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ABSTRACT

A near-catastrophic drought in Cape Town, South Africa illustrates three general implications of 
climate change for publicly-provided utility services. First, to reduce aggregate water demand, the 
public utility increased prices, leading to large demand reductions by richer households. Prior to the 
drought they use twice the public piped water of poorer households. At the peak of the drought, they 
use less. Second, some of the differential demand reduction comes from richer households 
substituting away from public water toward privately financed groundwater.  This private 
adaptation both lowers the public utility's total revenue and shifts costs onto poorer households, 
consequences that persist after the drought abates.  Third, policy interventions mitigate some of the 
fiscal and distributional impacts of private adaptation. These findings highlight how climate 
adaptation, in the context of publicly provided goods and services, can create pecuniary and 
environmental externalities with equity consequences.
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1 Introduction
How will climate change a�ect inequality? The existing literature has emphasized two main
channels. The first observes that lower-income households tend to live and work in settings
where physical climate damages are large (Gra� Zivin and Neidell, 2014; Burke, Hsiang and
Miguel, 2015; Hsiang, Oliva and Walker, 2019). The second channel notes that costly private
adaptation to climate change favors higher income households (Carleton et al., 2022, 2025).
An emerging literature highlights a third channel: private climate adaptation itself can be a
source of pecuniary or environmental externalities (Abajian et al., 2023; Hsiao, 2024).

We study the distributional consequences of adaptation in the context of the public
provision of rival goods—utility services—that are climate exposed. Droughts and heatwaves
lead to rationed water supplies, rolling electricity blackouts, and higher prices (Harmsen,
2017). Changes to the price or quality of the publicly-provided good induce some households
to pay the fixed cost of adopting private substitutes. In the short run, this adaptation
through substitution reduces demand for the public supply when it is most scarce, as in the
case of a climate shock.1 However, after the shock, adoption of private substitutes can lead
to persistent reductions in the utility’s revenue base and shifts in the distribution of costs
across users. These changes will be regressive if wealthier consumers have disproportionate
access to privately financed substitutes, such as groundwater wells or rooftop solar panels.

This previously unstudied link between climate change and inequality is potentially wide
reaching. Upward of 7 billion people around the world depend on public utilities for water
and/or electricity (World Health Organization et al., 2024), while an estimated 1 billion
people live in cities vulnerable to drought (Ahmadi et al., 2020; He et al., 2021). We illustrate
its empirical relevance in the context of an historic drought in Cape Town, South Africa,
the 21st century’s poster child for near-catastrophic water scarcity (Visser, 2018; Booysen,
Visser and Burger, 2019; Ziervogel, 2019; Brühl et al., 2020).

The municipal government in Cape Town is responsible for supplying piped water to
over 4 million residents, a rapidly growing and highly unequal population. Like many public
utilities around the world, Cape Town recovers the cost of supplying water with volumetric
(i.e., per unit) pricing in the form of increasing block tari�s (IBT). This is justified on
equity grounds: by charging a higher marginal price at higher quantities, high consumers—
who are typically assumed to be wealthier—contribute a larger share of the utility’s revenue
relative to their consumption (Andres et al., 2021; Foster and Witte, 2020). Pre-drought, the
IBT combined with lower consumption by lower-income households meant that the average

1We refer to adoption of substitutes as “adaptation.” Households adapt to changes in prices or quality
of the publicly provided good—driven by the climate shock and policy—by adopting substitutes.
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marginal price faced by the poorest households in our sample was 44% lower than the average
marginal price faced by the richest households.

A decade of below-average rainfall and a high dependence on surface water culminated
in the threat of “Day Zero”—a term for the point when reservoir levels fall so low that the
city’s pipes run dry. The countdown to Day Zero began in 2017. Steep price increases,
usage restrictions and social pressure campaigns were launched to manage demand (Brühl
and Visser, 2021). Ultimately, Day Zero was narrowly avoided, as shown in Figure 1.

Figure 1: Cape Town reservoir levels and rainfall around Day Zero
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Notes: Left vertical axis shows monthly capacity share across the six largest dams supplying municipal
water to Cape Town between January 2008 and December 2019. Dotted line shows the 13.5% capacity,
the threshold below which the city would shut o� piped water. Right vertical axis shows monthly rainfall
averaged across the six dams. Gray-shaded area marks the February 2017 to May 2018 water crisis.

To develop intuition for how Day Zero was avoided and its long-term consequences, we
develop a simple model of a public water utility (PU) that recovers fixed and variable costs
through volumetric pricing. The model illustrates several implications for how an aggregate
supply shock (e.g., a drought) and access to private substitutes (e.g., groundwater wells)
a�ect public water demand and revenue both during and after a shock. First, regardless
of the pricing scheme used by the PU, it must raise prices during the shock to ensure that
demand does not exceed (inelastic) supply.2 Second, higher prices lower aggregate public

2The utility may instead choose to adopt other demand-side management strategies such as rationing,
a common practice in other low and middle income countries. Predictions from the model also hold when
demand is managed through rationing.
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water demand and revenue more when private substitutes are available; this lowers the
amount by which prices must rise to curtail demand enough to meet the supply constraint
during the drought. Third, when adaptation through substitution is optimal only for richer
households, a larger share of the utility’s costs will be shifted onto poorer consumers. These
impacts are path dependent: once richer households overcome the fixed cost of private
adaptation and have access to an alternative supply, the pecuniary externality remains even
when supply constraints cease to bind after the shock.

Using a combination of the near-universe of household-level water billing data, satellite-
based imagery, and numerous other data sources, we provide descriptive evidence of public
water use and private substitution patterns across Cape Town’s income distribution—which
we proxy with property values—before, during, and after the drought. We first document
that public water use across Cape Town fell precipitously, by around 50% relative to pre-
drought levels.3 The decline was highly uneven and resulted in a convergence in public water
use between high and low property value households. Prior to the drought, households in the
top decile of property values consumed roughly double the water of households in the bottom
decile, with large seasonal fluctuations in demand among the wealthier households.4 By the
end of the drought, higher property value households were consuming less public water than
lower property value households.5 Perhaps even more surprisingly, the convergence persisted
for up to two years after PU prices returned to normal and restrictions were lifted.

We next provide descriptive evidence that at least some of this convergence can be ex-
plained by substitution toward private groundwater by wealthier households. We do this
using three lines of evidence. The first employs a remotely-sensed proxy for the greenness of
outdoor vegetation (normalized di�erence vegetation index or NDVI). Prior to the drought,
parcels with higher NDVI values tend to have higher property values and to report more wa-
ter intensive outdoor land use, consistent with the interpretation that NDVI reflects variation
in outdoor water use. However, unlike public water use, NDVI did not exhibit convergence
across property value deciles during the drought. This suggests that richer households sup-
plemented outdoor watering using substitutes for public water, such as greywater, stored
rainwater or groundwater.

While we do not observe all potential substitutes, we show two additional lines of ev-
idence using data on groundwater drilling and depths. To the extent that other adaptive

3Our water use data come from billing records, which cover around three-quarters of residents of Cape
Town. Households in informal settlements are not in the billing records.

4Seasonal water demand is consistent with di�erential outdoor irrigation for gardens and lawns during
dry and rainy months (Rathnayaka et al., 2015).

5This finding echoes the results in Cook, Brühl and Visser (2021), who show that the Gini coe�cient for
water use in Cape Town declined through mid-2018, around the end of the drought.
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technologies like greywater and rainwater storage require costly investments and are there-
fore more accessible to wealthier households, they should follow similar patterns. Using
data on groundwater drilling applications, we document an early-2017 spike in applications,
which increase steadily for the remainder of the drought. Higher-value parcels are associated
with more drilling applications, with households in the top decile accounting for 29.7% of
total drilling applications in our data. Next, data from groundwater monitoring wells in-
dicate a drop in groundwater levels in richer neighborhoods during the drought that is not
present in poorer neighborhoods. The decline in groundwater levels in richer neighborhoods
is comparable to some of the fastest-depleting aquifers in the world.

The changes in public water consumption impacted the PU’s total revenue from resi-
dential consumers, and shifted the distribution of costs across property value deciles. After
the drought (and after tari�s returned to normal), total volumetric charges were 22% lower
than pre-drought levels. This is due in part to disproportionately lower bills for wealthier
households who, prior to the drought, paid higher marginal prices on higher consumption
blocks due to the IBT. In other words, pre-drought, a large share of the revenue used to
cover the costs of municipal water supply came from wealthy, high consumption households.
As their consumption fell, so did their marginal price; these e�ects combined to shift a larger
share of the PU’s costs onto lower income households.

Post-drought policy innovation served to mitigate both the fiscal and distributional chal-
lenges created by the drought. To overcome the revenue shortfall, the municipal government
introduced a fixed charge: total charges increased by around 4% over this time period. The
fixed charge was further di�erentiated by property value,6 o�setting some of the regressive
cost shift caused by substitution by wealthier households. To further address distributional
concerns, low income households also received a larger water subsidy, provided as a free block
on the IBT. We show that without these policy changes, the richest deciles would have paid
51.8% less post-drought. Together, policy changes—triggered by a climate-induced shock—
moved the municipality onto a more e�cient pricing regime with the introduction of fixed
charges, while also mitigating potentially regressive distributional outcomes through careful
income-based targeting of tari� reform.

Finally, to quantify the e�ects of private substitution away from public water during
the drought, we extend our theoretical framework to a discrete choice model of household
water demand. Results show that observed groundwater drilling lowered aggregate demand
for public water by 5.3% during the crisis and 4.9% after the crisis relative to a no-drilling
counterfactual. Without substitution towards groundwater, the utility would have had to

6Specifically, the lowest property value households were exempted from the fixed charge. For everyone
else, the fixed charge was a function of pipe size, which is correlated with property value.
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raise prices an additional 50.0% during the crisis to achieve the observed reduction in demand.
For households at the top of the property value distribution, drilling reduced revenue by
around 20% relative to the counterfactual both during and after the crisis. We calculate
that had the PU not introduced fixed charges following the crisis period, volumetric charges
would have needed to increase by 50% on the margin to recover the same revenue.

This paper joins a long line of theoretical and empirical work that studies the relationship
between income inequality and the public provision of goods and services (e.g., Galbraith,
1958; Bergstrom, Blume and Varian, 1986; Besley and Coate, 1991; Epple and Romano,
1996). This literature demonstrates that the availability of private substitutes has the po-
tential to change both the supply of and demand for publicly provided goods, depending on
how public provision is financed. In the context of public utilities, this financing depends on
the design of tari�s to cover the fixed cost of supply (e.g., Borenstein and Bushnell, 2022;
Borenstein, Fowlie and Sallee, 2023). In theory, when demand is su�ciently price elastic,
consumption charges may not generate su�cient revenue to cover costs, leading to a fis-
cal unraveling (or “death spiral”) for the utility (Baumol and Bradford, 1970; Henderson,
1986).7 Higher tari�s create incentives for substitution away from publicly provided water or
energy (as shown in the case of rooftop solar adoption by Borenstein, 2017; Gorman, Jarvis
and Callaway, 2020). We show that a climate-induced supply shock can create incentives
for the adoption of private substitutes that have persistent e�ects on public provision and
redistribution.8

In our setting, like in many others, richer households are more likely to adopt substitutes.
Related papers on rooftop solar and electric vehicles describe a similar income gradient in
technology adoption that redistributes the financing of publicly provided goods (Borenstein,
2017; Feger, Pavanini and Radulescu, 2022; Davis and Hausman, 2022; Glaeser, Gorback and
Poterba, 2023; Metcalf, 2023; Bollinger et al., 2023), but do not explicitly link to climate
shocks as drivers of adoption.9 In our case, rather than adapting to the climate shock directly,
households adapt to the public water utility’s response to the drought. This underscores the
importance of understanding not just how policy will adapt to climate change (e.g., Hsiao,
Moscona and Sastry, 2024), but also how households and firms will adapt to climate-induced

7McRae (2015) describes another potential mechanism for unraveling where a utility becomes unable to
recoup its marginal costs due to government restrictions on pricing.

8In this sense, our paper echoes the findings in Costa and Gerard (2021), where an energy supply shock
led to habit formation and appliance adoption that lowered consumption in the long run.

9Hsiao (2024) demonstrates that di�erential adaptation by income can also impose pecuniary externalities
via market prices. More similar to our context, Brown and Muehlenbachs (2024) provide evidence that
public safety power shuto�s in California contributed to the adoption of rooftop solar but do not study the
distributional implications. Brehm, Johnston and Milton (2025) show that changes in grid reliability a�ect
solar panel adoption, and a�ect electric utility tari�s. Finally, Hadachek et al. (2024) show that increased
groundwater extraction for agriculture during a drought causes residential wells to dry up.
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policy change. While unequal adoption of substitutes implies yet another regressive impact
of climate change (Dingel, Meng and Hsiang, 2021; Carleton et al., 2022), the mediating role
of tari�s highlights the importance of policy interventions aimed at mitigating di�erential
impacts on the poor.

More generally, we contribute to understanding water demand among the world’s more
than 4 billion urban residents. Water scarcity contributes to conflict (Sekhri, 2014; Almer,
Laurent-Lucchetti and Oechslin, 2017; Unfried, Kis-Katos and Poser, 2022) and groundwater
depletion leads to subsidence and relative sea level rise (Nicholls et al., 2021; Hsiao, 2022).
Prior work has studied the impacts of prices and rationing for managing demand during sup-
ply shocks (Fisher et al., 1995; Wichman, Taylor and Von Haefen, 2016; Browne, Gazze and
Greenstone, 2021; El-Khattabi et al., 2021). We instead focus on how access to substitutes
mediates the impact of policy on demand for public services more generally (Abajian and
Pretnar, 2024; Brehm, Johnston and Milton, 2025). Substitution toward groundwater may
cause a di�erent environmental challenge since aquifers, in Cape Town and elsewhere, are
typically unmanaged and tend to be overextracted under open access conditions. Substitu-
tion away from publicly provided services in other settings can introduce new environmental
externalities which may be positive (e.g., natural landscaping to save water) or negative
(e.g., diesel generators as an alternative to the grid) relative to the status quo.

2 Theoretical framework
This section lays out a general framework for considering how adaptation to climate change
may a�ect the public provision of rival goods. The model centers around the case of a
municipal water utility when its ability to supply water is constrained and customers have
access to private substitutes.

When a shock—such as a drought in the Cape Town setting—reduces the aggregate water
supply available to the PU, it is forced to either raise prices or impose quotas to curtail
demand. This increase in prices (or increase in the shadow value of water beyond the quota)
induces households to adopt private substitutes for public water, which a�ect aggregate
demand for public water both during and after the shock. Anticipating our empirical setting,
the model presented here focuses on groundwater wells as households’ channel for adaptation
through substitution. However, other substitutes with a fixed cost of adoption would produce
insights similar to the ones we present here. Section 6 introduces a quantitative version of
the household problem laid out here, which we calibrate to observed behavior in Cape Town
and use to simulate how the drought would have evolved absent private adaptation.
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2.1 Model

Household’s problem Our model consists of a PU that serves two households indexed
by i, one poor p and one rich r. Each household solves a static utility maximization problem
over water consumption each period t. Both households have quasilinear utility ui(·) over
water and outside consumption. The PU sets a price schedule for water �t each period that
determines the cost of water consumption. We assume that uÕ

r(·) > uÕ
p(·) such that water

demand from the rich household, mr(�), is weakly larger than that for the poor household,
mp(�), for any price schedule.

In addition to deciding how much public water to purchase each period, households
decide whether to adopt an alternative private water source. Households may drill up to
one groundwater well at a fixed cost cd, which reflects the market price for drilling along
with any application fees or taxes. Drilling a well is an absorbing decision that provides an
additional ⁄ kiloliters (kL) of water each period from the time of drilling forward.10 Each
period, households decide first whether to drill a well and then how much water to consume.
Writing the costs of water demanded from the PU under price schedule �t in a given period
as ct(mi), households drill when it maximizes static utility:11

ui(md
i (�t) + ⁄) ≠ cd ≠ ct(md

i (�t)) Ø ui(mi(�t)) ≠ ct(mi(�t)) (1)

where the superscript d denotes optimal demand for public water conditional on having
drilled a well. Appendix A.1 shows that it becomes more likely that drilling is optimal for
either household as ⁄ and �t increase or as cd decreases.12

Utility’s problem The PU meets water demand each period after it sets the price schedule
�t by paying a unit cost for water of „t Ø 0. In addition to covering its variable costs of
meeting demand, the PU also must recover a fixed operating cost F . To match the pre-
drought setting in Cape Town, we assume initially that the PU must rely solely on volumetric
pricing and that households do not yet consider drilling groundwater wells. Let

10We abstract here from any intensive margin decisions on how much groundwater to extract conditional
on drilling or whether to drill additional wells. We consider the intensive margin in the quantitative model
in Section 6.

11This abstracts from any forward-looking behavior by households when drilling wells and by the PU
when setting prices. While some results will not translate to a version of this problem characterized by a
fully-specified dynamic game where PU and households’ behavior responds to beliefs over future actions by
other agents, insights resulting from the fact that there is some price at which households adopt wells (and
lower aggregate demand in future periods, all else equal) hold quite generally.

12These static results hold for a very broad set of cost functions that �t may induce. Appendix A.1 shows
the results for ⁄ and cd require almost no assumptions on the cost function c(m) induced by �. The result
with regard to the drilling decision being non-decreasing in � requires more restrictive conditions and is
satisfied when the cost function is twice continuously-di�erentiable and supermodular in (m, �).
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M(�t) = mr(�t) + mp(�t) (2)

denote aggregate demand each period and let

R(�t) = ct(mr(�t)) + ct(mp(�t)) (3)

denote aggregate revenue. We assume the PU’s problem is to set the price schedule to cover
both its fixed and variable costs of providing services:

�t = argmin
Ê

-----R(Ê) ≠ F ≠ „tM(Ê)
----- (4)

s.t. M(�t) Æ M̄t

subject to the conditions that it cannot sell a total quantity of water greater than the
aggregate supply constraint M̄t.13

If the PU had full flexibility over prices, the optimal price structure when supply con-
straints do not bind is a two-part scheme where households face fixed charges that sum to
F and marginal prices of „t. In contrast, when the PU cannot implement a fixed charge and
the supply constraint is not binding, the PU chooses a price schedule from those which solve
the implicit function R(�) = „tM(�) + F which allows the PU to recover its total cost at
the expense of having to price water above its marginal cost.14 It is well-known that this
pricing regime is often ine�cient (Feldstein, 1972). However, when supply constraints are
binding, revenue and welfare under purely volumetric pricing can coincide with those under
the constrained optimal two-part tari� scheme. When the PU faces a binding aggregate
supply constraint M̄t (e.g., due to a drought), it must contract demand so as to bring it
in line with lower supply. Unless the PU can impose quotas on consumption, it must raise
prices above marginal cost to ensure demand does not exceed M̄t. If volumetric revenues
can be set so that aggregate demand does not exceed exceed M̄t and revenue covers both F

and „tM̄t, social welfare under volumetric pricing coincides with the first-best outcome.15

13An additional assumption implicit here is that, all else equal, the PU selects a price schedule from
among those that meet its budget constraint—in the case where the solution to equation (4) is not unique—
to maximize household welfare. This is a special case of the decision of a PU that maximizes a combination
of consumer surplus and profits, an objective function standard to the utilities literature (Timmins, 2002).

14We assume throughout that such price schedules exist.
15Explicitly, note that when supply is constrained the PU under a two-part tari� will set a cost schedule

�t such that M(�t) = M̄t and charge fixed costs summing to F + „M̄t ≠ R(�t) across both households. As
long as there exists a volumetric price schedule �̃t such that M(�̃t) = M̄t and

R(�̃t) = F + „tM̄t
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Consequences of private adaptation Now consider the case where households have the
option to drill groundwater wells. Suppose that to curtail demand during a drought, the
PU raises prices to a level where the rich household chooses to adapt to drought pricing
by drilling for groundwater according to equation (1) while the poor household does not.16

Drilling causes the rich household’s demand curve to contract from the pre-drilling level mr

to md
r . With adaptation, price increases lower demand even more than when adaptation is

absent, which helps meet the PU’s supply constraint:

Lemma 1. Price increases contract demand by more when adaptation is available than when
it is not.

Proof. See Appendix A.2.

All proofs are relegated to Appendix A. Lemma 1 shows that adaptation allows the PU to
curtail more demand with a given price increase. In turn, the price increase required to
curtail demand to below a given level is lower than when agents have no access to private
substitutes.

Adaptation also induces path dependence in demand. A price increase that causes the
rich household to drill a well impacts both current and future demand and revenue:

Proposition 1. Adaptation lowers aggregate demand and revenue for the PU under any
price schedule.

Proof. See Appendix A.3.

Proposition 1 gives that when households adapt, demand and revenue under all future price
schedules � are lower than the case where no households adapt. When adaptation decisions
di�er across households, this has distributional implications:

Proposition 2. When only the rich household adapts, the cost share borne by the poor
household is higher than it would be absent adaptation for any price schedule:

ct(mp)
ct(mp) + ct(md

r) Ø ct(mp)
ct(mp) + ct(mr)

(5)

Proof. See Appendix A.4.

When only the rich household drills, the share of total costs borne by the poor is higher in
all future periods.

consumer surplus is no higher under a two-part tari� (although there may be distributional consequences).
16Other di�erences such as access to credit or higher rates of home ownership, which are outside of our

model, may also lead the rich household to have a greater propensity to drill.
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Application to increasing block tari�s Figure 2 illustrates our predictions in the case
of an increasing block tari� (IBT) pricing schedule, a volumetric pricing schedule that is
often used by PUs including in our Cape Town setting. The IBT before the drought is �,
which cross-subsidizes the lower marginal price for the poor household by imposing a higher
marginal price for the rich household. To lower aggregate demand during the drought, the
PU changes the IBT to �Õ so as to decrease demand from the rich household. This price
increase induces the rich household to drill a groundwater well, lowering its demand for
public water from the dashed red line mr in to the solid one md

r in Figure 2a. This is
beneficial during the drought; private adaptation leads to a larger contraction in demand
than would have occurred absent drilling and makes it easier for the regulator to meet its
supply constraint (Lemma 1).

Figure 2: Public utility demand before and after a shock under IBT

a b

Notes: The e�ects of adaptation on demand and revenue under an IBT price schedule. Panel (a) shows how
a price increase from � to �Õ—in response to a supply shock—causes the rich to adopt private substitutes.
This contracts the rich household’s demand for the publicly provided good from mr to md

r . When adaptation
leads to permanently lower demand, the PU may have to raise future prices above the original price schedule
� to meet cost recovery requirements (the shift to �ÕÕ in panel b).

However, adaptation also leads to lower aggregate demand after the drought since de-
mand from the rich household is permanently lower in future periods (Proposition 1). If the
PU returns the IBT to the original level �, revenue will be lower than the pre-drought level
and the poor household will pay a higher share of costs (Proposition 2). Finally, if revenue
under the new aggregate demand curve at the pre-drought pricing schedule no longer covers
the PU’s total costs, the PU may need to raise prices, including on blocks that a�ect the
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poor household (e.g., if the blocks are fixed or the rich household’s demand falls to the level
of the poor household). The potential for adaptation to undermine redistributive goals is il-
lustrated in Figure 2b. To meet revenue constraints under the new aggregate demand curve,
the PU must post a new schedule �ÕÕ which increases both the level and share of costs borne
by the poor household.

2.2 Generalizations

The intuition from our framework extends along several dimensions.

Fixed charges How would this scenario change if the PU had access to fixed charges?
Absent income e�ects, there is no e�ect of fixed charges on household drilling decisions.
Because aggregate demand in equation (2) is solely determined by the price schedule �,
shocks that curtail supply would still force the PU to raise prices above marginal costs (or
impose quotas) and potentially lead richer households to drill wells.

However, fixed charges do change the dynamic aspect of the PU’s cost recovery problem.
First, the PU can always cover its costs; even if aggregate demand fell to zero, the PU could
simply charge each household some share of the fixed cost F . Second, fixed charges that
can be di�erentiated across households allow the PU to achieve any level of cost distribution
between the poor and rich households while also providing su�cient water services to the
poor.17

Quotas Public utilities often rely on quotas or rationing rather than prices to curtail
demand. A quota-based strategy for demand reduction can also induce households to adopt
outside alternatives. In our model, if a quota were imposed on consumption at some level
lower than mr(�) under the original price schedule, the rich household may still find drilling
a well optimal. The decision to adapt will still depend on the relative cost of drilling versus
the e�ectiveness of groundwater as a substitute.

Other forms of private adaptation Adaptation to drought is not limited to ground-
water drilling. Households can pursue other means of self-supply (e.g., through purchasing
rainwater tanks or greywater recycling systems) or conserve water (e.g., through water-saving
appliances, drought-resistant vegetation or even water-saving habit formation). Like with

17Fixed charges may also influence households’ expectation of how the PU sets future marginal prices,
since the PU can ensure that it will only ever raise volumetric prices to curtail demand (as opposed to
raising volumetric prices in order to collect additional revenue). If drilling decisions are forward looking, this
guarantee of weakly lower future prices will in general (weakly) raise the price threshold at which households
drill in any given period.
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groundwater drilling, high enough prices or quantity restrictions may drive agents to invest
in other forms of adaptation that lower their water needs. If these investments are durable,
they become other channels by which adaptation permanently lowers demand for public
goods after a supply shock.

3 Background: Cape Town’s water crisis
The City of Cape Town is home to over 4 million residents and is growing rapidly. Like
in many cities, the Cape Town municipal government is responsible for supplying water to
households and businesses, managing distribution and working with the national Department
of Water and Sanitation to coordinate supply and treatment. Domestic consumers account
for around 80% of Cape Town’s public water usage (City of Cape Town, 2020). Most house-
holds in Cape Town have publicly-provided piped water in their homes, which is metered
and billed monthly. Informal settlements are served by standpipes and are omitted from
our data and analysis. For most of the time period we study, consumption is priced on an
increasing block tari�, set to cover both fixed and variable supply costs (see Figure D.1 and
Table E.1). Tari�s are updated annually, on July 1. The block tari� structure is intended
to both encourage conservation and cross subsidize water consumption from richer—who
are assumed to consume more—to poorer households (Muller, 2008).18 Until 2015, South
African regulations required that utilities recover all costs through volumetric charges; a
revision to the regulations in 2015 allowed for the introduction of fixed charges, but these
were not adopted by the municipal utility until 2018 (DWS, 2015).19

South Africa is the most unequal country in the world by some metrics (World Bank,
2023) and Cape Town is one of the most unequal cities in South Africa (Euromonitor, 2017).
The city follows national policy in providing support to what are referred to as indigent
households. Qualification for indigent status is applied as a default to households with
property values below a threshold (300,000 ZAR up to June 2016; 400,000 ZAR beginning
July 2016), but can also be obtained through an application process.20 Until July 2018,
qualified households received a fixed grant amount on their monthly bill, independent of

18A large literature discusses whether block tari�s are progressive or not (Whittington, 1992; Borenstein,
2012; Szabo, 2015; Nauges and Whittington, 2017), which depends directly on the correlation between income
and consumption. In Cape Town, using imputed income data from the census, Cook, Brühl and Visser (2021)
find a strong positive correlation pre-drought; we observe a similar pattern, using property value as a proxy
for long-run income.

19While general funds (e.g., property taxes or transfers from national government) might allow the mu-
nicipal water utility to operate at a deficit for a short period, the tari�s are set to cover projected costs each
year (Simpson et al., 2019).

20Figure D.2 shows the share indigent by property value decile.

12



consumption levels (see Table E.1). If the grant exceeded billed water charges, the value
rolled over to the next bill. In July 2018, the grant was replaced with a 10.5 kL free water
allocation each month.21 Prior to the water crisis, all charges were based on the volume of
consumption (i.e., volumetric charges). In July 2018, the city added fixed monthly charges
for non-indigent customers, based on the size of the metered connection.

During our study period, six main surface water reservoirs provide 98% of the public
water supply, making the city highly dependent on rainfall. Most rain falls in Cape Town
during the South African winter (June-August). Beginning in the early 2010s, rainfall began
to decline and by 2015, the Western Cape was in a drought (see Figure D.3).22 For the
purposes of our analysis, we define the “drought” as beginning in 2016, when tari�s first
deviated from regular adjustments, and the “water crisis” as starting in February 2017,
when substantially elevated restrictions were announced. The “post-drought” period begins
in June 2018. The term “Day Zero” was first invoked in May 2017 to refer to the minimum
viable reservoir level (13.5% of capacity) for piped water supply; below that level, residents
would have to queue for water at standpipes around the city. The term spread through the
media and became a slogan for the city’s water saving e�ort. In December 2017, the first
estimate of Day Zero was set for April 22, 2018. Figure 1 shows reservoir capacity shares
over time; during the water crisis, they dropped as low as 20%.

Policy responses to the water crisis drew on a wide range of instruments: tari� increases,
water restrictions, pressure management and communication campaigns. Cape Town’s an-
nual tari� schedule updates include “normal” tari�s, as well as (higher) tari�s associated
with di�erent levels of water restrictions. Level 2 is normal; Level 7 is a shutdown of public
water supply, i.e., Day Zero. During the crisis, Cape Town escalated from Level 3 in Febru-
ary 2017 all the way up to Level 6b in February 2018. Among non-indigent customers, the
average real price of water increased by 230% between March 2015 and March 2018, in spite
of dramatic decreases in consumption; the marginal price on the highest block increased by
over 2000%. Tari� increases were communicated through wide-reaching information cam-
paigns that included local community leaders and the media. At the height of the crisis,
residents were asked to limit public water use to 50 litres of water per person per day (City
of Cape Town, 2018c), and bans were placed on filling swimming pools, washing cars or
watering gardens.23 Water restrictions were di�cult to enforce, however.

21Up to July 2017, all households received 6 kL of free water each month. From July 2017 to June 2018,
the free block was restricted to indigent households, who also continued to receive a water grant. In July
2018, the water grant was eliminated and the free block was increased to 10.5 kL for indigent households.

22Changing rainfall patterns in the region have been attributed to climate change (Otto et al., 2018;
Pascale et al., 2020).

23Other non-price strategies included media, such as public advertising, signboards on highways, behav-
ioral nudges sent to customers (Brick, De Martino and Visser, 2023) and an online city-wide water map that
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Households were also given information about the benefits of groundwater access for
irrigation purposes, and water from boreholes and wells was not subject to outdoor water
use restrictions, though the City did little to monitor access or use prior to 2018 and current
information on private use remains limited (Faragher and Carden, 2023). Multiple companies
around Cape Town o�er drilling services, with prices ranging from 6,500 to 8,500 ZAR for a
well and 30,000 to 180,000 ZAR for a borehole. Cape Town overlies three aquifers (primarily
the Cape Flats Aquifer, but also the Table Mountain Group and Atlantis Aquifers), with
parcel-level drilling potential determined by local geological conditions.24 Recharge rates are
generally high but heavily rainfall dependent (Gintamo, Mengistu and Kanyerere, 2021).

Table E.2 provides a timeline of the events surrounding the countdown to Day Zero. By
February 2018, the water situation in Cape Town began improving, with forecasts of Day
Zero pushed back to July 9, 2018. By June 2018, forecasts for Day Zero were o�cially
canceled.

4 Income, water use and groundwater substitution
In this section, guided by our theoretical framework, we analyze how households re-

sponded to the Cape Town water crisis, allowing for heterogeneity by property value, our
proxy for long run income.25 As discussed in Section 3 and consistent with the premise that
tari�s are one strategy for managing demand, average water prices in Cape Town increased
dramatically during the crisis, as shown in Figure D.1 and Table E.1. By the end of 2018,
tari�s returned to pre-crisis trends.

In what follows, we describe our data and dataset construction alongside each result.26

While the start date of each analysis varies by data source, we end all our analyses in
December 2019 to exclude the COVID-19 lockdowns in Cape Town.

showed compliance with the water restrictions (Sinclair-Smith et al., 2018; Ziervogel, 2019). Water pressure
was reduced in some parts of the city (Bischo�-Mattson et al., 2020) and water management devices that
limited usage to 350 liters per day were installed in some households.

24We note that parcels with very little unbuilt land may not be suitable for drilling. This may be more
true in low property value areas, highlighting a set of factors that contribute to the decision to drill that go
beyond those reflected in our model.

25Figure D.4 uses self-reported monthly income for households in a recent survey conducted by the
authors, and shows a correlation of 0.49 (p < 0.01) between monthly income and property value. We note
that property value is likely correlated with numerous household and property characteristics that determine
a household’s response to drought and drought policy.

26Additional details on data compilation is provided in Appendix C.
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4.1 Public water use

Data We start with public water use by property value decile. We use the universe of resi-
dential water bills from the City of Cape Town from July 2014 to December 2019, prorating
quasi-monthly bills to create a monthly panel of household-level piped water consumption,
winsorized at the 95th percentile. We match households’ water bills to their property value
in 2016 by account number.27 We restrict attention to 1:1 matches to avoid indeterminacies
arising when many properties are matched to a single meter, or vice versa.28 The remaining
sample contains slightly over half a million properties, and excludes multi-unit dwellings and
informal settlements. Figure D.5 maps the 2016 property value decile for each of our sample
properties.

Results Figure 3 plots the means of decile-by-month piped water consumption between
July 2014 and December 2019, and reveals three clear patterns. First, there is a pronounced
income gradient in piped water use before the drought (2015-16). In particular, the average
for households in the top decile (29.7 kiloliters/month) was over twice that of households in
the bottom decile (13.8 kiloliters/month) (t≠stat = 657.2). Consumption in high property
value deciles also displayed more seasonality than did consumption in lower deciles,29 con-
sistent with high summer demand for outdoor water use (Rathnayaka et al., 2015). Second,
piped water use fell for all deciles during the water crisis (gray-shaded area), but the decrease
was larger for higher incomes. Between 2016 and 2018, annual water use fell by 74.5% for
households in the top decile and by 28.9% for households in the bottom decile. This asym-
metry was su�ciently extreme to temporarily reverse the pre-drought income gradient in
consumption: in 2018, upper decile households were consuming less public water than lower
decile households (t≠stat = 111.1). Third, the convergence in piped water use persisted
after the water crisis ended. Well into late 2019, over a year after Day Zero was called o�,
there was little sign of a return to the pre-crisis divergence in piped water use across incomes
even though prices had largely returned to pre-crisis levels (Figure D.1). These findings
are consistent with our theoretical framework: richer households lowered their piped water
consumption to a larger degree, and this demand reduction persisted even as prices fell.

27We use 2016 property values to coincide with the start of the drought. This means that, as households
move and are assigned new meters, they drop from our sample. Where we plot aggregate statistics (e.g.
total revenue) over time, we scale them up as if the full sample remained.

28This eliminates apartment buildings, for example, which are found in both high and low property value
areas. The restriction reduces our sample by 15.6%; remaining properties are likely to be inhabited by single
households with full control over their water use.

29The seasonal swing in consumption is 10.57 kL (s.e. 0.056) larger for households in the 10th decile than
for households in the 1st decile.
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Figure 3: Average public utility water consumption by property value decile
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4.2 Adaptation through adoption of private substitutes

During the crisis, households likely engaged in numerous strategies to reduce piped water
use, all of which may contribute to the di�erential reductions across income deciles in Figure
3. Rather than trying to rule out alternatives or test their relative importance, we focus
on one strategy, which is representative of—and not mutually exclusive to—other potential
forms of substitution: groundwater has a fixed cost of adoption and permanently alters water
use patterns once adopted.

A reduction in piped water consumption may overstate a household’s total reduction if
some water supply comes from substitutes, including groundwater. In Cape Town, ground-
water is not potable without treatment, so a primary use is in outdoor watering. Outdoor
water use is increasing in income and is relatively more price sensitive than indoor water
use (Mansur and Olmstead, 2012), so if richer households used only piped water, we would
expect to see a contraction in outdoor watering as large or larger than what we observe in
the billing data. If, however, high-income households were di�erentially able to substitute
towards groundwater for outdoor irrigation, the contraction in outdoor water use might be
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less pronounced.

4.2.1 Remotely-sensed moisture index

Data As an independent proxy for outdoor water use, we turn to the Normalized Di�erence
Vegetation Index (NDVI), a widely-used remotely-sensed measure for vegetative health (Gao
et al., 2015), which we construct using remote imaging from Sentinel-2 satellites available
at a 20 meter resolution between January 2016 and December 2019.30 To isolate residential
outdoor water use, we remove pixels identified as natural vegetation (e.g., forests, shrubland,
grassland), water (e.g., lakes, ocean), and other non-vegetation classes (e.g., sand dunes,
roads, rail, mines) as defined by the South Africa National Landcover Dataset. We further
apply geospatial masks to remove tree cover and residential structures. As robustness checks,
we also consider two alternative indices, the Normalized Di�erence Moisture Index 1 (NDMI-
1) and Normalized Di�erence Moisture Index 2 (NDMI-2). Appendix C.2 describes index
construction and how they di�er in greater detail. For each index, we calculate monthly
values both at the parcel level as well as at the decile level aggregated using parcel area
weights.

We conduct three tests to validate these proxies for outdoor water use. First, Table E.3
shows NDVI, NDMI-1, and NDMI-2 values across parcels within each property value decile.
To avoid the potential influence of Day Zero, these baseline statistics are constructed for
the 12 months in 2016. Mean values for all three indices generally increase with property
values, possibly reflecting more baseline outdoor irrigation by wealthier households. For
example, the di�erence in average monthly NDVI in 2016 between the 1st and 10th property
value decile is 0.2 (t =8.3). For comparison, Figure D.6 shows that the within-year seasonal
variation in average NDVI (across deciles) is around 0.15.

Second, Table E.4 shows parcel-level regressions examining how the satellite-based prox-
ies correlate with self-reported outdoor residential land use, categorized as parcels without
outdoor space (omitted category), with outdoor space that has low water demand (e.g.,
uncared-for garden or lawn, pavement, concrete, dirt, artificial turf, drought-tolerant plants),
and with outdoor space with high water demand (e.g., grass, plants, flowers).31 Consistent
with the wealth gradient in Table E.3, higher property values in 2016 are correlated with
higher NDVI values. Parcels with outdoor space with low water demand do not exhibit
statistically significantly higher NDVI values than parcels with no outdoor space. However,

30Sentinel-2 data are not available before 2016.
31Parcel-level residential land use data come from a household survey of water use in Cape Town (N =

702). While the survey was conducted in 2022, we restrict the sample to respondents who reported no
outdoor land use change since 2017. Because the omitted category in Table E.4 consists of parcels without
outdoor space, the parcel-level NDVI (and other indices) do not have buildings removed.
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parcels with outdoor space with high water demand do have precisely estimated higher NDVI
(and other index) values. To interpret coe�cients from column 1 of Table E.4, parcels with
high water demand outdoor space have 0.035 higher NDVI (s.e. 0.008); this is equivalent to
the NDVI e�ect from a 350K ZAR increase in property value, roughly the di�erence between
the 25th and 75th property value percentiles in the estimating sample.

Third, we show that NDVI and other indices respond to rainfall. Figure D.6 overlays
the time series of monthly average NDVI across deciles and rainfall, showing strong co-
movement. Table E.5 and Figure D.7 show estimates from regressing monthly NDVI values
on contemporaneous and lagged rainfall for each property value decile across 2016-2019.
NDVI responds to local rainfall and higher property value deciles are modestly more respon-
sive.32 Altogether, evidence that NDVI responds to outdoor land use and to rainfall suggest
that it meaningfully proxies for residential outdoor water use.

Figure D.7 highlights the influence of rainfall, which we remove by regressing monthly
NDVI for each property value decile on local contemporaneous, 1-month lag, and 2-month
lag rainfall. We conduct our analyses using the regression residual from this model, which
is purged of any baseline decile-specific NDVI-rainfall dependence but retains any potential
changes in that dependence due to residential water use.

Results Figure 4a plots the rainfall-residualized NDVI measure by property value decile
before, during, and after the water crisis. As with Figure 3, higher decile parcels exhibit
higher NDVI values prior to the water crisis, consistent with more outdoor watering; in 2016,
properties in the 10th decile have on average 0.2 higher residualized NDVI than households
in the first decile (t =16.5). However, in contrast to public piped water use (Figure 3), we
see little convergence in NDVI residuals during or after the water crisis.33 Instead, NDVI
di�erences across deciles remain largely unchanged from 2016 through 2019, consistent with
substitution toward other water sources for outdoor use. Figure D.8 shows this pattern holds
using raw unresidualized NDVI values and rainfall residualized NDMI-1 and NDMI-2 values.
Figure D.9 confirms the absence of di�erential decile-specific trends using estimated linear
trend coe�cients for each decile. While these estimated trend coe�cients are noisy, they do
not indicate convergence across property value deciles for any of the indices.

32We can weakly distinguish the contemporaneous and cumulative rainfall e�ect between the 1st and 10th
decile with p-values of 0.092 and 0.093, respectively.

33To test for convergence, we perform a di�erence-in-di�erence regression comparing residualized NDVI
for 1st and 10th decile properties in 2018 compared to 2016; the resulting coe�cient for 10th decile properties
in 2018 (— = ≠0.009) is statistically indistinguishable from zero (s.e. = 0.011, p = 0.438).
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4.2.2 Groundwater drilling applications

Data Next, we turn to applications for groundwater drilling licenses between January
2016 and December 2019. We split the data into two samples. One sample consists of all
license applications. A second sample consists of license applications that include the spatial
identifier necessary to match the application dataset to the property value dataset. This
latter sample has few pre-2017 matches and so primarily shows drilling since 2017.34

We highlight two potential concerns with the data. First, while the City of Cape Town
mandates that all residents apply for a license before drilling, enforcement is lax. For exam-
ple, a door to door survey in Newlands (a wealthy suburb) found that roughly one in ten
boreholes were licensed (Schachtschneider, 2020).35 The application data miss unlicensed
drilling and may also include some licenses issued but never exercised. A second concern is
that application data may also include existing (previously unlicensed) boreholes and wells.
Social pressure to reduce water use and restrictions on outdoor watering may have encour-
aged households with existing groundwater access to apply for licenses. With these caveats
in mind, we analyze applications over time and how they vary across property value deciles.

Results Figure 4b shows the cumulative borehole and well licenses by property value
decile between January 2017 and December 2019 from the sample of applications merged
to property values. Applications increased sharply in February 2017, shortly after a large
increase in the marginal price for high consumers (see Table E.1), which we mark as the
beginning of the water crisis (see Table E.2), which may have also a�ected expectations over
future price increases. This increase in drilling licenses in 2017 is historically large as shown
in Figure D.10 which plots total cumulative licenses since 2012. These applications also
follow a clear wealth gradient with more licenses in higher deciles. As a point of reference,
average surveyed annual income for households in our first property value decile is 46,000
ZAR, implying that the price of a wellpoint and (deeper) borehole is 14-18% and 65-390%
of these households’ annual income.36 By the end of 2019, 29.7% of all drilling applications
come from households in the top decile.

We corroborate this aggregate evidence with household-level regressions of the 2016-2019
change in (log) municipal water use on drilling applications, shown in Table E.6 and Figure

34The match rate of licenses since 2017 with municipal water bills is 78%.
35The same survey found higher coverage of licensed wells in a less wealthy mixed residential and industrial

neighborhood. Anecdotally, the spike in demand for licenses during the crisis further increased wait times
and the rate of unlicensed drilling. Together, this suggests that the patterns below may understate di�erences
in applications across property value deciles and over time.

36It is also possible that poorer households in our sample drill less because they live on parcels with less
outdoor space. A number of factors may contribute to the decision to drill that go beyond those which we
observe.
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D.11. A drilling application is associated with a 14.2% larger reduction in municipal water
use on average (s.e. 0.014).37

4.2.3 Groundwater depths

Panels (a) and (b) of Figure 4 suggest that higher income households maintain outdoor water
use while reducing their municipal water bills by—at least in part—substituting toward
groundwater. Ideally, we would be able to directly assess the share of the municipal water
use reduction attributable to groundwater substitution. We lack the data necessary for this
exercise; instead, we examine a proxy for extraction using aggregate data on groundwater
depths from monitoring wells maintained by the South African Department of Water and
Sanitation.38

Data Panel data from Cape Town’s groundwater monitoring wells are unbalanced and
noisy. To address this, we restrict our sample to wells with at least six observations per year,
trim extreme outlier values, and linearly interpolate missing monthly values. The remaining
11 wells are mapped in Figure D.5. We use the geographical coordinates of monitoring wells
and sample parcels to identify the average property value of parcels within a 1 km radius of
each well.39 We then group monitoring wells by whether this average is above (N = 6) or
below (N = 5) the median property value in Cape Town. While these wells technically draw
from the same aquifer (i.e., Cape Flats), water does not flow uniformly across the aquifer
due to spatial heterogeneity in subsurface geological properties. As such, these monitoring
wells likely capture spatial heterogeneity in local groundwater levels, and more so for the set
of wells near above median value parcels which are spread across the city, as shown in Figure
D.5, than for wells near below median value parcels which are more spatially clustered.

Results Figure 4c shows monthly depth to groundwater separately for monitoring wells
near below-median property value parcels (in black) and above-median property value parcels
(in green). Both sets of monitoring wells exhibit seasonal variation consistent with rainfed

37We caution against a causal interpretation for both endogeneity and measurement error reasons: ground-
water drilling may be correlated with other household characteristics or investments, and unlicensed drilling
combined with new licenses for existing access biases coe�cients toward zero.

38Monitoring well data accessed from: https://www.dws.gov.za/NGANet/Security/WebLoginForm.
aspx.

39A tight radius around each monitoring well enables a comparison of groundwater level trends between
richer and poorer households. Wider radii would complicate the comparison by bringing in lower valued
parcels in the average for wells located in rich neighborhoods and vice-versa for wells located in poor neigh-
borhoods.

20

https://www.dws.gov.za/NGANet/Security/WebLoginForm.aspx
https://www.dws.gov.za/NGANet/Security/WebLoginForm.aspx


Figure 4: Groundwater substitution by property value decile
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recharge.40 While groundwater levels for wells near below-median parcels are largely steady
from 2003 to 2019, wells near above-median parcels exhibit a sharp decline in levels beginning
at the start of the water crisis, at a rate of roughly 1 meter per year.41 To place this decline
into context, it is comparable to rates of decline in Mexico City and Beijing, two cities with
prominent groundwater concerns (Werner et al., 2013). Figure D.12 shows an analogous
version of Figure 4c using the raw groundwater monitoring well data without dropping
outliers and interpolating missing values, with similar overall patterns. Table E.8 further
verifies this result showing estimates from a di�erential trend break model under various
alternative data constructions (detailed in Appendix C.4).

5 Distributional, fiscal and policy implications
Together, the data indicate that at least some of the convergence in public water use across
property value deciles reflects substitution by richer households away from publicly-provided
piped water towards privately-provided groundwater. This form of adaptation may have
helped Cape Town avoid Day Zero. However, it also created other challenges, including
fiscal and distributional changes, as described in our theoretical framework.

Pre-drought, the revenue model in Cape Town depended on the increasing block structure
of the tari� schedule for both revenue and redistribution. High consumers cross-subsidized
lower consumers, who were also poorer, on average. As the level of piped water consumption
from high income households fell during the drought, the property value gradient in volu-
metric charges collapsed (Figure 5a).42 At the peak of the water crisis, the lowest property
value deciles faced higher water bills than did customers in the highest deciles, at a time
when everyone’s water bills increased due to the dramatic price increases (see Figure 5b).
Consistent with our theoretical framework and with results from Cook, Brühl and Visser
(2021), the cost share borne by low property value households increased during the crisis.

During the water crisis, the utility raised water prices abruptly in early 2018. Following
the return to more normal tari�s in late 2018, billed volumetric charges were 22% lower

40Table E.7 shows similar rainfall sensitivity for above- and below-median wells, suggesting that our
results are not driven by di�erential sensitivity to the drought.

41During the crisis, wells near above-median property value properties experience an increase in depth
to groundwater of 0.89 (s.e. 0.18) meters greater on average than wells near below-median property value
properties.

42We calculate total consumption charges based on winsorized consumption and the tari�; it reflects billed
revenue, rather than revenue remitted. Households in Cape Town make payments toward a consolidated
bill that reflects charges across multiple household accounts (e.g., water, sewerage, refuse; water is typically
largest). We do not observe water-specific payments. Aggregate collection ratios—the share of billed revenue
remitted—fell during the drought, from around 80% in 2016 to just below 70% in 2018 (City of Cape Town,
2021). In 2019, they recovered to pre-crisis levels.
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than the pre-drought mean (2015 vs 2019), again consistent with our theoretical frame-
work. Together, these results highlight the limitations of volumetric pricing for revenue and
redistribution during and following a climate-induced supply shock.

Two municipal policy responses a�ected both overall revenue and its distribution across
property value deciles: changes to free water provision and the implementation of a fixed
charge. As described in Section 3, Cape Town’s tari� schedule prior to the drought included
a free block for all customers. In July 2017, as water supply fell, policy makers removed the
6 kL free price block for non-indigent households only, while indigent households continued
to receive 6 kL of free water and a water grant.43 These subsidies provided some bu�er for
indigent households. In spite of this, their average water price (inclusive of 0s) increased
in 2018 (Figure 5b).44 Between February and June 2018, indigent households continued to
receive the 6 kL free water and indigent grant, and additionally received a discount on the
second tari� block. The magnitude of the indigent grant also grew in real terms between
2016 and mid-2018 (see Table E.1). In July 2018, the indigent water grant was removed and
the indigent-only free block was extended to 10.5 kL. This coincided with the introduction
of a monthly fixed charge, from which indigent households were exempt.45

Figure 5c shows the redistributive impacts of these policies taken together; assuming that
each of these changes is inframarginal to consumption, we plot the average di�erence between
the observed monthly water bill by decile and a counterfactual that shuts down these policy
changes by holding all redistributive policies at their January 2017 levels, immediately before
the beginning of the crisis. Specifically, in the counterfactual, we set the price of the first 6
kL of water to 0 for all households and use the time-varying non-indigent 2nd block (6-10.5
kL) price for all households, hold the indigent grant fixed at its early-2017 value (122.99
ZAR) throughout the remaining time period, and remove fixed charges. Relative to this
no-policy-change counterfactual, observed total charges are higher for the top 6 property
value deciles starting in July 2017 (i.e., removal of free water for non-indigent households),
and more so from the beginning of 2018 onward. For the first four deciles of the property
value distribution, observed charges are lower than in the no-policy-change counterfactual
at the peak of the crisis, but exceed the counterfactual after the drought. This is largely

43We provide a conservative calculation of the value of the indigent grant by ignoring the accumulation
over time (since we do not observe the starting balance, we cannot calculate this) and set the water bill to
zero when consumption charges fall below the grant value.

44The spike in prices in the 4th decile in June 2019 corresponds to a city-wide property revaluation that
caused many of these households to lose their indigent status; we hold our decile definitions fixed using 2016
property values.

45The size of the monthly fixed charge varies based on the width of the household’s metered water
connection. In our sample, the majority of non-indigent households pay either 56 ZAR or 100 ZAR per
month in fixed charges.
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because the counterfactual indigent grant was more generous than the fixed quantity of free
water once the value of that free water fell as tari�s returned to normal.

Figure 5d shows the observed share of total volumetric and fixed household charges in
each decile of the property value distribution. Contrary to the predictions of our theoretical
framework in the absence of fixed costs, the cost share in the bottom deciles was slightly
lower after the drought than before; this is due to the pricing changes introduced by the PU.
However, the large pre-drought spread between top and middle deciles did not re-emerge. As
a result, the poorest deciles were protected by policy, while most of the pecuniary externality
from reduced consumption by the rich fell on the middle class.

6 Quantifying the role of adaptation
How much of a role did private substitution to groundwater play in the fiscal and distri-
butional outcomes documented in Section 5? To answer this question, we build a discrete
choice model based on the theoretical framework in Section 2 that allows us to quantify the
e�ects of groundwater drilling on public water demand.

6.1 Setup and calibration

The modeled economy is populated by a continuum of households, each of whom takes
one of ten possible types indexed by i œ {1, . . . , 10}. Each type comprises a tenth of total
households and maps to one of the ten average property value deciles in Section 4. In each
month t, households first make a discrete decision over whether to drill a groundwater well
and then decide how much public water to purchase from the PU and how much groundwater
to extract in the case where they have drilled a well. Each month evolves as follows: first,
the PU sets a volumetric price schedule separately for indigent and non-indigent households;
second, households make drilling decisions; and third, households make public water and
groundwater consumption decisions conditional on prices and drilling.

Type-i households have utility from total water consumption wt that is parameterized
by their type –i:46

‹(wt|–i) = –i
w1≠“

t ≠ 1
1 ≠ “

46Under quasilinear utility, the model can be reformulated as the problem of many identical agents in
each property value decile under arbitrary levels of income heterogeneity within and across deciles. The
equivalence of this formation with one where agents within deciles have heterogeneous – parameters hinges
on the assumption that the variation in – within each decile is small enough such that all households choose
a demand level in the same tari� block. We examine the validity of this assumption in Appendix B.
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where wt = mt+gt is the sum of public water consumption mt and groundwater consumption
gt. Households have linear utility over public water charges, the fixed cost of adopting
groundwater (if they choose to do so), and the costs of extracting groundwater (conditional
on adoption).

Prior to selecting consumption levels each month, households first make a decision over
whether to drill a groundwater well after observing the type-specific schedule of charges
for public water consumption ci,t(mt). We assume the cost of drilling a well is cd for all
households and that once they have drilled, they can extract groundwater gt each month at
a cost of Âg2

t .47

For a type-i household without a groundwater well—those with Dt = N—utility is

u(mt|–i, Dt = N) = ‹(mt|–i) ≠ ci,t(mt)

which yields the first order condition for public water consumption:

mi,N,t Æ
A

cÕ
i,t(mi,N,t)

–i

B≠1/“

(6)

where cÕ
i,t(mi,N,t) is the marginal price of public water for type-i households evaluated at

their optimal level of demand conditional on not having drilled a well, mi,N,t. This equation
will hold with equality when demand does not intersect with the vertical portion of the IBT
schedule. For households that choose to drill—those with Dt = D—utility is

u(mt, gt|–i, Dt = D) = ‹(mt + gt|–i) ≠ ci,t(mt) ≠ Âg2
t

with the first order conditions for public and groundwater consumption:

mi,D,t + gi,D,t Æ
A

cÕ
i,t(mi,D,t)

–i

B≠1/“

(7)

mi,D,t + gi,D,t =
A

2Âgi,D,t

–i

B≠1/“

(8)

where mi,D,t and gi,D,t are type-i households’ optimal demand levels for public water and
groundwater conditional on having drilled.

The conditions above are su�cient for informing our static calibration based on cross-
sectional data. Each step in the procedure for recovering the model’s structural parame-
ters is outlined here; a comprehensive description is relegated to Appendix A.5. We fo-

47This cost captures both the costs of physical extraction (i.e., pumping) as well as any additional time
or monetary costs households incur to make use of the groundwater they extract.
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cus on three two-month snapshots from around Day Zero for calibration and counterfactu-
als, each of which serves as a vignette of one stage in the drought: a pre-crisis period as
November-December 2016, a crisis period as February-March 2018, and a post-crisis period
as October-November 2018. Calibration selects structural parameters such that modeled de-
mand coincides with observed demand in the pre-crisis and crisis periods, while we perform
counterfactuals for the crisis and post-crisis periods.

Given that we do not observe household-level drilling decisions, we require several addi-
tional assumptions for the model to be identified: limited within-decile heterogeneity in –i

parameters; that the bottom four property value deciles in the model are comprised solely of
indigent households while the other deciles contain none (see Figure D.2); and that all wells
and boreholes were drilled between the end of the pre-crisis period and start of the crisis
period. From there, we estimate the model’s parameters in three steps, detailed further in
Appendix A.5. First, we recover “—the parameter governing the price elasticity of demand
for water—using observed changes in prices and quantities demanded during the crisis (rel-
ative to the pre-crisis period) for households in the fifth property value decile.48 Second, we
recover the set of decile-specific demand shifters –i by inverting the first order condition in
eq. (6) and evaluating the expression in the pre-crisis period under the assumption that no
households had drilled wells at that point. Finally, we use the first order conditions in eqs.
(7) and (8) to recover the groundwater extraction cost parameter Â.

6.2 Counterfactuals

With fitted parameters {–̂i, “̂, Â̂} in hand, we construct counterfactual decile-specific public
water use, revenue, and groundwater consumption in the absence of drilling. We perform
this calculation for two periods: the crisis, when PU prices were at historical highs near the
end of the drought, and the post-crisis when PU prices returned closer to baseline levels
and additional free water was granted to indigent households (see Table E.1). Figure 6
plots the predictions for water demand under observed drilling levels relative to the no-
drilling counterfactuals for the crisis (left panels) and post-crisis (right panels) periods. The
outcomes we consider are changes in decile-specific public water use and revenue (top row),
share of PU revenue (middle row), and groundwater use (bottom row). We evaluate the
ability of the model to match observed piped water consumption and revenues in each decile
during and after the crisis in Appendix B.

Under the high PU price schedule during the crisis, modeled in the left panels of Figure
6, we find that private substitution to groundwater lowered total demand (summed across

48We choose the 5th decile because few households in that decile are indigent or drilled wells.
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Figure 6: Modeled outcome di�erences between groundwater drilling and no drilling
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deciles) for public water by 5.3%, or roughly 0.2 million kL per month. This came with
12.4% lower total PU revenue over the same period. Figure 6a shows that much of the
drop in total public water use and revenue is driven by consumption changes by upper-decile
households. The shift to groundwater by richer households (Figure 6e) led to a shift in the
share of PU revenue from richer to poorer households (Figure 6c); the cost share for the
bottom four property value deciles is 1.49 percentage points higher under the observed level
of drilling than it is in the counterfactual had no drilling occurred. The additional decline
in demand for piped water due to adaptation also increased the demand curtailment e�ect
of price increases during the crisis. Without private substitutes, prices in the second IBT
tier (6-10.5kL) would have needed to increase by an additional 50.0% (from 46 to 69 ZAR)
to achieve the reduction in demand under observed levels of drilling.49

The consequences of groundwater adoption are more muted in the post-crisis period, as
shown in the right-hand panels of Figure 6. That said, drilling induced during the drought
had lasting consequences. Demand for (revenue from) public water was 4.9% (11.4%) lower
in the post-crisis period due to drilling. Again, much of the drop in total public water use
and revenue is driven by higher property value households (Figure 6b) who substitute more
to groundwater (Figure 6f). Due to the concurrent introduction of an additional block of free
water to indigent households in the post-crisis period, the bottom four deciles’ cost shares
are una�ected by drilling and the cost shift occurs instead between middle and high property
value households (Figure 6d). The model also allows us to investigate the revenue benefits
of the fixed charge implemented in July 2018; specifically, by how much would volumetric
prices have to increase to match the observed level of revenue? We estimate that absent the
fixed charges, the post-crisis IBT would have increased by 50.4% (from 34 to 52 ZAR) in
the 6.0-10.5 kL block to make up for the revenue generated by fixed charges.

7 Conclusion
Cape Town’s brush with Day Zero o�ers a cautionary tale for the $67 billion global water
utilities market (Zion Market Research, 2023) with an estimated 1 billion people living in
drought-vulnerable cities (Ahmadi et al., 2020; He et al., 2021). This case study points
to broader lessons. First, customer responses to the utility’s policy changes during the
supply shock depend on access to private substitutes. Where substitution requires costly

49To solve for the required price increase, we use the model to solve for the price level in the second (6-10.5
kL) step of the IBT that, absent adaptation, would cause demand in both the baseline and counterfactual
scenarios to be the same in aggregate. We focus on the required change in the second pricing block since
it is the one that determines marginal prices (and thus demand) for all non-indigent households during the
crisis under a counterfactual where no households could access groundwater.
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fixed investment—which is plausible in many cases—di�erential private adaptation by richer
households can create pecuniary and environmental externalities with equity consequences
that persist even after the shock. There are analogs for climate mitigation where private
e�orts to reduce greenhouse gas emissions, such as adoption of residential rooftop solar
panels or electric vehicles, undermine the overall financing of publicly-provided goods (such
as electricity and highways) and the equitable distribution of costs across users (Borenstein
and Bushnell, 2022; Borenstein, Fowlie and Sallee, 2023; Metcalf, 2023; Glaeser, Gorback
and Poterba, 2023).

Second, policy interventions can play an outsized role in managing demand, cost recovery,
and redistribution. These policies will respond to climate shocks. Had Cape Town’s policy
response been less aggressive during the water crisis, it might not have avoided Day Zero.
On the other hand, it might have seen less substitution away from municipal water and
avoided the associated long-run challenges for utility revenue. Economists have long argued
for fixed charges to cover the fixed costs of utilities (e.g., Borenstein, 2016). The Cape Town
case highlights that fixed charges can address the revenue problem, but will only support
redistributive goals if they are targeted to high-income households. In a setting where the
utility also observes characteristics like property values, this may be feasible. In others, it
will require new data sources for targeting as suggested by Borenstein, Fowlie and Sallee
(2023). In this case, the drought appears to have been instrumental in spurring a transition
to more e�cient pricing by the utility; whether future shocks may also provide impetus for
pricing reforms in other settings remains an open question.

A final challenge—and one beyond the scope of our theoretical framework—is environ-
mental. Like much of the world, Cape Town’s private groundwater extraction is largely
unregulated and likely to approximate open access conditions. This implies that by induc-
ing groundwater drilling, Cape Town’s Day Zero e�orts may have exacerbated groundwater
externalities, creating concerns about the long-term sustainability of this alternative wa-
ter supply.50 While a lack of data on groundwater extraction and understanding of the
hydrological properties of the Cape Town aquifer prevents us from quantifying this new
externality—a knowledge gap that can be addressed with future research—the Day Zero
experience places added emphasis on the need for joint management of surface and ground-

50There are two externalities associated with unmanaged groundwater pumping (Provencher and Burt,
1993). The stock externality occurs because one user’s extraction lowers available future groundwater water
for other users. The pumping cost externality occurs because lower groundwater levels raise pumping costs
for others. Both externalities are hard to quantify because they depend on how extraction by one user
a�ects groundwater levels for other users. This requires characterizing the flow rates across all locations of
an aquifer through a spatially-dense network of groundwater monitoring wells, which is not available for Cape
Town. In Appendix C.4, we o�er a back-of-the-envelope calculation for the increase in marginal groundwater
extraction cost following the water crisis, an ingredient for quantifying the groundwater externality.
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water supplies (Faragher and Carden, 2023). Beyond the Cape Town case, substitution away
from publicly provided water or energy is likely to change the type and magnitude of the
environmental externalities associated with the consumption of these resources (Borenstein,
Fowlie and Sallee, 2023).
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Odoulami, et al. 2018. “Anthropogenic influence on the drivers of the Western Cape
drought 2015–2017.” Environmental Research Letters, 13(12): 124010.

Pascale, Salvatore, Sarah B. Kapnick, Thomas L. Delworth, and William F. Cooke. 2020.
“Increasing risk of another Cape Town “Day Zero” drought in the 21st century.” Proceed-
ings of the National Academy of Sciences, 117(47): 29495–29503.

Provencher, Bill, and Oscar Burt. 1993. “The externalities associated with the common prop-
erty exploitation of groundwater.” Journal of Environmental Economics and Management,
24(2): 139–158.

Rathnayaka, Kumudu, Hector Malano, Shiroma Maheepala, Biju George, Bandara
Nawarathna, Meenakshi Arora, and Peter Roberts. 2015. “Seasonal demand dynamics
of residential water end-uses.” Water, 7(1): 202–216.

Schachtschneider, Klaudia. 2020. “Blog: Water beneath our feet.” World Wildlife Fund.

Sekhri, Sheetal. 2014. “Wells, water, and welfare: the impact of access to groundwater on
rural poverty and conflict.” American Economic Journal: Applied Economics, 6(3): 76–102.

36



Simpson, Nicholas Philip, Kayleen Jeanne Simpson, Cli�ord D Shearing, and Liza Rose Ciro-
lia. 2019. “Municipal finance and resilience lessons for urban infrastructure management:
a case study from the Cape Town drought.” International Journal of Urban Sustainable
Development, 11(3): 257–276.

Sinclair-Smith, Ken, Susan Mosdell, Gisela Kaiser, Ziyaad Lalla, Leandre September, Collin
Mubadiro, Sarah Rushmere, Katherine Roderick, Johanna Brühl, Megan McLaren, and
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A Appendix theory
Throughout the proofs associated with the simple model in Section 2, we assume the follow-
ing:

1. ui(·) is increasing and strictly concave.

2. The functional C(m, �) mapping price schedules � œ � and consumption m into costs

C(m, �) :
1
{0 fi R+} ◊ �

2
≠æ R+

is strictly positive for all m > 0 and nondecreasing in m. Here, � is defined as a
non-empty subset of the set of all bounded, strictly positive functions on {0 fi R+}.

The cost function induced by � in the main text, c(m), is the mapping c : ({0 fi R+}) ≠æ R+

generated by evaluating C(m, �) at di�erent values of m holding � constant. To make
assumptions 1 and 2 more concrete, a common example for a class of price schedule that
would fit the criteria above are those described by right-continuous marginal cost curves
�(m). This includes the case of constant marginal pricing, upward sloping supply curves,
or block tari�s. The cost functional in this case is simply the Riemann integral:

C(m, �) =
⁄ m

0
�(n) dn

Note finally that the main text is written under the assumption that the demand correspon-
dence for each household

mi(�) = arg max
m

I

ui(m) ≠ C(m, �) : m œ [0, Œ)
J

(A.1)

is non-empty and unique, ignoring the case where mi(�) may be a set with multiple elements.
However, the proof of Lemma 1 holds even when the demand correspondence in equation
(A.1) is not single-valued. In the case of set-valued optimal demand levels mi(�), the result in
Lemma 1 becomes that md

i (�) Æs mi(�), or that demand is nondecreasing in the strong set
order under drilling versus when it is absent (i.e., both the minimal and maximal elements of
the demand correspondence mi(�) are nonincreasing in the drilling decision). Analogues for
Corollaries 1 and 2 when the demand correspondence in equation (A.1) is not single-valued
are that revenue (cost shares for the poor household) is nonincreasing (nondecreasing) in the
strong set order.
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A.1 Comparative statics over the drilling decision

Several comparative statics results are useful to establish initially. Consider a household’s
drilling decision, which solves

(A.2)
drilli = arg max

dœ{0,1}

I

d
1
ui(md

i (�) + ⁄) ≠ cd ≠ C(md
i (�), �)

2

+ (1 ≠ d)
1
ui(mi(�)) ≠ C(mi(�), �)

2J

Call the function in brackets g(d, �, ⁄, cd). Note that the di�erence between the value of
drilling and not drilling,

(A.3)
g(1, �, ⁄, cd) ≠ g(0, �, ⁄, cd) = ui(md

i (�) + ⁄) ≠ cd ≠ C(md
i (�), �)

≠ ui(mi(�)) + C(mi(�), �)

is strictly decreasing in cd and increasing in ⁄. Then g(d, �, ⁄, cd) is supermodular in (d, ⁄)
and submodular in (d, cd) and Topkis’ Monotonicity Theorem gives that the drilling decision
drilli is nondecreasing in ⁄ and nonincreasing in cd.

Finally, when � induces a cost function that is twice continuously-di�erentiable in m and
�, the envelope theorem lets us write

(A.4)d[g(1, �, ⁄, cd) ≠ g(0, �, ⁄, cd)]
d� = dC(md

i (�), �)
d� ≠ dC(mi(�), �)

d�

When C(m, �) has a weakly positive cross-partial in (m, �), the right hand-side above is
weakly negative which implies that g(d, �, ⁄, cd) is nondecreasing in � as well.

A.2 Proof of Lemma 1

Proof. Dropping time subscripts, utility for a household that chooses to drill a well—drilli =
1—and purchase a quantity mi of public water is

Ui(drilli = 1, mi) = ui(mi + ⁄) ≠ cd ≠ C(mi, �)

while for a household that does not—drilli = 0—it is

Ui(drilli = 0, mi) = ui(mi) ≠ C(mi, �)

Di�erencing the two holding mi constant leaves
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Ui(drilli = 1, mi) ≠ Ui(drilli = 0, mi) = ui(mi + ⁄) ≠ cd ≠ ui(mi)

When ui(·) is strictly concave for both households we have

d[Ui(drilli = 1, mi) ≠ Ui(drilli = 0, mi)]
dmi

= uÕ
i(mi + ⁄) ≠ uÕ

i(mi) < 0

Households’ utility over water demand and their drilling decision is submodular in drilli
and public water demand mi. By Topkis’ Monotonicity Theorem, we must have md

i (�t) Æ
mi(�t) for any cost schedule �t for both households. This yields the result in Lemma 1, as
mi(�) ≠ md

i (�Õ) is then (weakly) larger than mi(�) ≠ mi(�Õ) for all �Õ Ø �.

A.3 Proof of Proposition 1

Proof. The aggregate demand result follows immediately from Lemma 1. Recall aggregate
revenue is given by

R(�) = C(mdp
p (�), �) + C(mdr

r (�), �)

where dp and dr denote whether the rich and poor households have drilled wells. From
Lemma 1, we have md

i (�) Æ mi(�) for any cost schedule �. Under the assumption that the
cost functional C(m, �) is nondecreasing, aggregate revenue (holding price schedules fixed)
is always nonincreasing in drilling decisions.

A.4 Proof of Proposition 2

Proof. We seek to show

C(�) = C(mp(�), �)
C(mp(�), �) + C(mr(�), �)

is strictly smaller than

Cd(�) = C(mp(�), �)
C(mp(�), �) + C(mdr

r (�), �)

From Lemma 1, under any schedule � we have C(mr(�), �) Ø C(md
r(�), �) as demand

is weakly lower after adaptation and we assume the cost function is nondecreasing in m.
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This in turn implies that Cd(�) Ø C(�). This completes the proof as the choice of � was
arbitrary.

A.5 Calibrating the quantitative model

The goal of the calibration exercise is to solve for the set of –i values governing water con-
sumption across the ten property value deciles, the parameter “ governing the price elasticity
of demand for water, and the groundwater cost parameter Â. Calibrated parameters are those
that minimize the distance between outputs from the model of Section 6.1 when evaluated
at historical prices and observed levels of consumption. As we do not observe household-
level drilling decisions or groundwater usage, we make several simplifying assumptions that
allow the model to be identified from available data. First, we assume any unobservable
within-decile heterogeneity in –i parameters is limited such that aggregate demand across
individuals aligns with that of a set of representative agents within in each decile. Second,
we assume that the bottom four property value deciles in the model are comprised solely
of indigent households while the highest six contain none.A.2 Finally, we assume that the
cumulative applications for boreholes and wells we observe through the end of 2019 in Figure
4b were all drilled in 2017, and that it is a su�cient statistic for the amount of drilling (both
registered and unregistered) that occurred during the drought.

We use the assumptions above to calibrate the model using two periods of observed
public water demand under di�erent price regimes: a pre-crisis period from November to
December 2016 (before large tari� increases) governed by costs ci,pre(·), and a crisis period
from February-March 2018 (when prices were at their peak) governed by costs ci,crisis(·).A.3

For each of these periods, we calculate average monthly demand for public water in each
property decile from Figure 3a, m̄i,pre and m̄i,crisis. These observed averages identify mi,pre

and mi,crisis, expected piped water demand within a decile across households both with and
without wells. Under the simplifying assumption that drilling only occurs in 2017, we can
use observed pre-crisis demand to write

m̂i,N,pre = m̄i,pre (A.5)

and demand during the crisis to write

fiim̂i,D,crisis + (1 ≠ fii)m̂i,N,crisis = m̄i,crisis (A.6)
A.2See Figure D.2 for a time series of the observed share of indigent agents in each decile.
A.3Both cost schedules are set to exactly match the posted IBTs during that period shown in Table E.1.
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where hat notation indicates estimated objects. We estimate the decile-specific share of
households that drill, fii, using the observed decile-specific cumulative number of applications
for boreholes and wells in Figure 4b and scaling by a factor that reflects that most new wells
drilled during the crisis were not licensed.A.4 Equation (A.5) states that observed demand
before the crisis is representative of average demand from households when no wells are
drilled. Equation (A.6) states that observed average demand for piped water is a weighted
average of optimal demand from households with and without wells in each decile.

Recovering “: We recover “ based on observed demand for agents in the fifth property
value decile (i = 5) by rearranging equation (6) and evaluating it for both pre-crisis and
crisis periods

“̂ =
ln

3
cÕ

5,crisis(m̄5,crisis)
cÕ

5,pre(m̄5,pre)

4

ln
1

m̄5,crisis

m̄5,pre

2 (A.7)

We fit the parameter on agents in the fifth decile for three reasons: (1) very few households
are indigent; (2) very few households drilled wells (less than 5% of households); and (3)
the observed average consumption of public water for these households in the pre-crisis and
crisis periods was not at a kink in the marginal cost curve induced by the IBT. Point (1)
allows us to avoid issues that could be generated by the simultaneous change in the level of
free water allocated to indigent households during the crisis (i.e., any large income e�ects
induced by the new free allotment). Point (2) leads to observed demand for public water from
households in the fifth property value decile during the crisis m̄5,crisis to be approximately
equal to m5,N,crisis. Point (3) ensures that equations (6) and (7) hold with equality for
these households in the pre-crisis and crisis periods when evaluated at the observed levels
of consumption we see in the data. Evaluating equation (A.7) at the observed values of
consumption in the fifth decile for the pre-crisis and crisis periods gives a value of “̂ = 1.68
or an own-price elasticity of demand for public water of -0.59, roughly in line with existing
estimates in the water utilities literature.A.5,A.6

A.4It is estimated that only one-tenth of all new groundwater wells during the drought had licenses
(Schachtschneider, 2020).

A.5Aina, Thiam and Dinar (2023) find an elasticity of -0.27 for municipal water demand across several
South African provinces. Szabo (2015) finds a larger elasticity of slightly below unity using a structural
model of water demand in the South African municipality of Tshwane. Recent meta analysis by Bruno and
Jessoe (2021) finds point estimates for price elasticities of residential water demand well below unity across
thirteen studies conducted after 2000.

A.6To ensure the simple approach above is internally robust, we also estimate this elasticity using household-
level panel data and a simulated instrument approach for identification following Ito (2014). This alternative
procedure, when estimated on the fifth decile between 2014 and July of 2018, yields a point estimate of -0.43
for the price elasticity of demand.
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Recovering –is: With “̂ in hand we can solve for each –i parameter by inverting equation
(6)

–̂i = cÕ
i,pre(m̂i,N,pre)m̂“̂

i,N,pre (A.8)

and using equation (A.5) to substitute observed m̄i,pre for m̂i,N,pre in each decile.

Recovering Â: Rewriting equation (A.6) for households in deciles nine and ten, we have
that PU demand satisfies

m̂i,D,crisis =
mi,crisis ≠ (1 ≠ fii)

3
cÕ

i,crisis(m̂i,N,crisis)
–̂i

4≠1/“̂

fii
(A.9)

where, unlike in decile five, we are not bound by the imposition that m̂5,N,crisis = m̄5,crisis

used to estimate “ above. Instead, we solve the system of equations in (A.9), (7), and (8)
to obtain

Â̂ = 1
2

A 10ÿ

i=9

–̂i(wi,D,crisis)≠“̂

2gi,D,crisis

B

using the 9th and 10th property value deciles. We recover a cost parameter of Â̂ = 3.56.

B Counterfactual model fit
Figure B.1 shows how the calibrated model in Section 6 fares in fitting average household level
demand and revenue during the crisis and post-crisis periods. Averages of observed values
(black bars) of consumption and revenue during the crisis are constructed using the within-
decile means of monthly consumption and revenue for the two month period of February-
March 2018; the post period is analog for the months of October-November 2018. The
modeled values (gray bars) denote model predictions for average demand and revenue given
observed levels of drilling fii in each decile for the IBTs posted in the crisis and post-crisis
periods.
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Figure B.1: Modeled and observed demand and revenue in the crisis and post-crisis periods
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Notes: This figure compares predicted demand and revenue from the calibrated model in Section 6 eval-
uated at observed levels of drilling in each decile and observed average demand and revenue during these
periods from the data. Panels (a) and (b) in the first row compare modeled and observed demand in each
period in gray and black bars respectively. Panels (c) and (d) in the second row compares modeled and
observed revenue, but also adds a third series (red bars) that shows what observed revenue would have
been if they were generated by the observed mean level of demand (i.e., the black bars in the first row of
figures) rather than as an average of observed revenue across agents in each decile.

While the model does fairly well in matching observed average consumption levels in
both periods (panels B.1a and B.1b) outside of those for the highest property value decile,
it struggles considerably matching observed average revenue (panels B.1c and B.1d). This
is because in the data, we see a large degree of heterogeneity in within-decile consumption.
To illustrate this, Figure B.2 shows monthly consumption at the household level for all
households in either the poorest (i = 1) or richest (i = 10) property value deciles between
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February and June 2018. While the mean consumption for the lowest households (9.9 kL)
lies below the the 10.5 kL threshold, quite a few households consume over this amount
at a marginal price of 100 ZAR/kL or higher. This violates the conditions necessary for
aggregation in the model of Section 6, which required that the heterogeneity of – parameters
within deciles was limited enough such that all households’ equilibrium demand levels lay in
the same IBT block.

Figure B.2: Histogram of household-level monthly water demand during February to June
of 2018 for the top and bottom deciles

Notes: This figure shows a histogram of monthly water usage at the household level for all households in
either the poorest or richest decile between February and June of 2018. Dashed vertical lines denote the
means values for each decile during that period.

The heterogeneity in observed demand combined with the sharp convexity of the IBT
schedule causes modeled revenue—which is generated by the cost of buying an amount of
water fitted to average observed demand—to be much lower than average observed revenue
due to Jensen’s inequality. This leads modeled average costs to be an especially poor fit
for households in the lower property value deciles who almost exclusively face the indigent
price schedule. However, if we instead allow observed average revenue to be determined by
the average demand in each decile (i.e., generate revenue as a function of observed means
of demand), the model fit is much closer. The red bars in panels B.1c and B.1d show the
results of this exercise where we calculate what revenue would have been in each property
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value decile if all households consumed water at the observed mean level. These bars track
the values produced by the calibrated model evaluated at observed drilling shares much more
closely for households not in the tenth decile.

C Data appendix

C.1 Municipal billing data

To assemble the meter-by-month panel of household water consumption and charges, we
begin with the text of municipal bills posted in Cape Town from 2014 to 2019. We restrict
to billing accounts classified as “domestic” (as opposed to commercial, industrial, state,
etc.). Note that informal households (primarily located in informal settlements) do not
receive monthly bills and so are not included in our dataset. Within this period, bills posted
in May and June 2015, September 2017, and February, March and May 2018 are missing.

Bills are posted quasi-monthly. The median billing period is 29 days and the modal
billing period is 28 days but bills can start and end on any day of the month, and some bills
cover longer periods; we drop the 1% of bills covering periods longer than 3 months as we
cannot reliably attribute their consumption across months. To convert quasi-monthly bills
to a monthly panel, we split consumption within a billing period into months by assuming
that water consumption occurs uniformly across the days covered by the bill. For example,
in the case of a bill that covers the period June 21st to July 20th, we attribute one third
of consumption to June and two thirds to July. Wherever missing bills result in partial
coverage of a month, we assume that the daily rate of consumption in the missing period
is equal to the average daily consumption in the covered period. For example, in a case
where a billing account has bills covering February 1st to 5th and 24th to 28th but not
6th to 23rd, we calculate the average rate of daily water use over the 10 covered days and
multiply it by 28 to estimate monthly usage. Household-months are treated as missing only
when no bill for a given household covers any part of that month; this is most frequently
the case when two consecutive months of posted bills are missing, as in May and June 2015,
in which case we have access to few household bills covering any part of May. The resulting
monthly consumption measure is winsorized at the 95th percentile to address what appear
to be errors in the bills, and/or water leaks.

Billed charges calculated by applying the city’s tari� schedule to our prorated panel of
monthly water consumption. Standard or indigent tari� schedules are applied depending
on whether the household receives any kind of indigent support on their bills; specifically,
we classify as “indigent support” any indigent grant and any free or discounted water that
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non-indigent households would not have qualified for (free water in the second tari� block
at any time, a second block priced at R15.57 when the first block is free, or free water in
the first tari� block any time in or after July 2017). We treat households as indigent in any
month between their first instance of receiving indigent support and their last.

We link households by account number with a record of property values in 2016, which
serves as our proxy for long-run or permanent income. We use property values from 2016
to coincide with the onset of the drought, and hold these values fixed throughout our anal-
ysis. These property values are municipal valuations used for assessing property taxes and
applying indigent support, not market values for homes. We restrict our sample to billing
accounts for which a single water meter matches with a single property value, eliminating in-
determinacies where one account may receive bills for multiple households and water meters.
This eliminates apartment buildings, for example, which are found in both high and low
property value areas. The restriction reduces our ultimate sample of households by 15.6%;
the properties that remain are those most likely to be inhabited by single households with
full control over their water use.

Our sample contains slightly more than half a million properties. Because we use 2016
property values and track households based on their municipal account number, households
drop from our sample as they move and acquire new municipal accounts. Wherever we plot
aggregate statistics (e.g. total revenue) over time, we scale them up as if the full sample
remained. We do not adjust for population growth. Monetary outcomes are always converted
to December 2019 Rand by applying South African urban CPI.

C.2 Remotely-sensed outdoor water indices

We proxy for residential outdoor irrigation using the Normalized Di�erence Vegetation Index
(NDVI), a measure of the biomass and health of green vegetation. NDVI is constructed using
the near infrared (NIR) spectral band and the red spectral band. Values fall between -1 and
1, with higher values indicating greener vegetation. NDVI is calculated as:

NDV I = NIR ≠ RED

NIR + RED

To construct NDVI values for Cape Town, we use the NIR and red bands from the
Sentinel-2 satellites during the period between January 2016 and December 2019. NIR data
is available at a 20 meter-by-20 meter spatial resolution, and red at 10-by-10. From 2017 to
2021 we acquire surface reflectance data directly from the Microsoft Planetary Computer.
For 2016-2017, we acquire top-of-atmosphere reflectance and apply atmospheric correction
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using sen2cor.A.7

We further clean the data by applying cloud masking and a Bidirectional Reflectance
Distribution Function normalization to account for di�erences in pixels’ surface reflectance
due to di�erences in illumination. To account for the fact that only certain types of land
cover will respond to irrigation di�erences, use the land cover classes defined by the South
Africa National Landcover DatasetA.8 from 2014, 2018, and 2020 to remove pixels identified
as natural vegetation (e.g. forests, shrubland, grassland), water (e.g. lakes, ocean), and
other non-vegetation classes (e.g. sand dunes, roads & rail, mines). We preserve any pixels
classified as cultivated vegetation (planted forest, crops, recreational fields) and residential,
commercial, or industrial. We remove any pixels that change between masked and unmasked
land cover classes between any two of the three years in the data, as land cover change can
result in di�erent measured NDVI even if water use does not change. We abstract away
from the fact that even transitions between unmasked land cover classes may also change
NDVI even if water use is held constant. We further apply geospatial masks to remove tree
coverA.9 and residential structures.A.10

Using a shapefile of 2015 Cape Town parcels, we construct both parcel-level monthly
NDVI values and an average monthly NDVI value across parcels within a property value
decile using parcel-area weights. Because our sample contains only residential parcels, our
NDVI value does not reflect irrigation in public parks or farms, even if their land cover
classes are not masked. NDVI also does not reflect outdoor water use outside of vegetation,
such as water used in swimming pools or car-washing, and therefore provides only a partial
measure of outdoor water use by Cape Town households.

As a robustness check, we follow the same procedure to calculate values for two alternative
proxies for outdoor water use. The Normalized Di�erence Moisture Index (NDMI) measures
the water content of vegetationA.11 and is calculated as NIR≠SW IR

NIR+SW IR . Our two NDMI mea-
sures, NDMI-1 and NDMI-2 di�er in which shortwave infrared bandwidth is used, SWIR1
or SWIR2.A.12

A.7https://step.esa.int/main/snap-supported-plugins/sen2cor/.
A.8https://egis.environment.gov.za/sa_national_land_cover_datasets
A.9Available here: https://odp-cctegis.opendata.arcgis.com/datasets/

43f15d12017145d99533ad0da50620e4_158/about
A.10Available here: https://github.com/microsoft/GlobalMLBuildingFootprints
A.11https://www.usgs.gov/landsat-missions/normalized-difference-moisture-index
A.12https://www.usgs.gov/faqs/what-are-best-landsat-spectral-bands-use-my-research
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C.3 Groundwater drilling applications

We acquire data on registrations of boreholes and wellpoints between January 2016 and
December 2019 from the Department of Water and Sanitation. As highlighted in the main
text, these registrations may overcount new wells and boreholes especially at the beginning of
the drought, as residents may have registered pre-existing boreholes as enforcement increased.
At the same time, these counts are likely to underestimate the total number boreholes
and wellpoints drilled by the end of the drought, consistent with a door to door survey in
Newlands (a wealthy suburb) which found that roughly one in nine boreholes were licensed
(Schachtschneider, 2020).

Our linking of each application with its 2016 property value decile by parcel identifiers
achieves a match rate of 78%, with unmatched applications likely representing both missing
or incorrect parcel identifiers and properties which fall outside of our sample (i.e. non-
residential or multi-family properties).

C.4 Groundwater depths

We obtain data on groundwater depths from monitoring wells collected by the South African
Department of Water and Sanitation, focusing on wells that have observations in 2019, the
last year of our sample. Panel data from Cape Town’s groundwater monitoring wells are
unbalanced and noisy. To address this, we employ four cleaning procedures. First, we keep
monitoring wells with at least 6 observations per year. This reduces our sample size from
22 to 11. Second, we remove outlier values that are below the 0.1% and above the 99.9%
percentile of depth observations for that well. Third, to ensure that the composition of
wells is not changing each period due to missing records, we linearly interpolate any missing
monthly values for each well.

We group the remaining 11 monitoring wells by averaging the property value of residential
parcels belonging to our sample within 1 km of the well and categorizing the resulting value
as above or below the median. Figure D.12 plots the raw time series of average depth to
groundwater for the 11 wells in our final sample, split into above- and below-median property
value wells, prior to removing outlier values or linearly interpolating.

To further verify the visual evidence from Figures 4c and D.12, we estimate the following
di�erential trend break model for depth to groundwater in monitoring well i and month t:

dit = —1[Pi ◊t]+—2[Pi ◊1(t Ø Feb. 2017)]+—3[Pi ◊1(t Ø Feb. 2017)◊t]+„i +“t +‘it (C.1)
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where Pi is a dummy that equals one when the parcels within a 1 km radius of well i has
average 2016 property value above the median, „i are well fixed e�ects, and “t are month
fixed e�ects. Standard errors ‘it are clustered at the month-level and allows for common
serial correlation across wells within a 12 month rolling window following Driscoll and Kraay
(1998). Our coe�cient of interest is —3, the break in the di�erential groundwater depth trend
after water crisis for wells near above median property value parcels relative to wells near
below median property value parcels.

Table E.8 shows estimates of —3 for radii distances of 0.5, 1, and 1.5 km to a well when
constructing Pi and with and without dropping outliers and interpolating missing values in
groundwater depth data. Estimates consistently detect roughly a 1 meter per year drop in
groundwater levels for wells near wealthier parcels after the water crisis.

Is a 2 meter (6 ft) drop in groundwater levels in 2017 and 2018 economically significant?
While we cannot fully quantify the externality because we do not have a full characterization
of the flow rates across all locations of an aquifer needed to understand how extraction by
one user a�ects groundwater levels for other users, we can conduct a back-of-the-envelope
calculation for the increase in marginal groundwater extract cost following the water crisis,
an ingredient for quantifying the groundwater externality. To do so for the two years since
the water crisis, we follow Burlig, Preonas and Woerman (2024) and employ the following
relationship between groundwater pumped and electricity used:

kiloliter = (Pump e�ciency)(1204.5)
Depth to gw ◊ kWh

With a pump e�ciency of 0.57 (obtained from Burlig, Preonas and Woerman (2024)), a
marginal price of retail electricity of 66 ZAR/kWh (assumed for the highest IBT block for
non-indigent households as shown in Table E.1), the change in pumping cost associated with
the two year drop of 2 meters (6 feet) in the groundwater table is:

� gw cost
kiloliter

= 6 ft ◊ 66
0.57 ◊ 1204.5 = 0.58

By comparison, the average price of municipal water for 6th-10th decile households in
2019 from Figure 5b is 35 ZAR/kWh, a significantly higher value.

Finally, above- and below-median property value wells may be located in places with
di�erent subsurface hydrological features. For example, if the subsurface geology is such that
groundwater levels are more sensitive to rainfall in above median property value locations,
a common drought across all locations may induce faster groundwater depletion in above
median property value locations, even if there is no di�erential groundwater extraction.
Table E.7 shows estimates from separate time series regressions of monthly groundwater
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depth and rainfall for below and above median property value monitoring wells in the nine
year period before the water crisis. While groundwater depths for above median wells are
systematically lower, as indicated by the coe�cient on the constant term, rainfall sensitivity
is nearly identical to that of below median wells prior to the water crisis. We cannot, of
course, attribute changes in groundwater depth to particular types of users; changes in
extraction by industrial or agricultural users, located disproportionately in high property
value areas, could contribute to the patterns we observe. Nevertheless, the similar pre-
water crisis relationships between groundwater levels and rainfall across wealthier and poorer
households shown in Table E.7 do not contradict the lower pre-water crisis NDVI correlation
with wealthier households shown in Table E.3. If outdoor irrigation by wealthier households
before the water crisis primarily used municipal water and not groundwater, groundwater
response to rainfall may be similar across neighborhoods even as surface water use responds
di�erently to rainfall.
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D Appendix Figures

Figure D.1: Water tari� schedules
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Notes: Municipal water tari� schedules for non-indigent (top) and indigent (bottom) households. Sched-
ules apply for the period July 2015-December 2015 (solid orange), February 2018 - June 2018 (dashed red),
and July 2019 - June 2020 (dotted purple).
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Figure D.2: Share indigent by decile

�

��

��

��

��

�

6K
DU
H�
RI
�+
RX
VH
KR
OG
V�
5
HF
HL
YL
QJ
�,Q
GL
JH
QW
�6
XS
SR
UW

���� ���� ���� ���� ���� ���� ����

7LPH

�VW
�QG
�UG
�WK
�WK
�WK
�WK
�WK
�WK
��WK

'HFLOH

Notes: Monthly share of total indigent households by property value decile. Property value deciles are
held fixed based on 2016 property values. Gray-shaded area marks the February 2017 to May 2018 water
crisis period.

Figure D.3: Cape Town rainfall
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Notes: Time series shows smoothed monthly rainfall from January 1981-December 2019 measured at
the Theewaterskloof Dam, the largest reservoir supplying municipal water to Cape Town (left y-axis) and
averaged across the six largest dams supplying municipal water to Cape Town (right y-axis, Theewaterskloof,
Wemmershoek, Volvlei, Berg River and the two Steenbras dams). Smoothing uses a local polynomial fit with
an Epanechnikov kernel and a rule-of-thumb bandwidth following Fan and Gijbels (1996). Data obtained
from the City of Cape Town’s Department of Water and Sanitation.
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Figure D.4: Property value and income
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Notes: Survey data on 2022 total monthly household income correlated with administrative records of
2021 property values. N = 433.
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Figure D.5: Cape Town parcels by property value decile and well locations

Notes: Map of parcels by property value decile in 2016. Groundwater monitoring wells near above-median
property value parcels are marked in red (N=6), and monitoring wells near below-median property value
parcels are marked in orange (N=5). All fall within the Cape Flats Aquifer.

A.19



Figure D.6: Sample average NDVI
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Notes: Monthly average NDVI across deciles and rainfall.
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Figure D.7: Rainfall e�ects on remotely-sensed water indices
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Notes: Panels show the cumulative e�ect of contemporaneous, 1-month lag, and 2-month lag rainfall
on monthly remotely-sensed moisture index for each property value decile. Coe�cients, shown in Table
E.5, jointly estimated using decile-by-month data from January 2016 to December 2019 in a model that
includes decile fixed e�ects. Standard errors are clustered at the monthly level and allows for common serial
correlation across deciles within a 12 month rolling window following Driscoll and Kraay (1998). Outcome
is NDVI in panel (a), NDMI-1 in panel (b) and NDMI-2 in panel (c).
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Figure D.8: Additional remotely-sensed water indices by property value decile

.1

.15

.2

.25

.3

.35

.4

.45

N
or

m
al

iz
ed

 D
iff

er
en

ce
 V

eg
et

at
io

n 
In

de
x 

(N
D

VI
)

2016 2017 2018 2019 2020

1st
2nd
3rd
4th
5th
6th
7th
8th
9th
10th

Decile

a

-.07

-.02

.03

.08

.13

N
or

m
al

iz
ed

 D
iff

er
en

ce
 M

oi
st

ur
e 

In
de

x 
1 

(N
D

M
I-1

)

2016 2017 2018 2019 2020

1st
2nd
3rd
4th
5th
6th
7th
8th
9th
10th

Decile

b

-.12

-.07

-.02

.03

.08

.13

.18

N
or

m
al

iz
ed

 D
iff

er
en

ce
 M

oi
st

ur
e 

In
de

x 
2 

(N
D

M
I-2

)

2016 2017 2018 2019 2020

1st
2nd
3rd
4th
5th
6th
7th
8th
9th
10th

Decile

c
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Figure D.9: Estimated trend in remotely-sensed water indices by property value decile
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Notes: Panels show regression coe�cients of monthly remotely-sensed vegetation/moisture index on a
linear trend for each property value decile. Coe�cients jointly estimated using decile-by-month data from
Jan. 2016 to Dec. 2019 in a model that includes decile-specific contemporaneous, 1-month lagged, and
2-month lagged rain e�ects and decile fixed e�ects. Standard errors are clustered at the monthly level and
allows common serial correlation across deciles within a 12 month rolling window following Driscoll and
Kraay (1998). 95% confidence intervals shown. Outcome is NDVI in panel (a), NDMI-1 in panel (b), and
NDMI-2 in panel (c). A.23



Figure D.10: Cumulative new borehole and well applications
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Notes: Monthly cumulative applications for new boreholes and wells by property value decile for full
sample of applications (since January 2012, solid line) and sample of applications merged to property
values (since January 2017, dashed line).
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Figure D.11: Decile-specific change in log municipal water use, 2016-2019
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Figure D.12: Cape Town groundwater levels: raw data
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Notes: Black (green) line shows monthly groundwater levels averaged across monitoring wells located
near poorer (richer) land parcels, defined as whether average 2016 property values for parcels within a
1km radius of the well is below (above) the median. Dotted lines show a local polynomial fit with an
Epanechnikov kernel and a rule-of-thumb bandwidth following Fan and Gijbels (1996). Gray-shaded area
marks the February 2017 to May 2018 water crisis. Figure 4 panel (c) shows an analogous figure using the
cleaned groundwater well data that drops outliers and interpolates missing values.
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E Appendix Tables

Table E.1: Timeline of Cape Town marginal water prices
Tari� Block (kL) Indigent

Start Month 0-6 6-10.5 10.5-20 20-35 35-50 50+ Grant
July 2014 0 11.23 16.09 23.84 29.43 38.83 103.27
July 2015 0 11.86 17.00 25.18 31.11 41.02 104.69
January 2016 0 12.32 19.28 31.45 47.99 89.96 109.17
July 2016 0 15.84 20.23 33.00 50.36 94.39 133.57
November 2016 0 16.57 23.58 41.04 66.53 200.54 139.95*
July 2017 4.41 (0) 17.16 25.11 42.24 110.22 292.24 145.62
February 2018 28.22 (0) 49.46 (16.74) 107.51 322.54 860.09 860.09 164.33**
July 2018 30.29 (0) 48.21 (0) 126.05 126.05 1048.06 1048.06 0
October 2018 22.03 (0) 35.80 (0) 54.47 54.47 311.92 311.92 0
December 2018 14.22 (0) 20.23 (0) 28.73 28.73 63.07 63.07 0
July 2019 15.04 (0) 21.40 (0) 30.39 30.39 66.70 66.70 0

Notes: Values in the table are converted to December 2019 ZAR by applying South African CPI to the
starting month of each tari�. Where indigent pricing di�ers from non-indigent pricing, indigent prices are
given in parentheses. *The change in the indigent grant corresponding to the November 2016 tari� change
took place one month later, in December 2016. **The change in the indigent grant corresponding to the
February 2018 tari� change took place one month earlier, in January 2018.

Table E.2: Day Zero timeline
Feb 2017 Level 3b: 1 hr of outdoor watering per day w/ bucket
May 2017 First mention of “Day Zero” when capacity <13.5%
June 2017 Level 4: 100 liters/day/person
July 2017 Large tari� increases
Sept 2017 Level 5: 87 liters/day/person, ban outdoor use
Dec 2017 Day Zero estimated at April 22, 2018
Feb 2018 Level 6B: 50 liters/day/person
Feb 2018 Day Zero estimated at July 9, 2018
Jun 2018 DZ canceled for 2018
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Table E.3: Average pre-water crisis remotely-sensed water index values by decile

Decile NDVI NDMI-1 NDMI-2
1st .193 -.0495 .0208
2nd .184 -.0622 .00283
3rd .188 -.0668 .00175
4th .209 -.0545 .0197
5th .24 -.038 .0444
6th .263 -.0197 .0722
7th .284 .000965 .1
8th .314 .0279 .135
9th .354 .0609 .181
10th .38 .0891 .217

Notes: Table shows the area-weighted NDVI, NDMI-1, and NDMI-2 values across parcels within a property
value decile averaged across monthly values during January 2016-December 2016.

Table E.4: Remotely-sensed water indices and parcel characteristics

(1) (2) (3)
Outcome is

NDVI NDMI1 NDMI2
Property value (in million ZAR) 0.1003 0.0684 0.1051

(0.0124) (0.0109) (0.0154)
[0.0000] [0.0000] [0.0000]

Outdoor space with low water demand 0.0162 0.0128 0.0259
(0.0146) (0.0110) (0.0143)
[0.2680] [0.2439] [0.0699]

Outdoor space with high water demand 0.0349 0.0246 0.0396
(0.0080) (0.0059) (0.0076)
[0.0000] [0.0000] [0.0000]

Number of observations 542 542 542
Notes: Table shows regressions of parcel-level averaged month 2016 remotely-sensed water indices on
parcel property value and dummy variables for whether a parcel has outdoor space (e.g., lawn or garden)
with low water demand land cover (e.g., uncared-for garden or lawn, pavement, concrete, dirt, artificial turf,
drought-tolerant plants) or high water demand land cover (e.g., grass, plants, flowers). Omitted category
is parcel without outdoor space. Standard errors in parentheses robust to heteroskedasticity. p-values in
brackets.
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Table E.5: Remotely-sensed water indices and rainfall

Outcome: NDVI (1) (2) (3) (4)
raint ◊ decile=1 0.0007 0.0004 0.0004 0.0004

(0.0001) (0.0001) (0.0000) (0.0000)
[0.0000] [0.0000] [0.0000] [0.0000]

raint≠1 ◊ decile=1 0.0007 0.0005 0.0005
(0.0000) (0.0001) (0.0000)
[0.0000] [0.0000] [0.0000]

raint≠2 ◊ decile=1 0.0005 0.0004
(0.0000) (0.0000)
[0.0000] [0.0000]

raint≠3 ◊ decile=1 0.0001
(0.0000)
[0.0106]

raint ◊ decile=2 0.0007 0.0003 0.0004 0.0004
(0.0001) (0.0001) (0.0000) (0.0000)
[0.0000] [0.0000] [0.0000] [0.0000]

raint≠1 ◊ decile=2 0.0006 0.0004 0.0004
(0.0001) (0.0000) (0.0000)
[0.0000] [0.0000] [0.0000]

raint≠2 ◊ decile=2 0.0005 0.0004
(0.0000) (0.0000)
[0.0000] [0.0000]

raint≠3 ◊ decile=2 0.0001
(0.0000)
[0.0954]

raint ◊ decile=3 0.0006 0.0003 0.0004 0.0004
(0.0001) (0.0001) (0.0000) (0.0000)
[0.0000] [0.0000] [0.0000] [0.0000]

raint≠1 ◊ decile=3 0.0006 0.0004 0.0004
(0.0000) (0.0000) (0.0000)
[0.0000] [0.0000] [0.0000]

raint≠2 ◊ decile=3 0.0004 0.0004
(0.0000) (0.0000)
[0.0000] [0.0000]

raint≠3 ◊ decile=3 0.0000
(0.0000)
[0.2784]

raint ◊ decile=4 0.0007 0.0004 0.0004 0.0004
(0.0001) (0.0001) (0.0001) (0.0001)
[0.0000] [0.0000] [0.0000] [0.0000]

raint≠1 ◊ decile=4 0.0006 0.0004 0.0004
(0.0000) (0.0000) (0.0000)
[0.0000] [0.0000] [0.0000]

raint≠2 ◊ decile=4 0.0005 0.0004
(0.0000) (0.0000)
[0.0000] [0.0000]

raint≠3 ◊ decile=4 0.0001
(0.0000)
[0.1702]

raint ◊ decile=5 0.0008 0.0004 0.0004 0.0004
(0.0001) (0.0001) (0.0000) (0.0000)
[0.0000] [0.0000] [0.0000] [0.0000]

raint≠1 ◊ decile=5 0.0008 0.0005 0.0005
(0.0000) (0.0001) (0.0000)
[0.0000] [0.0000] [0.0000]

raint≠2 ◊ decile=5 0.0005 0.0005
(0.0000) (0.0000)
[0.0000] [0.0000]

raint≠3 ◊ decile=5 0.0001
(0.0000)
[0.0725]
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Table E.5: Remotely-sensed water indices and rainfall, continued. . .

Outcome: NDVI (1) (2) (3) (4)
raint ◊ decile=6 0.0007 0.0003 0.0004 0.0004

(0.0001) (0.0001) (0.0000) (0.0000)
[0.0000] [0.0000] [0.0000] [0.0000]

raint≠1 ◊ decile=6 0.0008 0.0005 0.0005
(0.0001) (0.0001) (0.0000)
[0.0000] [0.0000] [0.0000]

raint≠2 ◊ decile=6 0.0005 0.0005
(0.0000) (0.0000)
[0.0000] [0.0000]

raint≠3 ◊ decile=6 0.0001
(0.0000)
[0.0184]

raint ◊ decile=7 0.0007 0.0004 0.0004 0.0004
(0.0001) (0.0001) (0.0000) (0.0000)
[0.0000] [0.0000] [0.0000] [0.0000]

raint≠1 ◊ decile=7 0.0007 0.0005 0.0004
(0.0001) (0.0001) (0.0000)
[0.0000] [0.0000] [0.0000]

raint≠2 ◊ decile=7 0.0005 0.0004
(0.0000) (0.0000)
[0.0000] [0.0000]

raint≠3 ◊ decile=7 0.0001
(0.0001)
[0.0177]

raint ◊ decile=8 0.0008 0.0004 0.0004 0.0004
(0.0001) (0.0001) (0.0001) (0.0000)
[0.0000] [0.0000] [0.0000] [0.0000]

raint≠1 ◊ decile=8 0.0007 0.0004 0.0004
(0.0001) (0.0001) (0.0000)
[0.0000] [0.0000] [0.0000]

raint≠2 ◊ decile=8 0.0005 0.0004
(0.0000) (0.0000)
[0.0000] [0.0000]

raint≠3 ◊ decile=8 0.0001
(0.0001)
[0.0330]

raint ◊ decile=9 0.0009 0.0005 0.0005 0.0005
(0.0001) (0.0001) (0.0001) (0.0001)
[0.0000] [0.0000] [0.0000] [0.0000]

raint≠1 ◊ decile=9 0.0008 0.0005 0.0005
(0.0001) (0.0001) (0.0001)
[0.0000] [0.0000] [0.0000]

raint≠2 ◊ decile=9 0.0006 0.0005
(0.0000) (0.0000)
[0.0000] [0.0000]

raint≠3 ◊ decile=9 0.0002
(0.0001)
[0.0414]

raint ◊ decile=10 0.0008 0.0004 0.0005 0.0005
(0.0001) (0.0001) (0.0001) (0.0001)
[0.0000] [0.0000] [0.0000] [0.0000]

raint≠1 ◊ decile=10 0.0007 0.0005 0.0005
(0.0001) (0.0001) (0.0001)
[0.0000] [0.0000] [0.0000]

raint≠2 ◊ decile=10 0.0005 0.0004
(0.0000) (0.0000)
[0.0000] [0.0000]

raint≠3 ◊ decile=10 0.0002
(0.0001)
[0.0413]

AIC -1791.332 -2061.462 -2304.454 -2265.759
BIC -1749.594 -1978.407 -2180.517 -2101.389
Number of observations 480 470 460 450

Notes: Table shows regressions of monthly NDVI indices on monthly contemporaneous and lagged rainfall
interacted with property value deciles. Models include decile fixed e�ects. Sample period is January 2016 to
December 2019. Standard errors are clustered at the monthly level and allows for common serial correlation
across deciles within a 12 month rolling window following Driscoll and Kraay (1998). p-values in brackets.
Results also shown in Figure D.7.
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Table E.6: Household municipal water use change and applications for boreholes and wells

3-year di�erence in logged average monthly municipal water use (2016 to 2019)
(1) (2) (3) (4) (5) (6) (7)

Boreholes and Wells Boreholes Wells
Boreholes and/or Wells -0.142 -0.143 -0.135

(0.014) (0.019) (0.019)
[0.000] [0.000] [0.000]

2nd Decile -0.004 -0.004 -0.004 -0.004 -0.004 -0.004 -0.004
(0.023) (0.023) (0.023) (0.023) (0.023) (0.023) (0.023)
[0.848] [0.849] [0.848] [0.849] [0.848] [0.849] [0.849]

Boreholes and/or Wells ◊ 2nd Decile 0.135 0.351 -0.296
(0.586) (0.728) (0.026)
[0.818] [0.630] [0.000]

3rd Decile -0.081 -0.081 -0.081 -0.081 -0.081 -0.081 -0.081
(0.029) (0.029) (0.029) (0.029) (0.029) (0.029) (0.029)
[0.005] [0.005] [0.005] [0.005] [0.005] [0.005] [0.005]

Boreholes and/or Wells ◊ 3rd Decile -0.137 -0.705 0.052
(0.053) (0.017) (0.097)
[0.010] [0.000] [0.591]

4th Decile -0.095 -0.095 -0.095 -0.095 -0.095 -0.095 -0.095
(0.030) (0.030) (0.030) (0.030) (0.030) (0.030) (0.030)
[0.002] [0.002] [0.002] [0.002] [0.002] [0.002] [0.002]

Boreholes and/or Wells ◊ 4th Decile -0.367 -0.521 -0.078
(0.104) (0.138) (0.090)
[0.000] [0.000] [0.384]

5th Decile -0.214 -0.214 -0.213 -0.214 -0.213 -0.214 -0.214
(0.030) (0.030) (0.030) (0.030) (0.030) (0.030) (0.030)
[0.000] [0.000] [0.000] [0.000] [0.000] [0.000] [0.000]

Boreholes and/or Wells ◊ 5th Decile -0.388 -0.395 -0.448
(0.126) (0.147) (0.140)
[0.002] [0.007] [0.001]

6th Decile -0.316 -0.315 -0.315 -0.315 -0.315 -0.316 -0.316
(0.030) (0.030) (0.030) (0.030) (0.030) (0.030) (0.030)
[0.000] [0.000] [0.000] [0.000] [0.000] [0.000] [0.000]

Boreholes and/or Wells ◊ 6th Decile -0.153 -0.158 -0.142
(0.039) (0.043) (0.065)
[0.000] [0.000] [0.029]

7th Decile -0.379 -0.377 -0.377 -0.378 -0.378 -0.378 -0.379
(0.030) (0.030) (0.030) (0.030) (0.030) (0.030) (0.030)
[0.000] [0.000] [0.000] [0.000] [0.000] [0.000] [0.000]

Boreholes and/or Wells ◊ 7th Decile -0.126 -0.125 -0.128
(0.021) (0.028) (0.040)
[0.000] [0.000] [0.001]

8th Decile -0.442 -0.439 -0.439 -0.440 -0.441 -0.441 -0.440
(0.030) (0.030) (0.030) (0.030) (0.030) (0.030) (0.030)
[0.000] [0.000] [0.000] [0.000] [0.000] [0.000] [0.000]

Boreholes and/or Wells ◊ 8th Decile -0.146 -0.088 -0.210
(0.024) (0.023) (0.036)
[0.000] [0.000] [0.000]

9th Decile -0.511 -0.507 -0.508 -0.509 -0.510 -0.510 -0.510
(0.030) (0.030) (0.030) (0.030) (0.030) (0.030) (0.030)
[0.000] [0.000] [0.000] [0.000] [0.000] [0.000] [0.000]

Boreholes and/or Wells ◊ 9th Decile -0.117 -0.108 -0.120
(0.020) (0.025) (0.030)
[0.000] [0.000] [0.000]

10th Decile -0.653 -0.648 -0.648 -0.650 -0.649 -0.651 -0.651
(0.035) (0.035) (0.034) (0.035) (0.034) (0.035) (0.035)
[0.000] [0.000] [0.000] [0.000] [0.000] [0.000] [0.000]

Boreholes and/or Wells ◊ 10th Decile -0.150 -0.185 -0.086
(0.039) (0.052) (0.043)
[0.000] [0.000] [0.046]

N (Households) 443367 443367 443367 443367 443367 443367 443367
Notes: Coe�cients from household-level regressions of di�erence between 2019 and 2016 log of average
monthly municipal water use on property value decile (column 1), property value decile and any new appli-
cations for either boreholes or wells during 2017-2018 (column 2), and their interaction (column 3). Columns
(4)-(5) replicate columns (2)-(3) for any new borehole applications. Columns (6)-(7) replicate columns (2)-
(3) for any new well applications. Standard errors clustered at the neighborhood level are in parentheses
and p-values are in brackets.
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Table E.7: Pre-water crisis groundwater-rain relationship

Outcome is groundwater depth
(1) (2)

Rain 0.002 0.003
(0.001) (0.000)
[0.000] [0.000]

Constant -3.480 -4.492
(0.096) (0.062)
[0.000] [0.000]

Number of months 109 109
Sample below above

median median
Notes: Table shows regression coe�cients of monthly groundwater levels on monthly rainfall for sample
monitoring wells between January 2008 and December 2016, before the water crisis. Column 1 (2) examines
monthly interpolated groundwater depths averaged across wells for wells located near poorer (richer) land
parcels, defined as whether average 2016 property values for parcels within a 1km radius of the well is below
(above) the median. Rainfall is the average value across the six largest dams supplying municipal water
to Cape Town. Serial correlation and heteroscedasticity robust Newey-West standard errors with optimal
bandwidth in parentheses. p-values in brackets.

Table E.8: Groundwater level trend break estimates

Outcome is groundwater depth
(1) (2) (3) (4) (5) (6)

Above median value ◊ post-crisis ◊ month -.0964 -.0801 -.113 -.0921 -.113 -.0921
(.019) (.0145) (.0249) (.0182) (.0249) (.0182)

[1.04e-06] [9.36e-08] [.0000107] [9.80e-07] [.0000107] [9.80e-07]

Observations 1431 2080 1431 2080 1431 2080
Dist. to well (km) 0.5 0.5 1 1 1.5 1.5
Drop outliers & interpolate? No Yes No Yes No Yes

Notes: Table shows estimates of —3 from the di�erential linear trend break model in eq. C.1 for radii
distances of 0.5, 1, and 1.5 km to a well when constructing Pi and with and without dropping outliers
and interpolating missing values in groundwater depth data. Standard errors in parentheses clustered at the
month-level and allows for common serial correlation across wells within a 12 month rolling window following
Driscoll and Kraay (1998). p-values in brackets.
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