restricted » matrix as
g{e), where ¢ 1s a vector of 'underlying' parameters. ¢ can have between 0 and

T2 elements, where TZ allows a completely unrestricted » matrix and 0 is a

'completely restricted’ matrix (no free parameters). <Choose ¢ to minimize
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(6) L = (N*T) (= - g(s) ]* A") [ » - g(o) ],
where A is an estimate of the varlance-covariance matrix of the unrestricted
parameters. Chamberlain suggests a general form of A which allows for both
heteroskedasticity and autecorrelated errors:

(7) A= (1/8T) 25 [{Cyg - »xg)(yq - =x0)') x (8" (xgxg') 5°11)
where Sy = £y (xy%i')/N. Chamberlain also shows that L in equation (6) follows
a x2 distribution, with degrees of freedom equal to the number of restrictions
being imposed. This provides a test for the willingness of the data to accept
particular constraints, and can be used to compare sets of nested constraints.

Consider the problem of a fixed effect correlated with the x variables, as

described in equation 4. We could begin with a model in which only current-
year values of x mattered in determining y:

(8) yit = oxy¢ + uye.
This corresponds to a diagonal x matrix:

(9) « =51,
with only one free parameter, s. Adding a plant-specific effect, cy,
correlated with x, gives:

(8) yi¢ = ﬂxi£ +ef + uje.
The corresponding = matrix is:

(9') » =21 + ea’,
where e Is a vector of ones and « is a vector {«1,...,a7) of the coefficients
from a regression of the fixed effects cj on all the years of xj,. Under (9)
the diagonal elements of » are equal and the off-diagonal elements are zero,
while (9’) allows non-zero off-diagonal elements, with equal values In the same

column of the » matrix and corresponding differences along the diagonal.

Table 4 indicates how to compare the restrictions implied by (9) and (9'),
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with models T and II. Model II (equation 9') is more general, since it

: 2ludes T+l parameters (s plus the T-element vector «), while model I
{equation 9) includes only one {#). Another way of putting this is that model
I imposes T restrictions on model II (aj=...=ap=0). We can compare the L-
statistics (from equation 6) for the twe models. The difference between them
(L1-Ly7) is distributed as 12. with T degrees of freedom. If Lj-Lyy is
sufficiently large, we will reject the T restrictions implied by Model I
{x1=...=ap=0), and find a fixed-effect significantly correlated with x.

To test for any biases induced by a partial adjustment process determining
injury changes, we need to consider other explanatory variables (changes in
employment and hours) that are strongly related to current injury changes. If
equation 2 holds, we should see significant coefficients on the lagged values
of these other variables (ryj for i>j). A failure to find significant lagged
effects (model 1 vs. model III in Table 4), will be taken as evidence that the
significant effects of lagged inspections are not the spuriocus result of a
partial adjustment process determining injury changes:

To test for reverse causality between the y and x variables, we use a
variation on the usual tests for excgeneity that was suggested by Chamberlain.
This revised version, called "conditional strict exogeneity", allows for the
presence of a plant-specific effect that is correlated with x, giving a test
for "y does not cause x, conditional on c¢". As in the usual exogeneity tests,
we regress y (Injury changes) on past and future values of x (inspections). I[f
the coefficients on future inspections are significant, we reject exopgeneity
and find reverse causality (injury changes cause inspections), In terms of the
« matrix, we allow a plant-speclfic effect

(10} » = B + ea* ,
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and test to see whether the upper-triangular part of the matrix B, showing the
effect of future inspections, is zero (testing model V vs, IV in Table 4).

The restrictions imposed on the » matrix for these tests can be combined
with other assumptions. One restrictive assumption that is usually made
implicitly, and will here be made explicitly, is that of model stability: the
parameters of the underlying model do not change during the data period. In
equation (10), this amocunts to B(i,1)=B(i+n,j+n) for all n (e.g., aside from
possibly different contributions to the plant-specific effect through the o
vector, the effect on current injury changes of last year's inspections is the
same for all years). We can test the model stability assumption, since it
imposes restrictions on the » matrix, but generally impose it, as it greatly

reduces the number of coefficients to interpret.

6. Results

Since the effect of enforcement on both the frequency and seriousness of
injuries is of interest, we use two dependent variables in our analysis: the
percentage change in lost workday injuries (PCHNUM) and the percentage change
in lost workdays (PCHDAYS). To control for changes in the plant's workforce we
use the percentage change fn the number of workers at the plant (PCHEMP) and
the percentage change in the number of hours worked at the plant (PCHHOUR).

Our primary interest is in the effect of OSHA enforcement, measured by IPEN.

The coefficients from the regressions of each year's dependent variable on
all years of the independent variables are presented in Table 5 (for PCHNUM)
and Table & (for PCHDAYS). The coefficients i{n each table make up the three »

matrices, omne each for PCHEMP, PGCHHOUR and IPEN. The workforce measures,
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PCHEMP and PCHHOUR, have significant positive coefficients on the (underlined)
diagonal in both tables, showing strong effects of current workforce changes on
the changes in injuries. Their off-diagonal coefficients are smaller, usually
insignificant, with no particular pattern of signs. The IPEN measure is much
less powerful. Its coefficients are similar in magnitude on and off the
diagonal, but there is a pattern of signs, with current and past years'
inspections being negatively related to injuries, and future inspections being
positively related to injuries.

We caleulate the L-statistics for eight different restrictions on the =
matrix of coefficients, using the tests outlined in Table 4. These results are
presented in Table 7, where the same test is conducted separately for the two
dependent varjables and each of the three independent variables, while the
coefficients on the other two independent variables are allowed to be
completely unrestricted, Each model can be compared with the completely
unrestricted » matrix, using the L-statistic for that line. For example, model
I imposes 35 restrictions on the = matrix, allowing only one free coefficient
(the effect of current x on current y). Since the critical value for x2(35) at
the 5% level is 49.8, we can reject model I for the IPEN variable, but not for
PCHEMP or PCHHOUR. We can also compare two restricted models where one model
ts a4 less restricted version of the other. For example, model II allows an
addicional 6 parameters beyond model II, through the correlation between each
year's X value with the fixed-effect {a1,...,24). If going from model II to
model I (imposing 6 more restrictions) raises the L-statistic by more than the
critical wvalue for xz(e) at the 5% level (12.59), we reject the additiocnal
restrictions of model I (thus we reject the restrictions for IPEN, and accept

them for PCHEMP and PCHHOUK).
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We begin by considering the effect of the control variables, PCHEMP and
PCHHOUR. We recall from Table 3 that changes in injuries are very strongly
related to current changes in employment and hours. Table 7 shows that we can
restrict our attention to the contemporaneous impact of PCHEMP or PCHHOUR:
model I, whieh forces all other impacts to be zero, is not a significant
restriction. In contrast, the relationship between inspections and injury
changes 1s more complex, with significant off-diagonal elements of n (model I),
a significant plant-specific effect (model I vs. model I1), and significant
off-diagonal terms after the plant-specific effect is accounted for (medel IT1}.

HWe now turn to the three potential sources of bias discussed earlier: a
partial adjustment process for injury changes, a fixed-effect correlated with
both inspections and injury changes, and endogenous inspections. There is no
evidence for a partial adjustment process, since neither past PCHEMP nor past
PCHHOUR 1s related to current injury changes. Since both PCHEMP and PCHHOUR
are more strongly related to injury changes than IPEN is, we would expect any
partial adjustment process to appear more strongly there than for IPEN. There
1s strong support for a fixed-effect correlated with inspections {(model I vs.
II for IPEN). Given a fixed-effect, the test for conditional strict
exogeneity (model V vs model IV), is not significant. In other words, the
positive connection between future inspections and current injury changes (seen
in Tables 5 and 6) seems to be due to fixed characteristics which lead certain
plants to have both many inspections and growing injuries over the period.

To establish a final form for the model we first impose the model
stability assumption discussed earlier.® e then test restricting the effect
of lagged inspections te last for three years (model VII vs. model V), and

forcing an equal contribution of being inspected to the plant-specifie effect
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for each of the years (forcing «] = ... = ag, model VII1 vs. model VII). Both
of these restrictions are supported by the data.

Table 8 presents the estimated effects of inspections on injury changes
for various versions of the final model. Some versions restrict PCHEMP and
PCHHOUR to have only & current-year effect on injury changes; others allow
completely unrestricted effects. Still other versions allow the plant-specific
effect to be differently related to the IPEN values from different years. The
coefficients on the IPEN variables are not much affected by these changes in
specifications, and always show significant negavive effects over the few years
after an inspection with penalty. The IPEN coefficients have somewhat larger
coefficients on the one- and two-year-lagged values than on the current or
three-year-lagged values; the data reject the imposition of a simple
distributed lag pattern on the coefficients.?

The cumulative effect of an inspection, obtained by summing the IPEN
coefficients, is about -.22 on PCHNUM and -.20 on PCHDAYS across all of the
specifications. These effects are nearly twice as large as the original
regression results in Table 3, due to the fixed-effect terms. The positive
caefficients in o indicate that inspected plants tend to have rising injuries
relative to non-inspected plants, averaged across all the years of data. For
inspected plants to have declining injuries after an inspection (as they do in
Tables 5 and 6), the 'true' impact of past inspections (matrix B in equation

10) must be even larger (more negative) to offset the positive effects of o. ¥
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7. Summary

We find a significant negative relationship between OSHA enforcement
activity at a particular plant and the change in injuries at that plant over
subsequent years. We find ne evidence that this relationship is the result of
endogeneity of inspections, the negative autocorrelation of injury changes, or
plant-specific fixed-effects. Based on the coefficients in Table B, a plant
that is inspected (and penalized) in a given year experiences a 22 percent
decline in injuries over the following three years, and a 20 percent decline in
lost workdays.

Since the average plant in our sample experiences 25 lost workday injuries
and 363 lost workdays (Table 1, for 1979), these reductions amount to 5 or 6
fewer injuries and 73 fewer lost workdays. Stating these results somewhat
differently, the overall level of enforcement in our sample (9.3% of all firms
penalized in a given year) reduces total injuries in the sample by about 2
percent (0.093*%0.22)., This estimate is similar to the 1.5 to 3.6 percent
effectiveness estimated by Viscusi (1986) with industry-level data, and
contrasts with the finding of no impact from a number of plant-level studies,

The Chamberlain technique has allowed a rigorous test of a variety of
potential biases to our results, However, one should use caurion in
extrapolating from our results to the total Iimpact of OSHA on injuries. First,
results based on our sample of large, intensively inspected firms may overstate
the effect of inspections on moderate and smaller sized firms subjected to less

vigilant monitoring. Second, the impact on inspections are expressed in terms

of inspections with penalties. Since only about ome inspection in three
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results in a penalty, an additional inspection on average reduces injuries by
only about 7%. Third, our results are based on OSHA's existing enforcement
policy: a new policy of imposing a small penalty on every inspection would not
triple OSHA's effectiveness, since presumably it is the penalization of
specific kinds of serious violations that enhances safety, net just any
penalization policy.

On the other hand, our results may underestimate the total impact of OSHA.
Ve consider only specific deterrence, but OSHA may also have a general
deterrence effect (Scholz and Gray, 1990).11 OSHA-induced changes in
technology, management, and safety education could contribute to injury
reduction in ways that are difficult to weasure (Mendeloff, 1979). Finally,
OS5HA‘s impact in earlier years may have been considerable greater, with the
cumulative effects of inspections over time leading te lower marginal effects
on injuries during our period of study.l2

To answer the broader question of the potential effectiveness of 0QSHA
enforcement, future research needs to go beyond the effects of inspections on
injuries. We find that inspections which impose a penalty have a much greater
impact than those which don’t. Additional testing is needed to see whether
different types of inspections have different impacts, and whether Inspectors
differ in their ability to detect and prosecute violations (as Feinstein, 1989,
found for the Nuclear Regulatory Commission). More generally, we need to
examine the impact of different enforcement strategies, comparing cooperative
with deterrence-oriented approaches, to test the existing thecoretical work in
this area (Scholz, 1984; Braithwaite, 1985).

Finally, although we find that OSHA enforcement has an effect on injuries,

this does not mean that such enforcement is cost-effective, or more efficient
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than alternative mechanisms (such as an injury tax} for reducing injuries, A
true benefit-cost analysis of OSHA enforcement would need to incorporate
egtimates of the benefits from reducing injuries, the cost of OSHA's
enforcement activities, and the expenditures by companies on compliance with
OSHA regulations. Evidence that the compliance costs for many health standards
exceed the health benefits to workers, as presented in Mendeloff (199Q), would
suggest that no enforcement program could be cost-effective (iln the broadest
sense), because compliance itself 1s not cost-effective. Our results (and
future work examining the effectiveness of different types of enforcement) take
the current standards and regulatory structure as given, and focus on how OSHA
could increase the effectiveness of its enforcement, thus promoting compliance

with those standards and reducing injuries.
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FOOTNOTES

* We are grateful to Carcl Jones, Michael Klein and seminar participants at the
annual meeting of Law and Society for helpful comments. This project would not
have been possible without the cooperation of the Bureau of Labor Statistics
and the Occupational Safety and Health Administration. Special thanks are due
to William Eisenberg at BLS and Frank Frodyma and Joe Dubois at OSHA. We are
particularly indebted to John Ruser of BLS who performed the data merging and
solved numerous problems. The project was partially funded by NSF grant
SES8420920. These institutions and individuals do not necessarily support the
conclusions in this paper.

1. I have also found a significant effect of OSHA enforcement on compliance,
using plant-level data (Gray and Jones (1989)).

2. The matching procedure was based on various characteristics identifiled on
both the BLS and MI$ files: firm name, address, zip code, city, state, number
of employees and industry. A record-matching technique developed by Fellegi
and Sunter (1969) was used to identify matches across the files, based on the
probability of agreement on each of the potentially matching variables (see
Gray, 1987). Those cases where it was not clear whether the records were
properly matched were hand-checked. Hand-checking used to examine &l11 matches
for two states indicated that the error rates for false matches and missed
matches were below one percent. To ensure that all plants in the final dataset
contained no ambiguous matches, 198 plants were dropped from our original file,

3. Percentage changes, rather than just changes, are used to avoid giving undue
influence in the regression to the largest plants, which tend to have much
larger absolute changes in injuries than other plants.

4. For studies that examine the determinants of OSHA's enforcement activity see
Bartel and Thomas (1985), Scholz and Wei (1986) and Scholz (1991),

5. One might think of looking at inspections which issued serious citations as
an alternative to those with penalties, but these two measures are virtually
identical in our data. Of the 5,613 inspections with serious violations, 97
percent had penalties; 99 percent of the 5,529 inspections with penalties had
serious violations.

6. Gray (1988) finds that the inspection targeting is more closely related to
the injury rate of the industry the plant is in, while the problems observed
during the inspection (citations and penalties) are more ¢losely related te the
injury rate of the plant ftself,

. 7. The results of the estimation using injury levels are available from the
authors.
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8. This restriction of model stability is rejected for INSP and (less
strongly) for PCHHOUR, as seen by the significant test statistics for models
IV, V and VI. We impose it to simplify the interpretation of the coefficients
in the final model. Doing the same analysis by allowing the coefficients to
vary across equations and then averaging those coefficients across all
equations of the model gilves similar results.

9. The somewhat smaller impact of current inspections on injury changes may
indicate a contemporaneous endogenelty of Ilnspections. If plants with rising
injuries are sometimes inspected immediately, this would tend to offset some of
the negative impact of current inspections on injury changes (and could not be
tested for here).

10. If we wished to treat the fixed-effect as reflecting another impact of
inspections, rather than the impact of unobserved factors that happen to be
correlated with inspections, we could combine the positive (a) and negative
(B) effects, glving a total lmpact of -.13 on PCHNUM and -.09 on PCHDAYS.

11. Distinguishing between specific and general deterrence may be less critical
for the heavily inspected plants in our sample, for whom an actual inspection
is less surprising than it might be for a typical manufacturing plant.

12. Smith (1979) finds that 1973 inspections were more effective than 1974
inspections; Gray and Jones (1989) find that the first inspection of a plant is
more effective than subsequent inspections in reducing violations.
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Table 1

Comparison of Sample with National Manufacturing Sector

Number of plants
Number of employees
Employees per plant

Lost workday incidence rate
Lost workday injuries
Total lost workdays

Inspections
Inspections w/ penalty
Total penalties

Inspections per plant

Insp w/ penalty per plant
Penalty per inspection
Penalty per insp w/ penalty

Sources:

Sample
1979

6,842
3,575,394
: 523

4.92
171,333
2,484 704

3,458
1,145
$1,722,973

.505
167
$498
$1,505

a. Census of Manufacturers, 1977.

b. Occupational Injuries and Illnesses in 1979:

¢. OSHA Management Information System.

National
1979

349,913
18,510,498
54

5.9
1,243,000
18,998,000

28,293
9,453
$10,543,990

.081
.027
$373
$1,115

Summary (BLS:

ooo

]

Manufacturing Sector

April, 1981}
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Table 2

Correlations between Enforcement and Injuries
(Full Sample of 6,842 plants)

TNINSP  TNIPEN YRINSP YRIPEN

TNINSP 1

TNIPEN 0.71 1

YRINSP 0.96 0.66 1

YRIPEN 0.70 0.99 0.66 1
AVGNUM 0.41 0.40 0.39 0.40
AVGDAYS 0.40 0.39 0.38 0.39
AVGLWDI 0.23 0.37 0.28 0.38
PCHNUM -0.10 -0.07 -0.10 -0.06
PCHDAYS -0.05 -0.03 -0.04 -0.02
PCHLWDI1 -0.07 -0.05 -0.07 -0.04

Enforcement measures:
TNINSP = total number of inspections, 1979-85
THIPEN = total number of inspections w/ penalty, 1979-85
YRINSP = number of years with inspection, 1979-85
YRIPEN = number of years with inspection w/ penalty, 1979-85

Injury measures: (AVG = average, 1979-85; PCH = percentage changa, 1979-85)
NUM = number of lost workday injuries
DAYS = number of lost workdays
IWDI = lost workday Injury rate
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Table 3

Regressions Testing Alternative Enforcement Measures
' Dependent Variable: PCHNUM
{34,210 observations: 6,842 plants, 1981-1985)
(standard errors in parentheses)

Enforcement Enforcement
Model Measure t -1 t-2 PCHEMP PCHHOUR 2
1 NINSP -.0056 -.0168 -.0071 L497 .458 .0785
(.006) (.006) (.005) (.0333 (.028)
2 INSP -.0171 -,0252 -.0227 L4898 .458 .0785
(.010) (.010) (.0l0) {.033) (.028)
3 NIPEN -.025% -.0290 -.0285 496 .459 .0786
(.012) (.012) (.011} (.033) (.028)
4 IPEN -.0408 -.0366 -_0419 497 459 .0787
(.015) (.014) (.014) (.033) (.028)
5 NIPEN . =.0255 -.,0255 -,0252
and (.013) (.,012) (.011)
L4986 L459 .0787
NOPEN .0036 -.,0132 L0001 (.033) (.028)
(.008) (.007) (.007)
6 1PEN -.0460 -,0326 -.0413
and {.018) (.019) (.017)
496 460 .0788
2+PEN .0523 -.,0301 -.0032 (.033) (.028)

(.037) (.029) (.024)

Regressions include current PCHEMP and PCHHOUR, year dummies,
and current and past 2 years enforcement.

2
PCHNUMj . = £ + sEPCHEMP . + pHPCHHOUR{, + = anEnforcementit-j + uje.
j=0

Enforcement measures:
NINSP = number of inspections during year
INSP = 0-1 dummy for any inspections during year
NIPEN = number of inspections that imposed penalties during year
IPEN =~ 0-1 dummy for any inspections that imposed penalty during year
NOPEN = number of inspections that didn't impose penalties during year
24+PEN = number of penalty inspections, excluding first one during year
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Table 4
Testing Restrictions on = Matrix of Coefficients
(T years of data)

Model Description of Model equation for = example of »
Number (Test Statistic) (parameters in ¢) (for T=3)
0 Completely unrestricted unrestricted
(g =0 (x11+....77T)
2 0 0
I current year2 no fixed effect no=pl G 8 0
( Li-Lg (T2-1) } (s) 0 0 s
alts aj al
1I current year, fixed effect no=pl + ea’ ap aytg a2
( L11-Lo ~ x 2¢12-1-1) ) (#,21,....aT) a3 a3 a3y+s

I vs. II  Assuming current year only, test for fixed effect
{ Li-L11 - x2(M)

8 0
1II current and asti no f.e, m =81 + Bpase a1
CLriz-Lo = x“((T"+T-2)/2) )} (#.01.....8(¢T2.7/2)) B2 83 &

o
oo

I vs. IIT  Assuming no fixed effect test whether past matters
( Lp-Lyrp - x2((T2-T3/2) )

Medels IV - VI assume both stable coefficients (in B) and a fixed-effect.

ulﬂ!l ¢1+ﬂ¢, n1+p5
v current, past future n =B + e'a agtpq ag+s] adtpy
{ LIV I‘O x (T2 3T+1) l (ﬁ1|<- pﬂzT-llulr-'luT) °3+’3 ‘3+52 ‘3+Bl

v current and past x = Bloyer + &'« like model 1V, but
( Ly-Lo - x2(T2-2T) ) (B1+-- - ATra1,---saT) 84 = 85 = 0

V vs. IV Assuming current and past matter, test whether future matters
{ Ly-Lyy ~ x 2¢1-1) )

VI current year2 no f.e. # = Bypper + ¢’=  like model IV, but
{ Lyr-Lg (12-27) ) (#1.67...,82T-1s21,-.5aT) gy mp3 =0

VI vs. IV  Assuming current and future matter, test whether past matters
( Lyp-Lpy = »2(T-1) )

Note: The test statistic to be used is the L-statistic given in equation (&),
distributed as 2 with degrees of freedom equalling the number of restrictions.
Each model can be tested against a completely unrestricted s matrix with T
parameters (as in line 1), or against other restrictive models (I vs. II).
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(Full Sample of 6,842 plants)
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Table 5
Year of Dependent Variable
|

1980 1981 1982 1983 1984 1985
INTERCEPT  -0.059  -0.050  -0.097  -0.006 0.029 0.017
IPEN
1980 0.040  -0,035  -0.015  -0.051  -0.006 0.024
1981 0.011  .0,003  -0.058  -0.067 0.025  -0.002
1982 -0.005 0.052  -0.083 -0.060  -0.022 0.033
| 1983 0.036 0.055  -0.030  -0,052 0.005  -0.073
1 1984 -0.015 0.033 0.077 0,009  -0.055  -0.074
1985 -0.014  -0.008 0.059 0.066 0.048  -0.052
PCHEMP
1980 0,615 0.032  -0.018  -0.131 0.141  -0.083
1981 0.098 0,405 0.126  -0.178 0.190 0.026
1982 0.068°  -0.093 0,65  -0.133 0.174  -0.018
1983 0.005  -0.209 0.283 0.467 0.216  -0.054
1984 -0.079  -0.115 0.102 0.109 0.578  -0.063
1985 -0,181 0.012 0.059  -0.008 0.220 0.421
PCHHOUR _
1980 0,365 0.045 0.092 0.015  -0.178 0.114
1981 0.034 0,523 0.004 0.098  -0.194 0.119
1982 0.005 0.118 0,334 0.254  -0.328 0.058
1983 -0.054 0.206  -0.166 0.540  -0.227 0.050
1984 0.119 0.022  -0.154 0.135 0,252 0.166
1985 0.080  -0.005  -0.069 0.024  -0.184 0,591
R2 .0749 .0562 .0750 .0874 .0540 .0963

Standard errors were .0l for intercept terms, and ranged from .03 to .04
on IPEN, from ,07 to .10 on PCHEMP and from .07 to .09 on PCHHOUR.
(note: each equation is a column, not a row, so this table shows ', not r)
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Table 6

Unrestricted Regression of PCHDAYS on IPEN, PCHEMP, PCHHOUR
(Full Sample of 6,852 plants)

Year of Dependent Variable

1980 1981 1982 1983 1984 1985
INTERCEPT -0.051 -0.058 -0.048 -0.008 0.03 0.019
IPEN
i980 0,049 -0,046 0.014 -0.074 0.026 0.029
1981 0.007 0,020 -0.093 -0,079 0.040 0.632
1982 -0.002 0.077 -0, 044 -0.022 -0.093 0.080
1983 0.066 0.053 -0.040 -0,.027 0.014 -0.058
1984 0.021 0.008 0.093 -0.026 0,007 -0.095
1985 0.054 -0.051 0.011 0.080 0.054 -0,.026
PCHEMP :
1580 0.688 0.097 -0.096 -0.068 0.143 -0.152
1981 0.117 0,360 0.180 0.052 0.043 0.059
1982 0.107 -0.069 0,459 0.058 6.217 0.04%
1983 -0.057 -0.113 0.096 0,683 0.062 -¢.007
1984 -0.110 0.005 -0.118 0.277 0,449 -0.094
1985 -0.105 -0.005 -0.024 0.013 0.171 0,382
PCHHOUR
1980 0,220 0.028 0.192 -0.059 -0.082 0.109
1981 -0.083 0,496 0.029 -0.087 0.019 -0.019
1982 -0.069 0.143 0,433 0.035 -0.328 -0.060
1982 0.020 . 0.145 -0.037 0,242 -0.07¢ 0.067
1984 0.110 -0.033 0.010 -0.051 0,341 0.205
1985 0.018 0.022 -0.031 0.019 -0.153 0.567
R? .0376 L0281 .0370 L0431 .0308 .0491

Standard errors ranged from ,01 to .02 on the intercept, from .04 to .05
on IPEN, from .10 to .14 on PCHEMP and from .09 to .13 on PCHHOUR.
(note: each equation is a column, not a row, so this table shows.a’, not =)
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Table 7

L-Statistics frow Testing Restrict{ons on « Matrix of Coefficients
(see Table 5 for more complete explanation of tests)

Dependent Variable: PCHNUM PCHDAYS
Independent Variable: IPEN PCHEMP PCHHOUR IPEN PCHEMP PCHHOUR
Model
Number  Restriction: L - 2¢df)
I. current only {35) 182.358 44.49 46.08 103.10% 41,39 45,28
II. current and fixed-effect (29) 98.74% 138.87 41.14€ 80.022 33,99 39,03
I vs II. Any fixed-effects? {(6) 83.612 5 62 4.94 23,088  7.40 6.25
I11. current and past {20) 91.692 30.56 24,22 $2.74% 20.61 15.87
I vs 1I1. Does past matter?  (15) 90.668 13.91 21.86 50.368 20.78 29.41P

Models IV-VIII assume stable caoefficlencs over time and allow a fixed-effect.

IV. current,past,and future (19) 54.71% 20.45 36.74% 39.40% 24.23 36.928
V. current and past (24) 63.59% 35.41 3g.g2b 43,350 30,31 37,920

V vs IV, Does future ﬁatter? (5) B.38 14,96 2.08 3.95 6.08 0.99
VI. current and future (24) 69.4928 24 3 39.35b 57.428 29 44 39.2gP
V1 vs IV, Does past matter? (5) 14.78® 3.93 2.61 18,022 5 21 2.35

Final models (IPEN only): test minor varifations on model V.

VII. current and past 3 years (26) 65.248 43.42b
VII vs V. Do lags>3 matter? (2) 1.65 .07
VIII. equal «§ terms (31) 68.132 45,09
VIII vs VII. Do all years of (5) 2.89 1.67

INSP contribute equally to aj?

Fach L-statistic test (distributed as xzj restricts cthe coefficients of one of the
three sets of independent variables (IPEN, PCHEMFP or PCHHOUR), with the other two sets
completely unrestricted, There are 36 coefficients fn each set, 6 equations * 6 years
of data for each variable. Thus line 1, which only allows one free coefficient, g
(diagonal coefficients equal p, with zeros off-diagonal) imposes 35 restrictions on n.

fa = significanc at 1% level, b = significant at 5%, ¢ = significant at 10w}
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Table 8

Final Estimates
(Full Sample of 6,842 plants)
(standard errors in parentheses)
{Using Chamberlain method to calculate coefficients, standard errors)

IPEN Coefficlents

equall meanl

Dep Var t t-1 t-2 -3 ey aj PcHEMP? PCHHOUR? L

PCHNUM  -.0518 -.0611 -.0585 -.0372 - .0220 UNR UNR  65.24
(.012) (.013) (.015) (.016) (.007)

PCHNUM  -.0548 -.0670 -.0623 -.0396 .0242 - UNR UNR  68.13
(.012) (.012) (.014) (.015) (.004)

PCHNUM  -.0555 -.0610 -.0627 -.0331 - .0226 584  ,S45  220.12
(.012) (.013)- (.015) (.016) (.007) (.032) (.041)

PCHNUM  -.0583 ..0664 -.0656 -.0361 .0246 - .584 549  222.87
(.012) (.012) (.014) (.014) {(.004) (.032) (.041)

PCHDAYS  -.0266 -.0765 -.0799 -.0208 - .0268 UNR UNR  43.42
(.017) (.018) (.020) (.023) (.009)

PCHDAYS  -.0272 -.0778 -.0778 -.0206 .0271 - UNR UNR  45.09
(.017) (.017) (.019) (.020) (.005)

PCHDAYS  -.0236 -.0769 -.0846 -.0109 - .0263 458  .413 152.69
(.017) (.018) (.020) (.022) (.009) (.029) (.036)

PCHDAYS  -.0243 -.0788 -.0828 -.0113 .0267 - 459 416 154.36
(.017) (.017) (.018) (.020) (.005) (.029) (.036)

l. In some models, the 6 aj coefficients in the « vector (IPEN:'s
contribution to the plant-specific effect) are restricted to be equal to each
other, and their common value is given in the ‘equal «3' column. In the
others, the zJ coefficients are allowed to differ, and their mean value is
glven in the "mean a;’ column.

2. In some models, the » matrices of PCHEMP and PCHHOUR coefficients are
allowed to be completely unrestricted, indicated by ‘UNR’. In the others, they
are restricted to a single coefficient, s, along the diagonal (x=p1}, and that
coefficient is reported.




