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1 Introduction 

Interest in knowledge spillovers is widespread in economics and other disciplines (among 

non-economists, see Moore (1966); Zuckerman (1977); and Larsson (2002)). Within 

economics, knowledge spillovers are crucial for understanding economic growth, urban 

agglomeration, and international trade (Romer (1986); Lucas (1988); Glaeser, Kallal, 

Scheinkman, and Schleifer (1992); and Krugman (1991)). Researchers using microdata have 

recently studied the effects of exposure to more and/or better colleagues on the quantity or 

quality of contemporaneous scientific publications. (See Azoulay, Graff-Zivin, and Wang 

(2010), Waldinger (2010, 2012); Borjas and Doran (2012, 2015).) 

We diverge from the existing microdata studies by considering a different mechanism 

for knowledge spillovers among scientists as well as a different means of measuring 

productivity. We use a rich dataset that we helped to build to estimate a model based on a 

recombinant view of innovation. This view emphasizes the impact of novel and important 

combinations of ideas for generating the insights behind important contributions. Crucially, 

we highlight the importance of top scientists being exposed to a wide range of disparate 

ideas. We investigate two critical avenues of being exposed to the most novel and insightful 

combinations of ideas: (i) when people move to a new location where they are more likely 

to be exposed to a new set of ideas for the first time; and (ii) when people span multiple 

locations, which can capture “arbitraging” ideas across different places.   

We focus on Nobel laureates in chemistry, medicine, and physics from 1901 to 2003 to 

obtain the necessary data for our study1. Our dataset has high-frequency biographical data, 

 
1 We exclude Nobel laureates in economics because the economics prize started only in 1969. Hence, there is 
much less data on economists than on researchers in chemistry, medicine, and physics.  
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including laureates’ locations in each year. Moreover, we know when each scientist started 

the research that will eventually garner them the Nobel prize. We hypothesize that exposure 

to new and different ideas is likely to be more important at the outset of a scientist’s research 

program. Our results are drawn from over a century of data and many countries and hence 

are not based on only one episode in one country. 

Because hazard function parameters are difficult to interpret beyond their sign and 

significance, we focus on the effect of being in a new location and/or multiple locations on 

the expected interval before the eventual Nobel laureates (ENL) commence their prize-

winning work. We acknowledge that our new location and multiple location variables of 

interest are choice variables; thus, readers may wish to treat our parameter estimates as non-

causal. On the other hand, assuming that productivity differences among the scientists who 

eventually win a Nobel prize, conditional on the quality of their colleagues, are not correlated 

with the propensity to switch locations or have be in locations, our estimates will have a 

causal interpretation. This assumption is, of course, much weaker than one where 

productivity differences among all scientists are not correlated with the propensity to switch 

locations or have multiple locations. To our knowledge, no work has focused specifically on 

estimating models of knowledge spillovers drawing directly on the logic of recombinant 

innovation. Hence, we hope that our estimates will be helpful under either interpretation.  

The parallel literature on the effect of colleagues on a scientist’s productivity is relatively 

mixed in terms of identifying assumptions, external validity, and consistent estimation. 

Borjas and Doran (2012) consider the effect of Jewish mathematicians migrating from 

Russia to the U.S. on American mathematicians in the post-1992 era. The treatment effect 

consists of the exposure of American mathematicians to Jewish mathematicians from the 
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Soviet Union. American mathematicians working in the same areas as the émigrés now face 

more competition than before in terms of finding and keeping a job and publishing in 

American journals. However, this effect should be much smaller for American 

mathematicians working in areas where Russian mathematicians are weaker. Borjas and 

Doran use a parametric model to decompose the treatment effect of the Jewish 

mathematicians into an idea spillover effect and a competition effect. 

Borjas and Doran (2015) consider the effect of this emigration on mathematicians who 

remained in Russia. While these mathematicians have lost the benefit of spillovers from the 

emigrating mathematicians, they now face reduced competition in finding and keeping a job 

and publishing in Russian journals. Again, Borjas and Doran use a parametric model to 

separately estimate the opposing effects. One potential limitation of this study is that it may 

be problematic to extrapolate results for Russia from the period right after the fall of the 

Soviet Union to other periods and countries.  

Waldinger (2012) estimates spillover effects on the remaining German scientists from 

the expulsion of Jewish scientists in the 1930s.2 However, by Borjas and Doran’s logic, he 

estimates a treatment effect that captures the impact of a loss of spillovers and a decrease in 

competition among the remaining scientists, not a pure spillover effect. Further, one would 

have to be careful in extrapolating results for Nazi Germany just before the Second World 

War to other situations. 

Azoulay, Graff-Zivin, and Wang (2010) measure the effect on a scholar of the death of 

a superstar co-author, as opposed to having a superstar co-author who does not die. They 

 
2 In a fascinating companion article, Waldinger (2010) examines the effect of the expulsions of Jewish 
scientists on graduate students and finds large negative effects. This effect could reflect both the decline in 
faculty quality and increased competition among graduate students.  
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note that the superstar deaths cannot be treated as if they occur randomly, as there appears 

to be selection regarding who works with a superstar who dies. For example, older superstars 

are likely to die more often than younger superstars, and better co-authors may prefer 

working with younger superstars. They address this selection issue using a version of 

propensity score matching called “Coarsened Exact Matching,” proposed by Iacus, King, 

and Porro (2012), with a reasonable set of conditioning variables. They use choice-based 

sampling to reduce their computational burden (but do not correct their estimation approach 

for choice-based sampling (Heckman and Todd, 2009)). 

In our study, we find that being in a new location and/or having multiple locations are 

significantly (and substantially) associated with shorter expected intervals before the 

commencement of Nobel work. Always being in multiple locations, as opposed to never 

being in multiple locations, is associated with a shorter expected interval before the 

commencement of Nobel work by a statistically significant 2.50 years on a base duration of 

10.57 years. Moving to a new location every two years, as opposed to never moving to a 

new location, is associated with a shorter expected interval before the commencement of 

Nobel work by a statistically significant 2.0 years.  

Our focus on Nobel laureates should not be viewed as an assumption that they are the 

most important innovators in their fields. Instead, we view them as a group of people who 

have made significant contributions and perhaps the only systematic group for whom the 

data necessary to estimate our model are available. At the same time, especially in the case 

of innovation, we believe that spillovers among the right tail of the innovator distribution 

are particularly important to understand and quantify. 

The outline of the paper is as follows. Section 2 presents our econometric framework. 
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Section 3 describes our longitudinal data on ENLs. Here, we have a detailed discussion of 

how we determine the date that a scientist commenced her Nobel work. Finally, in this 

section, we provide summary statistics for this sample.  We present our empirical results in 

Section 4 and spend some time interpreting them. Section 5 concludes.  

2 Empirical Specification, Identifying Assumptions, and Estimation Approach 

2.1 Specification of the Hazard Functions for Commencing Prize-Winning Work 

Our empirical strategy is predicated on knowing when scientists commenced their prize-

winning work. (In Section 4, we discuss how we determine this start date for each scientist. 

The starting point for our approach is a duration model in which we specify the relevant 

hazard function, i.e., the probability of leaving state j in period t, conditional on not leaving 

the state in the previous t–1 periods.3 Since we have annual data, we use a discrete-time 

hazard model to determine the probability that individual i, who started their career in 

calendar year iτ , commences their Nobel work t years later:   

{ }

{ }

1 2

1( | )
1 exp ( ) ( ) ( ) ( ) ( )

1                ,                                                                                  
1 exp ( ) ( )

i i
i i i i i i i i i i

i i i

t
h t NL t ML t CQ t ICQ X g t

h t Z t

λ θ
α τ α τ µ τ φ β τ θ

τ δ θ

=
+ − − + − + − + − − − + −

=
′+ − − + −

                   (1)
    

where we use more compact notation in the second line of (1). Further, ( )i iNL tτ +  is a 

dummy variable coded one if the scientist is in a new location (one that they have not been 

in within a certain number of years)  in the calendar year i tτ +  and zero otherwise, while 

 
3 Among the many papers estimating standard duration models, see Ham and Rea (1987), McCall (1996), and 
Baker and Rea (1998). These papers do not have to deal with the type of selection issues we encounter here.  
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( )i iML tτ +  is a dummy variable coded one if the scientist is in more than one location (each 

for roughly a month or longer) in the calendar year i tτ + and zero otherwise. Further, 

( )i iCQ tτ +  denotes colleague quality in the calendar year i tτ +  and iICQ  captures 

colleague quality in their first job after leaving graduate school. Moreover, ( )h t  denotes 

duration dependence, iX  denotes field dummies, and ( )ig tτ +  captures a trend in calendar 

time, which we specify as a quadratic function. Finally, iθ  denotes a permanent unobserved 

(at least to current researchers and the econometrician) productivity term, where a larger iθ  

indicates a more productive scientist with a larger hazard function. In the absence of 

unobserved heterogeneity, it is constant across scientists and becomes the intercept term.  

Our focus is on estimating 1α and 2α , the coefficients on ( )i iNL tτ +  and  ( ),i iML tτ +  

respectively. We include ( )i iCQ tτ +  for several reasons. First, it allows us to abstract from 

the effect of being exposed to very high-quality colleagues when a scientist moves to a new 

location or takes on an additional position and is, therefore, in more than one location. We 

also view it as controlling for heterogeneity in scientist quality, since, if all else were held 

equal, better scientists would be in better departments. However, we do not try to estimate 

the impact of having better colleagues on the time it takes to start a Nobel Prize-winning 

work.4 We also consider the impact of having high-caliber colleagues in the first year after 

graduate school to account for the possibility that a strong academic start affects the hazard 

function across the researcher’s career.  

We will estimate the parameters of this hazard function by maximum likelihood. 

 
4 One issue that comes up here is that scientists may win the Prize with their colleagues. Since we only use it to 
control for scientist heterogeneity, we did not deal with this issue. 
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Consider first a sample of all scientists, where only a few will eventually win a Nobel prize. 

A scientist who did Nobel prize-winning work at duration *
it  will contribute to the likelihood 

𝑃𝑃𝑃𝑃( 𝑡𝑡𝑖𝑖∗) = 𝑓𝑓(𝑡𝑡𝑖𝑖∗) = � 𝑓𝑓(𝑡𝑡𝑖𝑖∗|𝜃𝜃𝑖𝑖)𝑑𝑑𝑑𝑑(𝜃𝜃𝑖𝑖)
𝜃𝜃𝑖𝑖

 

 = �
1

1 + 𝑒𝑒𝑒𝑒𝑒𝑒{−ℎ(𝑡𝑡𝑖𝑖∗) − 𝑍𝑍𝑖𝑖(𝜏𝜏𝑖𝑖 + 𝑡𝑡𝑖𝑖∗)′𝛿𝛿 − 𝜃𝜃𝑖𝑖}𝜃𝜃𝑖𝑖
 

,                              ∏ �1 − � 1
1+𝑒𝑒𝑒𝑒𝑒𝑒{−ℎ(𝑟𝑟)−𝑍𝑍𝑖𝑖(𝜏𝜏𝑖𝑖+𝑟𝑟)′𝛿𝛿−𝜃𝜃𝑖𝑖}

�� 𝑑𝑑𝑑𝑑(𝜃𝜃𝑖𝑖)
𝑡𝑡𝑖𝑖
∗−1
𝑟𝑟=1          (2) 

where ( )iG θ  is the distribution function for iθ  across all scientists.  

     Now consider a scientist who does not do Nobel prize-winning work. Assume that 

scientists are followed until they turn 70 if that occurs before 2003, and followed until 2003 

if that occurs before they turn 70. Let these two events occur at durations 70it and 03it  

respectively. For a non-ENL who turns 70 before 2003, the contribution to the likelihood is  

{ }
70

70 70
1

1( ) ( | ) ( ) 1 ( ).
1 exp ( ) ( )

       

i

i

t

i i i i i
r i i i

S t S t dG dG
h r Z rθ

θ θ θ
τ δ θ=

  
= = −   ′+ − − + −   

∏∫                    (3) 

The contribution to the likelihood of a non-ENL who is younger than 70 in 2003 is 

{ }
03

03 03
1

1( ) ( | ) ( )= 1 ( ).
1 exp ( ) ( )

i

i

t

i i i i i
r i i i

S t S t dG dG
h r Z rθ

θ θ θ
τ δ θ=

  
= −   ′+ − − + −   

∏∫              (4)                                                

In such a model,  ( )i iZ rτ ′+  is assumed independent of iθ  across all scientists. Since 

( )i iZ rτ ′+  contains variables like new locations, multiple affiliations, and colleague quality, 

it is much more plausible that ( )i iZ rτ +  and iθ  are positively correlated in a sample of all 

scientists. 
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Let 1iNP =  if a scientist does ENL work and let 0iNP =  otherwise. The overall likelihood 

for a random sample of all scientists is  

*
70

1 0

( ) ( ),
i i

i i
i NP i NP

L f t S t
∈ = ∈ =

= ∏ ∏                                                                                                             (5) 

for someone who turns 70 before 2003.5  

2.2 Controlling for Selection Bias in Estimation for a Sample that Only Contains Eventual 
Prize Winners 

We will use a selected sample, which contains only ENLs, and hence, we must adjust for 

this selection in estimation.6 The standard way of adjusting for this selection is first to define 

the probability of being an ENL. For someone who turns 70  before 2003, we have7 

{ }
70

1

70 70

1Pr( 1) 1 1  ( )
1 exp ( ) ( )

                  1 ( | ) ( ) = 1 ( ).

i

i

i

t

i i
r i i i

i i i

NP dG
h r Z r

S t dG S t

θ

θ

θ
τ δ θ

θ θ

=

  
= = − −   ′+ − − + −   

= − −

∏∫

∫
                            (6) 

   We need the conditional contribution to the likelihood for each of the scientists who are 

ENLs. We proceed as follows. Note that  

Pr( , 1)Pr( | 1)    
Pr( 1)

i i
i i

i

t NPt NP
NP

=
= =

=
.                                                                                                   (7) 

Consider the numerator in (7) 

Pr( , 1) Pr( 1| )*Pr( ) Pr( )i i i i i it NP NP t t t= = = = ,                                                                                   (8) 

since 

 
5 The contribution for someone who is younger than 70 in 2003 is analogous, and for expositional ease we will 
leave this case implicit here and in what follows. 
6 Examples of duration studies that control for selection are Ham and LaLonde [1996], Eberwein, Ham, and 
LaLonde [1997], Ham, L, I and Shore-Sheppard (2016), Ba et al. [2017] and Fitzenberger, Osikominu, and 
Paul [2022]. 
7 Again, the contribution for someone who is younger than 70 in 2003 is analogous. 
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Pr( 1| ) 1i iNP t= =  for those in our sample. Hence,  

Pr( )Pr( | 1)  ,
Pr( 1)

i
i i

i

tt NP
NP

= =
=

                                                                                                     (9) 

where Pr( 1)iNP = is given in (6) and *Pr( ) ( )i it f t=  is given by (2). For what follows, it is 

important to note that (9) involves integrating over the unobserved heterogeneity in the 

numerator and denominator separately. Therefore, the likelihood function for estimation is  

*

1

( )
i

i
i NP

L f t
∈ =

= ∏  ,  where *( )if t = *( )if t /( 701 ( )iS t− ).                                                                     (10)                                                                  

However, maximizing (10) will produce consistent estimates only under the very unrealistic 

assumption that the unobserved heterogeneity is independent of the explanatory variables 

among all scientists.  We propose the following approach. First, note that 

𝑃𝑃𝑃𝑃( 𝑡𝑡|𝑁𝑁𝑃𝑃𝑖𝑖 = 1)   =   � 𝑃𝑃𝑃𝑃( 𝑡𝑡,𝜃𝜃𝑖𝑖|𝑁𝑁𝑃𝑃𝑖𝑖 = 1) 
𝜃𝜃𝑖𝑖

 𝑑𝑑𝜃𝜃𝑖𝑖  

                                =   �
𝑃𝑃𝑃𝑃( 𝑡𝑡, 𝜃𝜃𝑖𝑖 ,𝑁𝑁𝑃𝑃𝑖𝑖 = 1)
𝑃𝑃𝑃𝑃(𝑁𝑁𝑃𝑃𝑖𝑖 = 1)

 
𝜃𝜃

𝑑𝑑𝜃𝜃𝑖𝑖  

                                 =   
1

𝑃𝑃𝑃𝑃(𝑁𝑁𝑃𝑃𝑖𝑖 = 1)
 � 𝑃𝑃𝑃𝑃( 𝑡𝑡|𝜃𝜃𝑖𝑖 ,𝑁𝑁𝑃𝑃𝑖𝑖 = 1) 𝑃𝑃𝑃𝑃(
𝜃𝜃𝑖𝑖

𝜃𝜃𝑖𝑖|𝑁𝑁𝑃𝑃𝑖𝑖 = 1) 𝑃𝑃𝑃𝑃(𝑁𝑁𝑃𝑃𝑖𝑖 = 1) 𝑑𝑑𝜃𝜃𝑖𝑖    

                                 =   
𝑃𝑃𝑃𝑃(𝑁𝑁𝑃𝑃𝑖𝑖 = 1)
𝑃𝑃𝑃𝑃(𝑁𝑁𝑃𝑃𝑖𝑖 = 1)

  � 𝑃𝑃𝑃𝑃( 𝑡𝑡|𝜃𝜃𝑖𝑖 ,𝑁𝑁𝑃𝑃𝑖𝑖 = 1) 𝑃𝑃𝑃𝑃(
𝜃𝜃𝑖𝑖

𝜃𝜃𝑖𝑖|𝑁𝑁𝑃𝑃𝑖𝑖 = 1) 𝑑𝑑𝜃𝜃𝑖𝑖   

                                  =    � 𝑃𝑃𝑃𝑃( 𝑡𝑡|𝜃𝜃𝑖𝑖 ,𝑁𝑁𝑃𝑃𝑖𝑖 = 1) 𝑃𝑃𝑃𝑃(
𝜃𝜃𝑖𝑖

𝜃𝜃𝑖𝑖|𝑁𝑁𝑃𝑃𝑖𝑖 = 1) 𝑑𝑑𝜃𝜃𝑖𝑖  .                                            (11) 

         We will use the last line of (11) to obtain our estimates. Specifically, we parameterize the 

distribution of iθ   among the ENLs as ( ) Pr( | 1).i i iG NPθ θ= =  We model ( )iG θ as a finite mixture 

(Heckman and Singer (1984)). Thus the contribution to the likelihood implied by the last line of 

(11) for individual i is 
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{ } { }

{ }

*

* * 1

1

* *
1

( | ) ( ) ( | )( ( 1) ( )

1 1     = 1
1 exp ( ) ( )1 exp ( ) ( )

1         1 1
1 exp ( ) ( )

i i

i

i

i i i i i i i i

t

r i i ii i i i i

i i i

L f t dG f t Pr NP dG

h r Z rh t Z t

h r Z r

θ θ

θ

θ θ θ θ

τ δ θτ δ θ

τ δ θ

−

−

=

= = =

    
  −   ′+ − − + −′+ − − + −      

  
− −   ′+ − − + − 

∫ ∫

∏∫

  

70

1

1

( ).
it

i
r

dG θ

−

=

  
         

∏ 

        

(12) 

For this approach to produce causal estimates for the effect of new locations and multiple 

locations, it must be true that among the ENLs, the unobserved heterogeneity in terms of 

productivity is independent of the new location and multiple location variables, conditional on 

colleague quality.8 Here we would note the problems in ranking ENLs by quality, since, e.g., many 

economists would be uncomfortable with ranking Nobel Prize-winners in Economics based on 

quality. It may be true that in the case of a few winners, such a ranking seems sensible, but we 

believe that conditioning on colleague quality will diminish the problem among these outliers. 

Further, we would expect all eventual prize winners to receive many offers of new positions and 

additional appointments. But one could argue that while the differences among prize winners will 

be much smaller than the differences among all scientists, there will still be some differences; 

moreover, the very best ENLs will have better opportunities and are hence more likely to assume 

a new position or an additional affiliation. Under this interpretation, it is better to treat our 

estimated coefficients for a new location or multiple locations as reduced-form estimates. Since 

this is the first paper to explore knowledge spillovers from a recombinant  innovation perspective, 

readers should make their own interpretation of the coefficients. Our paper is informative under 

either interpretation.  

 
8 To the best of our knowledge, this approach is original to this paper.  
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Finally, we obtain standard errors for our parameter estimates using the Information Matrix. 

When constructing the variance-covariance matrix of the parameter estimates, some may wish to 

do the equivalent of clustering standard errors by, e.g., metropolitan regions, as in a regression 

model. The problem with this in a duration model is that one must fully control for any 

heterogeneity in estimation (Elbers and Ridder 1982) to obtain consistent estimates. If there is 

correlation across the unobserved heterogeneity for scientists in the same metropolitan error but 

one does not account for it in estimation, the parameter estimates will be inconsistent.  

Because the estimated hazard function coefficients can be difficult to interpret, we also use 

these coefficients to calculate the counterfactual effect of changing an independent variable on the 

expected interval before the scientist commences their prize-winning work. Formally, the expected 

duration among the ENLs is  

( )
1

( ),
i

i i i
r

ED r f r dG
θ

θ θ
∞

=

 =  
 
∑∫                                                                                                                  (13) 

where ( )if r θ  = *( | )i if t θ /( 701 ( | )i iS t θ− ).    Since we can observe individuals only until 70it  

(which is determined by year of birth), we instead calculate a modified expected duration to 

conduct our counterfactuals 

( )
70

mod

1
( ).

i

i

t

i i i
r

ED rf r dG
θ

θ θ
=

 
=  

 
∑∫                                                                                                (14)                                                                                             

      To estimate the effect of having multiple affiliations each year on the average expected 

duration before the commencement of prize-winning work, we calculate (14) for each scientist in 

two polar cases: (i) where the scientist has multiple affiliations in each year; and (ii) where the 

scientist has only one affiliation in each year. We take the average of the quantities in (i) and (ii) 

across our sample and then take the difference in these averages. We use a similar procedure 
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assuming each scientist has, for example, a new location every five years versus never having a 

new location.9   

3. A Unique Data Set on Top Scientists’ Productivity  

          3.1 When Do Nobel Prize Winners Start Their Work? 

A crucial component of our work is our ability to identify when each ENL commenced the work 

that will eventually garner them the Nobel prize. We rely on the rich biographical information on 

the laureates in the Nobel autobiographies, the statements of the Nobel Committees, and other 

sources. We define the commencement of their Nobel prize-winning work by when they embarked 

on the broad research agenda that will ultimately lead to the contribution cited by the Nobel 

committee in awarding the prize.10 Alternatively, we could focus on when each ENL began the 

specific work for which they received the prize. However, many (but not all) prize-winning 

contributions are the consequence of long periods of research on a particular topic. Focusing on 

when each ENL began the specific work for which they won the prize would effectively ignore 

the original idea generation and the body of research that brought them to the point of being able 

to do the specific work. 

3.2 Assembling Our Detailed Academic Histories on Eventual Prize Winners 

Our data on when scientists commenced their Nobel prize-winning work are drawn from Jones and 

 
9 Obtaining standard errors for these counterfactuals is straightforward, as the delta method can be used because 
the difference in the expected truncated durations is a differentiable function of the parameters with non-zero, 
bounded derivatives. Interestingly, the only other studies we know of that calculate such counterfactual effects 
and their (correct) standard errors are Ham, Li, and Shore-Sheppard (2016), Ba et al. (2017), and Fitzenberger, 
Osikominu, and Paul (2022). 
10 Nobel Prizes in the natural sciences are typically awarded for specific contributions, with the Nobel committee 
often pointing to a specific paper or papers. A small number of (the most distinguished) laureates make more 
than one contribution that might well qualify for a Nobel Prize. Very few people are awarded more than one 
Nobel Prize (and we drop any subsequent prizes awarded to one person). Thus, our estimates focus on whichever 
work was cited by the Nobel committee, which is typically the first prize-worthy contribution. 
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Weinberg (2011), which builds on the valuable contribution of Stephan and Levin (1993). We then 

added data on the location(s) of each Nobel laureate in each year of their career to this data set. 

From this information, we were able to determine for each year whether an ENL was in a new 

location (for the first time in, for instance, five years), in multiple locations, and the number of 

ENLs in their metropolitan area in a given year.  

Our data contain a range of other background information, including the years of any 

bachelor’s, master’s, or doctoral work. We define the beginning of laureate i’s career, iτ , as 

occurring three years before the receipt of her first doctorate or highest degree.  We use this 

measure as during the early years of the sample, not all Nobel laureates received doctorates. 

Meanwhile, some laureates, especially those in medicine or those trained in Germany, have two 

doctorates. For these laureates, the year of the first doctorate was used.  

We use the number of ENLs in a given metropolitan area each year to measure the colleague 

quality variable in that year.  Of course, this is a noisy measure of colleague quality. However, we 

know of no other measure of colleague quality in the literature; as such, a measure would require 

us to measure academic quality in the respective discipline in each metropolitan area for over 100 

years. We view the latter as a heroic undertaking.  

To implement our approach, we must calculate the number of laureates in each city yearly. 

Since we know the cities in which our laureates live each year, we can calculate the total number 

of current or future laureates in field f in city c in year t, fctN . For each laureate i  in each year t, 

we then identify the set of cities in which they are located in year t, Cit.11 We then take the sum of 

the number of laureates in i’s field across all the cities that i is in year t, i.e., .
it

it fctc C
N N

∈
= ∑  

 
11 Throughout our paper, metropolitan areas, not institutions, are the units of analysis. Hence, a laureate who has 
more than one affiliation in a particular metropolitan area or city is counted only once. 
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Summing laureates across cities, as opposed to weighing them by the fraction of time spent in each 

city, assumes that ideas can be transferred in a relatively short period of time. In other words, we 

assume that splitting time across multiple cities does not reduce the quantity of spillovers that can 

occur in any one city.12 Below, we obtain a significant coefficient on this variable, which suggests 

that our measure is not so noisy as to be uninformative. 

          3.3 Descriptive Statistics for our Eventual Nobel Laureates 

This section describes some of the features of our sample which readers may find interesting and 

may help with the interpretation of our estimates. Figure 1 shows for each of our three fields the 

average time to beginning work from the beginning of their career (defined as three years before 

the receipt of their highest degree) across three time periods: graduation before 1918, graduation 

between 1918 and 1945 (inclusive), and graduation after 1945. Overall, the mean times to begin 

are fairly tightly clustered, ranging from 7.6 years for Medicine in the most recent period to 11.3 

years for Physics in the earliest period. There are some time patterns within fields. In the case of 

Chemistry, the average time to begin is remarkably similar in the first two periods at around 9.3 

years. It rises by about 10% to 10.3 years in our last period. In Medicine, the average duration in 

our first two periods is around 9.9 years, while it drops by about a quarter in our last period to 7.6 

years. For physics, the average duration is about 11.3 years in our first period before falling to 

around 9.4 years in the last two periods (Jones and Weinberg (2011) argue that the quantum 

revolution reduced the time to doing Nobel work in physics).  

Figure 2 provides the distribution of spell lengths across the three time periods when the 

 
12 Our measure, based on summing laureates across cities, as opposed to the alternative measure of prorating 
them by city, is conservative in that it will tend to diminish the estimated coefficient on the multiple locations. 
This occurs because our measure is more positively correlated with the multiple location variable than the 
alternative measure.   
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data are pooled across fields. While Figure 1 shows that the mean time to begin Nobel work is 

fairly tightly clustered across fields and cohorts, Figure 2 shows that the distributions are right-

skewed with considerable individual-level dispersion. While between 5 and 10% of the sample 

(depending on the period) begin their Nobel work in the first year of their career (i.e., three years 

before receiving their highest degree),13 Many people take 10 or 20 years to begin their Nobel 

work, and some take 30 or even 40 years. Appendix Figure A1 presents results broken down by 

field and period. These are, as expected, noisy but consistent with considerable dispersion and the 

right skewness in time to begin Nobel work. 

Figure 3 presents a breakdown of the pooled data in terms of the share of time (i) in neither a 

new location nor in multiple locations (in blue), (ii) in a new location but not in multiple locations 

(grey), (iii) in both a new location and in multiple locations (pink) and (iv) in multiple locations 

but not in a new location (dark brown) broken down by period of high degree. The scientists are 

overwhelmingly (between 87% to 88%) in a single, non-new location. The next most common 

configuration is to be in both a new location and multiple locations, ranging from 6% to 7%. Fewer 

people are in a new location but not multiple locations and even fewer are in multiple locations 

but not a new location. In Figure A2, we break down Figure 3 by field.  The only real difference 

with Figure 3 is the larger fraction of scientists in multiple locations but not a new location in 

Physics in the most recent period. 

Figure 4 shows the share of laureates in new and/or multiple locations in the years before they 

begin their Nobel work, in the year they start their Nobel work, and in the years after beginning 

their Nobel work. (We report breakdowns by field in Appendix Figure A.3 and the differences 

 
13 This may also be something of an artifact in that we begin the career in the year in which someone begins their 
Nobel work in the small number of cases that the person begins their Nobel work more than 3 years before receiving 
their highest degree. 
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across fields are relatively small.) Consistent with Figure 3, most Nobel laureates are neither in a 

new location nor multiple locations for most of their careers. Moreover, few Nobel laureates are 

in multiple locations but not in a new location (3-4%) in each phase.  By contrast, 10% of Nobel 

laureates are in a new location but not in multiple locations in the years before beginning their 

Nobel work and in the year that they begin, but this fraction is much smaller in the years after they 

begin (1%) their Nobel work). At the same time, the share of time that Nobel laureates spend in 

both new and multiple locations is 13% before beginning their work and 21% in the year they 

begin, dropping to 4% after beginning.  

Since we need to estimate the effects of being in multiple locations, Figure 4 suggests that 

there may not be enough variation in this variable over the life cycle for us to do this. However, 

given our relatively standard parameterization, we can estimate the new location and multiple 

locations coefficients from the variation in being in a new location but not in multiple locations 

and the variation in being in a new location and in multiple locations across the life cycle.  

Figure 5 plots the country of residence for the Nobel laureates for each year of their careers 

by year of highest degree and field. The figure shows the remarkable increase in the share of 

laureates in the U.S., which rises from between 10% (for Chemistry) and 21% (for Medicine) for 

those receiving highest degrees before 1918 to between 46% (for Chemistry) and 54% (for 

Medicine) for those receiving highest degrees between 1919 and 1945 (inclusive). The shares 

continue to increase but at a lower rate for those receiving highest degrees after 1945 to between 

57% (for Chemistry) and 65% (for Medicine). There are also some differences across fields, with 

more Medicine laureates in the U.S. than Physics laureates and more Physics laureates in the U.S. 

than Chemistry laureates in all periods. Moreover, because there is considerably more variation in 

the first period than in the two later periods, Chemistry, which starts with the lowest share in the 
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U.S., experiences the largest increase between the first two periods. 

Figure 6 plots the country in which Nobel laureates received their highest degrees by year of 

highest degree and field. For all fields, it shows a large increase in the share of laureates receiving 

their highest degrees in the U.S. over time and a sharp decline in the fraction receiving their degrees 

in Europe. The fraction receiving their degrees in other countries is always small, and the trend 

depends on the specific field.  

 4  Estimating the Hazard Function Parameters and Counterfactual Effects 

To estimate the parameters of the hazard function, we must first define what is a new location. 

For example, should it be a location that the scientist had not been for five, ten or twenty years? 

Second how many years does the effect of moving to a new location last, one, three or five years? 

We let the data guide us on these questions through our use of the Akaike Information Criteria 

(AIC).14 Conditional on defining a new location as one that the scientist had not been in for five 

years, the AIC leads us to define the new location benefits as lasting only for the current period. 

Then, assuming the length of the benefits is one year, we let the AIC guide us in terms of whether 

it is best to define a new location as one that the scientist has not been in for five, ten or twenty 

years. We find that the AIC is extremely insensitive to defining a new location as one that the 

scientist has not been in for five, ten, or twenty years and set it equal to five years. There is no 

point in iterating on this as the AIC will return that the period of the benefits is one year. 

      Table 1 reports our main results on the determinants of the probability of commencing Nobel 

prize-winning work in each year. Throughout our analysis, we control for the quality of each 

scientist’s colleagues (number of ENLs) in a given year, as well as those in her first job, since we 

 
14  Since the number of parameters and number of observations are both equal  across these specifications, 
using the Bayesian Information Criterion (BIC) is equivalent to using the AIC criterion. For one of many 
descriptions in the literature of the AIC and BIC, see Konishi and Kitagawa (2008). 

https://www.google.co.th/search?hl=th&tbo=p&tbm=bks&q=inauthor:%22Sadanori+Konishi%22
https://www.google.co.th/search?hl=th&tbo=p&tbm=bks&q=inauthor:%22Genshiro+Kitagawa%22
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believe that this specification produces the cleanest "ability-free” impacts of a new location and 

being in multiple locations. That is, the effects we estimate net out any effects of being in new 

locations or in multiple locations that operate through being exposed to more high-quality 

colleagues.15 

     Panel A provides estimates of the coefficients of the hazard functions, where we include 

discipline dummies. Panel B shows the estimated effects of changes in our independent variables 

of interest on the expected interval before the commencement of Nobel prize-winning work. 

Because there is generally no difference in the statistical significance of the hazard function 

coefficients and the respective expected duration effects, we focus on the latter since they are easier 

to interpret. Our hazard functions depend on the variables discussed above to control for peer 

quality and ability and duration dummies. All specifications include calendar year and calendar 

year squared, as well as field dummy variables; the coefficients are not shown for these variables. 

We could not find evidence of unobserved heterogeneity in any of the models we estimated 

for commencing prize-winning work. One potential explanation for this is that the differences in 

unobserved productivity between scientists in our sample are relatively small, especially once we 

condition on the current number of ENLs in a scientist’s location. This result is reassuring as it 

implies that our estimates are unlikely to be confounded by unobserved productivity differences.  

Consider the parameter estimates for the hazard function in Panel A of Table 1. All the results 

in this table control for colleague quality. In column (1), we show the results when we include the 

new location variable in the hazard function, but not the multiple locations variable; the new 

location variable is statistically significant. From the expected duration calculations in column (1) 

 
15 If we do not include this number of eventual laureates as a conditioning variable in the beginning hazard 
function, the expected duration effects of new locations and multiple locations become somewhat larger, as 
one would expect.  See Appendix Table A1. 
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of Panel B, we estimate that being in a new location every 2, 3, and 5 years16 significantly decreases 

the expected interval before commencing Nobel prize-winning work by 2.63, 1.90, and 0.97 years, 

respectively.17 In terms of differences across disciplines, the expected durations are shortest  in 

Chemistry, somewhat longer in Medicine, and a bit longer still in Physics, but none of these 

differences are statistically significant. Column (2) includes in the hazard function the multiple 

locations variable, but not the new location variable, and the multiple locations variable is also 

strongly significant. Further, the parameter estimates indicate that always being in multiple 

locations, as opposed to never being in multiple locations, reduces the expected interval before 

commencing Nobel prize-winning work by a statistically significant 3.493 years. All of the above 

effects are relative to an expected average duration of 10.57 years before commencing Nobel prize-

winning work. Thus, these effects are substantial. 

In column (3), when we control for both the new location and multiple location variables 

simultaneously, both variables are individually significant and jointly significant using a likelihood 

ratio test. We estimate that moving to a new location every 2, 3, and 5 years significantly decreases 

the expected interval before commencing Nobel prize-winning work by 2.00, 1.39, and 0.69 years, 

respectively.18 Further, always being in multiple locations, as opposed to never being in multiple 

locations, now significantly reduces the expected interval before commencing Nobel prize-

winning work by a statistically significant 2.50 years. Thus, the impacts of the new location 

variable and the multiple locations variable are diminished somewhat when we simultaneously 

 
16 Note that here we are simply doing different simulations, not definitions for estimation. 
17 We do not report counterfactuals for changes in the number of laureates since we are essentially using this 
variable as a control variable. These counterfactuals are available on request. As one would expect from Table 
1, these effects are substantial.  
18 Note that the impacts of changes in the variables on expected duration tend to be significant at lower 
confidence levels than the coefficients (e.g., 0.01 vs. 0.05), reflecting the fact that the expected duration 
impacts depend on all of the parameters of the hazard function, and their standard errors reflect the variance-
covariance matrix for all of the  estimated parameters. 
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account for both variables. Still, both variables continue to be very significant.  

Appendix Table A1 reports estimates from similar specifications that do not include the 

colleague quality variable, i.e., the number of laureates to which each ENL is exposed in each year 

is not used as a control variable. These estimates are slightly larger than those in Table 1, as one 

would expect if the colleague quality picks up unobserved differences across scientists. However, 

the relatively modest increase in estimates when we drop colleague quality is reassuring as it 

suggests that there is indeed little variation in unobserved productivity differences across the 

ENLs.19  

 Our estimates show how being in a new location or multiple locations in a given year affects 

the probability of starting novel and important work for people who do very high-quality work. 

We argue that it is best to consider the effects as local, in the sense that we would not want to 

extrapolate these effects to much less able scientists.  

5  Conclusion 

We extend existing data sets on eventual Nobel Laureates to include data on their locations in 

each year of their careers. We use these data to give a picture of top scientists over time. The most 

dramatic phenomena in the data are (i) the increase over time in the fraction of top scientists in 

chemistry, medicine, and physics living in the U.S. and (ii) the fraction of top scientists in 

chemistry, medicine, and physics who received their highest degree in the U.S. Another important 

result from our analysis: how similar scientists are across these fields at a given moment in time.  

Drawing on recombinant innovation logic, we provide the first evidence for our novel 

knowledge spillover mechanisms. Being in a new location, as a measure of exposure to new ideas, 

and being in multiple locations, as a measure of exposure to a wide-ranging set of ideas than most 

 
19 This would also be consistent with our not being able to estimate an unobserved heterogeneity distribution.  
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others are exposed to, are associated with a substantially and significantly higher probability of 

commencing Nobel prize-winning work in a given period. We analyze an extremely highly 

selected sample — Nobel laureates — for whom we have data that is rich enough to leverage their 

career histories and measure our variables of interest each year.  

At a practical level, our estimates suggest the value of intense cross-pollination in stimulating 

important innovative work for those at the highest end of the ability distribution. These results 

stand in contrast to previous conceptualizations of knowledge spillovers, which emphasize 

concentrating innovators in clusters over the research life cycle.   
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Figure 1. Mean time to beginning Nobel work, by time of high degree and field. 
 

 

Notes:  The figure plots the mean number of years to begin prize-winning work relative to 
the beginning of the career (three years before receiving the highest degree) by field for 
people receiving their high degree in the three indicated periods. Early indicates graduation 
before 1918, middle indicates graduation between 1918 and 1945 (inclusive), and late 
indicates graduation after 1945. Observations are at the individual level. The sample includes 
142 Chemistry laureates, 179 Medicine laureates, and 167 Physics laureates. 
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Figure 2. Distribution of time to beginning Nobel work, by time of high degree 

 

Note. The histogram shows the distribution of years to begin prize-winning work relative to the beginning of the career (three years 
before receiving the highest degree) for people receiving their high degree in each of the three periods indicated. See notes in Figure 1.
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Figure 3. Time in multiple locations and new locations by time of high degree 
 

 
Note. The figure shows the share of time (i) in neither a new location nor in multiple locations (in blue), (ii) in a new location but 
not in multiple locations (grey), (iii) in both a new location and in multiple locations (pink) and (iv) in multiple locations but not 
in a new location (dark brown) by field and time of high degree. This figure is based on all years of data on all laureates.  
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Figure 4. Time in multiple locations and new locations relative to before, beginning and after Nobel work 

 
Notes:  The figure shows the share of time in new and/or multiple locations relative to beginning Nobel work. Before indicates all 
years before the laureates begin their Nobel work, beginning indicates the year they began Nobel work, and after indicates all 
years after the laureates began their Nobel work. 
   

 
 
  

0.73

0.10

0.13
0.03

0.65

0.10

0.21
0.04

0.92
0.04
0.03

0

.2

.4

.6

.8

1

Sh
ar

e 
of

 L
au

re
at

e 
Ye

ar
s

Before Beginning After

Neither new location nor multiple locations New location, not multiple locations
New location and multiple locations No new location, multiple locations



29 
 

Figure 5. Country of residence over career by  field and time of the  highest degree 

 

Note. The figure shows the share of time spent in different countries (US, Europe, others) by field and year of highest degree. 
Observations for laureates located in multiple regions are prorated across these regions. See notes in Figure 1. Observations are at 
the individual-year level. This figure is generated using all years of data on each laureate.  
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Figure 6. Country of highest degree by field and time of the highest degree 

 
Note. The figure shows where (US, Europe, others) the laureates received their highest degree by the period they received it. See notes 
in Figure 1 and Figure 5. 
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Table 1 

Parameter Estimates for the Hazard Function of  
Commencing Prize-winning Work in a Given Year 

 (1) (2) (3)   
 
A. Coefficients 
    

New Location (5 Year Definition) 0.780*** 
(0.166)  

0.591*** 
(0.175) 

Multiple Locations 
 

0.617*** 
(0.130) 

0.426*** 
(0.138) 

Number of Laureates 0.432*** 
(0.127) 

0.272** 
(0.137) 

0.277** 
(0.141) 

Num. of Laur. at Start 0.061 
(0.185) 

0.135 
(0.186) 

0.130 
(0.186) 

First 5 Years of Career -1.159*** 
(0.143) 

-0.988*** 
(0.132) 

-1.144*** 
(0.144) 

Second 5 Years of Career 
-0.366*** 
(0.127) 

-0.386*** 
(0.128) 

-0.399*** 
(0.128) 

Medicine 0.035 
(0.136) 

0.101 
(0.134) 

0.084 
(0.136) 

Physics -0.131 
(0.137) 

-0.080 
(0.134) 

-0.086 
(0.135) 

B. Expected Duration Calculations 
 
Expected Duration (Years) to Commence 

10.560*** 
(0.358) 

10.572*** 
(0.348) 

10.561*** 
(0.354) 

     
Effect on Expected Duration of:    

A New Location Every 2 Years -2.638*** 
(0.588)  

-1.991*** 
(0.618) 
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A New Location Every 3 Years -1.907*** 
(0.468)  

-1.385*** 
(0.467) 

A New Location Every 5 Years -0.968*** 
(0.259)  

-0.688*** 
(0.246) 

Always Multiple Location vs.  
Never Multiple Location  

-3.576*** 
(0.692) 

-2.589*** 
(0.785) 

All Chemistry to All Medicine -0.223 
(0.867) 

-0.635 
(0.847) 

-0.533 
(0.864) 

All Medicine to All Physics 1.089 
(0.909) 

1.162 
(0.879) 

1.102 
(0.898) 

All Physics to All Chemistry -0.866 
(0.909) 

-0.527 
(0.886) 

-0.569 
(0.897) 

     
Log L -1547.7 -1548.6 -1543.0 
    

Notes: Based on 485 Nobel laureates; Standard errors in parentheses; Significance: ***; **; and * denote significance at the 1%, 5%, 
and 10% level, respectively. All specifications also include calendar year and calendar year squared (coefficients not shown). 
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Appendix Figure A1. Distribution of time to beginning Nobel work, by field and time of highest  degree 

A. Chemistry  
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B. Medicine  
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C. Physics   
 

 
Note. The histograms show the distribution of years to beginning prize-winning work relative to the beginning of the career (three years 
before receiving the highest degree) for people graduating in each period. See notes in Figure 1
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Figure A2. Time in multiple locations and new locations by time of highest  degree and 
field 

 
Note. The figure shows the share of time (i) in neither a new location nor in multiple 
locations (in blue), (ii) in a new location but not in multiple locations (grey), (iii) in both a 
new location and in multiple locations (pink) and (iv) in multiple locations but not in a new 
location (dark brown) by field and time of high degree. This figure is based on all years of 
data on all laureates.  
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Figure A3. Time in multiple locations and new locations relative to beginning Nobel 
work by field 

Notes:  The figure shows the share of time in new and/or multiple locations relative to 
beginning Nobel work by field. See Figure 3 for color coding and the sample. Before 
indicates all years before the laureates begin their Nobel work, beginning indicates the year 
they began Nobel work, and after indicates all years after the laureates began their Nobel 
work.  
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Table A1 

Parameter Estimates for the Hazard Function of Commencing Prize-Winning Work in A 
Given Year When the Current Number of ENLs is Not Included 

 
 (1) (2) (3)   
 
A. Coefficients 
New Location (5 Year Definition) 0.855*** 

(0.162)  
0.586*** 
(0.175) 

Multiple Locations 
 

0.730*** 
(0.117) 

0.544*** 
(0.127) 

First 5 Years of Career -1.149*** 
(0.142) 

-0.964*** 
(0.130) 

-1.120*** 
(0.143) 

Second 5 Years of Career -0.333*** 
(0.124) 

-0.370*** 
(0.126) 

-0.383*** 
(0.126) 

Medicine 0.118 
(0.133) 

0.161 
(0.131) 

0.145 
(0.133) 

Physics -0.023 
(0.130) 

-0.003 
(0.132) 

-0.008 
(0.131) 

    
B. Expected Duration Calculations 
 
Expected Duration (Years) to Commence 10.471*** 

(0.353) 
10.546*** 
(0.345) 

10.534*** 
(0.351) 

     
Effect on Expected Duration of:    
     

A New Location Every 2 Years -2.884*** 
(0.571)  

-1.979*** 
(0.616) 

A New Location Every 3 Years -2.119*** 
(0.464)  

-1.376*** 
(0.465) 

A New Location Every 5 Years -1.090*** 
(0.263)  

-0.686*** 
(0.246) 

Always Multiple Location vs.  
Never Multiple Location  

-4.141*** 
(0.608) 

-3.240*** 
(0.692) 

All Chemistry to All Medicine -0.771 
(0.860) 

-1.029 
(0.833) 

-0.939 
(0.851) 

All Medicine to All Physics 0.924 
(0.900) 

1.047 
(0.874) 

0.991 
(0.885) 

All Physics to All Chemistry -0.153 
(0.877) 

-0.017 
(0.879) 

-0.052 
(0.875) 

     
Log L -1555.7 -1552.4 -1546.9 
    

Notes: See notes in Table 1.  
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