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labor and with intermediate goods. Because we have no measures
of the extent of adoption of most intermediate goods in most
countries, we have to assume something about how they spread,
based on what we see in U.S. data. We find that if all countries
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adoption technology, and (c) imperfectly correlated technology
shocks, then we can easily account :or the extent and persistence
of inequality among nations. Unfortunately, while it easily
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frequency movements in GNP so that if our definition of this
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1. Introduction.

Societies differ in their economic well-being, and their differences
persist for long periods of time. Societies also differ in the technologies they
use. These two facts surely are linked, but how? This paper accounts for the
variation in per capita GNP among countries by positing that continuously
arriving technologies differ in how well they suit each country. We show that
this mechanism can not affect long-run growth, but that it can create huge level
effects that persist for long periods of time. Because diffusion takes a long
time, technological shocks are highly persistent, which is why there is so little
turnover in the world distribution of per-capita GNP. Since we lack the
comparable micro data on diffusion that we would need in order to make an
extensive cross-country comparison of diffusion speeds with macro performance,
our estimates are based on micro data from the U.S. We use these estimates to
project what the rest of the world would do if it had the same speed of diffusion
and the same productioﬁ function as the U.S., but different, imperfectly
correlated technology shocks. We show that there is no need for country specific
permanent differences in diffusion speeds or in anything else, and that the bulk
of the rigidity in the distribution of the world's income stems from the slowness
of diffusion.

Our model says that countries that find recent technologies unsuitable will

have lower per-capita GNP. Qualitatively, this statement must be valid, since



poorer societies rely more on older technologies.® But how much poorer will a
slow-adopting society become? This paper will provide quantitative estimates of
the link between diffusion lags and development.

This is a growth-accounting exercise, although the framework differs from
that of Robert Solow (1957) who accounted for growth in terms of the primary
inputs, namely labor and capital. Demnison (1962) added education to the list
of inputs. We account for the growth of countries in terms of their labor input
and their intermediate goods inputs. We conclude that cross-country inequality
and its persistence can be supported by positing that each country adopts
intermediate goods with, on average, the same delays.

We do not explain why adoptions lags are as long as they are. We refrain
from this for two reasons. First, it helps to know how strong the link between

diffusion and development is quantitatively before trying too hard to tie them

! For instance, Lars Nabseth and George Ray (1974, p. 40) present evidence
that higher wage societies are quicker to adopt labor saving technology.
Moreover, information from their Table 2 on p. 17 shows that faster diffusion in
countries relates strongly and positively to their per capita incomes. The
product cycle literature has shown that advanced economies export (and therefore
persumably produce and consume) more advanced goods (Donald Keesing, 1967).
Bradford Delong and Lawrence Summers (1990) find that more advanced economies
enjoy lower prices and higher quantities of producers’ durable equipment than
less advanced ecornomies. In the U.S., regions with higher per capita incomes
seem to use more advanced technologies. Hybrid corn, for example, was first
introduced on a wide scale in the north, and only later in the south (Griliches
1957, figure 2). And data from John Putnam (1991) shows that inventors tend to
patent their inventions in richer countries, persumably because such countries
are more likely to have the technical ability to copy the inventions.

A different strand of the literature tries to link economic development to
technological inventiveness; e.g. Jan Fagerberg (1987). Our emphasis here is not
on inventiveness but on implementation or adoption. An early paper by Richard
Nelson (1968) takes a view similar to ours.



together theoretically. And second, the speed of diffusion should hinge on a
diverse set of circumstances such as a society’s patent laws and its endowments
of human and physical capital, and to theorize about an analytically manageable
subset of determinants seems to us too speculative a task at this point.?

Ve gtart with Paul Romer’s (1990) formulation of a production function that
relates a society's output of final goods to its use of intermediate-good
inputs.? Each society can use each new technology right away, and each

technology is on average of equal value to each society.® But there are random

2 Existing models identify at least four reasons why the diffusion of new
products and processes takes time: (a) Sunk costs in older technologies allow
them to survive in spite of their higher variable costs (Chari and Hopenhayn
1991, Jovanovic and Lach, 1989); (b) Learning by doing in a new product or
technology takes time (Stokey 1988, Jovanovic 1982); (c) The extent of patent
protection and the ease of licensing the use of a technology or the freedom with
which new technologies can be imported -- all institutional restrictions of the
kind that Parente and Prescott (1991) stress, and (d) Frictions and lags in
communication and in the transfer of information (Jovanovic and Rob (1989),
Jovanovic and MacDonald (1988)).

* An alternative production function, emphasizing variety in process rather
than product innovation is Jovanovic and Rob (1990, eq. 2.1). We use Romer's
production function because our micro data are on new intermediate products

rather than new production processes.

* Models in which growth is tied to the growth of a nonrivalrous good (such
as knowledge) will have tremendous scale effects, "scale” being the extent of the
market, and "market" being the area over which knowledge is nonrivalrous. The
size of these markets is hard to measure (although Sokoloff (1988) does so with
some success), and cheaper communication and transportation have led to a steady
rise in the size of markets. Our assumption that the market is the whole world
pays off in two ways. First, it saves us from having to measure market size or
assume (incredibly) that it coincides with countries’ borders. And second, it
makes the theoretical prediction that larger markets will have higher growth
rates irrelevant for cross-country comparisons -- a virtue because large
countries do not seem to grow any faster than small ones.



deviations from that average, both over countries, and over time. We measure the
value of a new product by its eventual penetration. It is this penetration that
differs over products in a country, and over countries for a given product. But
the speed with which that penetration is reached is assumed to be the same for
all countries and all products. There are three parameters governing their speed
of diffusion, one parameter describing the nature of the selection bias governing
our sample of new products, and finally, one parameter describing the share of
labor. We thus end up with a six parameter model.

We estimate three of the six parameters by using Michael Gort’s and Steven
Klepper’s (1982) data on the diffusion of new products in the U.S. Labor's share
is set at two thirds. The remaining two parameters represent the world's long-
run growth-rate, and the fraction of newly arriving technologies that are
unsuitable. Information about this last parameter can be found in recent work
By Mark Schankerman and Ariel Pakes (1986) and Schankerman (1990). We then use
these parameter estimates to project the extent of world inequality and its
persistence. The projections match the Heston-Summers data well. There is no
need for country-specific permanent differences.® Although the context is quite
different, the methodology and the conclusions, positive ones we think, parallel
those of Jess Benhabib and Jovanovie (1991). The basic conclusion is that each

country’s per capita GNP obeys the same stochastic process with partially

5 The Solow model with permanent differences in savings and population
growth was recently estimated by Gregg Mankiw, David Romer, and David Weil
(1990). Permanently different institutional arrangements that lead to different
effective tax rates on the returns to adopting technologies were the focus in
Parente and Prescott (1991).



independent realizations of the shocks, and that the properties of that process
are consistent with micro data from the U.S.

Surprisingly, our technology shocks have little success in generating
movements at higher frequencies. The reason for this is simple: Technology
shocks are embodied in new products. But new products take a long time to
spread. By the time they have spread, newer products have appeared on the scene,
and these independent technology shocks are subjected to too much averaging to
have an impact on aggregates at frequencies associated with the business cycle.
In sum, the technology shock is a useful vehicle for generating long waves, not

short ones.



2. Using Diffusion Lags to Account for Inequality and its Persistence.

The aim in this section is to find out how much inequality one would see
in the world if every country had the same production function as the US, the
same diffusion lags as the US, the same probability distribution for the
technology-specific shocks as the US, but different and imperfectly correlated
realizations of those shocks. US data on diffusion of new products generate
estimates for the stochastic process that US GNP per capita should follow. We
shall compare the steady state variance of this process to the empirical cross
sectional variance of GNP per capita among countries. We shall also look at how
much turnover within the world distribution the US-estimated model implies.
Throughout this section, the only reason why countries’ incomes differ is that
technologies suit different countries differently.

The story begins with a version of Romer’s (1990) relation between an

economy’s output of final goods, Y., and its use of intermediate inputs:

&
Y, = L:'“J.qfcdi. (1)
0

Here L, is the labor input, l-a is labor‘s share, A, 1s the list of Iintermediate

inputs available at t, g;, is the quantity at date t of the i*® intermediate



input, and a is, under further assumptions, the share of physical capital.®
Romer looks at constant growth-rate paths along which the output of an
intermediate good invented at date s jumps from zero to, say, #, where it remains
thereafter. This is shown in Figure 1 as time-path B. The data from Michael
Gort and Steven Klepper (1982) will show, however, that the output of a new

product resembles a path better described by line GC.’

8 Romer assumes that physical capital alone is specific to the intermediate
goods. Specificity of physical capital to new inventions is supported by casual
observation and by a host of studies, eg. Roger Gordon, Mark Schankerman and
Richard Spady (1986). But it is just as apparent that much human capital is also
specific to new inventions: Jacob Mincer (1989) shows that workers in sectors
that enjoy higher TFP growth seem to also get more on-the-job training, training
that is presumably at least partly specific to the technologies that fuel TFP
growth in their sectors, Gregory Clark (1987) and Howard Pack (1984) show that
societies with less human capital will use a given technology less efficiently,
and David Teece (1977) shows that the presence of skilled labor makes it easier
for multinational firms to transfer technology across borders. Chari and
Hopenhayn (1991) build a model in which diffusion lags stem entirely from the
specificity of human capital.

Although we shall assume the truth of eq. (1) throughout, it will be clear
that our analysis easily extends to accommodate human capital and possibly raw
physical capital in the production function for final goods. We lack good
measures of these two types of capital for most countries, however, so that
empirical work with a more complicated production function would be severely
limited in scope. Moreover, the paper aims to give a general flavor of the sorts
of results that one can expect with this approach, as well as the kinds of
questions that one can ask in this, as well as more detailed formulations.
Finally, since little agreement exists on how to specify production functions
that use intermediate goods (for instance, compare (1) to John Long and Charles
Plosser’'s (1983) Cobb-Douglas production function or to Dale Jorgenson, Frank
Gollop, and Barbara Fraumeni'’s (1987) translog specification), we shall stick to
the simplest case,

7 In Romer (1990), 6 is written as X and it equals nK/A, where K is the
capital stock and n the number of units of capital needed to make a unit of the
intermediate good.
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Figure 1: The Growth of the Average Gort-Klepper New Product

We need a scale-invariant representation for a society's tendency to adopt
new technology, and the natural scaling factor is population. So if s; is the

vintage of product i, let

¢ = Lh(t -s),

where h(x) is positive, and vanishes for x < 0. Now let

h(t-s)® = £(c-s, 8, ¢,) . )

Here #, is a shock specific to all products of vintage s,® while €, 1is

% Vintage-specific shocks also go by the name "cohort effects". Later on
we shall compare our cohort effects to those that Schankerman and Pakes (1986)
estimate for values of patent rights.



independent over i and t, and has CDF G(e¢). Because a continuum of vintages
arrives at each date, the €'s will wash out in the aggregate, so that the

collective contribution at t of the products of vintage s will be
£(t-s,0) -J'E(c-s, 8, €)dG(e).
With (1), this means that per capita income is

y, %
t
Yy = = = ‘[f(c -5, 8,081 &)
L,
Now suppose that A/A = X so that with an initial condition A, = 1,° A, = e’

Then the number of technologies of vintage s is xe**, and since they contribute

® This implies a mass point, a pulse, at date zero that we shall ignore in

(4) and beyond. The size of this pulse does not matter for the steady-state
implications because it fades relative to y, as the latter grows without bound,
and we omit it to avoid clutter.

That A is constant is questionable since incentives for basic inventions
should fluctuate over time: James Adams (1990), Zvi Griliches (1990) and Robert
Evenson (1984) detect fluctuations with their proxies for A. For a summary of
earlier findings on bunching of innovations see Christopher Freeman, John Clark
and Luc Soete (1982). These studies suggest that a reliable measure of A, would
improve on our treatment of A, as a deterministic, trend-stationary unobervable.
But the obvious candidate -- number of patents -- is unsatisfactory for many
reasons, some of which are summarized by John Jewkes, David Sawers and Richard
Stilleman (1968, pp. 88-90). The main problem is that changes in the number of
patents are usually accompanied by largely offsetting changes in the quality of
patents (Schankerman and Pakes 1986, section 5). Pakes and Simpson (1989, pp.
398-9) list several possible reasons for this phenomenon.



f(t-s, #,) to output at date t,°

Yo = ,\I e f(t - s, §,)ds = ,\e“:[e‘"f(r, 8,_.)dr . )
A high 0, means that there was a basic advance in technology that was a
common input into many products of vintage s, and that vintage only. At the
aggregate level this is indistinguishable from assuming that Xe*®§, 1is the
number of new products invented at s, but at the micro level the implications
differ. We shall stick to the view that it is the quality of inventions that
fluctuates, not their number. Being this specific about the shocks pays off in
that we can estimate them from micro data rather than as an aggregate or sectoral
residual.
If (6,) is stationary, the distribution of (8, ,),ero,0) 1§ the same as that

of  (8.;)rer0,01, SO that as t - !,

1 The fraction, at date t, of the output of all intermediate goods that are

t
of vintage s is # = e“f(c-s,as)/‘[e"f(c-r,9,)df. If m, = lim#,_, then
t >
7, is our counterpart of the u, that Chari and Hopenhayn (1991) plot in their
figure 1. If f is bounded, #, + 0 as r + @. To obtain x, = 0 for r large enough
(as Chari and Hopenhayn do) we need f(r, ¢) = O for large enough r. The specific

example we use in this section does not have the latter property.

! The expression in (5) is finite only if asymptotically f grows at a rate
less than A. Since X is defined for a fixed realization of (4,),", it will
therefore have a nondefective distribution only if e™'f is integrable for almost
all (#,),°. This condition asks that each intermediate product’s share in GNP
go to zero as t » «. The condition will hold if f is bounded uniformly in 4, or
if products are transitory as in Stokey’s (1988) model so that f - 0 as 7 - =,

10



-
i + X = A{e'“f(r,d_,)dr s
it

A stationary ¢ implies a stationary X, and so we arrive at
Proposition 1: log y, is stationary around the trend A.

This means that detrended log y, has a stationary distribution, and that it
stochastically regresses towards its mean. So, if countries are driven by
independent or positively correlated §'s, their y’s should converge.!?

Proposition 1 also implies that all countries have the same long-run growth
rate )\ regardless of their £f. That is, if a country takes a long time to adopt
technology, this will lower the level of its GNP, but not its long-run growth
rate.

Characterizing inequality in levels of y and its persistence requires

2 Not to a constant, of course, but to the same long-run average level.
Baumol and Wolff (1988, p. 1157) show that among countries that in 1950 had per
capita incomes above $1,300 (in 1975 dollars) there was significant convergence
in log-levels by 1980. But this is not true of the entire sample of countries,
according to these authors and others -- most recently Quah (1990). At any rate,
while ln y has no permanent components, the long diffusion lags render it so
highly persistent, as we shall show below, that it is probably indistinguishable
from a random walk with drift in currently available time series.

11



further assumptions about f. Let?3

. (1 -e™™4)9 for x>0
f(x,8,¢) =
0 forx<0.

Assuming that E(ef) = 1 results in f(x,8) = (1 -e™)4 .

The parameter p measures the speed of diffusion. If 4, = 4 (all t), the
function f attains path B in Figure 1 as p + =, To keep things simple, p is the
same for all products; all grow at the same speed.

Since it is vintage-specific rather than time-specific, and since it enters

multiplicatively, the parameter # does not affect a product’'s growth rate, only

13 This functional form makes product gquantities converge to §, so that they
last for ever. How good this assumption is will depend on the level of
aggregation. For instance, out of 70 US manufacturing subsectors, only three
(Iron and Steel Foundries, Railroad Equipment, and Leather Goods) had a decrease
in real output between January of 1954 and December of 1988. Over shorter
periods, however, cyclical forces are more important and transitory declines in
sectoral output will be more frequent (Pankaj Ghemawat and Barry Nalebuff 1990).
The more disaggregated Gort and Klepper data also do not show much evidence of
downturns in output as products age. But at still higher 1levels of
disaggregation, there are bound to be many products that have disappeared, or
that will eventually do so.

1 If high 6 inventions are more profitable, then Zvi Griliches’s (1957,
Tables 2.6 and 2.7) and Edwin Mansfield's (1963) evidence that more profitable
inventions spread faster suggests that if allowed for heterogeneity in p over
products, we would have a positive correlation of # and p over products. In the
next section, we shall estimate product specific p’s, correlate them with the
product specific #'s, and find a weak but positive relation between them, thereby
confirming Mansfield's findings. Chari and Hopenhayn (1991, Proposition 5)
supply the logic for this finding: the greater the productivity of a newly
arriving technology relative to old technologies, the faster is the diffusion of
new technologies in the steady state.

12



the level of its eventual penetration, or "ceiling" in Griliches's (1957)
terminology. If one views f as the reduced form for the time path of the
product’'s equilibrium quantity, then a large # denotes products for which demand
is high, or products for which production costs are low, or both. Strictly
speaking, however, the production function (1) does not allow heterogeneity on
the demand side because each intermediate good enters in the same way.!?

Substitution into eq. (5) yields

X, = Al'e'*'(l - e”)g, . dr (6)

if the process has gone on for long enough. The process (6,) is assumed to be

stationary and serially uncorrelated:?'®

!5 This is easily changed, of course. A demand-based rationale for ¢ would
A
replace (1) by something like Y = Ll'“lﬂiqfdi. A supply-based story could have

n = 0.'1 for products of vintage s (see note 7). Bertola (1991) introduces such
differing efficiencies among intermediate goods producers.

36 since #, is the limiting size of the average intermediate good of vintage
t, stationarity of 6, means that new products are no more and no less important
than the old. Surprisingly, perhaps, the micro data indicate that # has no

trend, and no autocorrelation, in #, so that all persistence will originate in
the model, and not outside it.

13



E(6,) = 6 and  Cov(d,, 8,) = (6")

The expression in (6) is random because it is a sum, not an average. To explain
this better, we give two examples:
Example 1. Let 4, ,dr = ;df + 0dW,, where W, is Brownian motion.!’ Then Ef,_,dr

= f§dr and Var §,_.dr = o?dr, which is consistent with (6").

Example 2. Let 4, .dr = § (mdr + sdW,), where §, € {0, 1} is iid and binomialy
distributed with P(§, = 1) = u. The distribution of ¢, dr is now a weighted
average of a distribution that has mean mdr and variance s?dr, and a distribution
that is concentrated at zero. Then, E(0,dr) = ;dr = pym, and Var(é,dr) = o2dr
~ u[s? + (1-p)m?]dr, using the formulas for the mean and variance of a

mixture.l®

This example builds on the first one. It assumes that the r-cohort
of inventions is either a success (§ = 1) or a failure (§ = 0). If it is a

success its contribution to output is proportional to #dr + odW,. If it is a

failure, it contributes nothing. Thus g is the fraction of successful cohorts.

17 Brownian motion has independent, normally distributed increments with
E(Wey - W) = 0 and Var(W,, - W) = k.

18 See William Feller (1971, p. 167).

14



Our empirical work will build on the second example.!®

Equations (6) and (6') imply that

and the appendix shows that for each k 2 0,

Aa2ple™

GV Xt = Ty @R

[1+ %(1-“*)] )

For given k, the covariance between ln y, and 1ln y,, is the same as that between

ln X, and 1ln x‘_k:zo

2
Cov(lnyt‘ lny‘_k) = _X%_(_X—-Gp_)_e_u [1 + i(l—e"") ] (7
26°(2x+p) ,
so that its autocorrelation coefficlent is
5 = e [1 e 21-emy ] an
I3

While ry decreases with p for all k, it decreases with X only for large

19 A11 this can be done in discrete time and with discrete numbers of
innovations; the results would be about the same. Indeed, with continua of
independent random variables, some readers may find it easler to think of our
integrals as limits of discrete sums. Nothing changes. But our setup leads to
shorter, simpler expressions.

20 A linear expansion of the logarithmic function leads to the approximation
Cov(ln u, 1In v) = Cov(u, V)/E(WE(V). This approximation underlies the
expression in eq. (7).

15



A and the variance

k, and it increases with XA for small k. As p + o, r, + e
of In y tends Aaz/ZEZ. Thus faster diffusion reduces the persistence, but it
increases the larger steady-state variance around trend.

In equation (6), the weight on .., is XAe™ (1l - e*). At r = 0, this
weight is zero. It then rises monotonically until vintage + = 7 tn{ (A+p) /2]
after which it declines and converges to zero. If + is large, the effect of a
shock will take a long time to build up. In fact the parameter estimates yield
a 7 of about twenty seven years, a surprisingly large number that underlies the
high persistence of 1n y, in this trend-stationary model. Technological shocks
do not have permanent effects on y, because while a particular cohort of
technologies is affected permanently by a shock, this permanent absolute effect
becomes insignificant relative to y, as the latter grows without bound.?

In spite of being trend-stationary, In y, is highly persistent. Another
way to describe this persistence is with John Cochrane‘s (1988) statistic
involving the variance of the k-differences in y, which we shall rewrite in the

form that John Campbell and Gregory Mankiw (1989) use:

X 1 var(lny,, - lny,)
* var(lny,;, - lny,)

Appendix B shows that the following approximation holds in our model:

2! Footnote 10 defined n, to be the limiting fraction of technologies in use
that are 7 years old. 1In this sample w, is proportional to e™"(l-e™®). That
is, m, is proportional to the impulse response function.

16



11l-1

vk = - ¥
kl-r1

The model’s predictions about v*¥ can be summarized as follows:

k 1 5 10 20 50 100 200 500 1000
1 4.5 7.9 12.4 16.2 13.7 8.3 3.4 1.7

The maximal value of v* takes 50 years to reach and thereafter the decay is
extremely slow. The maximal v¥ that Campbell and Mankiw report is for Japan --
13.7 at k = 60. For other countries the maximal v* is far smaller, reflecting
the greater importance of transitory shocks whose effects die off relatively
rapidly. Our model omits all aggregate shocks other than the technology shock
¢, and since the omitted shocks are probably more transitory, it is not

22 This all means that our

surprising that our model overpredicts persistence.
technology shocks do not generate enough movement at high frequencies. Indeed,
if our conception of a technology shock is correct, one must look elsewhere for
an explanation of business cycles. And, by implication, the Solow residual, as
usually measured, must have a sizeable non-technological component.

Equation (7) and proposition 1 describe the properties of the time series
In y, in one country. To direct these two propositions at the Heston Summers

(1984) panel, we shall make the following four assumptions: First, all countries

have the same production function (1l). Second, the parameters XA, p, ; and ¢? are

22 It is the slowness of diffusion that causes the high predicted values of
vk, As p gets large v* approaches (l-e™**)/k(l-e™) which declines monotonically
from unity when k = 1, to zero as k gets large.

17



the same in each country. Third, A is the same in each country -- each has
immediate access to every new intermediate good as soon as it appears on the
scene.?® And fourth, we shall start with the benchmark case of 6, independent

over countries.?® What we shall do here is much like what Benhabib and

Jovanovie (1991) did when they looked at how much cross country variability one

2% That all countries can freely access A is not that unrealistic, at least
not in the post war period during which the world economy has become highly
integrated through increased trade, a greater presence of multinationals, and a
growing number of cooperative agreements among firms of different nationalities.
For instance, John Dunning, Bruce Kogut and Magnus Blomstrom (1990, pp. 74-75)
show that during extended post-war periods, automobile and semiconductor firms
in the U.S., Europe and Japan made as many cooperative agreements with firms of
nationalities other than their own, as they did with firms of their own
nationalities. International patenting is pervasive (Evenson, 1984) but even
less effective than domestic patent protection (Robinson 1988, ch. 9) ,and
moreover intermediate goods can be imported rather than domestically produced.
Mansfield (1984, p. 136) notes that about 75 percent of the technologies
transferred by U.S. firms to their subsidiaries were less than five years old.
Clark (1987) for instance documents the quickness with which mechanized weaving
methods spread from England to the rest of the world in spite of England’s utmost
efforts to contain them domestically. And Henderson, Jaffee and Trajtenberg
(1990) show that in patent citations, a domestic resident is only slightly more
likely to cite another domestic resident than a foreigner. "Basic" knowledge,
(which is what A is) thus arguably bestows what Robert Lucas (1988, p. 37) has
called global external effects. We treat A as a global public good.

The assumptions on f mean that all countries begin adopting each invention
immediately. This is counterfactual, of course: Lumpiness in the invention
process means that each invention will be implemented first somewhere. But in
their small sample Nabseth and Ray (1974) show that in spite of this, no one
country led others in first adoptions.

% Then we shall make some allowance for cross country correlation of the
f's. On the one hand, one expects a substantial country-specific component to
fy. The railroad, for instance, was more important for the U.S. than for a
mountainous country like Bolivia. On the other hand, the railroad must have
mattered more to both than the toothpick has, so one also expects a good deal of
covariation in §, over countries.

18



would get if one gave each the same production function, but independent Solow

residuals. But we shall ga farther because unlike them,..we shall use micro.data

to estimate the parameters of the process governing the shocks, and we shall
allow shocks to be dependent over countries.

The k* order autocorrelation r; depends on two parameters only: A and p.
From proposition 1, X is set equal to the world's growth-rate which, between 1960
and 1985, was .02. The Gort-Klepper data on twenty-one U.S. products yield an
estimate of p of .04, Figure 2 reports the correlation between countries’ GNP's
in 1960 and their GNP's t periods hence. It does the same thing with 1950 as
the base year. It plots the empirical autocorrelations: r,(60) w Corr (log y,,
10605 1OE ¥y, 10604c) 2> for the full sample, and r,(50) = Corr (log Yi, 1es0s 10g ¥i,
1850+k) for the sample of 59 countries for which coverage begins in 1950, as well

as the model’s predicted r,.

1 -
08 -
08
L r
07 K
# ‘
0 2 4 6 -8 10 12 14 16 18 20 22 24 26 28 30 32 34 k

Figure 2: Actual and Predicted Autocorrelations.

25 The calculated r, would have been the same if we had taken out a common
trend from all the ln y;, and then correlated the residuals. To see why, let x,
= a + bt + u;,. For given k and t, Cov(xy,, Xju4) = Cov{uy,, ug,). Figure 2
fixes t at either 1950 or 1960 and then computes the correlation coefficients for
each fixed k. The point is that the calculation of each r; holds t and k fixed.
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The predicted r, is in equation (7'). But for it to be the theoretical
counterpart of r,(50) and r,(60), the y,, processes must be independent over {i.
If they were, the time series (y;,) could, for each i, be viewed as a randomly
selected sample path of the stochastic process whose autocorrelations appear in
equation (7'). But the time series are not independent. Letting z,, = ln Yir -

At and letting Zz, be the year-t mean of z,,, the ratio

Var, (zt)

w =

Var, (z.) + Var,(z,)
measures the fraction of the year k variance of ln y,, - At accounted for by
shocks common to all countries. This ratio ranged from a low of 0.23 in 1970,
to a high of 0.62 in 1960; on average it hovered around three-tenths. Now if
thirty percent of fluctuations are common to countries, the correlation between
countries’ initial and their period t positions will be higher than r,. Indeed
if w were equal to one so that all movement in y was common to countries, Iy
would also be equal to ome for all k. So cross-country correlation will at least
partly close the gap between r, and r(50) and r(60), but exactly by how much
will depend on the distribution of the common and idiosyncratic components.
The economic reason why the model generates so much persistence is that
although the ¢, themselves are serially uncorrelated, their impulse responses
peak at only twenty seven years after a vintage of products is introduced. This,
of course, is because the diffusion of these products is so slow, The predicted
ry is certainly higher than table 4 of Charles Nelson and Charles Plosser (1982)

indicates -- their autocorrelation coefficient for the US falls to zero within

20



6 years,

So much for the persistence of inequality. Now what abc;ut its extent?
Equation (7) shows that this will hinge on the ratio 02/;, the squared
coefficient of variation of #. The Gort-Klepper sample contains only partial and
biased information about this ratio. The sample includes only successful
inventions, whereas we know from the work of Mark Schankerman and Ariel Pakes
(1986) that most inventions are relatively worthless, and that the fraction of
such worthless inventions is close to one.?® 1If 0, is as described in our
second example, the squared coefficient of variation of 4 is:

L O

pm I

—.:.||Q
[}
[}

Assuming that the Gort-Klepper sample is an unbiased selection of successful

inventions, it tells us that m = 1.26 and that s® = .32. And Schankerman’s and
Pakes's (1986) results and other micro evidence suggest that u should be close
to zero. Along with X = .02 and p = .04, such parameter values do an excellent

Job for accounting for the extent of inequality. Figure 3 plots the variances

"0,2(1950) and 0,2(1960) of 1In Yi. in the small sample and in the large sample

respectively. These variances increased during the sample period, and ranged

25 Their third figure shows that in spite of negligible renewal fees in the
U.K., France, and Germany, only about half of all patents were renewed through
age 10, and less than 10 percent were renewed through the age of 18. The
evidence from U.S. data also points to distributions of values of patent-rights
with medians very close to zero. Griliches (1990, pp. 1679-80) and Pakes (1986,
p. 779) survey this evidence.
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from .778 to 1.324. There was, in other words, substantial divergence over this

period. That ¢,%(1960) = ¢,2(1950) for t = 1960 is a coincidence.

Figure 3: The Time Path of Relative Inequality

Because § is correlated over countries, and because w; is on average around
three tenths, equation (7) (evaluated at k = 0) predicts a steady-state variance

of 1ny among countries of about

[ 7 ] A% (A+p)
10 J 20%(2x45)
According to figure 3, this quantity must be between .78 and 1.32. For this to

be true, we need p to be between .005 and .0084, that is, a little less than one
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percent. While this is a bit on the low side, it is not far from what the micro
evidence would lead one to expect. We shall return to this point.
Superficially it might seem that unlike the models of Prescott (1986) and
Benhabib and Jovanovic (1991), the shocks are serially uncorrelated. But the
state of knowledge or the state of technology is the accumulation of the #'s, and
this quantity is serially correlated. The big difference between this model and
conventional Solow residual models is in the shape of the impulse responses which
here are hump-shaped with a peak at about twenty seven years in contrast to the
conventional model where they decay geometrically and much more rapidly.?’ 1In
contrast to the conventional real business cycle model, a series of faQorable
technological shocks will produce a boom about three decades hence. As it
stands, then, this model is better suited for understanding low frequency
movements; technological shocks spread too slowly to have much to do with the

business cycle.

27 Marco Lippi and Lucrezia Reichlin (1990) also discuss the effect that
diffusion lags have on the time series properties of GNP. Unlike ours, their
model has a permanent component and diffusion lags affect the way that underlying
technological shocks affect that component.
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3. Parameter Estimates from the Micro Data

The parameters are estimated using the data set assembled by Gort and
Klepper (1982). These authors document the historical development of 46 new
products in terms of their sales, price, quantity of output, and numbers of firms
selling the new product over (part of) the life-cycle of each product. Table 1
lists the 21 products for which we have sales data, as well as the year in which
each product was introduced into the market. There are old products such as
records, dating from 1887, as well as relatively new ones such as lasers, which
became available in 1960. The last year for which data were collected was 1972
and, in general, sales and quantity of output figures were not available for the
whole life of the product. The age range for which there are data appears in the
second column. The third and fourth columns give the products’ average age in
the sample, and the average level of sales in 1967 dollars (using the Wholesale
Price Index). Most, but not all of the products seem to qualify as intermediate
inputs in the sense of eq. (1). Since the number of products is not that large,
we analyze them all.

The production function in (1) treats intermediate products as exchangeable
inputs: One unit of product i and two units of product j can produce as much
final output as two units of product i and one unit of product j. Now computers
and ballpoint pens are surely not exchangeable in this sense, and something must
be done to bring them into common units. We shall do this by expressing
everything in units of the 1967 "consumption good", so that for q;, We shall use

product i's sales at t, deflated to 1967 dollars by the Wholesale Price Index.
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Product Initial Age  Mean Sales” Sample

Year Range Age Size

1. Gomputers 1935 20-36 28 8567.6 17.
2, Crystals, Piezo 1936 25-36 30.5 45.6 12
3. DDT 1943 1-27 14 23,3 27
4. Electrocardiographs 1914 47-58 52.5 8.8 12
5. Electric Blankets 1911 35-61 48 61.5 27
6. Electric Shavers 1930 1-42 22 83 39
7. Fluorescent Lamps 1938 0-34 17 94.6 35
8. Freezers, Home and Farm 1929 18-43 30.5 335 26
9. Gyroscopes 1911 52-61 56.5 15.1 10
10. Lasers 1960 3-11 7 41.9 9
11. Missiles, Guided 1942 9-30 -19.5 2150.8 22
12. Motors, Outboard 1908 42-64 53 138.6 23
13. Penicillin 1943 2-28 15 72.7 27
14, Pens, Ballpoint 1945 6-27 16 92.1 22
15, Records, Phonograph 1887 34-85 59.5 372.7 52
16. Streptomycin 1945 1-27 14 9.5 27
17. Styrene 1935 8-36 22 85.8 29
18. Tapes, Recording 1947 14-25 19.5 159.7 12
19. Television, Apparatus, Parts 1929 17-43 30 1355.1 27
20. Transistors 1948 6-24 15 266.5 19
21. Tubes, Cathode Ray 1922 26-50 38 157.5 25
Average 29.7 578.2 499

Notes: * Deflated to 1967 dollars by the Wholesale Price Index, in millions.

Table 1l: Variable Means




Gort and Klepper discuss their data at length. One property that they point to
is that on average there is a rapid decline in the rate at which sales and
quantity of output grow with the age of the product, and that their growth rates
asymptote to zero. A model with this property is the one presented in section

2:

(q“_/LL)" = [1 -exp(-p(t-s) + eu)]O' fortzs.

where the q, are sales in 1967 dollars, L is the population of the US, and a =
1/3. As Table 1 shows, the mean value of sales differs quite a bit over
products. Since the time series for each product is not too long, and since we
assume that the parameter p is the same over products, we shall estimate p from
the pooled data. To eliminate the heterogeneity, and to transform the nonlinear
estimation problem into a linear one, we substitute the maximum value over t of
(q4:/Ly)* in each product i for 0‘.25 Denote this estimator by é". Note that
since for all practical purposes there is only one product per vintage, we
identify each product i with a different vintage s, i.e., s = i. Let p;, ~ log
[r - (q"_/l..,')“/é,.'] . Then p can be estimated from the regression

Pje = Y - pACGE; +u,,, where u,, equals ¢;, plus an additional error term

26 This is a crude estimate of 6, since products exist forever and never
actually reach §. This, however, is a limitation of the model since in reality
some products become obsolete and physically disappear from the economy, implying
that they reach their peak in finite time. A model in which products are
transitory is Stokey (1988). We reemphasize, however, that Proposition 1 is
valid in that context as well as long as X is indeed fixed, and so we believe
that most of our results are robust with respect to this assumption.
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generated by estimating #;, where AGE =t - s, and where v captures the rionzero
mean of e¢. This equation has been estimated by OLS for the pooled sample, as
well as for each product individually.

The results are in Table 2. The last row presents the estimates for the
pooled sample (499 observations) and gives an estimated p of 4.3 percent. The
individual estimates, however, reveal that this estimate is not that
representative -- it is about half the average of the individual estimates of p.
In fact, an F-test for the equality of the p's rejects the null hypothesis of
equal p's over products. Hence, for the purposes of estimating the individual
#'s we use the product-specific estimates of p in the following way: First we
solve for ;u. = (q,,/L)*{1 - exp(-p;,) ], where p;, is the predicted p,;, from the
product-specific regression. We then average over all ages t to obtain an

estimate of 4,. 20

This estimate and its standard deviation within each product
are in columns 4 and 5 of the table. Finally, in column 5 we present the
preliminary estimate of §;, namely 5,'. The two sets of estimates do not differ
much.

These results underlie the exercise that we went through in the previous

30

section. For m we used the average of the individual ;i's, namely 1.26,

although this does not differ much from the pooled estimate. For s?, we used the

28 In computers, lasers, and records, some of the 4, were highly negative.
Since this does not make any sense these outliers were removed from the

estimation procedure.

30 We also used them to plot the curve C in figure 1. The plotted function
is [1 - exp{-.04(t-s)}]%, and it is based on o = 1/3 and the pooled estimate
of p of .04, The figure also assumes that § = 1,
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Product

Computers
Crystals

DDT
Electrocardiographs
Electric Blankets
Electric Shavers
Lamps

Freezers
Gyroscopes
Lasers

Missiles

Motors
Pencillin

Pens

Records
Streptomycin
Styrene

Tapes
Television
Transistors
Tubes

Averageh

Pool®

.043

SD of
Py
.19
.08
.03
.11
.02
.01
.02
.03
.19
.29
.04
.06
.03
.03
.02
.04
.02
.08
.04
.06
.06

.013

8, SDof ] .max
4, t
4.33% .76 4.81
.65 .05 .69
.59 .06 .63
.36 .04 .38
.77 ,06 .80
.89 .20 .97
1.12 .42 .98
1.42 .12 1.47
.56 .16 .52
.68 12 .80
2.38 .59 2.77
1.06 .08 1.06
1.19 .69 1.03
.89 .05 .89
2,03 1.99 1.77
1.07  1.77 71
.85 .07 .88
1.01 .04 1.03
2.19 .50 2.37
1.20 .25 1.35
1.18 .14 1.21
1.26
1.19 80

duf g2
i

.42 17
.00 12
.11 27
.10 12
.12 27
.32 39
.65 35
.22 26
44 10
.58 9
.04 22
.29 23
47 27
.70 22
47 52
.18 27
.17 29
.32 12
.21 27
.16 19
.25 25
.14 499

* Units of ¢, and ;1' are dollars per capita.
b Average over 21 products,

¢ 1Includes Dummies for the war,

intercepts.

Table 2: Sales Regressions p,,

the post-war

= Y - pAGE + u,,

period and for product-specific
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variance of the 5‘ values, but adjusted for "measurement error" whose variance
was estimated as the average of the sum of squares of the "S.D. of 51" column.?!
In other words, we treated the square of the standard error as the variance of
the measurement error on #,. This procedure reduced the estimate of s? from its
starting value of .77 down to .32. While somewhat arbitrary, any adjustment of
a similar magnitude would have little bearing on the outcome of the exercise in

32

the previous section. For p we used the estimate from the pooled data.

The frequency distribution of ¢ is in Figure 4. In their study of patent-

QP( be ,\‘_2« .\_% 2 ‘L'b( Q,‘-b rbfz' '5'6 & b‘.b‘

Q

D>

Figure 4: Frequency Distribution of 5 (in 1967 $'s per capita)

3! This adjustment is necessary because the § are estimates so that their
variance partly reflects sampling variability.

32 since they are based on BLS figures, the Gort-Klepper sales data probably
understate s? because they do not satisfactorily control for quality change,
quality change that gets passed on to the consumer and therefore does not affect
sales. Adjusting for quality changes can make a huge difference, possibly
doubling our estimates of some of the §'s (see Chapter 12 of Gordon, 1990).
Looking at the products in table 1 it is clear that this underestimate of quality
change was the largest for those products for which our éx is the largest, such
as computers, television, and transistors.
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renewal data from Germany, France, and the United Kingdom, Schankerman and Pakes
(1986) and Schankerman (1990) find that the distribution of private values of
patent-rights is highly skewed: most are worth little, only a few are worth a
lot. Now a Gort-Klepper product is an outgrowth of a highly successful idea, and
the latter 1s presumably a draw from the extreme right tail of the distribution
that Schankerman and Pakes talk about. Since this tail is very thin, it can have
Jjust about any shape and still be part of a highly skewed distribution. Still,
the skewness shows up in this distribution as well. The calculations of the
previous section assume that the Gort-Klepper data contain a representative
sample of successful inventions, but that these successful inventions comprise
an unknown fraction g of all inventions, the remainder being worthless.

Figure 5 provides information that bears on our assumption that § is
stationary and, indeed, serially uncorrelated. The figure plots the size of ¢
on its vintage, and it reveals neither trend nor autocorrelation, which is

consistent with the assumptions on #,.

o>

1867
1908
1811
1914
1922
1529
1930
1905
1936
1938
1343
1845
184
1960

Figure 5: The estimated time series §,
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We have assumed that p is a constant, independent of time. Conceivably,
the speed of technological diffusion may have been changing." We now examine
this by looking at the time series of p; plotted against the vintage of product
i in Figure 6. There is a slight upward trend in these data,“ and this is in
spite of there being a slight downward trend in #,. One is then led to ask if

this trend in p, becomes significant once 6, is held constant. The following

~

A

0.4

0.2 - ~ : A
—

0 VA

T T T T T

-0.2
0.4

T

1887

g §

1929

A FE

-

1960

1911
1914

Figure 6: The estimated time series p,

3 Proposition 1 implies that such changes in p can not affect the rate of
growth. But they would have huge level effects. To get a feel for how large
such effects would be, set §, = 9 for all t. If countries "ome" and "two"
differed only with respect to their p's and nothing else, their steady-state
positions would satisfy

p p
i Do P, P2

tow Y, Atpy A+p,

which increases from unity when A=0, to p;/p, as X gets large.

% Since intermediate goods can be imported, the international migration of
these goods will generally be faster than the migration of production methods
used to make such goods. The latter kind of migration is the object of attention
in the product cycle literature, and Mansfield (1984) argues that it has been
accelerating. If so, one would expect that domestic diffusion would have been
picking up speed. ’
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least squares regression still shows no significant trend:

Py = + 5‘ - . O}si.

(132) (1'.0177) (.4
The absolute values of the t statistics are in parentheses, and s, is the vintage
of product {.

Do more valuable inventions spread faster? Griliches (1957) and Mansfield
(1963) found evidence that they do. Our data, plotted i{n Figure 7, provide only

weak support for this hypothesis. The correlation coefficient between p, and 5‘

o>

.
e

Figure 7: The size of inventions and the speed of their diffusion.

is .29, and it differs significantly from zero only at the 20% level of

confidence.
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Consistency check with the Schankerman-Pakes study.

The vintage effects § are related to cohort effects on the value of patent
holdings that the estimates of Schankerman and Pakes (1986) and Schankerman
(1990) imply. Suppose that a patent is there to protect the invention of an
intermediate good, and that it will yield its owner a fraction of the expected
sales of the good.?s If this fraction is about the same over products
regardless of their expected sales, Schankerman’s and Pakes's cohort effects will
have a coefficient of variation that we can predict in terms of the parameters
of our model. Their cohort effects are yearly vintage effects. Since &,
averages out to p over the year, the total value of the eventual sales of all

inventions made in a particular year is

1 “
lﬁ.ds = mp o+ s{dWs = mp + sW(p),

vhich yields a coefficient of variation of s/m‘/;. Since p# < 1 implies that

-

the coefficient of variation of § will exceed that of 1[ §,ds because of averaging
over independent cohorts within the year. Now in the previous. section we found
that to support the world inequality depicted in figure 3 we needed p to be
somewhere between .005 and .0084. Taking the midpoint in this range, p = .0067,

we find that s/myg = 5.5. This is what Schankerman and Pakes should have found

35 For a process invention that reduces average costs, expected returns to
the patent holder would also increase with market size.
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given the truth of our model and the maintained assumption about what the patent
holder can recover.

In fact, their estimates imply a coefficient of variation that is at most
about one-tenth of this value, and it does not matter which of several possible
ways one uses to get the estimate. First one can use the estimated value of all
patents in various cohorts (V) that Schankerman and Pakes report in their table
5. Our model implies that on average V should grow at the rate A, which is two
percent per year. If one transforms their V, estimates into discounted estimates
using a rate of two percent per year, then for these transformed estimates,
depending on the country, one gets a coefficient of variation of at most .4 (for
France). Second, one can use their estimates of the value of the average patent
in a cohort (V) or the value of all patents per scientist and engineer in their
table 6 (V/SE). And third, one can use information implicit in their table 3.
Each of these methods leads to the same conclusion, namely a coefficient of
variation that is at best an order of magnitude below our estimate. This
discrepancy seems too large to attribute to sampling noise, and we devote what
is left of this section to listing‘some possible reasons for it.

First, it is likely that the inventor can expect to capture a smaller
fraction of revenues from large inventions. Large, profitable inventions invite
faster imitation. Griliches (1958) and Mansfield et al (1977) argue that
successful inventions give rise to social returns much bigger than private
returns; the two can differ by hundreds of percentage points. This tends to
reduce the standard deviation of patent values by more than it reduces their

mean, thereby lowering the estimate of the coefficient of variation of patent
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values.

Secénd, the number of patents that an inventor will apply for in connection
with a particular invention is probably larger for a big invention; in that way
he can better protect it from imitators. Moreover, bigger inventions are
probably more complex and may on those grounds require multiple patents. This
tends to compress the distribution of patent values relative to the distribution
of values of inventions. But if this really was the source of the problem, it
could be solved by using the value of all patents in a cohort instead of the
value of the average patent, and yet, as we mentioned above, the two procedures
yield results that do not differ much.

Third, Schankerman and Pakes estimate cohort effects based on renewal
behavior over the initial 15 to 18 years of patents’ lives, whereas our ¢

measures the final contribution of inventions. But as Pakes (1986, p. 780)

points out, as each patent ages and as uncertainty about it is resolved it is
likely that the distribution of revenues across patents should become more
dispersed, and that their coefficient of variation should go up.3®

Fourth, Schankerman and Pakes estimate the coefficient of variation of

patent values (including variations due to things other than cohort effects) at

3 To drive this point home, assume that patents are initially all alike,
and that the passage of time gradually informs patent holders about the patents’
qualities. Initially the expected revenues on each patent would be either the
same for all patents, and they would either all be renewed, or none would be.
The coefficient of variation of expected revenues (and it is expected, and not
actual revenues that determine whether a patent is renewed) would be initially
zero, and would, in an untruncated sample, be monotonically increasing with the
age of the sample. Now the truncation of the sample due to non-renewal will
mitigate this effect, but will not reverse it.
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.26 for the UK, .18 for Germany, and .45 for France. Now these findings are
themselves an order of magnitude below comparable estimates for U.S. data that
Griliches (1990, p. 1679) summarizes. So, if they have underestimated the
variability of patent values due to all sources, it is likely that they have also

underestimated the variability that stems from the cohort effects.
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4. Conclusion

If societies take a long time to adopt technology, and if technologies suit
them differently, this will create a good deal of persisting inequality. We
analyze a mechanism through which this may occur, and quantify the effect that
diffusion lags have on the aggregates. The resulting inequality in the levels
of countries per capita GNP‘s and the persistence of that inequality is
surprisingly large, large enough to match what the Heston-Summers data show.

Just as important, this exercise moves us closer to capture of the elusive
“technological shock", closer to understanding how it affects aggregates. We
specify what the shock is. It is the importance of a newly-arrived product, a
new technology. Estimating twenty-one such shocks from micro data takes us
beyond the aggregate and the sectoral Solow residual and shows that these shocks
have little to do with the business cycle. The intuition is simple: they take
so long to spread that averaging prevents them from having an impact at high
frequencies. This negative conclusion is offset by the surprising ability this
model has to explain movements at lower frequencies. This is a model of long

waves in economic activity.
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Appendix A: Calculating Cov(X., Xi4).
Let a, = e*"(1-e™*)., Then

Cov(X,,,, X,) = A*Cov ‘[a,om,,df, ‘[a,ot_,df
But if we change variables from r to s m r - k, thenr =0 = s = -k, 1 =@ =

s = o, t+k-r = t-s, and r = k+s. Therefore, since ds = dr,

Cov(X, .., X) = XCov {a"kac_lds, Ia_&t_.ds

L] L]
= AZCov ‘[ahkat_'ds, ‘[alﬂt_.ds
= Azaz‘[ahkalds = Azaz‘[e"\ke'z“(l e Pkes)y (] _eP)ds

L]
- Azaze'““[[ e P21 e t) - e PRePrEgPE(] _pPY) ]ds

r

- AZg2e-k ‘[a-zuds _ ‘[e-(z:up)-ds _ e-pk‘[e-(z»p)-ds . e-pk‘[e-z(»\'p)l s

= AZg2eXk i - . e P¥ ; - ;
22 22+p 2X+p 2(X+p)
= AZg2e~* I _ e¥p IS Rl
L 2X(2x+p) (20 +p)2(X +p) 2(2x+p) by A+p
To obtain the correlation coefficient between X, and X, , note that
Ao2e XK K
Cov(X,, X, .,) P (A4 p - de” , ALl)
Ko k) © ey (2 ) ‘

which leads to the expression in the text. Moreover, dividing this expression

by the variance of X we get

(X, Xy = e [1 c2a-em }
P
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Appendix B; Deriving the v* statistic.
Since ln ye - In y, = Ak + In X,y - In X,, and since, to a first

approximation,

Var (InX,,, - Ink) = [E(X)]7?Var(X,, - %),
we find that

Var(lny,, - Iny,) = [E(X)]7?Var(X,, - X),
so that

vkl o 1 Var(X, , - %) (A.2)
k Var(X,,, - X)

Since X, is stationary,

Var(X,, -X) = E(X,, - X)? (a.3)
= 2Var(X,) - 2Cov(X ;. X,) .

Now (A.1), (a.2) and (A.3) imply the expression for vl given in the text.
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