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ABSTRACT

The COVID-19 pandemic has resulted in significant excess mortality among the US population,
impacting the future outlays of the US Social Security Administration (SSA) Old Age, Survivors,
and Disability Insurance (OASDI) program. This study aimed to estimate the net effects of
pandemic-induced excess deaths on OASDI liabilities, utilizing dynamic microsimulation models,
and examined how these effects vary across different socioeconomic and racial-ethnic groups. Data
on excess deaths were obtained from the CDC and processed to account for seasonal variations and
demographic disparities. The simulation incorporated demographic and health status variables to
project OASDI retirement and disability benefits, and survivors’ benefits for spouses and children,
for respondents with highest COVID mortality risk. The pandemic resulted in approximately 1.7
million excess deaths among individuals aged 25 and older between 2020 and 2023. These
premature deaths reduced future retirement payments, which increased the Social Security fund
by $294 billion. However, this gain was offset by reductions in future payroll tax flows ($58
billion) and increased payments to surviving spouses and children ($32 billion), resulting in a net
impact of $205 billion. Non-Hispanic Black and Hispanic decedents left behind more underage
children per capita, yet payments to their surviving family members were lower compared to non-
Hispanic White decedents, across all educational levels. Excess mortality during the COVID-19
pandemic has complex implications for the OASDI program. While there is an estimated net
positive financial impact due to reduced future retirement benefits, this effect is mitigated by
decreased payroll tax contributions and increased survivors’ benefits. The differential impact by
race and ethnicity highlights existing inequalities and underscores the importance of considering
demographic disparities in future projections of Social Security liabilities. These findings provide
critical insights for informing SSA trust fund projections and policy decisions.
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Introduction

The COVID-19 pandemic has resulted in over 1.7 million excess deaths among the US population as of
2023. The effects of these deaths on the expected future outlays of the US Old-Age, Survivors, Disability
Insurance (OASDI) program remains uncertain. The OASDI program, commonly referred to as “Social
Security,” provides retirement benefits, survivors’ benefits, and disability insurance benefits. While
excess mortality directly reduces spending on Social Security annuity benefits, the pandemic also resulted
in earlier and more widespread survivors’ benefits for spouses and children left behind by pandemic
decedents. The budgetary implications of these deaths ranks among the larger set of questions
surrounding the long-term effects of the COVID-19 pandemic on OASDI liabilities, including the

ultimate impacts of long COVID and of the pandemic-induced recession.

Estimating the budgetary effects of COVID-19 solely on the basis of excess deaths and average benefits
may misrepresent the net effect on OASDI liabilities if pandemic decedents differ from the average
beneficiary. For example, our previous work estimated that 62% of pandemic decedents would have
experienced below-average life expectancies for their age-sex-race/ethnicity subgroup, which limits the
expected reduction in future outlays, all else equal (1). At the same time, we also showed non-Hispanic
Black and Hispanic males lost nearly three times the number of life years as non-Hispanic white males for
people under 65 and more than twice the number of life-years among people over age 65. This finding

highlights the potential for significant racial disparities in expected future OASDI outlays.

In this study, we use microsimulation modeling to estimate the net effects of excess deaths during the
COVID pandemic on the OASDI program’s expected future outlays, and we investigate the distribution
of these changes across socioeconomic and race-ethnicity groups. Our analysis builds on extensive prior
research using the Future Elderly Model (FEM) and the Future Adult Model (FAM), dynamic
microsimulation models that have been applied to study a wide range of issues, including the future of
Medicare (2) and the effects of chronic illnesses and risk factors such as diabetes, dementia, heart failure,
obesity, serious mental illness, and smoking (3-8). These models have been extensively validated for
quantity and quality of life, as well as specific risk factors and disease (9, 10). The FEM and FAM model
OASDI retirement benefits and disability insurance benefits as a function of demographic, economic and
health status variables, and they have previously been used to project COVID-19 mortality by
demographic and health status (1). In addition, the FEM and FAM track the health and survival status of
spouses, enabling us to project the effects of COVID-19 mortality on spousal survivors’ benefits. In this

study, we extend FAM to incorporate the presence of minor children eligible for survivors’ benefits.



Estimating the effect of the pandemic-era mortality on OASDI finances using the FEM and FAM models
helps inform SSA trust fund projections. Moreover, creating estimates by race-ethnicity helps to
underscore not only the differential effects of COVID by race-ethnicity but also how different groups may
rely on OASDI differently.

Our analysis combined death-record data with FEM and FAM microsimulation models to quantify the
effect of excess deaths during the pandemic on life-cycle mortality and expected Social Security outlays
for the US population ages 25 and over as of 2020. Our estimates account for the age, sex, and race-
ethnicity of decedents based on CDC records, along with COVID-19 risk factors such as obesity, smoking
behavior, lung disease, heart disease, diabetes, cancer, stroke, hypertension, dementia, and nursing home
residence. We estimate that the 1.7 million pandemic-era excess deaths that occurred as of January 2023
reduced expected future OASDI outlays by $205 billion on net. This reduction is caused primarily by a
decrease in future retirement benefits for pandemic decedents, which outweighs a reduction in OASDI
payroll taxes and an increase of payments to surviving spouses and children. Non-Hispanic Black and
Hispanic decedents leave behind more underage children per capita, and payments to their surviving
family members are lower than for non-Hispanic White decedents, for all levels of educational

attainment.

Methods

Excess death data

Weekly excess death data from the Centers for Disease Control and Prevention (CDC) were downloaded
on July 18, 2023 and processed as described in Reif et al. (1). Deaths were pooled by quarter to account
for seasonal variation. Excess deaths occurred between March 28, 2020 and January 21, 2023. This
timeframe represents all weeks during which CDC found there to be excess deaths due to the pandemic,
providing a complete dataset of excess COVID-19 pandemic mortality estimates. Since our previous
publication (1), the CDC has updated its methodology for computing excess deaths. Initially, the CDC
compared observed deaths to an expected baseline, computed using mortality data from 2013-2019. As
the pandemic continued, however, the CDC switched to using rolling imputed baseline trends for 2020-

2023 (11). The more recent excess death estimates, which we use in this paper, reflect this change.

Microsimulation
We used microsimulation to estimate life expectancy for a nationally representative set of adults using

pre-pandemic data. Relying on methods developed in our prior publication (1), we computed the years of



life lost from the pandemic. Specifically, we used empirical information on risk factors for COVID
mortality to compute the likelihood of dying during the COVID pandemic. Within each age, sex, and
race-ethnicity group, we assigned a COVID mortality risk score based on health comorbidities and other
risk factors and distribute reported excess deaths proportionally. Non-COVID excess deaths were
assigned using our regular mortality model estimates. The number of life-years lost is then calculated by
computing the projected life expectancies of those who died as a result of the pandemic. Projections were
constructed using two models, the FAM and the FEM. The FAM, which is based on data from the Panel
Study for Income Dynamics (PSID), was used to model individuals who were ages 60 and under as of
July 1, 2020. The FEM, which is based on data from the Health and Retirement Study (HRS), was used to
model individuals who were over age 60 as of July 1, 2020. Full details about our microsimulation
methodology are available in Reif et al. (1). Below, we describe the new outcomes reported in this study

as well as adjustments that were made to the original methodology.

FAM and FEM simulations report results biennially, with each simulation wave covering a two-year
period. However, to account for seasonal variation in excess deaths, quarterly mortality risk of simulants
was preferred. Therefore, we interpolated biennial simulation outcomes to generate quarterly risk factor
status for each simulant. This was accomplished by linear interpolation of continuous variables (age,
BMLI, and regular mortality probability) and by randomly assigning new onset of binary variables (new
onset of diseases or changes in smoking status). Subsequently, weighted risk scores and excess deaths
were assigned as described in detail by Reif et al. (1). The calibration to account for nursing home deaths
was based on a total of 162,107 COVID-19-related deaths in nursing homes, as reported by the Centers
for Medicare and Medicaid Services; risk scores for nursing home residents were adjusted to correctly
represent quarterly death counts in nursing homes, before adjusting risk scores for community-dwelling

simulants. Nursing home status was available in the FEM simulation for people 60 years and older.

Survivors’ benefits

Data on children are necessary for accurately calculating survivors’ benefits for pandemic decedents.
Family and childbirth data were available only for FAM simulants, who are modeled using PSID data.
Therefore, we cannot observe minor children of people who are 60 years or older on July 1% 2020, since
these individuals are modeled using HRS data in FEM. For example, a newborn child of a 59-year-old
would be included and followed to age 18 in our analysis, but a 17-year-old child of a 61-year-old adult

would be excluded.



Data on the number of children and their birth years came from the PSID Individual file, which includes
IDs for each parent. Children in PSID were dropped if they died after non-response; if they have been
adopted by non-sample persons; if they were listed as spouses/cohabitors, ((great)grand)parents,
uncles/aunts, (children of) 1* year cohabitors, or miscellaneous “other (non)relatives”; or if they were the
reference person themselves. If birth year was missing, information from the PSID Childbirth and
Adoption History (CAH) file was used instead. If it was missing from this file as well, birth year was
imputed using an ordinary least squares regression model that included parent birth year, parent sex,
adoption status of child, and year of last report, using CAH data after 1990. In cases where children were
listed multiple times (for each parent in the PSID), we used the floor of the average predicted year of birth

to fill in missing birth years.

Children and spouses who take care of a decedent’s child under 16 both generally receive 75% of a
worker’s primary insurance amount (PIA), which is itself a function of average indexed monthly earnings
(AIME). The family maximum is generally between 150-188% of the worker’s PIA. Calculations follow
normal rules set by the Social Security Administration. Briefly, earnings are capped to maximum taxable
wages (12) and indexed up to two years before the reference year (13). The AIME for survivors is
calculated using a specified number of years of cumulative earnings, with fewer years included for
younger decedents. This period starts from age 22, excludes the five lowest-earning years, and includes at

least two and at most 35 years of earnings.

The amount of survivors’ benefits for decedents’ children and spouses taking care of children are
calculated and assigned differently by age of the decedent. For those 60 years or older at time of death,
we do not estimate benefits, since we do not have family data available to determine survivors’
beneficiaries after death. For those between the ages of 50 and 60, we used restricted Social Security
covered earnings records from 2018, the most recent year of data available, from the Michigan Center on
the Demography of Aging (MiCDA) data enclave. We determined the weighted median income by 5-year
age bins, race-ethnicity (NH Black, Hispanic, NH White), gender, and education level (less than high
school, high school graduate, BA+) for the 2018 HRS cohort, adjusted for inflation to years 2020 through
2023. We then calculated AIME and PIA based on respondents’ historical earnings data as described
above and by standard SSA rules. The estimated survivors’ benefits and family maxima were exported
from the enclave and assigned to decedents in the simulation based on the same demographic categories

and year of death (2020-2023).



For decedents under age 50, we used population earnings from the PSID survey to determine AIME, PIA,
and survivors’ benefits, as PSID does not offer linked Social Security covered earnings data. Reported
earnings histories are only available for years that a survey respondent is in the sample. We selected PSID
respondents who were alive in 2019 and calculated the weighted median of their earnings reported for
2018 and earlier, by the same age/race-ethnicity/gender/education categories mentioned above. Biennial
median earnings were then interpolated to construct yearly earnings, adjusted for inflation, and used as
inputs to calculate AIME, PIA, survivors’ benefits and family maxima. Benefits were then assigned based

on the same demographic categories and year of death.

Survivors’ benefits are subject to caps related to the earnings of the decedent’s spouse and a family
maximum. To compute the capped benefits, we first used PSID survey data to internally match spousal
earnings to survey respondents, after adjusting for inflation to 2023 dollars. We then calculated weighted
median spousal earnings by 5-year age bins, race (NH Black, Hispanic, NH White), and gender of the
PSID respondents. The maximum reduction in spousal survivors’ benefits was determined by dividing
any median spousal earnings over the 2023 earnings limit of $21,240 by two, since the benefits are
reduced by $1 for every $2 over the limit. These reductions were then applied to decedents based on the
same demographic categories of the PSID respondents, and the survivors’ benefits calculated earlier for

spouses were reduced accordingly. Any negative values were treated as $0 benefits.

As with the survivors’ benefits amount, the family maximum is also based on the decedent’s PIA,
following standard Social Security Administration rules. If a family’s total amount of survivors’ benefits

exceeds their family maximum, the benefits are reduced proportionally for all family members.

We also compared the number of underage years for decedents’ surviving children as a result of the
pandemic to a counterfactual scenario in which the decedent would have lived for their projected life
expectancy. Future children were simulated using transition models estimated on new childbirths in the
survey data. In rare cases, a simulant who died in the pandemic but could have had children in the

counterfactual scenario generated a negative number for this measure.

Earnings and OASDI tax

Earnings in FAM are derived from the PSID as a sum of wages and salaries, bonuses, overtime, tips,
commissions, professional practice or trade, additional job income, and miscellaneous labor income
(variable ER77315), plus the labor portion of business income (variable ER77296). Earnings in FEM are

derived from the HRS as a sum of wage/salary income, bonuses/overtime pay/commissions/tips, 2™ job



or military reserve earnings, and professional practice or trade income (RAND HRS variable iearn), and

self-employment income (HRS FAT variable isemp)

In each survey wave, respondents reported their earnings from the previous year. Future earnings were
simulated based on transition models developed separately for FAM and FEM, accounting for full-time or
part-time employment, unemployment, out of labor force, or retirement. See the appendix for model
specifications and coefficients. For years between waves, the earnings were interpolated and added to
create two-year earnings totals, and adjusted for real wage growth using historical real wage differential
data until 2020 (the start of the pandemic). For post-2020 earnings, intermediate projections are used (14).

The final results are adjusted for inflation to 2023 dollar values.

OASDI tax was calculated as 12.4% of earnings. For employees, half of this tax (6.2%) is contributed by
the employer, while self-employed individuals pay the full tax (12.4%) themselves. Only earnings up to
the maximum taxable earnings are taxed. Recent limits are retrieved from the Social Security website
(12); projected limits for years 2024-2032 are based on intermediate assumptions in the 2023 Annual
Report of the Board of Trustees of the OASDI funds (15); and limits after 2032 are based on carrying

forward a 3.9% percentage increase estimated for 2032.

Disability and retirement

Disability benefits for those under age 60 at the start of the pandemic were based on PSID survey
questions regarding income from Social Security (variable ER77442) when Social Security type was
disability (variable ER34812). This amount was then used to create transition models (see appendix for
coefficients) to project future disability benefits using a two-step model for simulants predicted to receive

those benefits.

Retirement benefits for those under age 60 at the start of the pandemic were also based on PSID survey
questions regarding income from Social Security (variable ER77442), in this case when Social Security
type was retirement, survivors’ benefit, dependent of disabled recipient, dependent of retired recipient, or
other (ER34813 through ER34817). This amount was then used to create transition models for the
simulation (see appendix for coefficients) to project future retirement benefits using another two-step
model for simulants predicted to retire. Prediction of claiming retirement benefits was limited to

simulants not claiming disability benefits. Disability benefits were not assigned to those over 65.



Disability and retirement benefits for those over age 60 at the start of the pandemic were based on
restricted Social Security earnings records from 2018 HRS respondents over age 50 obtained from the
MiCDA enclave. We calculated AIME and quarters worked based on earnings histories following SSA
standard rules, and we created joint estimation models (see appendix for model coefficients) for AIME
and quarters worked. Model parameters were exported from the enclave and used to predict AIME and
quarters worked for simulants, from which we calculated PIA and benefit amounts following SSA
standard rules. Predictions of whether a person was disabled or retired (and subsequently was assigned a
disability or retirement benefit amount, respectively) are based on public HRS data (RAND HRS variable
ssdi for disability and ioss for retirement; see appendix for coefficients). Prediction of claiming retirement
benefits was only done for simulants ages 62 and over who were not claiming disability benefits.

Disability benefits were not assigned to those over age 65.



Table 1: Excess deaths and death rates between March 28" 2020 and January 21% 2023 during the COVID
pandemic, by age (25+), sex, and race, based on weekly CDC data. Excess death rates are presented per 10,000
people in specific sex, age, race-ethnicity categories.

Excess deaths Excess death rate
Non-
covib coviD Total
COVID Non-COVID Total death rate death rate death rate

Race Sex Age deaths deaths deaths /10,000 /10,000 /10,000
Non-Hispanic Black Female 25-34 1,294 3,703 4,997 1 3 4
35-44 2,909 4,731 7,640 3 4 7
45-54 5,803 1,494 7,297 5 1 7
55-64 12,684 6,375 19,059 12 6 18
65-74 17,994 20,268 38,262 23 26 49
75-84 16,449 11,959 28,408 46 33 79
85+ 15,264 7,648 22,912 104 53 157
Male 25-34 1,487 10,706 12,193 1 8 9
35-44 3,308 11,670 14,978 3 11 14
45-54 7,649 7,483 15,132 8 8 16
55-64 15,557 13,533 29,090 17 15 31
65-74 20,872 28,177 49,049 36 47 83
75-84 16,373 11,089 27,462 72 48 120
85+ 9,357 5,268 14,625 142 80 222
Hispanic Female 25-34 1,137 2,127 3,264 1 1 2
35-44 2,652 2,584 5,236 2 1 3
45-54 5,572 2,803 8,375 4 2 6
55-64 10,820 5,341 16,161 10 5 14
65-74 14,934 9,471 24,405 22 13 35
75-84 14,707 10,709 25,416 44 31 75
85+ 13,512 15,012 28,524 99 109 208
Male 25-34 2,495 9,264 11,759 1 4 6
35-44 6,636 10,873 17,509 6 9
45-54 13,691 8,218 21,909 9 5 14
55-64 21,654 12,160 33,814 20 11 31
65-74 23,713 14,398 38,111 41 24 65
75-84 18,981 9,767 28,748 80 40 120
85+ 12,054 7,884 19,938 161 105 266
Non-Hispanic White  Female 25-34 2,087 3,886 5,973 0 1 1
35-44 5,299 10,809 16,108 1 2 3
45-54 13,218 116 13,334 2 0 2
55-64 34,586 15,662 50,248 5 2 8
65-74 64,758 56,859 121,617 11 10 21
75-84 90,690 71,976 162,666 29 22 51
85+ 131,245 7,569 138,814 91 5 96
Male 25-34 3,206 11,422 14,628 1 2 2
35-44 7,807 27,289 35,096 1 5 6
45-54 22,005 4,122 26,127 1 5
55-64 55,328 25,928 81,256 9 4 13
65-74 97,783 85,831 183,614 19 17 36
75-84 119,950 88,610 208,560 47 34 81
85+ 104,598 18,442 123,040 123 22 145
Total 1,062,118 693,236 1,755,354 46 30 76



Results

The pandemic resulted in 1,755,354 excess deaths of people over age 25, with the highest per capita rates
for men, Black and Hispanic populations, and older age groups. This effect was observed for COVID
deaths as well as excess deaths not attributed to COVID (here called non-COVID deaths) (Table 1).
Considerable fluctuations are present over time, with different proportions of the quarterly excess deaths

attributed to different age groups or cause (Figure 1).

Excess deaths during COVID pandemic
250,000

mmm COVID - 25-65 yrs

mmm Non-COVID - 25-65 yrs

=== COVID - 65+
Non-COVID - 65+

200,000 -

150,000 4

100,000 1

Number of excess deaths

50,000 -

Figure 1: Excess deaths by quarter, cause of death, and age group (under and over 65 years), based on weekly CDC

data.

Over one-third of pandemic decedents (36%) were estimated to receive employment or self-employment
income at the time of death (Table 2). About 4% were receiving disability benefits, and 71% were
receiving OASDI benefits. These categories are not mutually exclusive. Decedents who were working
lost on average 23.7 life years, of which 9.6 years would have been spent working, 0.5 years receiving

disability benefits, and 14.4 years receiving retirement benefits. Without the pandemic, this group would
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have paid $89K in OASDI tax and would have received $8K and $203K in disability and retirement
benefits, respectively (in $2023, discounted).

The 72K decedents receiving disability benefits at time of death were slightly younger (56.7 years vs.
58.5 years for those who were working) and had a counterfactual life expectancy of 18.7 years, of which
4.6 years would have been spent working, 3.2 years on disability, and 11.8 years in retirement. Without
the pandemic, these decedents would have paid $34k in OASDI tax and received $55k and $121k in

disability and retirement benefits, respectively (in $2023, discounted).

Over 1.2 million people were receiving retirement benefits when they died, and were on average the
oldest decedents at 79.2 years. They lost 9.0 years of life due to the pandemic, of which 0.8 years would
have been working years and 8.1 years would have been in retirement. Their time spent receiving
disability benefits was negligible. Without the pandemic, this group would have paid $3k in OASDI tax,
and received $300 and $184k in disability and retirement benefits, respectively (in $2023, discounted;
Table 2).

The pandemic also resulted in 313K additional beneficiaries, including 243K surviving children under 18
and 70K surviving spouses caring for decedents’ children under 16 years of age (Table 3). Among
decedents who were 60 at time of death with children under 18, each had on average 1.5 children under
18, and 42% had a spouse caring for their children under 16. On average, surviving children and spouses
will receive 8.4 years and 7.5 years of benefits, with lifetime benefit amounts of $121K and $58K,
respectively ($2023, discounted).
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Table 2: Average amount decedents would have received (disability or retirement benefits) or paid (OASDI payroll taxes) in the counterfactual scenario, in 2023$. Decedents are
categorized by their employment or benefit status at time of death; categories are not mutually exclusive. Values in parentheses are 95% confidence intervals.

Number of decedents
(95% ClI) Avg age at death Avg number of Avg lifetime $ Avg lifetime $
During pandemic [%] (yrs) Avg life years lost years in future x 1000, 3% disc. x 1000
Received employment or self-employment income 636,719 Earnings: 9.6 (9.3-9.9) +89 (86 - 93)* +130 (124 - 136)*
(629,734 - 643,704) 58.5(58.4-58.7) 23.7(23.3-24.2) Disability: 0.5(0.4-0.5) -8(7-9) -12 (10-13)
[36%] Retirement:| 14.4 (14.0-14.7)  -203 (199-206)  -311 (303 - 318)
Received disability benefits 71,961 Earnings: 4.6 (4.3-5.0) +34 (31-38)* +48 (42 - 53)*
(67,946 - 75,976) 56.7 (56.3-57.0) 18.7 (18.2-19.2) Disability:| 3.2 (3.1-3.4) -55 (51 - 59) -61 (56 - 66)
[4%] Retirement:| 11.8(11.3-12.2)  -121(116-126) -187 (180 - 195)
Received retirement benefits (>62 yrs) 1,251,720 Earnings: 0.8 (0.7 -0.8) +3(2-3)* +3(3-3)*
(1,248,981 - 1,254,458)  79.2(79.2-79.3)  9.0(8.9-9.1) Disability:| 0.01 (0.01 - 0.01) -0.3(0.3-0.3) -0.3(0.3-0.3)
[71%] Retirement:|  8.1(8.0-8.2) -184 (182-186)  -221 (218 - 224)

* OASDI tax, calculated as 12.4% of (self-employment) earnings. Amounts not paid because of death

Table 3: Average benefit amounts for surviving children, and spouses who care for child(ren) of decedents, in 2023$. Values in parentheses are 95% confidence intervals.

Avg number of
survivors receiving

Avg lifetime benefit
amount x1000,

Avg lifetime benefit

Number of benefits (per Avg number years 3% disc. (per amount x1000
During pandemic survivors (1000s) decedent)** of benefits survivor) (per survivor)
Child(ren) under 18* 243 (234 - 251) 1.47 (1.44 - 1.51) 8.4 (8.3-8.4) 121 (119-122) 137 (135 - 138)
(Divorced) spouse with decedent’s child(ren) under 16* 70 (67 - 73) 0.42 (0.41 - 0.44) 7.5(7.3-7.7) 58 (56 - 60) 65 (63 - 68)

* Not including those not eligible for benefits or with SO benefits (e.g. after reduction based on earnings limit for spouse)

** Among decedents with children under 18 at time of death

Table 4: Aggregate OASDI amounts for pandemic decedents, in 2023$. Values in parentheses are 95% confidence intervals.

Undiscounted
Decreases OASDI fund Increases OASDI fund

3% discounted
Decreases OASDI fund Increases OASDI fund

OASDI payroll/SE taxes not received

Benefits for surviving (spouses with) children
Unpaid disability benefits

Unpaid retirement benefits

$84 billion (80 - 88)
$36 billion (34 - 38)
$9 billion (8 - 10)
$385 billion (378 - 392)

$58 billion (56 - 60)
$32 billion (31 - 33)
$7 billion (6 - 8)
$287 billion (283 - 291)

Total effect on OASDI fund

$274 billion (267 - 281)

12

$205 billion (200 - 209)



Overall, excess deaths during the pandemic have a net positive effect on the OASDI fund, mostly because
of a reduction in future retirement benefits ($287 billion) that no longer need to be paid to decedents
(Table 4). This gain was partially offset by new survivors’ benefits (-$32 billion) and OASDI payroll
taxes (-$58 billion) that will not be received in the future from decedents who were working at the time of
their death. The reduction in disability benefits also offsets the gain, but only by a small amount ($7
billion). The total net gain for the OASDI fund is $205 billion ($2023, discounted, Table 4).

When examining aggregate effects on the OASDI fund by race-ethnicity, the largest share of this gain
(83.6%) comes from NH White decedents, who comprised 67.3% of excess deaths (Table 5). NH Black
and Hispanic decedents account for 11.3% and 5.0% of the net effect on the OASDI fund, with
approximately equal shares of excess deaths (16.6% and 16.1% respectively). The net effect for decedents
with children under 18 is negative, primarily because of new survivors’ benefits. Conversely, the net
effect for groups of decedents without children under 18 is positive, driven primarily by unpaid retirement
benefits. For both groups, the negative and positive effects are relatively smaller for Black and Hispanic

decedents than for White decedents with respect to the share of excess deaths these groups represent.

Table 5: Excess deaths and net effects on the OASDI funds by race-ethnicity, for decedents with and without
children under 18. Dollar amounts in 20233, 3% discounted. Values in parentheses are 95% confidence intervals.

Non-Hispanic Black Hispanic Non-Hispanic White

Without children Excess deaths, absolute 253,002 (252,262 - 253,742) 233,240 (231,910 - 234,570) 1,104,437 (1,102,601 - 1,106,273)

Excess deaths, % of total 14.4% (14.4 - 14.5) 13.3% (13.2 - 13.4) 62.9% (62.8 - 63.0)

Net effect on OASDI fund $29.3 billion (28.3 - 30.2) $24.4 billion (23.6 - 25.1) $195.8 billion (193.2 - 198.5)
With children Excess deaths, absolute 38,102 (37,362 - 38,842) 49,929 (48,599 - 51,259) 76,644 (74,808 - 78,480)

Excess deaths, % of total 2.2% (2.1-2.2) 2.8% (2.8-2.9) 4.4% (4.3 - 4.5)

Net effect on OASDI fund $-6.2 billion (-6.9 - -5.4) $-14.2 billion (-15.2 - -13.2) $-24.5 billion (-26.2 - -22.9)
All Excess deaths, absolute 291,104 (291,104 - 291,104) 283,169 (283,169 - 283,169) 1,181,081 (1,181,081 - 1,181,081)

Excess deaths, % of total 16.6% (16.6 - 16.6) 16.1% (16.1 - 16.1) 67.3% (67.3 - 67.3)

Net effect on OASDI fund $23.1 billion (21.6 - 24.6) $10.2 billion (8.7 - 11.6) $171.3 billion (168.0 - 174.6)

Net effect on OASDI fund, % of total [11.3% (10.7 - 11.9) 5.0% (4.3 - 5.6) 83.8% (83.0 - 84.5)

Although the White population as a whole represented a larger share of excess deaths, the per capita
excess death rate was higher among Black and Hispanic populations, as well as those with lower
educational attainment (Figure 2A). Educational attainment and race-ethnicity were also significantly
associated with survivors’ benefits for decedents’ children. For decedents without a high school degree,
total family benefits were lower for Black and Hispanic decedents than for White decedents. For those
with a high school degree or more, total family benefits were lower for Black decedents than for Hispanic

and White decedents (Figure 2B).
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Benefit amount ($)

Because survivors’ benefits have a family maximum based on the decedent’s PIA, and the decedent’s age
and average number of children per decedent are lower for Black decedents (Table 6), we also estimated
the benefit amount per child. For every educational level, the average benefits were lowest for surviving
children of both Black and Hispanic decedents, compared to White decedents (Figure 2C). Thus, Black
decedents’ families received the lowest amount of (family) benefits while experiencing the highest excess
death rates. For Hispanic decedents, survivors’ benefit amounts were more similar to Black or White
decedents depending on the measure used (child versus family) and educational attainment, with excess

death rates falling between the two groups.
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In addition to the racial-ethnic disparities in survivors’ benefits, the higher excess death rates among
Black and Hispanic populations resulted in a longer average duration that decedents’ children have left
before reaching 18 years of age, on a per capita basis (Figure 3). Children of Black, Hispanic, and White
decedents have on average 29.4, 19.5 and 12.1 years left per 1,000 children in the general population. As

a result of the pandemic, we estimate that 262K children under age 18 lost a parent, including 56K from
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Black decedents, 84K from Hispanic decedents, and 122K from White decedents. The average age at
death for decedents with underage children was only slightly lower for the Black population (41.0 years)
versus Hispanic (42.4 years) and White (42.5 years). However, Hispanic and White decedents with
underage children had on average more children per decedent (1.69 and 1.60, respectively) than Black
decedents (1.46).

Disparate consequences for surviving children by race-ethnicity
per 1000 children

Black

Hispanic

White

1
0 5 10 15 20 25 30 35

Child Years Under 18 Per Capita

Figure 3: Black and Hispanic decedents leave behind more underage children per capita, illustrated by the average
number of years left before a child of a decedent reaches age 18 (per 1000 children).

Table 6: The estimated number of children with a deceased parent as a result of the pandemic, the average age of
the deceased parent, and the average number of children per deceased parent. Rates are among simulated decedents
under 60 with any children under 18, by race-ethnicity

Number of children

with deceased Average age of Average number of

parent (1000s) decedent children/decedent
Non-Hispanic Black 56 (54 - 58) 41.0 (40.9 - 41.2) 1.46 (1.43 - 1.49)
Hispanic 84 (80 - 89) 42.4 (42.3 - 42.5) 1.69 (1.63 - 1.75)
Non-Hispanic White 122 (117 - 128) 425 (42.4-42.6) 1.60 (1.56 - 1.64)
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Discussion

From an actuarial standpoint, the excess deaths during the COVID-19 pandemic reduced the liabilities of
the OASDI system by $205 billion, or $117K per decedent, on net. The reduction in benefit payouts
outweighed the loss of future tax revenues from decedents and new payments of survivors’ benefits to
decedents’ families. However, these public fiscal benefits are extremely modest compared to the broader

costs generated by the COVID-19 pandemic.

Our analysis suggests a slight improvement in Social Security’s financial health due to excess deaths,
driven primarily by the premature death of people who would have received retirement benefits.
Offsetting effects, such as the increase in survivors’ insurance beneficiaries, are relatively small by
comparison. Although the effect of a parent’s premature death on the (financial) wellbeing of a family is
devastating, only 9.4% of pandemic decedents were estimated to have children under 18 at the time of
death. We estimate that 262K children lost a parent in 34 months (7.7K/month) of the pandemic, which
aligns closely with a previous estimate of 105K in the first 14 months of the pandemic (7.5K/month) (16).
In addition to this component being relatively small, benefits for surviving spouses and children are likely
overestimated, since a large fraction of children with a deceased parent do not claim these benefits
(Weaver, 2019). The other components of our analysis, such as the reduction in the OASDI tax receipts or
the discontinuation of retirement and disability benefits, are more likely to be realized. If none of the
eligible survivors claimed their benefits, the net effect of excess deaths on the OASDI fund could be up to

$32 billion (16%) larger.

That said, the effects on Social Security could also be worse than we forecast, because we do not account
for the possible effects of morbidity, such as long COVID. However, it seems unlikely that this omission
would reverse our qualitative finding that the excess deaths improved the solvency of Social Security. As
of September 2022, approximately 420,000 people (or 0.3% of the workforce) were estimated to have left
the workforce due to long-COVID (17). Given that the average yearly disability benefit is $17,797 (18),
each former worker would need to claim disability benefits for 37 years to completely offset the net fiscal
effect we find. Additionally, Goda et al. (19) reported that disability benefit applications actually
decreased in the first two years of the pandemic, and only partially recovered to pre-pandemic levels after
the expiration of generous unemployment benefit programs. This suggests that long COVID-related
disability is unlikely to substantially affect OASDI finances.

Our findings align with early projections in the 2021 Trustees Report (20), which suggested that excess or

premature mortality would increase the projected trust fund ratio and have a positive impact on the
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solvency. Despite this projection, other factors—such as temporary and permanent reductions in
employment, GDP, productivity, earnings, birth rates, and new disability applications—Iled to a reduction
in the overall insolvency by one year, with a projected depletion year of 2034. Subsequent Trustees
reports (21-23) adjusted the depletion year to 2035, then 2034, and back to 2035. The latest report from

2024 continues to assume no significant long-term effect of the pandemic on the OASDI fund’s solvency.

Our analysis included retired workers, spouses of retired workers, children of deceased workers, widowed
mothers/fathers, and disabled workers. Together, these groups comprise 91.4% of beneficiaries and
93.4% of total monthly benefits (24). Several smaller groups were not included in the calculation of the
effect of pandemic excess deaths on the OASDI fund. We excluded children of retired workers (1% of
beneficiaries) because we were not able to assess whether a child was receiving retirement benefits based
on the parent’s account and/or whether they were disabled. We also excluded nondisabled and disabled
widow(er)s (5.3% and 0.3%) because we were not able to determine whether surviving spouses of
deceased workers would receive additional benefits above and beyond their own
worker/spousal/disability benefits, and because we lack data on whether widowed spouses would remarry
before 60, change financial or career trajectories after experiencing widowhood, or have changes in their
disability status. We also excluded spouses and children of disabled workers (0.1% and 1.7%) because we
did not have data on whether spouses and children of disabled workers were collecting additional
disability insurance benefits. Finally, we excluded parents of deceased workers (0.001%), a group that
consists of fewer than 1000 people. While these groups were excluded, they represent a small fraction of
beneficiaries. Overall, our analysis captures the major OASDI beneficiary categories, covering the large

majority of recipients, to determine the net effect of excess deaths on the OASDI fund.
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This appendix describes technical details to support the paper ” The Effect of US COVID-19
Excess Mortality on Social Security Outlays”.

1 Functioning of the dynamic model

1.1 Background

The Future Elderly Model (FEM) is a microsimulation model originally developed out of an effort
to examine health and health care costs among the elderly Medicare population (age 65+). A
description of the previous incarnation of the model can be found in |Goldman et al. (2004). The
original work was founded by the Centers for Medicare and Medicaid Services and carried out by
a team of researchers composed of Dana P. Goldman, Paul G. Shekelle, Jayanta Bhattacharya,
Michael Hurd, Geoffrey F. Joyce, Darius N. Lakdawalla, Dawn H. Matsui, Sydne J. Newberry,
Constantijn W. A. Panis and Baoping Shang.

Since then various extensions have been implemented to the original model. The most recent
version of the FEM now projects health outcomes for all Americans aged 51 and older and uses the
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Health and Retirement Study (HRS) as a host dataset rather than the Medicare Current Beneficiary
Survey (MCBS). The work has also been extended to include economic outcomes such as earnings,
labor force participation and pensions. This work was funded by the National Institute on Aging
through its support of the RAND Roybal Center for Health Policy Simulation (P30AG024968),
the Department of Labor through contract J-9-P-2-0033, the National Institutes of Aging through
the RO1 grant “Integrated Retirement Modeling” (R01AG030824) and the MacArthur Foundation
Research Network on an Aging Society.

This document describes the Future Adult Model (FAM), the development of the model to
forecast Americans aged 25 and older. FAM uses the Panel Survey of Income Dynamics (PSID) as
the host dataset. In addition to modeling health, health care costs, and economic outcomes, FAM
also models life events such as changes in marital status and childbearing. Development of FAM is
supported by the National Institutes of Aging through the USC Roybal Center for Health Policy
Simulation (5P30AG024968-13) and the MacArthur Foundation Research Network on an Aging
Society.

1.2 Overview

The defining characteristic of the model is the modeling of real rather than synthetic cohorts, all
of whom are followed at the individual level. This allows for more heterogeneity in behavior than
would be allowed by a cell-based approach. Also, since the PSID interviews both respondent and
spouse, we can link records to calculate household-level outcomes, which depend on the responses
of both spouses.

The model has three core components:

e The replenishing cohort module predicts the economic and health outcomes of new cohorts
of 25/26 year-olds. This module takes in data from the Panel Survey of Income Dynamics
(PSID) and trends calculated from other sources. It allows us to “generate” cohorts as the
simulation proceeds, so that we can measure outcomes for the age 25+ population in any
given year.

e The transition module calculates the probabilities of transiting across various health states
and financial outcomes. The module takes as inputs risk factors such as smoking, weight, age
and education, along with lagged health and financial states. This allows for a great deal of
heterogeneity and fairly general feedback effects. The transition probabilities are estimated
from the longitudinal data in the PSID.

e The policy outcomes module aggregates projections of individual-level outcomes into policy
outcomes such as taxes, medical care costs, and disability benefits. This component takes
account of public and private program rules to the extent allowed by the available outcomes.

Figure [1] provides a schematic overview of the model. In this example, we start in 2014 with an
initial population aged 25+ taken from the PSID. We then predict outcomes using our estimated
transition probabilities (see section . Those who survive make it to the end of that year, at
which point we calculate policy outcomes for the year. We then move to the following time period
(two years later), when a replenishing cohort of 25 and 26 year-olds enters (see section [4)). This
entrance forms the new age 25+ population, which then proceeds through the transition model as
before. This process is repeated until we reach the final year of the simulation.
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Figure 1: Architecture of the FAM

1.3 Comparison with other microsimulation models of health expendi-
tures

The precursor to the FAM, the FEM, was unique among models that make health expenditure
projections. It was the only model that projected health trends rather than health expenditures.
It was also unique in generating mortality projections based on assumptions about health trends
rather than historical time series.

FAM extends FEM to younger ages, adding additional dimensions to the simulation. Events
over the life course, such as marital status and childbearing are simulated. Labor force participation
is modeled in greater detail, distinguishing between out-of-labor force, unemployed, working part-
time, and working full-time.

1.3.1 CBOLT Model

The Congressional Budget Office (CBO) uses time-series techniques to project health expenditure
growth in the short term and then makes an assumption on long-term growth. They use a long term
growth of excess costs of 2.3 percentage points starting in 2020 for Medicare. They then assume a
reduction in excess cost growth in Medicare of 1.5% through 2083, leaving a rate of 0.9% in 2083.
For non-Medicare spending they assume an annual decline of 4.5%, leading to an excess growth
rate in 2083 of 0.1%.

1.3.2 Centers for Medicare and Medicaid Services

The Centers for Medicare and Medicaid Services (CMS) performs an extrapolation of medical
expenditures over the first ten years, then computes a general equilibrium model for years 25
through 75 and linearly interpolates to identify medical expenditures in years 11 through 24 of their
estimation. The core assumption they use is that excess growth of health expenditures will be one
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percentage point higher per year for years 25-75 (that is if nominal GDP growth is 4%, health care
expenditure growth will be 5%).

1.3.3 MINT Model

Modeling Income in the Near Term (MINT) is a microsimulation model developed by the Urban
Institute and others for the Social Security Administration to enable policy analysis of proposed
changes to Social Security benefits and payroll taxes Smith and Favreault| (2013). MINT uses the
Survey of Income and Program Participation (SIPP) as the base data and simulates a range of
outcomes, with a focus on those that will impact Social Security. Recent extensions have included
health insurance coverage and out-of-pocket medical expenditures. Health enters MINT via self-
reported health status and self-reported work limitations. MINT simulates marital status and
fertility.

2 Data sources used for estimation

The Panel Survey of Income Dynamics is the main data source for the model. We estimate models
for assigning characteristics for the replacement cohorts in Replenishing Conditions Module. These
are summarized in Table [I| We estimate transition models for the entire PSID population in the
Transition Model Module. Transitioned outcomes are described in Table 2|

2.1 Panel Survey of Income Dynamics

The Panel Survey of Income Dynamics (PSID), waves 1999-2019 are used to estimate the transition
models. PSID interviews occur every two years. We create a dataset of respondents who have
formed their own households, either as single heads of households, cohabitating partners, or married
partners. These heads, wives, and ”"wives” (males are automatically assigned head of household
status by the PSID if they are in a couple) respond to the richest set of PSID questions, including
the health questions that are critical for our purposes.

We use all respondents age 25 and older. When appropriately weighted, the PSID is represen-
tative of U.S. households. We also use the PSID as the host data for full population simulations
that begin in 2009. Respondents age 25 and 26 are used as the basis for the synthetic cohorts that
we generate, used for replenishing the sample in population simulations or as the basis of cohort
scenarios.

The PSID continually adds new cohorts that are descendents (or new partners/spouses of de-
scendents). Consequently, updating the simulation to include more recent data is straightforward.

2.2 Health and Retirement Study

The Health and Retirement Study (HRS), waves 1998-2018 are pooled with the PSID for estimation
of mortality and widowhood models. The HRS has a similar structure to the PSID, with interviews
occurring every two years. The HRS data is harmonized to the PSID for all relevant variables. We
use the dataset created by RAND (RAND HRS, version 1992-2018v2) as our basis for the analysis.
We use all cohorts in the analysis. When appropriately weighted, the HRS in 2016 is representative
of U.S. households where at least one member is at least 51. Compared to the PSID, the HRS
includes more older Hispanics and interviews more respondents once they have entered nursing
homes.
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3 Estimation

In this section we describe the approach used to estimate the transition model, the core of the FAM,
and the initial cohort model which is used to rejuvenate the simulation population.

3.1 Transition model

We consider a large set of outcomes for which we model transitions. Table[5]gives the set of outcomes
considered for the transition model along with descriptive statistics and the population at risk when
estimating the relationships.

Since we have a stock sample from the age 254 population, each respondent goes through
an individual-specific series of intervals. Hence, we have an unbalanced panel over the age range
starting from 25 years old. Denote by j;o the first age at which respondent i is observed and j;r,
the last age when he is observed. Hence we observe outcomes at ages j; = Jio, - . ., Jit;-

We first start with discrete outcomes which are absorbing states (e.g. disease diagnostic, mor-
tality, benefit claiming). Record as h; j, , = 1 if the individual outcome m has occurred as of age j;.
We assume the individual-specific component of the hazard can be decomposed in a time invariant
and variant part. The time invariant part is composed of the effect of observed characteristics x;
that are constant over the entire life course and initial conditions h; j, —, (outcomes other than the
outcome m) that are determined before the first age in which each individual is observed The time-
varying part is the effect of previously diagnosed outcomes h; j,—1,—m, on the hazard for mﬂ We
assume an index of the form z,, j, = ;B + N j,—1,—mYm + Ni jo,—m¥m. Hence, the latent component
of the hazard is modeled as

h;ji,m = TiBm + Niji—1,—-mVm + i jo,—mW¥m + Qmj;, + Eijim, (1)

m:]-7"'7M07ji:jiOa"'7ji,Tiai:17"'aN

The term €; j, ,, is a time-varying shock specific to age j;. We assume that this last shock is normally
distributed and uncorrelated across diseases. We approximate a,, ;, with an age spline with knots
at ages 35, 45, 55, 65, and 75. This simplification is made for computational reasons since the
joint estimation with unrestricted age fixed effects for each condition would imply a large number
of parameters. The absorbing outcome, conditional on being at risk, is defined as

hi,ji,m = maX{‘[(h‘Zji,m > 0)7 hi,jifl,m}

The occurrence of mortality censors observation of other outcomes in a current year.

A number of restrictions are placed on the way feedback is allowed in the model. Table [
documents restrictions placed on the transition model. We also include a set of other controls. A
list of such controls is given in Table [7] along with descriptive statistics.

We have five other types of outcomes:

1. First, we have binary outcomes which are not an absorbing state, such as starting smoking.
We specify latent indices as in for these outcomes as well but where the lag dependent
outcome also appears as a right-hand side variable. This allows for state-dependence.

2. Second, we have ordered outcomes. These outcomes are also modeled as in (|l) recognizing
the observation rule is a function of unknown thresholds ¢,,. Similarly to binary outcomes,
we allow for state-dependence by including the lagged outcome on the right-hand side.

'With some abuse of notation, j; — 1 denotes the previous age at which the respondent was observed.
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3. The third type of outcomes we consider are censored outcomes, such as financial wealth. For
wealth, there are a non-negligible number of observations with zero and negative wealth. For
these, we consider two part models where the latent variable is specified as in but model
probabilities only when censoring does not occur. In total, we have M outcomes.

4. The fourth type of outcomes are continuous outcomes modeled with ordinary least squares.
For example, we model transitions in log(BMI). We allow for state-dependence by including
the lagged outcome on the right-hand side.

5. The final type of models are categorical, but without an ordering. For example, an individual
can transition to being out of the labor force, unemployed, or working (either full- or part-
time). In situations like this, we utilize a multinomial logit model, including the lagged
outcome on the right-hand side.

The parameters 6; = ({ By Yims Vi §m}n]\f:1 , >, can be estimated by maximum likelihood. Given

the normality distribution assumption on the time-varying unobservable, the joint probability of all
time-intervals until failure, right-censoring or death conditional on the initial conditions h; j, —p, is
the product of normal univariate probabilities. Since these sequences, conditional on initial condi-
tions, are also independent across diseases, the joint probability over all disease-specific sequences
is simply the product of those probabilities.

For a given respondent observed from initial age j;o to a last age jr,, the probability of the
observed health history is (omitting the conditioning on covariates for notational simplicity)

M-1 Jr; IT;
10(6; hijo) = H H Pijm(9)(1—hij_1,m)(1—h¢j,M) « H Py 0(6)
m=1 j=ji J=Jjin
We use the —0 superscript to make explicit the conditioning on h; ;.0 = (Riji.0,-- - Rijiom) . We

have limited information on outcomes prior to this age. The likelihood is a product of M terms with
the mth term containing only (B, Ym, ¥m,sm). This allows the estimation to be done separately
for each outcome.

3.1.1 Further Details on Specific Transition Models

This section describes the modeling strategy for particular outcomes.

Employment Status Ultimately, we wish to simulate if an individual is out of the labor force,
unemployed, working part-time, or working full-time at time t. We treat the estimation of this
as a two-stage process. In the first stage, we predict if the individual is out of the labor force,
unemployed, or working for pay using a multinomial logit model. Then, conditional on working for
pay, we estimate if the individual is working part- or full-time using a probit model.

Earnings We estimate last calendar year earnings models based on the current employment sta-
tus, controlling for the prior employment status. Of particular concern are individuals with no earn-
ings, representing approximately twenty-five percent of the unemployed and seventy-eight percent
of those out of the labor force. This group is less than 0.5% of the full- and part-time populations.
We use a two-stage process for those out of the labor force and unemployed. The first stage is
a probit that estimates if the individual has any earnings. The second stage is an OLS model of
log(earnings) for those with non-zero earnings. For those working full- or part-time, we estimate
OLS models of log(earnings).
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Relationship Status We are interested in three relationship statuses: single, cohabitating, and
married. In each case, we treat the transition from time ¢ to time ¢t 4+ 1 as a two-stage process. In
the first stage, we estimate if the individual will remain in their current status. In the second stage,
we estimate which of the two other states the individual will transition to, conditional on leaving
their current state.

Childbearing We estimate the number of children born in two-years separately for women and
men. We model this using an ordered probit with three categories: no new births, one birth, and
two births. Based on the PSID data, we found the exclusion of three or more births in a two-year
period to be appropriate.

3.1.2 Inverse Hyperbolic Sine Transformation

One problem fitting the wealth distribution is that it has a long right tail and some negative values.
We use a generalization of the inverse hyperbolic sine transform (IHT) presented in [MacKinnon
and Magee (1990)). First denote the variable of interest y. The hyperbolic sine transform is

eXp(‘T) _ exp(—a;’) (2)

y = sinh(z) = 5

The inverse of the hyperbolic sine transform is
z = sinh™' (y) = h(y) = log(y + (1 +y°)"/?)

Consider the inverse transformation. We can generalize such transformation, first allowing for a
shape parameter 6,

r(y) = h(0y)/0 (3)

Such that we can specify the regression model as
r(y) =B +¢e,e ~N(0,0%) (4)
A further generalization is to introduce a location parameter w such that the new transformation

becomes
~ h(0(y +w)) — h(bw)
9(y) = oh (60)

(5)

where 1 (a) = (1 + a?)"1/2,

We specify in terms of the transformation g. The shape parameters can be estimated from
the concentrated likelihood for 6, w. We can then retrieve 3, o by standard OLS.

Upon estimation, we can simulate

§=ab+oi

where 7 is a standard normal draw. Given this draw, we can retransform using and

h(0(y + w)) = 6h'(Bw)g + h(bw)

= sinh [0h/ (0w)§ + h(0w)] — Ow
B 6

The included estimates table (estimates FAM.xml) gives parameter estimates for the transition
models.
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4 Model for replenishing cohorts

We first discuss the empirical strategy, then present the model and estimation results. The model
for replenishing cohorts integrates information coming from trends among younger cohorts with the
joint distribution of outcomes in the current population of age 25 respondents in the PSID.

4.1 Model and estimation

Assume the latent model for y: = (v5, ..., vy),

y::/L—FEi,

where ¢; is normally distributed with mean zero and covariance matrix €2. It will be useful to write
the model as

y; = i+ Lan;,

where Lq is a lower triangular matrix such that LoLy = ©Q and n; = (9;1,...,m) are standard
normal. We observe y; = I'(y) which is a non-invertible mapping for a subset of the M outcomes.
For example, we have binary, ordered and censored outcomes for which integration is necessary.

The vector 1 can depend on some variables which have a stable distribution over time z; (say
race, gender and education). This way, estimation preserves the correlation with these outcomes
without having to estimate their correlation with other outcomes. Hence, we can write

pi = 2

and the whole analysis is done conditional on z;.

For binary and ordered outcomes, we fix €2,,, ,, = 1 which fixes the scale. Also we fix the location
of the ordered models by fixing thresholds as 79 = —o0, 71 = 0, 7x = 400, where K denotes the
number of categories for a particular outcome. We also fix to zero the correlation between selected
outcomes (say earnings) and their selection indicator. Hence, we consider two-part models for these
outcomes. Because some parameters are naturally bounded, we also re-parameterize the problem
to guarantee an interior solution. In particular, we parameterize

Qo = exp(0m), m=mo—1,..., M

Qo = tanh (&) v/ QnmQmn, myn=1,...,N

T = eXP(Ymk) + Th—1, k =2,..., K,;, — 1, m ordered

and estimate the (0p,m,&Emn, 1) instead of the original parameters. The parameter values are
estimated using the ¢cmp package in Stata (Roodman, 2011)). Table|8| gives parameter estimates for
the indices while Table [J] gives parameter estimates of the covariance matrix in the outcomes.

4.2 'Trends for replenishing cohorts

Using the jointly estimated models previously described, we then assign outcomes to the replenishing
cohorts, imposing trends for some health, risk factor, and social outcomes. We currently impose
trends on BMI, education, number of children, marital status, hypertension, and smoking status
for these 25-26 year olds. These trends are estimated using the National Health Interview Survey
(health and risk factors) or the American Community Survey (social outcomes). All trends are

halted after 2029. The trends are shown in Table [10, Table [IT] and Table [I2]

10
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5 Implementation

The FAM is implemented in multiple parts. Estimation of the transition and cross sectional models
is performed in Stata. The replenishing cohort model is estimated in Stata using the CMP package
(Roodman)|, 2011)). The simulation is implemented in C++ for speed and flexibility. Currently, the
simulation is run on Linux, Windows, and Mac OS X.

To match the two year structure of the PSID data used to estimate the transition models, the
FAM simulation proceeds in two year increments. The end of each two year step is designed to occur
on July 1st to allow for easier matching to population forecasts from Social Security. A simulation
of the FAM proceeds by first loading a population representative of the age 25+ US population
in 2009, generated from PSID. In two year increments, the FAM applies the transition models for
mortality, health, working, wealth, earnings, and benefit claiming with Monte Carlo decisions to
calculate the new states of the population. Once the simulation begins, trends in mortality are
applied. Separate mortality rate adjustment factors are defined for the under and over 65 age
groups based on the mortality projections from the 2013 SSA Trustees report. The SSA projections
are interpolated through 2090, then extended using GLM with log link through 2150. The average
yearly all-cause mortality reduction between 2020 and 2150 was 1.06% for ages 25-64, and 0.66% for
the 65+ population. The population is also adjusted by immigration forecasts from the US Census
Department, stratified by race and age. If incoming cohorts are being used, the new 25/26 year olds
are added to the population. The number of new 25/26 year olds added is consistent with estimates
from the Census, stratified by race. Once the new states have been determined and new 25/26 year
olds added, the cross sectional models for medical costs are performed. Summary variables are then
computed. Computation of medical costs includes the persons that died to account for end of life
costs. To reduce uncertainty due to the Monte Carlo decision rules, the simulation is performed
multiple times (here 75), and the mean of each summary variable is calculated across repetitions.

FAM simulation takes as inputs assumptions regarding the normal retirement age, real medical
cost growth, and interest rates. The default assumptions are taken from the 2010 Social Security
Intermediate scenario, adjusted for no price increases after 2010. Therefore simulation results are
in real 2009 dollars.

Different simulation scenarios are implemented by changing any of the following components:
incoming cohort model, transition models, interventions that adjust the probabilities of specific
transition, and changes to assumptions on future economic conditions.

6 Validation

We perform cross-validation and external corroboration exercises. Cross-validation is a test of
the simulation’s internal validity that compares simulated outcomes to actual outcomes. External
corroboration compares model forecasts to others’ forecasts.

6.1 Cross-validation

The cross-validation exercise randomly samples half of the PSID respondent 1Ds for use in estimating
the transition models. The respondents not used for estimation, but who were present in the PSID
sample in 1999, are then simulated from 1999 through 2019. Demographic, health, and economic
outcomes are compared between the simulated (“FAM”) and actual (“PSID”) populations.

Worth noting is how the composition of the population changes in this exercise. In 1999, the
sample represents those 25 and older. Since we follow a fixed cohort, the age of the population will

11



Supplement_1_FAM_tech_doc

increase to 45 and older in 2019. This has consequences for some measures in later years where the
eligible population shrinks.

6.1.1 Demographics

Mortality and demographic measures are presented in Tables and [14 Mortality incidence is
comparable between the simulated and observed populations. Demographic characteristics do not
differ between the two.

6.1.2 Health Outcomes

Binary health outcomes are presented in Table FAM underestimates the prevalence of ADL and
IADL limitations compared to the crossvalidation sample. Binary outcomes, like cancer, diabetes,
and hypertension do not differ. FAM underpredicts stroke, and heart and lung disease compared
to the crossvalidation sample.

6.1.3 Health Risk Factors

Risk factors are presented in Table BMI is not statistically different between the two samples.
Current smoking is not statistically different, but more individuals in the crossvalidation sample
report being former smokers.

On the whole, the crossvalidation exercise is reassuring. There are differences that will be
explored and improved upon in the future.

6.2 External Corroboration

Finally, we compare FAM population forecasts to Census forecasts of the US population. Here, we
focus on the full PSID population (25 and older) and those 65 and older. For this exercise, we begin
the simulation in 2009 and simulate the full population through 2049. Population projections are
compared to the 2012 Census projections for years 2012 through 2049. See results in Table [I7 By
2049, FAM forecasts for 25 and older remain within 3% of Census forecasts.

7 Baseline Forecasts

In this section we present baseline forecasts of the Future Adult Model. The figures show data from
the PSID for the 25+ population from 1999 through 2009 and forecasts from the FAM for the 254
population beginning in 2009.

7.1 Disease Prevalence

Figure 2| depicts the six chronic conditions we project for men. And Figure |3| depicts the historic
and forecasted values for women.

Figure [4] shows historic and forecasted levels for any ADL difficulties, three or more ADL dif-
ficulties, any IADL difficulties, and two or more TADL difficulties for men 25 and older. Figure
shows historic and forecasted levels for any ADL difficulties, three or more ADL difficulties, any
IADL difficulties, and two or more IADL difficulties for women 25 and older.

12
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Figure 2: Historic and Forecasted Chronic Disease Prevalence for Men 25+
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9 Tables

Economic Outcomes Health Outcomes Other Outcomes

Work Status BMI Category Education
Earnings Smoking Category  Partnered
Wealth Hypertension Partner Type

Health Insurance

Table 1: Estimated outcomes in replenishing cohorts module
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Standard
Control variable Mean deviation Minimum Maximum
Non-hispanic black 0.112 0.315 0 1
Hispanic 0.127 0.333 0 1
Single 0.343 0.475 0 1
Cohabitating 0.0540 0.226 0 1
Married 0.603 0.489 0 1
Less than high school 0.133 0.340 0 1
High school/GED /some college/AA 0.552 0.497 0 1
College graduate 0.210 0.407 0 1
More than college 0.105 0.307 0 1
Doctor ever - heart disease 0.140 0.347 0 1
Doctor ever - hypertension 0.242 0.428 0 1
Doctor ever - stroke 0.0286 0.167 0 1
Doctor ever - chronic lung disease 0.0677 0.251 0 1
Doctor ever - cancer 0.0492 0.216 0 1
Doctor ever - diabetes 0.0871 0.282 0 1
Never smoked 0.473 0.499 0 1
Former smoker 0.346 0.476 0 1
Current smoker 0.181 0.385 0 1
No ADL limitations 0.869 0.337 0 1
1 ADL limitation 0.0595 0.237 0 1
2 ADL limitations 0.0262 0.160 0 1
3 or more ADL limitations 0.0454 0.208 0 1
No TADL limitations 0.866 0.340 0 1
1 TADL limitation 0.0858 0.280 0 1
2 or more IADL limitations 0.0479 0.214 0 1
25 < BMI < 30 0.366 0.482 0 1
30 < BMI < 35 0.168 0.374 0 1
35 < BMI < 40 0.0662 0.249 0 1
BMI > 40 0.0382 0.192 0 1
Any Social Security income LCY 0.199 0.399 0 1
Any Disability income LCY 0.0388 0.193 0 1
Any Supplemental Security Income LCY 0.0188 0.136 0 1
Any health insurance LCY 0.876 0.329 0 1
Out of labor force 0.317 0.465 0 1
Unemployed 0.0620 0.241 0 1
Working part-time 0.177 0.382 0 1
Working full-time 0.444 0.497 0 1
Earnings in 1000s capped at 200K 34.01 39.98 0 200
Wealth in 1000s capped at 2 million 269.4 457.1 -1974 2000

Table 7: Desciptive statistics for variables in 2009 PSID ages 25+ sample used as simulation stock
population
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This file provides supplementary details for the paper:
Title: The Effect of US COVID-19 Excess Mortality on Social Security Outlays
Authors: Hanke Heun-Johnson, Darius Lakdawalla, Julian Reif, and Bryan Tysinger

The following sheets contain transition model estimates for relevant variables in the Future Adult Model, for the population ages 25-54 years in 2020.

Binaries - health
This worksheet reports estimates of the probability of developing a chronic condition (stroke, heart disease, cancer, hypertension, diabetes, and lung disease),
of exercise status, of initiating smoking, and of ceasing smoking.

Binaries - econ
This worksheet reports estimates of the probability of claiming OASI and DI, and working

Binaries - relationship
This worksheet reports estimates of the probability of transitioning between types of relationships

Ordered probits
This worksheet reports estimates of the probability of changing ADL and IADL status, as well as the number of new children

oLs
This worksheet reports estimates of how BMI is updated in the microsimulation, and estimates of OASDI benefit amounts

multlogit
This worksheet reports estimates of labor force status

Mortality & nursing home
This worksheet reports estimates of the probability of dying, of one's partner dying, and of living in nursing home (ages 55+ only).
These models are estimated on a combined sample of PSID and HRS respondents.



Non-hispanic black

Hispanic

Less than HS/GED

College

Beyond college

Male

Black male

Hispanic male

Poor as a child

Wealthy as a child

Childhood health - fair

Childhood health - qood

Childhood health - very good

Childhood health - excellent

Age spline, less than 35

Age spline, 35 to 44

Age spline, 45 to 54

Age spline, 55 to 64

Age spline, 65 to 74

Age spline, more than 75

Male, age spline less than 35

Male, age spline 35 to 44

Male, age spline 45 to 54

Male, age spline 55 to 64

Male, age spline 65 to 74

Male, age spline over 75

Lag of Doctor ever - heart disease

Lag of Doctor ever - cancer

Lag of Doctor ever - hypertension

Lag of Doctor ever - diabetes

Lag of Ever smoked cigarettes

Lag of Current smoker

Lag of Any light or heavy physical activity

Loa(BMI) spline, BMI < 30

Log(BMI) spline, BMI > 30

Black, Less than HS.

Black, College

Black, Bevond College

Hispanic, Less than HS

Hispanic, College

Hispanic, Beyond College

Lag of married from marriage history

Lag of cohab

Male, previously married

Male, previously cohabitating

Lag of Doctor ever - chronic lung disease
cons

note: .01-*

0514

Stroke (stroke)

coefficients
coef  pvalue
0.140"* 0.047
0028 0087
0.137** 0.040
0166 0.052
-0.206"* 0.076
0584 1003
0.064 0.069
0405 0.165
-0.019 0.036
0069 0046
0.017 0.139
0100 0124
-0.156 0.122
0148 0420
-0.000 0.019
0034 0013
-0.001 0.010
0025" 010
0.0068 0.010
0031 0.007
0.016 0.033
0005 0020
0.017 0.015
0001 0014
0.005 0.015
0014 0012
0.291** 0.038
0124* 0064
0.318™* 0.036
0447 0.044
0.084* 0.037
0478" 0,044
-0.161*** 0.037
0438 0.133
0.385" 0.151
-1.554* 0.714

Stroke (stroke)
marginal effects

p-value

Heart disease
(hearte) coefficients

0.158
0.231%
0.355""
0.346""

2753+

0.007
0.007
0.008
0.007
0.018
0.011
0.010
0.010
0.012
0.011

0.459

Heart disease
(hearte) marginal
effects.

p-value

Any exercise
(anyexerci
coefficients
coef  pvalue
-0.346" 0.017
0216 0.030
-0.310"" 0.022
0334 0019
0.415™ 0.028
0066™  0.024
0.033 0.023
0044 0035
-0.003 0.012
0068 0014
0.124* 0.051
0431 0.045
0.227** 0.044
0253 0.043
-0.006" 0.003
0017 0.002
-0.012"* 0.002
0011 0,003
-0.015"* 0.003
0034 0,003
0.973* 0.012
0105 0.030
-0.026 0.036
0038 0060
-0.017 0.040
0193 0.062
0.068 0.099
0098 0015
0.012 0.028
0019 0025
0.036 0.041
0.473* 0.105

Any exercise
° Cancer (cancre)
(anyexercise) coefficients
marginal effects
coef  pvalue  coef  pevalue
-0.076 -0.217** 0.045
-0.048 047 0114
-0.071 -0.042 0.050
0.060 0077 0.035
0.068 0.023 0.047
0013 4580 1043
0.006 0.039 0.064
-0.009 0050 0.120
-0.001 0.064* 0.027
0014 0005 0036
0.023 0.069 0.130
0025 0010 0417
0.043 -0.015 0.115
0052 0008 0113
-0.001 0.012 0.014
-0.003 0027 0.009
-0.002 0.025** 0.007
-0.002 0013 0007
-0.003 0.020* 0.008
-0.007 0003 0007
0.038 0.034
0000 0017
0.022* 0.012
0018" 0010
-0.001 0.011
0013 0010
0.013 0.028
0446™ 0,036
0273 0.016 0.034
0089 0.104
0.315* 0.130
0020 0012 0082
-0.005 -0.083 0.098
0.007 0078 0135
-0.003 0.126 0.142
-0.043 0147 0.190
0.013 0.327 0.219
0020
0.002
0.004
0.007
-3.406" 0.541

Binaries - health

Cancer (cancre)
marginal effects

Hypertension
(hibpe) coefficients

coef  pvalue  coef  p-value
0.003 0225 0.027
0.005 0101 0.050
0.001 0052 0035
0.001 0024 0.025
0.000 0063 0036
0.035 0435 0323
0.001 0425 0035
0.001 0.156*  0.058
0.001 0.044* 0018
0.000 0030 0.021
0.001 0093 0.082
-0.000 0008 0073
-0.000 0051 0.072
0.000 0082 0071
0.000 0042 0.008
0.000 0.022** 0,005
0.000 0023 0.005
0.000 0017 0.005
0.000 0009 0.007
0.000 0010 0.006
0.001 0.008  0.011
0.000 0004 0.007
0.000 0.008  0.007
0.000 0002 0.008
-0.000 0017 0011
0.000 0007 0010
0239 0.032

0.000 0048 0.018
0.003 0.045* 0,023
0.000 0047 0022
0.002 0982  0.071
0.005 0783 0.081
-0.000 0037 0.050
0.001 0041 0051
0.001 0037 0.080
0.002 0.163%  0.067
0.003 0125 0.100
0.008 0.097 0439
6626 0328
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Hypertension
(hibpe) marginal
effects.

p-value

Diabetes (diabe)
coefficients

coef  pvalue
017 0.037
0120* 0067
0.142%* 0.045
0067 0038
-0.061 0.052
0984 0590
0.134** 0.049
0078 0075
0.025 0.024
0016 0031
0123 0.112
0021 0401
0.007 0.100
0021 0098
0.005 0.011
0024 0.007
0.021** 0.006
0004 0007
0.007 0.009
0003 0008
0.024 0.019
0027 0011
-0.014 0.009
0021 0010
-0.008 0.012
0000 0013
0.041 0.025
0035 0032
-0.108"** 0.028
1637 0116
1.182* 0.092
0052 0064
0.053 0.075
0021 0115
-0.087 0.085
0114 0142
-0.246 0.232
-8.057* 0.506

Diabetes (diabe)
marginal effects

p-value

Lung disease
(lunge) coefficients

coef
0.027
0.016
0.260"*
0.182"*
0.287"
0216
0.050
-0.205*
0.031
0.038
0.060
0.231%
0.300""
0.357*
0.002

0.262"

2.257

p-value

0.007
0.008
0.009
0.008
0.017
0013
0.011
0012
0.014
0013

0.358

0.452

Lung disease
(lunge) marginal
effects.

p-value

Supplement_2_FAM_estimates

Start smoking
(smoke_start)
coeffi its.
coef  pvalue
0.136*** 0.034
0144 0064
0.208*** 0.046
0331 0,034
-0.632"* 0.068

0337 0303
0.126** 0.045
0140° 0074
0.007 0.024
0103 0.026
0.211* 0.115
0134 0.105
0.128 0.104
0213% 0103
-0.029"* 0.007
0008 0006
-0.026"** 0.006
0037 0.008
-0.018 0.013
0032 0017
-0.012 0.010
0006 0009
0.004 0.009
0016 0012
-0.034" 0.019
0008 0026
1.418" 0.028
-0.157** 0.029
0254 0.086
0.172 0.109
0065 0063
0.247** 0.074
0510 0.129
-0.158" 0.087
0296 0.117
0.247 0.222
-0.861* 0.347

Start smoking
(smoke_start)
marginal effects

p-value

Stop smoking

(smok
coeffi

coef

0.020"*
0.0221
0.005
0.009
0.045°
0.007
0.012
0,033
0.016
0.026
0.041
0.014

0.065

0.107**
-1.201%

stop)
nts

p-value

0.048

0.028
0.083
0.125
0.055
0.087
0.183
0.099
0.158
0278

0.040
0.348

Stop smoking
(smoke_stop)

marginal

0.018

0.027

ffects.

p-value
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Binaries - econ

OASI claiming OASI claimi OAI claimi OAI claiming DI claiming DI claiming
(oasiclaim) (oasiclaim) (oaiclaim) (oaiclaim) marginal (diclaim) (diclaim) marginal b_fullparttime_coef b_fullparttime_mfx
coefficients marginal effects coefficients effects coefficients effects

coef p-value coef p-value coef p-value coef p-value coef p-value coef p-value coef p-value coef p-value

Age spline, less than 35 0.039*** 0.011 0.001 0.018** 0.007 0.001 -0.004 0.004 -0.001
Age spline, 35 to 44 0.012* 0.007 0.000 0.006 0.005 0.000 0.005 0.003 0.001
Age spline, 45 to 54 -0.022*** 0.006 -0.000 0.019*** 0.005 0.001 -0.009*** 0.003 -0.002
Age spline, 55 to 64 0.229** 0.006 0.004 0.486*** 0.045 0.167 -0.015*** 0.005 -0.004
Age spline, 65 to 74 0.082** 0.039 0.002 0.001 0.007 0.000 -2.205 5.235 -0.063 -0.028** 0.014 -0.008
0.l2age75p (dropped) 0.002 0.006 0.001 (dropped) -0.085* 0.049 -0.024
Age 60 to 61 -0.536*** 0.049 -0.006 -0.313 0.218 -0.098

Age 62 to 63 0.192** 0.039 0.004 0.369*** 0.076 0.130

Age 65 to 66 0.145** 0.063 0.003 -0.095* 0.051 -0.032

Age 67 to 70 0.453*** 0.133 0.015 0.366*** 0.048 0.133

Male -0.256*** 0.036 -0.005 -0.065 0.046 -0.022 0.085** 0.034 0.002 -0.022 0.179 -0.006
Less than HS/GED -0.048 0.044 -0.001 -0.325*** 0.050 -0.105 0.197** 0.037 0.007 -0.015 0.039 -0.004
College -0.256*** 0.043 -0.004 -0.141** 0.055 -0.047 -0.289*** 0.050 -0.007 -0.051** 0.021 -0.015
Beyond college -0.349*** 0.059 -0.004 -0.344*** 0.068 -0.108 -0.464*** 0.087 -0.009 -0.056* 0.030 -0.016
Male, Less than HS 0.003 0.069 0.000 0.306*** 0.079 0.112 0.051 0.053 0.002 -0.035 0.040 -0.010
Male, College 0.127** 0.064 0.003 0.035 0.081 0.012 -0.121 0.076 -0.003 0.079*** 0.030 0.022
Male, Beyond College 0.224*** 0.086 0.005 0.158 0.100 0.056 -0.195 0.146 -0.005 -0.053 0.043 -0.015
Non-hispanic black 0.034 0.033 0.001 -0.169*** 0.045 -0.057 0.174** 0.031 0.005 0.155*** 0.021 0.043
Hispanic -0.137** 0.063 -0.002 0.092 0.081 0.032 -0.094 0.059 -0.002 0.065* 0.035 0.018
Black male 0.038 0.052 0.001 0.111 0.071 0.039 -0.009 0.046 -0.000 -0.132%** 0.028 -0.039
Hispanic male 0.016 0.102 0.000 -0.177 0.125 -0.058 -0.159* 0.092 -0.004 -0.079* 0.043 -0.023
Lag of Doctor ever - cancer -0.049 0.055 -0.001 -0.011 0.054 -0.004 0.244** 0.057 0.009 -0.047 0.042 -0.014
Lag of Doctor ever - diabetes -0.032 0.037 -0.001 0.007 0.040 0.003 0.188*** 0.034 0.007 0.002 0.029 0.001
Lag of Doctor ever - heart disease 0.092*** 0.034 0.002 -0.017 0.036 -0.006 0.221*** 0.032 0.008 -0.035 0.026 -0.010
Lag of Doctor ever - hypertension 0.088*** 0.027 0.002 0.023 0.031 0.008 0.165*** 0.026 0.005 -0.015 0.018 -0.004
Lag of Doctor ever - chronic lung disease 0.066 0.043 0.001 -0.141% 0.049 -0.047 0.220** 0.036 0.008 0.012 0.034 0.003
Lag of Doctor ever - stroke -0.131* 0.073 -0.002 -0.098 0.070 -0.033 0.187*** 0.060 0.007 0.045 0.083 0.013
Lag of one ADL 0.024 0.047 0.000 -0.213*** 0.048 -0.070 0.753*** 0.036 0.049 -0.104*** 0.040 -0.031
Lag of two ADLs 0.062 0.064 0.001 -0.303*** 0.067 -0.095 0.826*** 0.047 0.059 -0.100 0.065 -0.030
Lag of three or more ADLs 0.189*** 0.060 0.004 -0.381*** 0.065 -0.117 0.993*** 0.044 0.083 -0.093 0.082 -0.027
y2001 0.189*** 0.046 0.004 0.334*** 0.060 0.122 -0.072 0.046 -0.002

y2003 0.145*** 0.046 0.003 0.252*** 0.061 0.091 -0.142%** 0.046 -0.004

y2005 0.137*** 0.044 0.003 0.229*** 0.059 0.082 -0.101** 0.042 -0.003

y2007 0.046 0.044 0.001 0.269*** 0.056 0.097 -0.041 0.039 -0.001

y2009 0.119*** 0.041 0.002 0.282*** 0.053 0.102 -0.023 0.038 -0.001

y2011 0.137** 0.039 0.003 0.132*** 0.050 0.047 -0.037 0.037 -0.001

y2013 0.120*** 0.037 0.002 0.112** 0.046 0.039 0.029 0.036 0.001

Age spline, 55 to 61 0.018** 0.007 0.001

Age spline, 62 to 64 -0.069** 0.029 -0.002

Lag of any socical security disability income LCY 2.339"* 0.030 0.480 -0.297** 0.081 -0.094

under65_lowincome
under65_lowwealth
under65_|2age35|
under65_l2age3544
under65_|2age4554
under65_l2age5564
under65_male
under65_black
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Binaries - relationship

b_exitsingle_m_coef b_exitsingle_m_mfx b_exitsingle_f coef b_exitsingle_f mfx b_single2married_m b_single2married_m b_single2married_f_ b_single2married_f_

_coef _mfx coef mfx
coef p-value coef p-value coef p-value coef p-value coef p-value coef p-value coef p-value coef p-value
Lag of Ever Married 0433** 0116  0.088 0085 0086  0.008 0.669** 0254  0.261 0291 0235  0.116
;Zgrr‘i;fg'i"grr jgﬁ:;i;?og"m 0203 0107  -0.039 0193 0080  0.020 0388 0238  -0.150 0075 0225  0.030
Non-hispanic black 0258 0075  -0.049 0.640"* 0065  -0.068 0.146*  0.089  0.058 0497** 0078  0.196
Hispanic 0107 0459  -0.020 0186  0.116  -0.016 0056  0.181 0.022 0156  0.133  0.062
Less than HS/GED 0.113* 0053 0023 0.084* 0047  -0.008 0188 0117  -0.073 0158 0114  -0.063
College 0.083*  0.048 0017 0.139**  0.041 0.015 0351 0100  0.139 0.314** 0090  0.124
Beyond college 0.193* 0075 0042 0.232°*  0.061 0.027 0538 0159  0.212 0.460** 04130  0.179
Lag of Unemployed 0.005 0080  -0.001 0.007 0062  -0.001 0.387** 0188  -0.145 0198 0141  -0.079
Lag of Part-time 0079 0076  0.016 0015 0060  -0.002 0026 0169  -0.010 0042 04133  -0.017
Lag of Full-time 0116 0077  0.023 0021 0063  0.002 0074 0471 -0.029 0003 04140  -0.001
%gg of IHS of iearnx divided by gagues 1735 0.921 1.683 1545  0.168 10.624* 3847 4471 5322 3.554 2123
5918;'”3 of hatotbx divided 0952 0559  0.187 A4.031% 0448 -0.103 0054 1162 -0.021 2375% 0964  0.947
R's mother high school grad 0.045 0049  -0.009 0020 0037  -0.002 0032 0105  -0.013 0.479* 0089 0071
R;s mother some college 0068 0061  -0.013 0.048 0047  0.005 0042 0128  0.017 0143 0407  0.057
R's mother college graduate 0.112* 0061  -0.021 0013  0.051 0.001 0072 0129  -0.028 0051 0413  0.020
Lag of 1 biological child 0.114* 0055  0.023 0.006 0048  -0.001 0124 0118  -0.048 0.187*  0.106  -0.074
Lag of 2 biological children 0242 0058  0.052 0003 0048  0.000 0.214* 0421  -0.083 0060 0107  0.024
'C‘ﬁﬁ d‘r’;: or more biological 0.256** 0061  0.055 0411% 0049 0011 0005 0130  0.002 0152 0412 0.061
Age 30 to 34 0020 0066  -0.004 -0.145"  0.064  -0.013 0038 0099  -0.015 0010 0089  0.004
Age 35 to 39 0.377** 0080  -0.062 0.456** 0073  -0.034 0033 0125  -0.013 0034 0109  -0.014
Age 40 to 49 0732 0077  -0.109 0.827** 0069  -0.057 0055 01435  0.022 0130 0109  -0.052
Age 50 to 59 -1.016"* 0086  -0.134 1.283** 0080  -0.072
Age 60 to 64 14157 0136  -0.130 1523 0121 -0.057
Age more than 65 1.435"* 0123 -0.146 1,945 0108  -0.104
Black, age 30 to 34 0051 0106  0.010 0021 0090  0.002
Black, age 35 to 39 0220 0122  0.048 0.196* 0098  0.023
Black, age 40 to 49 0155  0.111 0.033 0.312** 0089  0.038
Black, age 50 to 59 0049 0126  0.010 0.342** 04107  0.043
Black, age 60 to 64 0.390* 0202  0.094 0283  0.191 0.035
Black, age more than 65 0.003 0234  -0.001 0.369*  0.184  0.048
Hispanic, age 30 to 34 0394 0242 -0.061 0153 04173 -0.013
Hispanic, age 35 to 39 0038 0242  -0.007 0306 0213  -0.024
Hispanic, age 40 to 49 0.346 0263  -0.055 0050 0472  0.005
Hispanic, age 50 to 59 0260 0279  0.059 0421 0202  0.013
Hispanic, age more than 60 -0.005 0.314 -0.001 -0.067 0.294 -0.006
Age more than 50 0104 0155  0.041 0200 04138  -0.079

Black, age more than 50

Hispanic, age more than 50

Hispanic, age 60 to 64

Hispanic, age more than 65

_cons -0.965*** 0.083 -0.686*** 0.069 -0.674*** 0.176 -0.709*** 0.142
note: .01 -***;.05-** .1-%
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Non-hispanic black

Hispanic

Less than HS/GED

College

Beyond college

Black, Less than HS

Black, College

Black, Beyond College
Hispanic, Less than HS
Hispanic, College

Hispanic, Beyond College
Male

Black male

Hispanic male

Poor as a child

Wealthy as a child

Childhood health - fair
Childhood health - good
Childhood health - very good
Childhood health - excellent
Age spline, less than 35

Age spline, 35 to 44

Age spline, 45 to 54

Age spline, 55 to 64

Age spline, 65 to 74

Age spline, more than 75

, age spline less than 35
Male, age spline 35 to 44
Male, age spline 45 to 54
Male, age spline 55 to 64
Male, age spline 65 to 74
Male, age spline over 75

Lag of Doctor ever - heart disease
Lag of Doctor ever - stroke
Lag of Doctor ever - cancer
Lag of Doctor ever - hypertension
Lag of Doctor ever - diabetes
Lag of Doctor ever - chronic lung disease
Lag of one ADL.

Lag of two ADLs

Lag of three or more ADLs
Lag of Ever smoked cigarettes
Lag of Current smoker

Lag of Any light or heavy physical activity
Log(BMI) spline, BMI < 30
Log(BMI) spline, BMI > 30
Lag of one IADL

Lag of two or more IADLs

Lag of

12age"2

Lag of 1 biological child

Lag of 2 biological children
Lag of 3 or more biological children
Lag of married from marriage history
Lag of cohab

Lag of Unemployed

Lag of Part-time

Lag of Full-time

R's mother high school grad
R;s mother some college

R's mother college graduate

5
o

ADL status (adistat)

coefficients

coef  p-value
0012 0022
0011 0043
0.105*  0.026
-0175"* 0,023
-0.204"* 0,032
-0.001 0038
0044 0049
0014 0077
0013 0057
0.222** 0085
0014 0141
0316 0.309
0028  0.030
-0.160"*  0.052
0.059* 0015
0042 0019
-0.048 0058
-0.188"*  0.052
-0.227**  0.051
-0.263"**  0.050
0.029*  0.006
0.014**  0.004
0013**  0.004
0007 0.004
0.018™*  0.005
0042 0.004
0014 0010
0003 0.007
0005  0.006
0001 0.006
0011 0007
0009  0.006
0161 0018
0.258"* 0034
0.139™* 0029
0.182** 0016
0.140*  0.020
0232 0022
1.146"* 0020
1640 0027
2280 0028
0.095™* 0015
0475 0019
-0.195"* 0,016
0138 0.057
0.816™*  0.060

coef
0.001
0.001
0.013
0.019
0.021
0.000
-0.005
-0.002
-0.002
-0.031
0.002
-0.039
-0.003
0017
-0.007
-0.005
0.006
0.020
0.025
0.033
-0.003
-0.002
-0.002
-0.001
-0.002
-0.005
0.002
-0.000
-0.001
-0.000
0.001
-0.001
-0.021
-0.037
0.018
0.024
0.018
-0.033
-0.269
-0.465
-0.695
-0.011
-0.023
0.026
-0.017
-0.098

p-value

ADL status (adistat) marginal effects

coef
-0.001
-0.001
0.009
-0.013
-0.015
-0.000
0.004
0.001
0.001
0.020
-0.001
0.026
0.002
-0.012
0.005
0.003
-0.004
-0.014
-0.017
-0.021
0.002
0.001
0.001
0.001
0.001
0.003
-0.001
0.000
0.000
0.000
-0.001
0.001
0.014
0.024
0012
0.016
0012
0.021
0.137
0.185
0178
0.008
0015
-0.017
0011
0.065

p-value

coef
-0.000
-0.000
0.003
-0.004
-0.005
-0.000
0.001
0.000
0.000
0.007
-0.000
0.009
0.001
-0.004
0.002
0.001
-0.001
-0.004
-0.006
-0.007
0.001
0.000
0.000
0.000
0.000
0.001
-0.000
0.000
0.000
0.000
-0.000
0.000
0.005
0.009
0.004
0.005
0.004
0.008
0.072
0.127
0172
0.003
0.005
-0.006
0.004
0.022

p-value

coef
-0.000
-0.000
0.002
-0.002
-0.002
-0.000
0.001
0.000
0.000
0.004
-0.000
0.004
0.000
-0.002
0.001
0.001
-0.001
-0.002
-0.003
-0.004
0.000
0.000
0.000
0.000
0.000
0.001
-0.000
0.000
0.000
0.000
-0.000
0.000
0.003
0.005
0.002
0.003
0.002
0.004
0.061
0.153
0.345
0.001
0.003
-0.003
0.002
0011

p-value

IADL status
(iadlstat)
coefficients
coef  p-value
0083 0021

0005 0040
0095 0026
0133 0022
0133 0030
0002 0037
019 0.048
088 0.077
0047 0054
0208 0077
0022 0120
0103 0286
0093 0030
0008 0048
0051 0015
0041% 0018
0025 0057
0195 0051
0208 0050
0276 0049
0021 0006
0014 0004
0014 0004
0003 0004
0004 0004
0028 0004
0010 0010
0006 0007
0006 0006
0003 0006
0002 0007
0014 0.006
0155 0018
0183 0034
0166 0029
0182 0016
0138 0021
0227 0022
0537 0022
0713 0030
0831 0032
0076 0015
0189 0018
0147 0.016
0011 0054
0466 0061
0920 0019
1399 0.027

coef
0011
0.001
0.013
0017
0.016
0.000
0.002
0011
0.006
-0.032
0.003
0.014
-0.013
-0.001
-0.007
-0.006
0.003
0.023
0.026
0.038
-0.003
-0.002
-0.002
-0.000
-0.001
-0.004
0.001
0.001
-0.001
-0.000
0.000
-0.002
-0.023
-0.028
-0.025
-0.026
-0.020
-0.035
-0.100
-0.149
0.184
-0.010
-0.027
0.021
0.001
-0.062
-0.205
-0.383

Ordered probits

IADL status (iadistat) marginal effects

p-value  coef  p-value  coef
-0.008
-0.000
0.010
0.013
0.013
-0.000
-0.002
-0.008
-0.005
0.024
-0.002
0.010
0.010
0.001
0.005
0.004
-0.002
0.018
-0.020
-0.029
0.002
0.001
0.001
0.000
0.000
0.003
-0.001
-0.001
0.001
0.000
-0.000
0.001
0017
0.020
0018
0.020
0015
0.026
0.070
0.100
0.121
0.008
0.021
0.016
-0.001
0.047
0.133
0211
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p-value

Number of new
children (births)

coefficients

coef  p-value
0017 0025
0047 0.036
0.124** 0036
0.116™* 0026
0.181* 0038
04127 0412
0.169**  0.021
-0.004***  0.000
0.295™*  0.028
-0471"* 0,030
-0.200"*  0.034
0612 0027
0.222** 0036
0043 0045
-0.108"*  0.029
-0.131"* 0,026
0022 0.030
0.093"* 0034
0.113** 0036

Number of new children (births) marginal effects

coef
0.003
-0.008
-0.023
-0.021
-0.035

0.021

-0.030
0.001
-0.058
0.029
0.033
-0.103
-0.044
0.007
0018
0.023
-0.004
-0.017
-0.021

p-value

coef
-0.003
0.008
0.022
0.021
0.033

-0.020

0.029
-0.001
0.055

p-value

coef
-0.000
0.000
0.001
0.001
0.002

-0.001

0.001
-0.000
0.003
-0.001
-0.001
0.004
0.002
-0.000
-0.001
-0.001
0.000
0.001
0.001

p-value

Number of new
children (paternity)

coefficients
coef  p-value
0039 0026
0070° 0038
0040 0.035
0093 0027
0.222** 0043
0.107** 0015
-0.003***  0.000
0.237** 0028
-0.214"* 0,030
0.119"* 0,034
0.863* 0033
0.490"*  0.040
0018 0.060
-0.008 0051
0004 0045
0028 0032
-0.007  0.039
0045  0.038
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Number of new children (paternity) marginal effects

coef
-0.004
-0.007
-0.004
-0.010
-0.026

-0.011
0.000
-0.027
0.020
0011
-0.072
-0.068
-0.002
0.001
0.000
0.003
0.001
-0.005

p-value

coef
0.004
0.007
0.004
0.010
0.026

0011
-0.000
0.026
-0.020
-0.011
0.070
0.065
0.002
-0.001
-0.000
-0.003
-0.001
0.005

p-value

coef
0.000
0.000
0.000
0.000
0.001

0.000
-0.000
0.001
-0.000
-0.000
0.002
0.002
0.000
-0.000
-0.000
-0.000
-0.000
0.000

p-value
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Log(BMI) (logbmi) - Log(BMI) (logbmi) - | . gy (ogpmiy  L09BMD logbmi) - gy o1t (ssdiamt)  SSDI amount (ssdiamt) OAS! amount (ssdiamt) ,__OAS!aMOUNt o) oo unt (ssdiamt) OA! amount
women - women - marginal e men - marginal - N - (ssdiamt) marginal - (ssdiamt) marginal
coefficients effects men - coefficients effects coefficients marginal effects coefficients effects coefficients effects
coef p-value coef p-value coef p-value coef p-value coef p-value coef p-value coef p-value coef p-value coef p-value coef p-value
Non-hispanic black 0.009*** 0.001 0.009 0.001 0.001 0.001
Hispanic 0.003 0.002 0.003 0.002 0.002 0.002
Less than HS/GED 0.002 0.002 0.002 -0.001 0.002 -0.001 -2,025.646™** 279.232  -2,025.646 -2,082.145"**  178.583 #HHHHHH -2,270.824***  202.408 #HHHHHH
College -0.008*** 0.001 -0.008 -0.006*** 0.001 -0.006 2,590.571*** 486.321 2,590.571 1,357.451***  201.883 1,357.451 1,480.943***  210.377 1,480.943
Beyond college -0.008"** 0.002 -0.008 -0.005*** 0.002 -0.005 3,510.543"** 959.881 3,510.543 2,206.006"**  273.834 2,206.006 2,381.822"**  283.145 2,381.822
Black, Less than HS -0.008*** 0.003 -0.008 -0.005** 0.002 -0.005
Black, College 0.004* 0.003 0.004 0.005** 0.003 0.005
Black, Beyond College 0.005 0.004 0.005 0.006 0.005 0.006
Hispanic, Less than HS -0.002 0.004 -0.002 -0.004 0.003 -0.004
Hispanic, College 0.006 0.005 0.006 -0.003 0.005 -0.003
Hispanic, Beyond College 0.003 0.007 0.003 -0.006 0.006 -0.006
Poor as a child 0.001 0.001 0.001 0.001* 0.001 0.001
Wealthy as a child -0.001 0.001 -0.001 -0.002 0.001 -0.002
Childhood health - fair 0.004 0.004 0.004 0.004 0.004 0.004
Childhood health - good 0.001 0.004 0.001 0.004 0.004 0.004
Childhood health - very good 0.001 0.004 0.001 0.003 0.004 0.003
Childhood health - excellent -0.001 0.004 -0.001 0.002 0.004 0.002
Age spline, less than 35 -0.000 0.000 -0.000 -0.000 0.000 -0.000 294.574** 82.992 294.574 571.624** 225225 571.624
Age spline, 35 to 44 -0.000* 0.000 -0.000 -0.000* 0.000 -0.000 110.305** 49.002 110.305 289.871** 125.099 289.871
Age spline, 45 to 54 -0.000* 0.000 -0.000 -0.001*** 0.000 -0.001 28.105 37.510 28.105 -272.249"* 95.801 -272.249
Age spline, 55 to 64 -0.000* 0.000 -0.000 -0.000 0.000 -0.000 158.855™** 38.337 158.855 146.594*** 52232 146.594 1,891.647***  144.217 1,891.647
Age spline, 65 to 74 -0.001*** 0.000 -0.001 -0.001*** 0.000 -0.001 16,911.703  31,182.962 16,911.703 119.599*** 17.376  119.599 45.937** 18.820 45.937
Age spline, more than 75 -0.002*** 0.000 -0.002 -0.002*** 0.000 -0.002 -67.394*** 13.397  -67.394 -61.801"** 14.150  -61.801
12logbmi: (.,2.9957323) 0.795*** 0.020 0.795 0.225*** 0.032 0.225
12logbmi: . pran
(2%%57322735539913 2188758) 0.941 0.008 0.941 0.939’ 0.009 0.939
12logbmi: xx xx
(3;2.918875824868201,3 4011974) 0.914 0.009 0.914 0.913° 0.007 0.913
12logbmi: onx an
(3.?01197381662155.3 5553481) 0.923’ 0.014 0.923 0.924 0.012 0.924
12logbmi: s e
(3?;5%806148%14,3 6888795) 0.866 0.020 0.866 0.866 0.022 0.866
12logbmi: (3.688879454113936,.) 0.803*** 0.014 0.803 0.732*** 0.019 0.732
Lag of married from marriage history -0.008*** 0.001 -0.008 -0.000 0.001 -0.000
Lag of cohab -0.003* 0.002 -0.003 -0.000 0.001 -0.000
Male 2,819.170*** 225.829  2,819.170 3,665.217***  140.275 3,665.217 3,978.285***  143.390 3,978.285
Black male
Hispanic male
Lag of Doctor ever - heart disease
Lag of Doctor ever - stroke
Lag of Doctor ever - cancer
Lag of Doctor ever - hypertension
Lag of Doctor ever - diabetes
Lag of Doctor ever - chronic lung disease
Lag of one ADL.
Lag of two ADLs
Lag of three or more ADLs
Lag of Ever smoked cigarettes
Lag of any socical security disability
income LCY
Lag of any social security OASI income
Lag of social security retirement income
(incl. dep.) LCY
Lag of Unemployed
Lag of Part-time
Lag of Full-time
Lag of IHS of iearnx divided by 100
Lag of IHS of hatotbx divided by 100
Lag of Current smoker
Lag of any SSI LCY
Married- from individual file
Cohabitating
Earnings in thousands in 2009 dollars.
This will be used in the simulation with
capital income in 2009 dollars. This will be
used in the simulation without inf
o.l2age75p (dropped)
Male, Less than HS -604.342 412.948 -604.342 -937.183***  276.992 -937.183 -844.130"**  292.007 -844.130
Male, College 1,807.243* 742.683 1,807.243 -209.655 285.768 -209.655 -296.466 289.280 -296.466
Male, Beyond College -5,246.815*** 1,657.408  -5,246.815 299.299  369.072 299.299 279.150 372.570  279.150
0.12age35| (dropped)
0.12age3544 (dropped)
0.12age4554 (dropped)
Lag of Any light or heavy physical activity

_cons, 0.658"** 0.060 2.356"* 0.096 -1,486.582  2,513.140 -10,657.852 6,902.362 -8,786.470*** 1,385.898
note: .01-***;.06-*; . f
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ml_laborforcestat_coef ml_laborforcestat_mfx
coef p-value coef p-value coef p-value coef p-value coef p-value coef p-value
Non-hispanic black -0.017 0.039 0.674** 0.057 -0.007 0.028
Hispanic 0.205*** 0.063  0.405*** 0.098 0.028 0.015
Less than HS/GED 0.355** 0.060 0.393*** 0.089 0.052 0.013
College -0.009 0.041 -0.114 0.082 -0.001 -0.004
Beyond college -0.110* 0.062 -0.381*** 0.140 -0.013 -0.011
Black, Less than HS -0.028 0.073 0.123 0.092 -0.005 0.005
Black, College -0.133 0.082 -0.531*** 0.120 -0.016 -0.014
Black, Beyond College -0.129 0.136 -0.171 0.202 -0.017 -0.005
Hispanic, Less than HS -0.083 0.096 0.002 0.128 -0.012 0.001
Hispanic, College -0.065 0.133  -0.581** 0.235 -0.006 -0.016
Hispanic, Beyond College -0.130 0.215 0.146 0.299 -0.019 0.006
Male -0.445 0.455 -0.026 0.430 -0.063 0.002
Black male 0.152** 0.058 -0.050 0.073 0.023 -0.003
Hispanic male -0.519*** 0.096 -0.064 0.114 -0.063 0.000
Poor as a child 0.050* 0.026 0.061 0.037 0.007 0.002
Wealthy as a child 0.035 0.030 0.029 0.040 0.005 0.001
Childhood health - fair 0.099 0.118 -0.023 0.159 0.015 -0.001
Childhood health - good -0.043 0.106 -0.132 0.144 -0.005 -0.004
Childhood health - very good 0.016 0.105 -0.145 0.142 0.003 -0.005
Childhood health - excellent 0.025 0.103 -0.130 0.140 0.004 -0.005
Age spline, less than 35 -0.011 0.008 -0.007 0.010 -0.002 -0.000
Age spline, 35 to 44 -0.020*** 0.006  -0.015* 0.009 -0.003 -0.000
Age spline, 45 to 54 0.034** 0.006 -0.002 0.010 0.005 -0.000
Age spline, 55 to 64 0.148*** 0.007 -0.002 0.016 0.021 -0.001
Age spline, 65 to 74 0.030** 0.013 -0.123*** 0.047 0.005 -0.005
Age spline, more than 75 0.164** 0.024  0.137* 0.065 0.023 0.004
'&fsge;’ggocmr ever - heart 0.089** 0.040 0.048 0.069 0.013 0.001
Lag of Doctor ever - stroke 0.579*** 0.102 0.186 0.173 0.097 0.002
Lag of Doctor ever - cancer 0.030 0.063 -0.235 0.156 0.006 -0.008
h?ge‘;:e?gic;ar ever- 0.224** 0030 -0.160"*  0.051 0.035 -0.007
Lag of Doctor ever - diabetes 0.225** 0.045 -0.144* 0.084 0.035 -0.006
hi%‘:;;‘;fgr ever-chronic  go99es 0051 0407 0075 0.046 0.002
Lag of one ADL 0.445** 0.055 0.158* 0.089 0.071 0.002
Lag of two ADLs 0.672*** 0.081 0.145 0.133 0.116 -0.000
Lag of three or more ADLs 1.106*** 0.091 0.231 0.149 0.210 -0.003
Lag of Ever smoked cigarettes 0.012 0.026 0.186*** 0.040 0.001 0.007
Lag of Current smoker 0.188** 0.033 0.325"* 0.042 0.026 0.011
Lag of any socical security 1.070%+ 0.072 0.121 0.118 0.202 -0.006

disability income LCY
Lag of any SSI LCY 1.384*** 0.096 0.718*** 0.124 0.269 0.012
Lag of any social security

OAS! oo Loy 0.244 0.104  -0.135 0.193 0.038 -0.006
Lag of social security

retirement income (incl. dep.)  -0.421*** 0.110 -0.321 0.282 -0.053 -0.008
LCY

Lag of Unemployed 1,162+ 0.045 0.638** 0.055 -0.120 0.038
Lag of Part-time -1.989*+ 0.035 -0.570*** 0.059 -0.189 -0.011
Lag of Full-time 2484+ 0.038 -0.987*** 0.062 -0.362 -0.015
591 g(f) IHS ofiearnx divided g3 (ygee (880 -23.445 1.363 4610 0616
Lag of IHS of hatotbx divided ) 35700 397 4047 0.508 0.369 -0.158
by 100

Male, age spline less than 35 -0.001 0.016 0.004 0.015 -0.000 0.000
Male, age spline 35 to 44 0.038*** 0.012  0.022* 0.013 0.005 0.001
Male, age spline 45 to 54 0.034*** 0.011 0.014 0.014 0.005 0.000
Male, age spline 55 to 64 0.039*** 0.011  -0.032 0.023 0.006 -0.001
Male, age spline 65 to 74 -0.011 0.015 0.056 0.065 -0.002 0.002
Male, age spline over 75 -0.072* 0.031 -0.955 0.792 -0.004 -0.033
Male, Less than HS 0177+ 0.070  -0.054 0.079 -0.024 -0.001
Male, College -0.050 0.065 0.092 0.103 -0.008 0.004
Male, Beyond College 0.007 0.093 0.124 0.175 0.000 0.005
hiﬁ’;; married from marriage ) yeons 0035 0542  0.051 0.067 -0.024

Lag of cohab 0.268*** 0.058 -0.268*** 0.076 0.043 -0.010
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Male, previously married -0.650*** 0.061 0.056 0.074 -0.087 0.006

Male, previously cohabitating ~ -0.425*** 0.098 0.219** 0.102 -0.055 0.011

Log(BMI) spline, BMI < 30 -0.434*** 0.092 -0.081 0.132 -0.062 -0.000

Log(BMI) spline, BMI > 30 0.415*** 0.123 0.192 0.166 0.059 0.004

o.black (dropped) -0.020
o.hispan (dropped) -0.043
o.educ1 (dropped) -0.065
o.educ3 (dropped) 0.004
o.educ4 (dropped) 0.025
o.black_educ1 (dropped) -0.000
o.black_educ3 (dropped) 0.030
o.black_educ4 (dropped) 0.022
o.hispan_educ1 (dropped) 0.011
o.hispan_educ3 (dropped) 0.022
o.hispan_educ4 (dropped) 0.012
o.male (dropped) 0.061
o.male_black (dropped) -0.020
o.male_hispan (dropped) 0.063
o.fpoor (dropped) -0.009
o.frich (dropped) -0.006
o.chldsrh2 (dropped) -0.013
o.chldsrh3 (dropped) 0.010
o.chldsrh4 (dropped) 0.002
o.chldsrh5 (dropped) 0.000
0.12age35I (dropped) 0.002
0.12age3544 (dropped) 0.003
0.12age4554 (dropped) -0.005
0.12age5564 (dropped) -0.020
0.12age6574 (dropped) -0.001
o.12age75p (dropped) -0.027
o.12hearte (dropped) -0.014
o.I2stroke (dropped) -0.099
o.l2cancre (dropped) 0.002
o.12hibpe (dropped) -0.028
o.12diabe (dropped) -0.029
o.12lunge (dropped) -0.048
o.12adI1 (dropped) -0.074
o.12ad2 (dropped) -0.116
o.12adI3p (dropped) -0.208
0.12smokev (dropped) -0.007
0.12smoken (dropped) -0.037
o.l2diclaim (dropped) -0.197
0.12ssiclaim (dropped) -0.281
o.l2oasiclaim (dropped) -0.032
0.12o0aiclaim (dropped) 0.061
o.l2workcat2 (dropped) 0.082
o.l2workcat3 (dropped) 0.200
o.l2workcat4 (dropped) 0.377
o.I2logiearnx (dropped) 5.227
o.12loghatotbx (dropped) -0.211
0.12age35]_male (dropped) 0.000
0.12age3544_male (dropped) -0.006
0.12age4554_male (dropped) -0.005
0.12age5564_male (dropped) -0.004
0.12age6574_male (dropped) -0.000
0.12age75p_male (dropped) 0.037
o.male_educ1 (dropped) 0.025
o.male_educ3 (dropped) 0.004
o.male_educ4 (dropped) -0.005
o.I2married (dropped) -0.043
o.12cohab (dropped) -0.033
o.male_I2married (dropped) 0.081
o.male_I2cohab (dropped) 0.044
0.12logbmi_I30 (dropped) 0.062
0.12logbmi_30p (dropped) -0.063
_cons 2.069*** 0.377 -0.827 0.521

Lag of Uninsured

Lag of Public Insurance Only
Age spline, more than 55
o.l2inscat1
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o.12inscat2

0.12age55p

0._cons (dropped)
_cons

note: .01-**;.05-** .1-%



Non-hispanic black

Hispanic

Less than HS or GED education
College degree or higher

Male

Black male

Hispanic male

Age spline, less than 35

Age spline, 35 to 44

Age spline, 45 to 54

Age spline, 55 to 64

Age spline, 65 to 74

Age spline, 75 to 84

Age spline, more than 85
male_l2age35|
male_l2age3544
male_l2age4554
male_l2age5564

Male, age 65 to 74
male_l2age7584
male_l2age85p

Lag of Doctor ever - heart disease
Lag of Doctor ever - stroke

Lag of Doctor ever - cancer

Lag of Doctor ever - hypertension
Lag of Doctor ever - diabetes
Lag of Doctor ever - chronic lung disease
Lag of one ADL

Lag of two ADLs

Lag of three or more ADLs

Lag of Current smoker

Male, less than high school
Male, college or more

Age spline, less than 65

Age spline, more than 75

Male, less than 65

Male, age more than 75

Black, age spline less than 65
Black, age spline 65 to 74
Black, age spline over 75
Hispanic, age spline less than 65
Hispanic, age spline 65 to 74
Hispanic, age spline over 75
Black male, less than 65

Black male, 65 to 74

Black male, over 75

Hispanic male, less than 65
Hispanic male, 65 to 74
Hispanic male, over 75

Lag of Widowed: most recent spouse died
o.black

o.hispan

o.12age35|

_cons

note: .01-***;,.05-*%.1-%

Died (died)

coefficients
coef p-value
0.030 0.018
-0.155*** 0.028
0.051*** 0.017
-0.056*** 0.017
-0.488 0.565
0.054** 0.027
0.069* 0.040
-0.010 0.014
0.033*** 0.011
0.017** 0.007
0.020*** 0.004
0.032*** 0.003
0.047** 0.003
0.064*** 0.003
0.025 0.019
-0.026* 0.015
0.010 0.010
0.006 0.006
-0.001 0.004
-0.005 0.004
0.011** 0.005
0.184*** 0.011
0.235*** 0.015
0.400*** 0.013
0.122*** 0.011
0.209*** 0.012
0.338*** 0.014
0.280*** 0.016
0.419*** 0.021
0.801*** 0.015
0.301*** 0.014
0.015 0.025
-0.048* 0.025
-2.895"** 0.403

Died (died) marginal

effects

coef
0.001
-0.005
0.002
-0.002
-0.018
0.002
0.003
-0.000
0.001
0.001
0.001
0.001
0.002
0.002
0.001
-0.001
0.000
0.000
-0.000
-0.000
0.000
0.008
0.011
0.022
0.005
0.009
0.018
0.014
0.025
0.067
0.015
0.001
-0.002

p-value

Partner died

(part_died)

coefficients
coef p-value
0.347 0.260
0.166 0.432
0.175*** 0.053
-0.163*** 0.050
0.134 0.288
0.166 0.448
1.401* 0.749
0.062*** 0.009
-0.024* 0.014
-0.040 0.089
0.129 0.083
0.032*** 0.003
0.021** 0.009
-0.009* 0.005
0.026** 0.012
0.001 0.005
-0.046** 0.019
0.060** 0.027
-0.004 0.009
-0.016 0.032
0.047 0.045
-0.008 0.009
0.032 0.033
-0.029 0.041
-0.038** 0.018
0.123* 0.070
-0.070 0.068

(dropped)
(dropped)

-4.092%** 0.173

Partn

(part_died) marginal

Mortality & nursing home

or died R live in nursing

R live in nursing
home at interview  home at interview

effects (nh!'n.liv) (nhmliv) marginal
coefficients effects
coef p-value coef p-value coef p-value

0.004 -0.231*** 0.034 -0.003

0.002 -0.444** 0.050 -0.004

0.002 0.029 0.024 0.000

-0.001 -0.056** 0.024 -0.001

0.001 -0.113** 0.024 -0.001

0.002 0.423*** 0.054 0.009

0.080 0.336*** 0.077 0.007

-0.123 0.245 -0.002

-0.052** 0.025 -0.001

0.045*** 0.008 0.001

0.001 0.040*** 0.004 0.001
-0.000

-0.045** 0.021 -0.001

0.380*** 0.024 0.008

-0.050** 0.025 -0.001

-0.052** 0.021 -0.001

0.151*** 0.023 0.002

-0.059* 0.031 -0.001

0.372*** 0.028 0.008

0.677** 0.034 0.021

1.219*** 0.025 0.069

0.117*** 0.033 0.002
-0.000
0.001
0.000

0.000 0.063*** 0.002 0.001
-0.000
0.000
0.000
-0.000
0.001
-0.000
-0.000
0.000
-0.000
0.000
-0.000
-0.000
0.001
-0.001

0.229*** 0.022 0.004

(dropped)
-1.594 2.350
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This appendix describes technical details to support the paper ”The Effect of US COVID-19
Excess Mortality on Social Security Outlays”.

1 Functioning of the dynamic model

1.1 Background

The Future Elderly Model (FEM) is a microsimulation model originally developed out of an effort
to examine health and health care costs among the elderly Medicare population (age 65+). A
description of the previous incarnation of the model can be found in |Goldman et al. (2004). The
original work was founded by the Centers for Medicare and Medicaid Services and carried out by
a team of researchers composed of Dana P. Goldman, Paul G. Shekelle, Jayanta Bhattacharya,
Michael Hurd, Geoffrey F. Joyce, Darius N. Lakdawalla, Dawn H. Matsui, Sydne J. Newberry,
Constantijn W. A. Panis and Baoping Shang.

Since then various extensions have been implemented to the original model. The most recent
version now projects health outcomes for all Americans aged 51 and older and uses the Health
and Retirement Study (HRS) as a host dataset rather than the Medicare Current Beneficiary
Survey (MCBS). The work has also been extended to include economic outcomes such as earnings,
labor force participation and pensions. This work was funded by the National Institute on Aging
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through its support of the RAND Roybal Center for Health Policy Simulation (P30AG024968),
the Department of Labor through contract J-9-P-2-0033, the National Institutes of Aging through
the RO1 grant “Integrated Retirement Modeling” (R01AG030824) and the MacArthur Foundation
Research Network on an Aging Society. Finally, the computer code of the model was transferred
from Stata to C+4. This report incorporates these new development efforts in the description of
the model.

1.2 Overview

The defining characteristic of the model is the modeling of real rather than synthetic cohorts, all
of whom are followed at the individual level. This allows for more heterogeneity in behavior than
would be allowed by a cell-based approach. Also, since the HRS interviews both respondent and
spouse, we can link records to calculate household-level outcomes such as net income and Social
Security retirement benefits, which depend on the outcomes of both spouses. The omission of the
population younger than age 51 sacrifices little generality, since the bulk of expenditure on the public
programs we consider occurs after age 50. However, we may fail to capture behavioral responses
among the young.
The model has three core components:

e The initial cohort module predicts the economic and health outcomes of new cohorts of 51/52
year-olds. This module takes in data from the Health and Retirement Study (HRS) and trends
calculated from other sources. It allows us to “generate” cohorts as the simulation proceeds,
so that we can measure outcomes for the age 51+ population in any given year.

e The transition module calculates the probabilities of transiting across various health states
and financial outcomes. The module takes as inputs risk factors such as smoking, weight, age
and education, along with lagged health and financial states. This allows for a great deal of
heterogeneity and fairly general feedback effects. The transition probabilities are estimated
from the longitudinal data in the Health and Retirement Study (HRS).

e The policy outcomes module aggregates projections of individual-level outcomes into policy
outcomes such as taxes, medical care costs, pension benefits paid, and disability benefits.
This component takes account of public and private program rules to the extent allowed by
the available outcomes. Because we have access to HRS-linked restricted data from Social
Security records and employer pension plans, we are able to realistically model retirement
benefit receipt.

Figure [I| provides a schematic overview of the model. This population simulation example starts
in 2004 with an initial population aged 51+ taken from the HRS. We then predict outcomes using
our estimated transition probabilities (See section [4]). Those who survive make it to the end of that
year, at which point we calculate policy outcomes for the year. We then move to the following time
period (two years later), when a new cohort of 51 and 52 year-olds enters in case of a population
simulation. This entrance forms the new age 51+ population, which then proceeds through the
transition model as before. This process is repeated until we reach the final year of the simulation.
In this paper we use a cohort simulation without new cohorts entering the simulation.
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Figure 1: Architecture of the FEM

1.3 Comparison with other prominent microsimulation models of health
expenditures

The FEM is unique among existing models that make health expenditure projections. It is the only
model that projects health trends rather than health expenditures. It is also the only model that
generates mortality out of assumptions on health trends rather than historical time series.

1.3.1 CBOLT Model

The Congressional Budget Office (CBO) uses time-series techniques to project health expenditure
growth in the short term and then makes an assumption on long-term growth. They use a long term
growth of excess costs of 2.3 percentage points starting in 2020 for Medicare. They then assume a
reduction in excess cost growth in Medicare of 1.5% through 2083, leaving a rate of 0.9% in 2083.
For non-Medicare spending they assume an annual decline of 4.5%, leading to an excess growth
rate in 2083 of 0.1%.

1.3.2 Centers for Medicare and Medicaid Services

The Centers for Medicare and Medicaid Services (CMS) performs an extrapolation of medical
expenditures over the first ten years, then computes a general equilibrium model for years 25
through 75 and linearly interpolates to identify medical expenditures in years 11 through 24 of their
estimation. The core assumption they use is that excess growth of health expenditures will be one
percentage point higher per year for years 25-75 (that is if nominal GDP growth is 4%, health care
expenditure growth will be 5%).

2 Data sources used for estimation

The Health and Retirement Study is the main data source for the model.



Supplement_3_FEM_tech_doc

Estimated Outcomes in Initial Conditions Model

Economic Outcomes Health Outcomes
Employment Hypertension
Earnings Heart Disease
Wealth Self-Reported Health
Defined Contribution Pension Wealth BMI Status

Pension Plan Type Smoking Status
AIME Functional Status

Social Security Quarters of Coverage
Health Insurance

Estimated Outcomes in/from Transition Model

Economic Outcomes Health Outcomes Other Outcomes
Employment Death Income Tax Revenue
Earnings Heart Social Security Revenue
Wealth Stroke Medicare Revenue
Demographics Cancer Medical Expenses
Health Insurance Hypertension Medicare Part A Expenses
Disability Insurance Claim Diabetes Medicare Part B Expenses
Defined Benefit Claim Lung Disease Medicare Part B Enrollment
SSI Claim Nursing Home Medicare Part D Enrollment
Social Security Claim BMI OASI Enrollment

Smoking Status DI enrollment

ADL Limitations SSI enrollment
TADL Limitations Medicaid Enrollment
Medicaid Expenditures

2.1 Health and Retirement Study

The Health and Retirement Study (HRS) waves 1998-2018 are used to estimate the transition
model. Interviews occur every two years. We use the dataset created by RAND (RAND HRS,
version K) as our basis for the analysis. We use all cohorts in the analysis and consider sampling
weights whenever appropriate. When appropriately weighted, the HRS in 2016 is representative of
U.S. households where at least one member is at least 51. The HRS is also used as the host data for
the simulation (pop 51+ in 2016) and for new cohorts (aged 51 and 52 in 2016), when applicable.

The HRS adds new cohorts every six years. Until recently, the latest available cohort had been
added in 2016, which is why that is the FEM’s base year.
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3 Data sources for trends and baseline scenario

3.1 Data for growth in wages

Wages are adjusted for real wage growth using historical real wage differential data until 2020
(the start of the pandemic). For post-2020 earnings, intermediate projections are used (SSA 2021
Trustees Report, table V.B1).

3.2 Demographic adjustments

We make adjustments to the weighting in the HRS to match population counts. Since we deleted
some cases from the data and only considered the set of respondents with matched Social Security
records, this takes account of selectivity based on these characteristics. We post-stratify the HRS
sample by 5 year age groups, gender and race and rebalance weights using the 2016 American
Community Survey estimates.

4 Estimation

In this section we describe the approach used to estimate the transition model, the core of the FEM,
and the initial cohort model which is used to rejuvenate the simulation population.

4.1 Transition model

We consider a large set of outcomes for which we model transitions. Table[3|gives the set of outcomes
considered for the transition model along with descriptive statistics and the population at risk when
estimating the relationships.

Since we have a stock sample from the age 51+ population, each respondent goes through
an individual-specific series of intervals. Hence, we have an unbalanced panel over the age range
starting from 51 years old. Denote by j;o the first age at which respondent i is observed and j;r,
the last age when he is observed. Hence we observe outcomes at ages j; = Jio, - .., Jit;-

We first start with discrete outcomes which are absorbing states (e.g. disease diagnostic, mor-
tality, benefit claiming). Record as h; j, ,, = 1 if the individual outcome m has occurred as of age j;.
We assume the individual-specific component of the hazard can be decomposed in a time invariant
and variant part. The time invariant part is composed of the effect of observed characteristics x;
that are constant over the entire life course and initial conditions h; j, _, (outcomes other than
the outcome m) that are determined before the first age in which each individual is observed E]
The time-varying part is the effect of previously diagnosed outcomes h; j,_1 ., on the hazard for
m.E] We assume an index of the form z,, ;, = ©;Bm + hiji—1,—-mYm + Nijo,—m¥m. Hence, the latent
component of the hazard is modeled as

Wi jom = TiBm + hijim1,—mYm + Rijo,—mWm + Qmj; + Eijim (1)

m:17...,M0,jl':jl'o,...,jLT“izl,...,N

The term €; j, ,, is a time-varying shock specific to age j;. We assume that this last shock is normally
distributed and uncorrelated across diseases. We approximate a,, ;, with an age spline. After several

!Section ?? explains why the h; j, —m terms are included.
2With some abuse of notation, j; — 1 denotes the previous age at which the respondent was observed.
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specification checks, knots at age 65 and 75 appear to provide the best fit. This simplification is
made for computational reasons since the joint estimation with unrestricted age fixed effects for
each condition would imply a large number of parameters. The absorbing outcome, conditional on
being at risk, is defined as

h/i7j’i7m = maX{I(h;ji,m > O)a hi,jifl,m}

The occurrence of mortality censors observation of other outcomes in a current year. Mortality is
recorded from exit interviews.

A number of restrictions are placed on the way feedback is allowed in the model. Table
documents restrictions placed on the transition model. We also include a set of other controls. A
list of such controls is given in Table [5| along with descriptive statistics.

We have three other types of outcomes:

1. First, we have binary outcomes which are not an absorbing state, such as living in a nursing
home. We specify latent indices as in for these outcomes as well but where the lag depen-
dent outcome also appears as a right-hand side variable. This allows for state-dependence.

2. Second, we have ordered outcomes. These outcomes are also modeled as in recognizing
the observation rule is a function of unknown thresholds ¢,,. Similarly to binary outcomes,
we allow for state-dependence by including the lagged outcome on the right-hand side.

3. The third type of outcomes we consider are censored outcomes, earnings and financial wealth.
Earnings are only observed when individuals work. For wealth, there are a non-negligible
number of observations with zero and negative wealth. For these, we consider two part models
where the latent variable is specified as in but model probabilities only when censoring
does not occur. In total, we have M outcomes.

The parameters 6, = ({Bm, Yo Uy gm}n]\le ,>, can be estimated by maximum likelihood. Given

the normality distribution assumption on the time-varying unobservable, the joint probability of all
time-intervals until failure, right-censoring or death conditional on the initial conditions h; j, —p, is
the product of normal univariate probabilities. Since these sequences, conditional on initial condi-
tions, are also independent across diseases, the joint probability over all disease-specific sequences
is simply the product of those probabilities.

For a given respondent observed from initial age j;o to a last age jp,, the probability of the
observed health history is (omitting the conditioning on covariates for notational simplicity)

M—-1 Jt; Jt;
005 hige) = | TT T Pom(@)omOain s | TT Pryaa (6)
m=1 j=ji J=Jji
We use the —0 superscript to make explicit the conditioning on h; ;.0 = (Riji.0,-- - Rijiom) . We

have limited information on outcomes prior to this age. The likelihood is a product of M terms with
the mth term containing only (B, Ym, ¥m,sm). This allows the estimation to be done separately
for each outcome.

4.1.1 Inverse Hyperbolic Sine Transformation

One problem fitting the wealth and earnings distribution is that they have a long right tail and
wealth has some negative values. We use a generalization of the inverse hyperbolic sine transform
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(IHT) presented in MacKinnon and Magee (1990)). First denote the variable of interest y. The
hyperbolic sine transform is

eXp<:B) _ exp(—x) (2)

y = sinh(z) = 5

The inverse of the hyperbolic sine transform is
z = sinh™'(y) = h(y) = log(y + (1 +y*)"*)

Consider the inverse transformation. We can generalize such transformation, first allowing for a
shape parameter 6,

r(y) = h(y)/0 (3)

Such that we can specify the regression model as
r(y) = =8 +e,e ~N(0,0%) (4)
A further generalization is to introduce a location parameter w such that the new transformation

becomes
gly) = M ) 5)

where 1 (a) = (1 + a?)~'/2,

We specify in terms of the transformation g. The shape parameters can be estimated from
the concentrated likelihood for 8, w. We can then retrieve 3, o by standard OLS.

Upon estimation, we can simulate

§=af+ o7

where 7 is a standard normal draw. Given this draw, we can retransform using and

h(0(y + w)) = 6h'(0w)g + h(6w)

j— sinh [0R' (0w)g + h(Ow)] — Ow
B 6

5 Government revenues and expenditures

This gives a limited overview of how revenues and expenditures of the government are computed.
These functions are based on 2016 rules, but we include predicted changes in program rules such
changes based on year of birth (e.g. Normal retirement age).

We cover the following revenues and expenditures:

Revenues Expenditures
Federal Income Tax Social Security Retirement benefits
State and City Income Taxes Social Security Disability benefits
Social Security Payroll Tax Supplementary Security Income (SSI)
Medicare Payroll Tax Medical Care Costs
Property Tax Medicaid

Medicare (parts A, B, and D)
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5.1 Social Security benefits

Workers with 40 quarters of coverage and of age 62 are eligible to receive their retirement benefit.
The benefit is calculated based on the Average Indexed Monthly Earnings (AIME) and the age
at which benefits are first received. If an individual claims at their normal retirement age (NRA)
(65 for those born prior to 1943, 66 for those between 1943 and 1957, and 67 thereafter), they
receive their Primary Insurance Amount (PIA) as a monthly benefit. The PIA is a piece-wise linear
function of the AIME. If a worker claims prior to their NRA, their benefit is lower than their PIA.
If they retire after the NRA, their benefit is higher. While receiving benefits, earnings are taxed
above a certain earning disregard level prior to the NRA. An individual is eligible to half of their
spouse’s PIA, properly adjusted for the claiming age, if that is higher than their own retirement
benefit. A surviving spouse is eligible to the deceased spouse’s PIA. Since we assume prices are
constant in our simulations, we do not adjust benefits for the COLA (Cost of Living Adjustment)
which usually follows inflation. We however adjust the PIA bend points for increases in real wages.

5.2 Disability Insurance benefits

Workers with enough quarters of coverage and under the normal retirement age are eligible for their
PIA (no reduction factor) if they are judged disabled (which we take as the predicted outcome of
DI receipt) and earnings are under a cap called the Substantial Gainful Activity (SGA) limit. This
limit was $13,560 in 2016. We ignore the 9 month trial period over a 5 year window in which the
SGA is ignored.

6 Implementation

The FEM is implemented in multiple parts. Estimation of the transition and cross sectional models
is performed in Stata. The incoming cohort model is estimated in Stata using the CMP package
(Roodman), 2011)). The simulation is implemented in C++ to increase speed.

To match the two year structure of the Health and Retirement Study (HRS) data used to
estimate the transition models, the FEM simulation proceeds in two year increments. The end
of each two year step is designed to occur on July 1st to allow for easier matching to population
forecasts from Social Security. A simulation of the FEM proceeds by first loading a population
representative of the age 51+ US population in 2016, generated from HRS. In two year increments,
the FEM applies the transition models for mortality, health, working, wealth, earnings, and benefit
claiming with Monte Carlo decisions to calculate the new states of the population. The population
is also adjusted by immigration forecasts from the US Census Department, stratified by race and
age. If incoming cohorts are being used, the new 51/52 year olds are added to the population. The
number of new 51/52 year olds added is consistent with estimates from the Census, stratified by
race. Once the new states have been determined and new 51 /52 year olds added, the cross sectional
models for medical costs, and calculations for government expenditures and revenues are performed.
Summary variables are then computed. Computation of medical costs includes the persons that
died to account for end of life costs. Other computations, such as Social Security benefits and
government tax revenues, are restricted to persons alive at the end of each two year interval. To
eliminate uncertainty due to the Monte Carlo decision rules, the simulation is performed multiple
times (here 75), and the mean of each summary variable is calculated across repetitions.

FEM simulation takes as inputs assumptions regarding growth in the national wage index, nor-
mal retirement age, real medical cost growth, interest rates, cost of living adjustments, the consumer

10
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price index, significant gainful activity, and deferred retirement credit. The default assumptions
are taken from the 2010 Social Security Intermediate scenario, adjusted for no price increases after
2010. Therefore simulation results are in real 2009 dollars. Table [L0] shows assumptions for each
birth year.

Different simulation scenarios are implemented by changing any of the following components:
incoming cohort model, transition models, interventions that adjust the probabilities of specific
transition, and changes to assumptions on future economic conditions.

7 Validation

We perform two validation exercises:

1. Cross-validation

2. External corroboration

Cross-validation is a test of the simulations internal validity that compares simulated outcomes
to actual outcomes, and external corroboration compares model forecasts to others’ forecasts.

7.1 Cross-validation

The cross-validation exercise randomly samples half of the HRS respondent IDs for use in estimating
the transition models. The respondents not used for estimation, but who were present in the HRS
sample in 1998, are then simulated from 1998 through 2018. Demographic and health outcomes are
compared between the simulated ("FEM”) and actual ("HRS”) cohorts. These results are presented
in Table [6] - Table [9] for 2000, 2006, 2012, and 2018 with a statistical test of the difference between
the average values in the two cohorts.

Worth noting is how the composition of the cohort changes in this exercise. In 1998, the sample
represents those 51 and older. Since we follow a fixed cohort, the average age of the cohort will
increase 71 and older in 2018. This has consequences for some measures in later years where the
eligible cohort shrinks.

7.1.1 Demographics

Demographic measures are presented in Table [/, Demographic differences between the two cohorts
are small. The gender balance and fraction of the cohort that is non-Hispanic Black or Hispanic is
consistent.

7.1.2 Health Outcomes

The two cohorts are not statistically different from each other for prevalence of most health outcomes
in each of the examined years until 2018. In 2018, the prevalence rates of cancer, diabetes, and
heart disease were not statistically different between the FEM and HRS cohorts. Hypertension, lung
disease, and stroke prevalence were approximately 2.5 percentage points higher, and the prevalence
rates of having any ADLs and of any TADLs were approximately 3.5 percentage points higher in
the FEM cohort than in the HRS cohort.

11
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7.1.3 Health Risk Factors

Average BMI is slightly lower for the FEM cohort in 2018 (27.3 for the FEM vs. 27.8 for the HRS).
In terms of practical significance, this difference is equivalent to fewer than four pounds for an
individual who is 58. Current smoking prevalence is slightly higher in the FEM cohort than in the
HRS cohort, whereas the prevalence of ever-smokers is the same between the two cohorts

On the whole, the cross-validation exercise is reassuring. Comparing simulated outcomes to
actual outcomes using a set of transition models estimated on a separate population reveals that
the majority of outcomes of interest are not statistically different. In cases where they are, the
practical difference is potentially low.

7.2 External Corroboration

Finally, we compare FEM population forecasts to Census forecasts of the US population. Here, we
focus on the full HRS population (51 and older) and those 65 and older. For this exercise, we begin
the simulation in 2010 and simulate the full population through 2050. Population projections are
compared to the 2012 Census projections for years 2012 through 2050. FEM population forecasts
are always within two percent of Census forecasts.

8 Baseline Forecasts

In this section we present baseline forecasts of the Future Elderly Model. The figures show data
from the HRS for the 55+ population from 1998 through 2018 and forecasts from the FEM for the
55+ population beginning in 2010.

8.1 Disease Prevalence

Figure 2| depicts the six chronic conditions we project for men. And Figure |3| depicts the historic
and forecasted values for women.

Figure [4] shows historic and forecasted levels for any ADL difficulties, three or more ADL dif-
ficulties, any IADL difficulties, and two or more TADL difficulties for men 55 and older. Figure
shows historic and forecasted levels for any ADL difficulties, three or more ADL difficulties, any
IADL difficulties, and two or more IADL difficulties for women 55 and older.

12
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Figure 2: Historic and Forecasted Chronic Disease Prevalence for Men 55+
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Figure 3: Historic and Forecasted Chronic Disease Prevalence for Women 55+

13



Supplement_3_FEM_tech_doc

Any ADL difficulties 3 or more ADL difficulties
] ]
N N
n o ® [To]
7 ®ee o LA X -
L]
— —
UO).A SA..'O...Q...
2000 2020 2040 2060 2000 2020 2040 2060
Any IADL difficulties 2 or more IADL difficulties
S QA
[V N
o To}
— —
0®%%, e
— —
2000 2020 2040 2060 2000 2020 2040 2060
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2000 2006 2012 2018

FEM HRS FEM HRS FEM HRS FEM HRS
Outcome mean mean p | mean mean p | mean mean p | mean mean D
Died 0.058 0.050 0.007 | 0.069 0.074 0.224 | 0.091 0.083 0.045 | 0.113 0.106 0.208

Lives in nursing | 0.029 0.018 0.000 | 0.038 0.025 0.000 | 0.052 0.036 0.000 | 0.075 0.046 0.000
home

Table 6: Crossvalidation of 1998 cohort: Simulated vs reported mortality and nursing home out-
comes in 2000, 2006, 2012, and 2018

2000 2006 2012 2018
FEM  HRS FEM  HRS FEM  HRS FEM  HRS
Outcome mean — mean p | mean mean p | mean mean p | mean mean P
Age on July 1st | 66.676 65.991 0.000 | 70.699 70.184 0.000 | 74.572 74.573 0.992 | 78.450 78.537 0.539
Black 0.087 0.083 0.268| 0.086 0.079 0.124 | 0.085 0.077 0.089 | 0.084 0.076 0.231
Hispanic 0.061  0.057 0.151| 0.064 0.059 0.112 | 0.069 0.062 0.096 | 0.073 0.063 0.085
Male 0.456 0.449 0.332| 0.449 0445 0.670 | 0.438 0.430 0.368 | 0.428 0.425 0.798

Table 7: Crossvalidation of 1998 cohort: Simulated vs reported demographic outcomes in 2000,
2006, 2012, and 2018

2000 2006 2012 2018

FEM HRS FEM HRS FEM HRS FEM HRS
Outcome mean mean p | mean mean p | mean mean p | mean mean D
Any ADLs 0.154 0.163 0.072 | 0.170 0.185 0.009 | 0.202 0.192 0.198 | 0.251 0.214 0.000
Any TADLs 0.128 0.121 0.121 | 0.145 0.145 0.931 | 0.177 0.176 0.861 | 0.226 0.193 0.000
Cancer 0.118 0.119 0.784 | 0.169 0.162 0.243 | 0.216 0.216 0.999 | 0.259 0.258 0.930
Diabetes 0.143 0.139 0.393 | 0.202 0.198 0.567 | 0.252 0.244 0.289 | 0.302 0.291 0.313

Heart Disease | 0.200 0.197 0.675| 0.258 0.260 0.750 | 0.323 0.324 0.841 | 0.395 0.388 0.571
Hypertension 0.452 0.443 0.175 | 0.567 0.568 0.924 | 0.660 0.661 0.897 | 0.733 0.711 0.041
Lung Disease 0.073 0.073 0.907 | 0.100 0.099 0.866 | 0.127 0.120 0.257 | 0.149 0.129 0.013
Stroke 0.066 0.065 0.891 | 0.090 0.088 0.692 | 0.115 0.114 0.808 | 0.148 0.122 0.001

Table 8: Crossvalidation of 1998 cohort: Simulated vs reported binary health outcomes in 2000,
2006, 2012, and 2018
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2000 2006 2012 2018
FEM  HRS FEM  HRS FEM  HRS FEM  HRS
Outcome mean mean p | mean mean p | mean mean p | mean mean P
BMI 27.078 27.289 0.004 | 27.354 27.894 0.000 | 27.482 27.831 0.001 | 27.411 27.884 0.000

Current smoker | 0.148  0.159 0.021 | 0.127 0.123 0.426 | 0.109 0.089 0.000 | 0.091 0.055 0.000
Ever smoked 0.593 0.603 0.144 | 0.583 0.593 0.205| 0.568 0.575 0.420 | 0.550 0.549 0.892

Table 9: Crossvalidation of 1998 cohort: Simulated vs reported risk factor outcomes in 2000, 2006,
2012, and 2018
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Normal Delayed
Birth year Retirement Age Retirement Credit
1890 780 .03
1891 780 .03
1892 780 .03
1893 780 .03
1894 780 .03
1895 780 .03
1896 780 .03
1897 780 .03
1898 780 .03
1899 780 .03
1900 780 .03
1901 780 .03
1902 780 .03
1903 780 .03
1904 780 .03
1905 780 .03
1906 780 .03
1907 780 .03
1908 780 .03
1909 780 .03
1910 780 .03
1911 780 .03
1912 780 .03
1913 780 .03
1914 780 .03
1915 780 .03
1916 780 .03
1917 780 .03
1918 780 .03
1919 780 .03
1920 780 .03
1921 780 .03
1922 780 .03
1923 780 .03
1924 780 .03
1925 780 .035
1926 780 .035
1927 780 .04
1928 780 .04
1929 780 .045
1930 780 .045
1931 780 .05
1932 780 .05
1933 780 .055
1934 780 .055
1935 780 .06
1936 780 .06
1937 780 .065
1938 782 .065
1939 784 .07
1940 786 .07
1941 788 .075
1942 790 .075
1943 792 .08
1944 792 .08
1945 792 .08
1946 792 .08
1947 792 .08
1948 792 .08
1949 792 .08
1950 792 .08
1951 792 .08
1952 792 .08
1953 792 .08
1954 792 .08
1955 794 .08
1956 796 .08
1957 798 .08
1958 800 .08
1959 802 .08
1960 804 .08

Table 10: Assumptions for each birth year. In yeads after 1960, all values are held constant at their
1960 levels.
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This file provides supplementary details for the paper:
Title: The Effect of US COVID-19 Excess Mortality on Social Security Outlays
Authors: Hanke Heun-Johnson, Darius Lakdawalla, Julian Reif, and Bryan Tysinger

The following sheets contain transition model estimates for relevant variables in the Future Elderly Model, for population ages 55 and over in 2020.

Binaries

This worksheet reports estimates of the probability of dying, of developing a chronic condition (stroke, heart disease, cancer, hypertension
diabetes, lung disease, and congestive heart failure), of having a heart attack, of living in a nursing home, of claiming SSDI, claiming OASI,
and working for pay

Ordered Probits
This worksheet reports estimates of the probability of changing smoking status, changing ADL and IADL status, and cognitive status

oLS
This worksheet reports estimates of how BMI is updated in the microsimulation.

MICDA (enclave)

Joint estimation model coefficients for AIME and quarters worked

a. 50+ yrs, with non-missing earnings and quarters worked, reporting non-zero OASI income

b. 50+ yrs, with non-missing earnings and quarters worked, reporting zero OASI income

c. 50-55 yrs, with non-missing earnings and quarters worked

Model for whether a person worked any quarters. 50+ yrs, with non-missing earnings and quarters worked



Non-Hisoanic Black
Hisparic

Less than hiah school

Some colege and above

Male

Male AND Less than hich school

Male AND Non-Hisoanic Biack

Male AND Hisgaric:

Male AND Some colleae and above

Min(63, two-year laq of age)

MiniMax(0. two-vear laa ade - 63). 73 - 63)
Min(Max(0, two-vear laq age - 73), 83 - 73)
Max(0. to-vear laa age - 83)

Two-vear laa of Hypertension
Two-year g of Diabetes
Two-vear laa of Luna disease

Two-year lag of R had heart atack since last vave

Two-year g of Widor
Heart problem status at ace 50 (1/0)-mouted
Stroke status at age 50 (1/0)-imputed
Cancer status at ace 50 (1/0-mouted
Diabetes satus at age 50 (imputed)

Init of Ever smoked

Smoking status at age 50 (imputed)

Two-year lag of Ever had congestive heart faikre

male 2age8Sp
Male AND Two-year lag of Ever had congestive
heartfailre

Male AND Two-vear laa of Heart disease

Male AND Two-vear laq of Stroke

Male AND Two-vear laa of Cancer

Male AND Two-vear laq of Luna disease
Male AND Two-year lag of R had heart attack.
since last wave

Male AND Two-vear laa of Has exactl 1 1ADL
Male AND Two-vear laa of H
Male AND Two-vear laa of Has exacil 1 ADL
Male AND Two-vear laq of Has exactly 2 ADLs

Male AND Two-vear laa of Has 3 or more ADLs.

Male AND Two-year laq of Current smoking
Male AND Two-vear laa of Widowed

ido
Male AND Heart problem status at age 50 (1/0)-

imouted

Male AND Stroke status at age 50 (1/0-mputed

Male AND Cancer status at age 50 (1/0)-imputed

Male AND Diabetes status at age 50 (imputed)
Male AND Init. of Ever smoked

Male AND Smoking status at age 50 (imouted)
Max(0. two-vear laa age - 73)

Spined tworyear lag of BMI <= l0a(30)

‘Solined two-vear laq of BMI > oa(30)
Spined init of B! age 50 <= l0af(30)
‘Solined init of BMI ace 50 > loa(30)

Logof years between current interview and

‘Two-year laq of R working for pay.
Two-year lag of (IHT of earrings in 1000s)1100,
2010 otherwise.

Two-year lag of Non-pension wihratotb) not zero

Two-year lag o (IHT of hh wih in 1000s)/100,
2oro otherwise
Two-vear laa of Claiming SSDI

‘Two-year lag of Claiming OASI - Reports receiving
ot me and 62+

tincor

Two-year lag of Claiming DB
Respondent s at the EEA age (62) or up o two.
vears older

Respondent s at their NRA age of two years okder

Years o NRA for those not vear at NRA
ears past NRA for those older than NRA

Two-year lag o R live in nursingh ome at interview

‘Seasonall Adusted Unemplovment Rate

note: 01-7% 057517

fas 2 or more ADLs

Died (died)
coef  povalue
0010 0022
0155 0031
0025 0020
0084 0019
0449 0358
0001 0030
0054 0033
0079 0045
016 0028
0022 0004
0020 0003
0041 0003
0057 0003
013t 021
071 0022
0402 0020
0086 0018
0163 0020
0284 0022
0054 0047
0267 0028
0523 0026
061 0025
0214 0032
044 0028
0277 0027
o4 0018
0048 0073
0230% 0104
0147 0043
0073 0035
0205 0020
0155 0024
0255 0029
0011 0006
0000 0005
0002 0005
o011 0005
0015 0041
0047 0029
0056 0033
0065 0029
0011 0025
0019 0029
001 0033
0119 0064
0078”0038
0089 0040
0062 0037
0128 0049
0123 0043
0033 0038
0026 0032
0147 0094
0084 081
o067 0087
0041 0052
063" 0030
00 0032
Be3s 0237

Died (died)

coef
0,001

ovalue

(cancre) )
coef pvalue coef pvalie coof pvalue coef pvalue coef bvalie  coef  pvalue
0079 025 0006 0080 0030 0003 0417 030 0006
0118% 0032 -0008 0065 0042 -0002 0169 0041 -0008
0044 0024 0004 0038 0030 0001 013 0030 0001
0080 0021 -0005 0033 0026 0001 0052 0024 0003
0156 0025 0013 0047 0032 0002 0131 0027 0007
0050 0038 -0.004 0053 0046 0002 0051 0043 0003
0138™ 0040 0010 0030 0047 0001 0142 0043 0,009
0070 0048 0005 oote 0082 0001 0043 0058  -0002
0038 0031 0003 0032 0040 0001 0% 004 0002
0018 0003 0001 0018 0004 0001 0023 0003 0001
0021 0002 0002 0020 0003 0,001 0017 0003 0001
o189 0020 0008
002 002 0001
0192 0014 0015 0147 0019 0005
o1e 0019 0010 0120 0023 0005
0151 0053 0006
0110 0023 0009 0209 0029 0,009 0071 0026 0.004
0023 0019 o0o02 0060 0023 0002 0023 0022 0001
0244 0085 0011 0074 0085 0004
0241 0094 0023 002 0115 o002
0138 0040 0012 0139 0054 0006
0170 0031 0015 o1te 0037 0005 0050 0034 0003
0042 0017 0003 0031 0022 0001 0086™* 0019 0005
0075 0020 0006 0004 0025  -0.000 0002 0022 -0000
0017 0002 0001 0027 0002 0001 0002 0002 -0.000
0035 0083 -0003 0306™ 0009 -0011 0081 0094  -0004
0287 0108 0022 0018 0131 0001 0078 0127 0.004
0127 008 0010 0232 0102 0008 0125 0094 0007
0220 0114 0018 033" 0137 0012 0221 0134 0012
0264 0038 0021 0364 0050 0013 0324 0044 0018
36807 0255 a702 033 3913 0281

Hypertension
coef
o1
o

f
o

0.024

0142
0039

0234

Hypertension

coef
o

0023

0,000
0091
0072
0017

0008
0.050

o-value

Diabetes (diabe)
coef
0.129'

o-value
0025
0.030
0027
0022
0027
0041
0040
0046
0034
0.002
0,003

0003
0.105
0107
0.100
o117
0082

0205

Diabetes (diabe)

coef
0,009

o-value

Lung disease
coef
-0.069"

0002
0.103
0131
0.104
0143
0049

0310

Lung disease

coef
k3

o-value

Supplement_4_FEM_estimates

coef
0,099

0.108

0.144%
0551
0603

01217

2311
2699

2566

o-value

0031
0047

0025

0.034
0.037

0037

0046

0059
0037
0891

0045

0391
0029

0.086

coef
0.0

0.008
-0.040
0036
0,006
0138
0685

o-value

coef
0437

0548
0204
3003
0177
0124
2127

0.023
0782
0760

0319™
0096

0205

o-value
0032
0040
0036
0.028
0035
0054
0049
0059
0041

0026
0041
0.034
0019
0.026
0035

0055
0031
o712
0048
0389
0036

0.024
0033
0029

0014
0.003

0071

coef
0051

0017
0028
0012

0025
0014
0027

0208
0077
1165
0,065
0,047
0343

0.008
0294
0295

0120
0036

o-value

in nursing
coef  pvalue
0313 041
0516 0080
0043 0034
o008 0033
0067 0042
0020 0058
0332 0064
0241 084
0002 0055
0031 0.008
0049 0005
0037 0025
0186 0029
0037 0030
0037 0024
0.007 0.028
0067° 003
0033

0032

0033

0042

0.037

0.135 0.026
0131 0097
o168 0133
010 0077
0120 0052
0081 0028
0050 0030
0050 0002
0.085

0451 0044
4681 0448
2352 0045
5262 0464

Rlive in nursing

coef
k3

0.000

0.008

0002
0044

0339

o-value

14523

0223

1362

0380

Rworking for pay
coef
00

0015
0028
0019
0011
0016
0022

0020
0014
0352
0034
0219
0032
0018

0013
0019
0020

0002
0.002

0003
0047

Rworking for pay

coef
0017

0045

5148

0075

0483
0122
0026

0021
0053
0028

0018
0011

0002

o-value



Non-Hispanic Black
Hispanic

Less than high school

Some college and above

Male

Male AND Less than high school

Male AND Non-Hispanic Black

Male AND Hispanic

Male AND Some college and above
Min(63, two-vear laq of age)

Min(Max(0, two-year lag age - 63), 73 - 63)
Max(0, two-vear laq age - 73)

Two-year lag of Heart disease

Two-vear lag of Stroke

Two-year lag of Cancer

‘Two-vear lag of Hypertension

‘Two-year lag of Diabetes

Two-vear lag of Lung disease

Two-year lag of R had heart attack since last wave
‘Two-vear lag of Has exactly 1 1ADL
Two-year lag of Has 2 or more IADLs
Two-vear lag of Has exactly 1 ADL
Two-year lag of Has exactly 2 ADLs.
Two-vear lag of Has 3 or more ADLs
Two-year lag of Current smoking

Two-vear lag of Widowed

Heart problem status at age 50 (1/0)-imputed
Stroke status at age 50 (1/0)-imputed
Cancer status at age 50 (1/0)-imputed
Diabetes status at age 50 (imputed)
Smoking status at age 50 (imputed)
Splined two-vear laq of BMI <= loq(30)
Splined two-year lag of BMI > log(30)
Splined init of BMI age 50 <= oq(30)
Splined init of BMI age 50 > log(30)

Log of years between current interview and previous.
Init. of Ever smoked

Two-vear lag of demented

Two-year lag of CIND

Two-vear lag of good memory

Two-year lag of fair memory

note: .01-**%.05-*.1-%

Smoking status

(smkstat)
coefficients
coef  pvalue
-0.022* 0.013
0169 0016
0.002 0.013
0091 0010
0.525*** 0.013
002 0021
-0.136"* 0.020
0144 0025
-0.219"* 0.016
0000 0.001
-0.008"** 0.001
0014 0.001
0.072** 0.010
0051 0015
0.064** 0.012
0001 0008
-0.014 0.011
0493 0014
0.098*** 0.028
0046 0015
0.002 0.018
0038 0014
0.034* 0.021
0012 0020
2605 0.016
0035 0011
0.080* 0.034
0279 0051
0.018 0.022
0005 0017
1.960"* 0.013
0085 0045
0.323** 0.059
0002 0045
-0.245™* 0.063
0004 0020

Smoking status (smkstat) marginal effects

pvalue  coef  pvalue  coef
0.008 -0.000
0.053 0.003
0.001 0.000
0.027 0.002
0.149 0.011
0.008 0.000
0.042 0.002
0.040 0.003
0.069 0.003
-0.000 -0.000
0.002 -0.000
0.004 0.000
0.021 0.001
0.015 0.001
0.019 0.001
0.000 0.000
0.004 -0.000
0.053 0.004
0.028 0.002
0.013 0.001
0.001 0.000
0.011 0.001
0.010 0.001
0.003 -0.000
0.017 0.392
0.011 0.001
0.023 0.002
0.092 0.003
0.005 0.000
0.002 0.000
0.313 0.128
0.025 0.001
0.096 0.006
-0.000 -0.000
0.073 0.004
0.001 -0.000

p-value

ADL status (adistat)
coefficients
coef  p-value
0.110%* 0.014
0474 0018
0.121** 0.014
0038 0013
-0.025 0.016
0015 0023
-0.001 0.023
0058 0028
-0.041* 0.020
0007 0.002
0.017** 0.002
0038 0.001
0.109** 0.011
0234 0014
0.053** 0.013
0055 0.009
0.080"** 0.011
0212 0014
0.022 0.029
0409 0014
0.707** 0.016
0975 0012
1.368"* 0.017
18917 0018
0.108** 0.014
0030 0012
0.042 0.035
0115 0049
0.058* 0.026
0425 0018
0.060"** 0.012
0383 0050
0.672** 0.061
0611 0051
0.294** 0.064
0231 0024
0.008 0.011

p-value

ADL status (adlstat) marginal effects

p-value

p-value

coef  p-value

IADL status (iadistat)
coefficients
coef  p-value
0.101** 0.015
0425 0019
0.164** 0.015
0043 0014
-0.010 0.017
0023 0024
0.018 0.025
0037 0030
-0.084"* 0.022
0005 0002
0.022** 0.002
0049"* 0,001
0.100*** 0.011
0271 0015
0.038** 0.014
0075 0010
0.106*** 0.012
0221 0015
0.047 0.031
0971 0013
1.724* 0.017
0435 0014
0.573** 0.019
0760 0019
0.162** 0.015
0008 0012
0.047 0.038
0094* 0052
0.029 0.028
0098 0020
0.005 0.013
0810 0052
0.263** 0.067
056" 0054
0.306*** 0.071
0240 0025
0.019* 0.012

0.057
0.045
0.004

IADL status (iadistat) marginal effects

p-value

coef

p-value

p-value

Supplement_4_FEM_estimates

Cognitive state

(cogstate)
coefficients

coef  p-value
0430 0014
0314 0017
0343 0014
0252 0013
0121 0015
0012 0.021
0036*  0.022
0123 0027
0046 0.020
0007 0002
0032 0001
0043 0001
0008 0011
0182 0015
0.020% 0013
0.029"* 0009
0079 0012
0029" 0015
001 0030
0226"* 0015
0325 0019
0063 0015
0054 0.021
0075" 0021
0077 0014
004" 0011
0036 0037
0157 0051
0009 0028
0034 0019
0041 0012
0762"* 0050
0248"* 0067
0423 0051
0249 0069
0244 0024
0009 0011
-1.828"* 0020
-1.007* 0010
0319 018
0175 0018

coef
0.017
0.012
0.012
0.007
0.003
0.000
0.001
0.003
0.001
0.000
0.001
0.001
0.000
0.006
0.001
0.001
0.002
0.001
0.000
0.008
0.013
0.002
0.002
0.002
0.002

Cognitive state (cogstate) marginal effects

pvalue  coef  pvalue  coef

0.103 -0.12

0.074 0.086
0.080 0.092
0.054 0.061
0.026 0.030
0.002 0.003
0.008 0.009
0.025 0.028
0.010 0.011
0.001 0.002
0.007 0.008
0.009 0.010
0.002 0.002
0.042 0.048
0.008 0.007
0.006 0.007
0.017 0.020
0.006 0.007
0.002 0.003
0.052 0.060
0.078 0.090
0.014 0.016
0.012 0.013
0.017 0.019
0.017 0.019
0.010 0.011
0.008 -0.009
0.036 0.041
0.002 0.002
0.007 0.008
0.009 0.010
0.165 0.186
0.054 0.061
0.091 0.103
0.054 0.061
0.053 0.060
0.002 0.002
0.350 0635
0.253 0319
0073 0.083
0.036 0.041

p-value



Male

Non-Hispanic Black

Hispanic

Less than high school

Some college and above

Male AND Less than high school

Male AND Non-Hispanic Black

Male AND Hispanic

Male AND Some college and above
Min(63, two-year lag of age)
Min(Max(0, two-year lag age - 63), 73 - 63)
Max(0, two-year lag age - 73)
Two-year lag of Heart disease
Two-year lag of Stroke

Two-year lag of Cancer

Two-year lag of Hypertension
Two-year lag of Diabetes

Two-year lag of Lung disease
Two-year lag of R had heart attack since last wave
Two-year lag of Has exactly 1 IADL
Two-year lag of Has 2 or more IADLs
Two-year lag of Has exactly 1 ADL
Two-year lag of Has exactly 2 ADLs
Two-year lag of Has 3 or more ADLs
Two-year lag of Current smoking
Two-year lag of Widowed

Heart problem status at age 50 (1/0)-imputed
Stroke status at age 50 (1/0)-imputed
Cancer status at age 50 (1/0)-imputed
Diabetes status at age 50 (imputed)
Init. of Ever smoked

Smoking status at age 50 (imputed)
Splined two-year lag of BMI <= log(30)
Splined two-year lag of BMI > log(30)
Splined init of BMI age 50 <= log(30)
Splined init of BMI age 50 > log(30)

Log of years between current interview and previous

Init. of
_cons
note: .01-***;.05-*%.1-%

Log(BMI) (logbmi)

coefficients

coef p-value
0.000 0.001
-0.002** 0.001
-0.002** 0.001
-0.002*** 0.001
-0.000 0.001
0.000 0.001
-0.005*** 0.001
-0.001 0.001
-0.001 0.001
-0.000** 0.000
-0.001*** 0.000
-0.002*** 0.000
-0.000 0.001
-0.002*** 0.001
-0.001 0.001
0.004*** 0.000
-0.001 0.001
-0.005*** 0.001
0.004*** 0.002
-0.002* 0.001
-0.005*** 0.001
0.001* 0.001
0.001 0.001
0.001 0.001
-0.012*** 0.001
0.001 0.001
0.001 0.002
-0.005 0.003
0.001 0.001
-0.004*** 0.001
0.001** 0.001
0.002*** 0.001
0.812*** 0.003
0.834*** 0.004
0.139*** 0.003
0.099*** 0.004
-0.011** 0.001
0.000 0.000
0.119 0.076

Log(BMI) (logbmi)
marginal effects

coef

0.000
-0.002
-0.002
-0.002
-0.000

0.000
-0.005
-0.001
-0.001
-0.000
-0.001
-0.002
-0.000
-0.002
-0.001

0.004
-0.001
-0.005

0.004
-0.002
-0.005

0.001

0.001

0.001
-0.012

0.001

0.001
-0.005

0.001
-0.004

0.001

0.002

0.812

0.834

0.139

0.099

-0.011
0.000

Supplement_4_FEM_estimates



a

AIME
male 1.177042
black 0.182828
hispanic -0.10815
less than high school -0.29051
college 0.391471
cancer ever 0.015336
diabetes ever -0.04335
high blood pressure ever 0.038134
heart disease ever -0.00773
lung disease ever -0.07839
stroke ever -0.08565
any limits activities daily living
any limits instrumental activities daily living
working
age
age55 0.396541
age60 0.889618
age65 0.898157
age70 0.771615
age75 0.709974
age80 0.463509
age85 0.366938
cohort 0.049492
OASl income 0.165017
OASl income”2 -0.00343
cohort*0ASI income -0.00115
cohort*0AS| income”2 0.000334
Log earnings
log wealth
years worked 0.032552
male*black -0.58025
male*hispanic -0.34483
male*less than hs 0.093876
male*college -0.26252

male*working

male*cancer

male*diabetes

male*high blood pressure
male*heart disease

male* lung disease

male*stroke

male*any limits activities daily living
male*any limits instrumental activities daily living
male*Log earnings

male*log wealth

male*age

__cons -0.87213
cut_1 0
cut_2 0.612591
cut_3 0.996756
cut_4 1.272445
cut_5 1.504415
cut_6 1.720373
cut_7 1.920916
cut_8 2.11321
cut_9 2.284868
cut_10 2.448629
cut_11 2.591388
cut_12 2.740394
cut_13 2.87989
cut_14 3.013967
cut_15 3.138041
cut_16 3.262587
cut_17 3.393148
cut_18 3.500922
cut_19 3.615035
cut_20 3.728316
cut_21 3.84679
cut_22 3.948418
cut_23 4.060413
cut_24 4.162077
cut_25 4.291537
cut_26 4.389674
cut_27 4.487396
cut_28 4.599493
cut_29 4.729225
cut_30 4.87085
cut_31 5.007144
cut_32 5.153517
cut_33 5.305508
cut_34 5.474605
cut_35 5.672066
cut_36 5.864491
cut_37 6.119877
cut_38 6.464427
cut_39 6.902466
ve 1

ve 0.681825

Quarters
worked
0.721902
0.262259
-0.01097
-0.20053
0.033239
-0.05549
-0.02971
0.047507
-0.00721
-0.0693
-0.08317

0.219046
0.687244
0.747699
0.675703
0.719848
0.537322
0.299211
0.217586
0.160295
-0.00293
-0.00828
0.000196

0.053106
-0.38046
-0.2234
0.204713
-0.21113

-1.27375
0
0.707338
1.09117
1.41647
1.7124
1.920925
2.139052
2.323625
2.478047
2.633768
2.791618
2.928689
3.068272
3.188075
3.319818
3.420097
3.51907
3.620102
3.694185
3.772639
3.84692
3.93768
4.024152
4.085137
4.176407
4.262044
4.352692
4.421259
4.508801
4.570422
4.661642
4.752852
4.85072
4.954851
5.05971
5.185555
5.34456
5.522038
5.85987

1

b
AIME

0.685888
-0.03747
-0.39495
-0.38688

0.31378

0.053945
-0.01551

0.020347
-0.07891
-0.12824
-0.05645

-0.01155

0.094877
0.099726
-0.16031
-1.29151
-1.24782
-1.65716
-1.57629

21.66689
4.117933
0.022624
-0.41849
-0.03986
0.253101
-0.09874
0.045535

1.445851
0
0.575759
0.92506
1.213057
1.429905
1.632075
1.82155
1.981069
2.156447
2.286931
2.432724
2.57148
2.696071
2.802216
2.910282
3.019897
3.13062
3.234248
3.333921
3.436813
3.537233
3.62763
3.719278
3.817715
3.901104
3.987418
4.068249
4.14335
4.219557
4.298667
4.381464
4.467215
4.551568
4.636887
4.729155
4.843684
4.961928
5.133382
5.417442
1
0.780831

Quarters
worked
0.493853
-0.03145
-0.3881
-0.38692
0.030084
0.018034
0.030966
0.039341
-0.02907
-0.1311
-0.03232

0.332013

0.281444
0.525265
0.367211
-1.07111
-0.99143
-1.31495
-1.28759

16.3403
0.547482
0.026314

-0.31465
-0.01205
0.255572

-0.1406
-0.02175

1.371986
0
0.587855
0.969767
1.273226
1.487386
1.666681
1.870275
2.025261
2.162239
2.307898
2.455739
2.591979
2.726213
2.857009
2.978495
3.06362
3.174029
3.296814
3.38588
3.490147
3.589097
3.689806
3.780984
3.839771
3.937439
4.038476
4.17329
4.23918
4.364964
4.445345
4.575721
4.697979
4.829668
4.974397
5.088255
5.269043
5.500027
5.861384
6.528249

1

4

AIME

3.133855
-0.21378
-0.62464

-0.7385
0.185081
0.107717
-0.16512
0.102759
-0.20946
-0.18279
-0.11142
0.099986
-0.01069
0.240934
0.051655

27.774
4.706552

-0.30406
0.28858
0.600842
0.121581
0.002846
-0.24448
0.046893
0.089648
0.05002
-0.19528
0.063189
0.081665
-0.07976
-2.27249
2.249712
-0.04993
-1.2748
0
0.469469
0.801709
1.023445
1.193377
1.385231
1.520652
1.648648
1.804837
1.942447
2.070862
2.214899
2.346294
2.446485
2.547237
2.660737
2.761803
2.850269
2.936522
3.021477
3.123238
3.195826
3.272101
3.357198
3.448403
3.543015
3.658828
3.772789
3.876807
3.986011
4.052048
4.157175
4.282192
4.392733
4.538928
4.653784
4.822141
4.954259
5.353137
1
0.788228

Quarters
worked
0.640603
-0.23367
-0.67265
-0.83145
-0.06804
0.089697
-0.1252
0.07145
-0.24406
-0.16386
0.105998
0.047761
-0.04193
0.522726
0.127688

21.09548
1.448593

-0.09088
0.334378
0.602072
0.116927

-0.06738

-0.14202
0.080827

0.06727
0.25743

-0.08871

-0.04593
0.223549

-0.13784

-2.53832
1.936031

-0.00762

-5.24469

0
0.292282
0.644248
0.900791

1.081617
1.202616
1.346931
1.508258
1.617527

1.73703

1.831576
1.934354
2.035432
2.134892
2.230442
2.341662
2.445696
2.547572
2.633842
2.670219
2.782172
2.858657

2.93386

3.025142
3.112226
3.220112
3.264717
3.348983
3.425467
3.528381
3.584994
3.659102
3.740076
3.797671
3.901142
4.000171

4.16956
4.301558
4.680165

male

black

hispanic

less than high schoc
college

years worked
male*black
male*hispanic
male*less than hs
male*college
age55

age60

age65

age70

age75

age80

age85

cons

Supplement_4_FEM_estimates

Reporting OASI income

0.30273
0.098371
-0.24655
-0.32356
0.016726
0.040067
0
0.197965
0.711774
0.145946
-0.0459
-0.35996
-0.19865
-0.51445
-0.47976
-0.76139
-1.31447
1.884816
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