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In a landmark experiment conducted in 1747, James Lind, a Scottish naval surgeon, sought to 

identify a cure for scurvy, a disease that plagued sailors on long voyages. Lind divided twelve 

sailors suffering from scurvy into six pairs and administered different treatments to each pair, 

including cider, vinegar, seawater, oranges, lemons, and a medicinal paste. Remarkably, the sailors 

who received citrus fruits showed significant improvement, while the others did not. This 

pioneering clinical trial demonstrated the effectiveness of citrus fruits in preventing and treating 

scurvy, leading to their widespread adoption in the British Navy and the eventual eradication of 

the disease among sailors.  Perhaps taking the lead from Lind, more than a century later, in 1882, 

Louis Pasteur designated half of a group of 50 sheep as controls and vaccinated the other half. 

After all the animals received a lethal dose of anthrax, the results were clear and compelling. Two 

days post-inoculation, every one of the 25 control sheep had succumbed to the disease, whereas 

the 25 vaccinated sheep were alive and well, vividly demonstrating the power and importance of 

vaccination (Levitt and List, 2009).   

One common thread that connects these classic experiments to the economic experiments of today 

is the use of a between-subject experimental design:  some subjects are placed in treatment while 

others are simultaneously placed in a control group.  After which, treatment effects are measured 

post treatment by estimating conditional expectations.  That is, the analyst measures the average 

treatment effect (ATE), 𝑌𝑌�𝑖𝑖(1) −  𝑌𝑌�𝑖𝑖(0), by taking the difference between the average outcome in 

the treatment group and the average outcome in the control group.2   This means that while we 

cannot observe the individual treatment effects, we can observe the difference between the means 

in the two groups.  Or, likewise, we can observe the difference between two marginal distributions.  

As such, if the researcher desires to estimate other informative outcomes, such as median effects 

or various percentile effects, a different design must be used, or further assumptions must be 

invoked.  One such approach that provides richer information is to conduct a within-subject (WS) 

experimental design (Charness et al., 2012).  Under this approach, each unit receives both the 

treatment and control but in a sequential fashion, and the treatment effect is identified by 

comparing the same unit’s outcomes across the two conditions. While a straightforward design 

 
2 The theorem that delivers this result is remarkable because it requires so few assumptions. One key aspect of the 
theorem, however, is that the key driver is that the mean is a linear operator, thus the difference-in-means is the mean 
of differences (List, 2025).  
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approach to implement, to recover an internally valid estimate, the WS design relies on three 

additional assumptions to those necessary to recover the ATE in a between-subject design.   

In this study, to provide a deeper understanding of WS designs, I present an overview of the 

marginal benefits and costs of WS designs, focusing on the three new assumptions. These new 

assumptions are balanced panel, temporal stability, and causal transience.  A central consideration 

in recovering an internally valid estimate is whether these three key identification assumptions are 

reasonably met. The first assumption, balanced panel, requires that all participants remain in the 

study for all 𝒯𝒯, and for each we observe their outcome, treatment assignment, actual treatment, 

and unit-level characteristics. The second assumption, temporal stability, requires that the potential 

outcome not be a function of time.  The third assumption, causal transience, is typically the most 

challenging because it requires that the effect of the contemporary treatment not depend on the 

regime. Under causal transience, the effect of treatments do not persist over time. When these three 

assumptions are met, the WS design not only reaps greater power than a between-subject design 

but also provides insights beyond estimating marginal treatment effects, as the analyst learns about 

the full joint distribution of treatment effects.3   

After discussing the three new assumptions, this study explores the advantages and disadvantages 

of WS designs and provides a playbook for the analyst interested in generating data optimally 

using a WS design. To make matters concrete, I use three running examples. These examples are 

useful to help draw out the assumptions underlying WS experimental approaches. In doing so, this 

study showcases the two key benefits of a WS design but cautions about the potential baggage that 

comes with certain WS designs. Specifically, there are cases where WS designs stretch the bounds 

of credulity concerning our identification assumptions on causal transience (denoted as overt WS 

designs) or temporal stability (denoted as epochal WS designs), yet there are examples where the 

assumptions are more tenable (denoted as stealth WS designs). I denote such WS designs as 

“stealth” because they satisfy the new identification assumptions with a “stealth-like” design 

approach. 

 
3 Even though WS designs can achieve greater precision, in practice, researchers do not employ them regularly.  
Surveying two recent volumes of the journal Experimental Economics, Bellemare et al. (2014) report that most studies 
in their survey (41 out of 58) use a between-subject design.  
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The remainder of this study proceeds as follows. The next Section outlines the basic notation of 

the potential outcomes model and summarizes the exclusion restrictions. Section III presents the 

three running examples. In general, but not always, the literature reveals that compared to behavior 

generated in between-subject designs, subjects in a WS design behave more rationally, behave 

more in line with neoclassical theory, and tend to conform to social norms more closely when they 

have a comparative context, or likewise an evaluability baseline.  Section IV discusses the various 

threats to WS designs. Section V summarizes key advantages of WS designs. Section VI 

concludes. 

II.  Potential Outcomes Basics 

In this section, I introduce the potential outcomes framework to define a causal effect.4 In doing 

so, I present a set of exclusion restrictions that are sufficient, in a between-subject design, to 

interpret the difference in conditional expectations of an outcome between two groups with distinct 

treatment assignments as a causal effect. In this framework, causality arises from a treatment being 

assigned to a unit. The definition of a unit is, typically, uncontroversial. A unit can be a plot of 

land, a firm, a household, a collection of individuals, or a market. For concreteness, I use 𝑖𝑖 ∈ ℐ =

{1,2, … ,𝑁𝑁} to denote an individual unit. I denote the observed outcome for unit 𝑖𝑖 as 𝑌𝑌𝑖𝑖. There is no 

time subscript because, importantly, the same unit observed in different time periods is assumed 

to be different, or separate, units. I relax this assumption below when I introduce WS experimental 

designs.  

The unit-specific treatment is denoted by 𝐷𝐷𝑖𝑖, where a realization is 𝑑𝑑 ∈ 𝒟𝒟. However, the treatment 

assignment of all other units (i.e., who gets what) will also be relevant. Let the vector 

𝑫𝑫−𝑖𝑖 = (𝐷𝐷1,𝐷𝐷2,𝐷𝐷𝑖𝑖−1,𝐷𝐷𝑖𝑖+1, … ,𝐷𝐷𝑁𝑁) ∈  𝒟𝒟𝑁𝑁−1  

record the treatments of units other than 𝑖𝑖, but such that order matters, and each element is tied to 

the treatment of a particular unit. This vector takes realized values 𝒅𝒅−𝑖𝑖 ∈  𝒟𝒟𝑁𝑁−1. Thus, the 

complete description of the treatment program for unit 𝑖𝑖 will be 𝑫𝑫𝒊𝒊 = (𝐷𝐷𝑖𝑖 ,𝑫𝑫−𝑖𝑖) ∈  𝒟𝒟𝑁𝑁, with 

realizations 𝒅𝒅 = (𝑑𝑑,𝒅𝒅−𝑖𝑖). This treatment program can take the form of an intervention, an 

 
4 The potential outcomes approach is commonly referred to as the “Rubin Causal Model” in the literature, but the 
framework can be found in Jerzy Neyman’s master’s thesis ([1923] 1990), which describes “potential yields” when 
referring to his agricultural outcomes of interest. The interested reader should see Rubin (1974; 1975; 1978). 
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inducement, a manipulation, actions taken, or decisions made – the key is that, thus far, we allow 

the precise distribution of treatment across units to matter to each individual unit.  

A key piece of intuition in the potential outcomes framework is that for each 𝒅𝒅, there is a random 

variable 𝑌𝑌𝑖𝑖(𝒅𝒅), denoted as the potential outcome. The potential outcome corresponds to what the 

outcome would have been had the realized state been 𝒅𝒅. Each potential outcome is hypothetically 

observable. However, after the occurrence of treatment 𝒅𝒅, researchers can observe at most only 

one potential outcome for each unit. The other potential outcomes are unobservable because the 

treatment that would have led to that potential outcome’s realization did not occur. This is the 

fundamental problem of causal inference—a missing data problem.  

An astute reader has already noticed that the above definition of treatment and potential outcomes 

leaves the door open to an enormous variety of possible unique treatment programs arising through 

minute changes to the treatment itself. To make progress, I now focus on a more restrictive 

definition of treatment which takes a strong stance on what a treatment is and whose treatment 

matters for whom. I do so by introducing the first key assumption, which constrains the definition 

of treatment and links potential outcomes to observed outcomes. 

Assumption 1 (Stable Unit Treatment Value Assumption, or SUTVA): For all 𝒅𝒅 ∈

𝒟𝒟𝑁𝑁 ,  𝑌𝑌𝑖𝑖(𝒅𝒅) = 𝑌𝑌𝑖𝑖(𝑑𝑑).  

The Stable Unit Treatment Value Assumption (SUTVA), sometimes called the no-interference 

assumption, incorporates two distinct assumptions. The first is that any unit's potential outcomes 

do not vary with the treatments assigned to or undertaken by any other unit. This means that for 

any set of units with a treatment program 𝒅𝒅 we can simply write 𝑌𝑌𝑖𝑖(𝒅𝒅) = 𝑌𝑌𝑖𝑖(𝑑𝑑) for each unit. Put 

another way, under this assumption, we no longer need to speak of treatment programs and can 

instead refer unambiguously to the effect of a specific unit’s treatment.  

The second part of Assumption 1 is that there is no variation in the form or version of the treatment 

that leads to different potential outcomes. When this sense of SUTVA does not hold, 𝒟𝒟 no longer 

represents mutually exhaustive states of treatment. For example, if a lab experiment has multiple 

experimental proctors who vary in quality in a way that affects potential outcomes, then that 

experiment would run the risk of two potential treatment dimensions: the recipient and the proctor. 

SUTVA rules out variations of the proctor that affect potential outcomes. Put together, the two 
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parts of SUTVA imply that we can simply speak of 𝑑𝑑 ∈ 𝒟𝒟 as a particular treatment of a particular 

unit. 

At this point, it is useful to make one normalization. Specifically, I will refer to the state of the 

world where 𝑑𝑑 = 0 as the untreated (or control) condition and the states of the world where 𝑑𝑑 ≠ 0 

as the treated conditions. In this spirit, our objective is to learn the causal effect of assignment to 

state 𝑑𝑑 ≠ 0 on some observed outcome of interest relative to a fixed alternative where 𝑑𝑑 = 0. With 

SUTVA, we now have a concise way to completely characterize the building blocks of this causal 

effect. In particular, if we let 𝐷𝐷𝑖𝑖 denote an individual unit’s possible treatment, then we have the 

following equation linking observed outcomes to potential outcomes: 

 𝑌𝑌𝑖𝑖 = �𝑌𝑌𝑖𝑖(𝑑𝑑)𝕀𝕀[𝐷𝐷𝑖𝑖 = 𝑑𝑑]
𝑑𝑑∈𝒟𝒟

, (1) 

where 𝕀𝕀[𝐷𝐷𝑖𝑖 = 𝑑𝑑] is an indicator function for the receipt of treatment level 𝑑𝑑 by unit 𝑖𝑖. Given 

equation (1), we can define the individual-level treatment effect as the difference in outcomes for 

unit 𝑖𝑖 when the individual receives treatment versus control, 𝜏𝜏𝑖𝑖 ≡ 𝑌𝑌𝑖𝑖(1) − 𝑌𝑌𝑖𝑖(0).  

Equation (1) also builds in three important features of this model. First, in writing 𝑌𝑌𝑖𝑖(𝑑𝑑) as a 

function of the treatment 𝑑𝑑, we require that the treatment precedes measurement of the outcome.  

Second, the researcher must be able to clearly define the action that would have made the 

alternative potential outcome the realized potential outcome. Third, we immediately face the 

“fundamental problem of causal inference.” That is, a causal effect is the comparison of potential 

outcomes for the same unit in the same moment, but with different treatments. Since we observe 

only 𝑌𝑌𝑖𝑖 = 𝑌𝑌𝑖𝑖(𝑑𝑑) for the realized 𝐷𝐷𝑖𝑖 = 𝑑𝑑, we can learn about causal effects only by observing 

multiple units and comparing 𝑌𝑌𝑖𝑖(𝑑𝑑) to 𝑌𝑌𝑗𝑗(0) for some 𝑖𝑖 ≠ 𝑗𝑗 and 𝑑𝑑 ≠ 0.  

Ideally, 𝑌𝑌𝑗𝑗(0) is equivalent to the outcome of someone treated, 𝑌𝑌𝑗𝑗(1), had we withheld their 

treatment. We cannot observe this counterfactual as units exposed to 𝐷𝐷𝑖𝑖 = 𝑑𝑑 are not the identical 

units exposed to 𝐷𝐷𝑖𝑖 = 0. Thus, the central task of empirical research is to find reasonable 

approximations to the relevant counterfactual potential outcome. Doing so requires a series of 

exclusion restrictions. SUTVA is the first of four exclusion restrictions necessary to identify a 

causal effect within the potential outcomes framework of a between-subject design.  
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To explore the other three, I begin by introducing the assignment mechanism.  Let 𝑍𝑍𝑖𝑖 ∈ {0,1} be 

the assignment mechanism that allocates treatment to a particular unit. When this treatment 

assignment corresponds to the undertaken treatment 𝐷𝐷𝑖𝑖 we say that 𝐷𝐷𝑖𝑖 = 𝑍𝑍𝑖𝑖. Absent this 

assumption, we can interpret the received results as the causal effect of the assignment mechanism, 

𝑍𝑍, rather than how the actual treatment, 𝐷𝐷, affected outcomes. This is important because in most 

cases we want to know the effect of the actual treatment not the effect of treatment assignment.  

Let 𝑿𝑿𝑖𝑖 represent a vector of characteristics that the researcher measures prior to treatment 

assignment (that is, predetermined characteristics, or covariates).5 Finally, let 𝑅𝑅𝑖𝑖 denote the post-

treatment decision to remain in the study, that is not to attrit the study, where 𝑅𝑅𝑖𝑖 = 1 indicates units 

that remain while 𝑅𝑅𝑖𝑖 = 0 indicates units that attrit the study. Importantly, 𝑌𝑌𝑖𝑖 will be observed only 

for those with 𝑅𝑅𝑖𝑖 = 1. With this notation in hand, we arrive at the next assumption needed to 

recover the ATE in a between-subject design. 

Assumption 2 (Observability): For all units 𝑖𝑖 ∈ ℐ, we have ℙ[𝑅𝑅𝑖𝑖 = 1] = 1, and for each unit 

𝑖𝑖 ∈ ℐ the researcher observes (𝑌𝑌𝑖𝑖,𝐷𝐷𝑖𝑖 ,𝑍𝑍𝑖𝑖 ,𝑿𝑿𝑖𝑖).  

In other words, Assumption 2 requires that all participants originally in the study remain in the 

study, and for each, we observe their outcome, treatment assignment, actual treatment, and unit-

level characteristics.6 In what follows, we will maintain ℙ[𝑅𝑅𝑖𝑖 = 1] = 1 (unless we explicitly state 

otherwise), and so omit 𝑅𝑅𝑖𝑖.  

If we observed the individual treatment effect, 𝑌𝑌𝑖𝑖(1) − 𝑌𝑌𝑖𝑖(0), directly then we could simply 

calculate the individual treatment effect for those with observable data and through that 

comparison understand the causal effect of the treatment on those units. However, the necessity of 

observing multiple units requires that we observe information on all units in our sample. We 

require this information to calculate the average values of 𝑌𝑌𝑖𝑖(1) and 𝑌𝑌𝑖𝑖(0). If the treatment 

assignment or outcome is missing due to a decision by the units, then there is an additional concern 

that the decision to have a measurable outcome is a potential outcome itself. In this case, equation 

 
5 When units are people, typical examples of such predetermined characteristics include race, sex, gender, or age at 
the start of the study.  
6 It is not essential to include 𝑿𝑿𝑖𝑖  in this assumption, but because many studies explore treatment effect heterogeneity 
across different values of 𝑿𝑿𝑖𝑖 , I include it here for completeness. 



8 
 

(1) does not represent mutually exhaustive states of the world and there are unmodeled factors that 

impact the subject’s potential outcomes. 

In addition to considering observability, we also must make an assumption on treatment 

compliance.  This leads to our next assumption needed to recover the ATE. 

Assumption 3 (Complete Compliance): For all units 𝑖𝑖 ∈ ℐ, we have ℙ[𝐷𝐷𝑖𝑖 = 𝑍𝑍𝑖𝑖] = 1. 

This assumption states that every unit assigned to 𝑍𝑍𝑖𝑖 = 𝑧𝑧 ends up taking 𝐷𝐷𝑖𝑖 = 𝑧𝑧. When this 

assumption is satisfied, we can condition on 𝐷𝐷𝑖𝑖 alone, rather than on both 𝐷𝐷𝑖𝑖 and 𝑍𝑍𝑖𝑖. Thus, when 

invoking this assumption, we can omit 𝑍𝑍𝑖𝑖, focusing solely on 𝐷𝐷𝑖𝑖. In general, there are two types of 

violations to this assumption.  

To highlight these violations, we maintain that 𝒟𝒟 = 𝒵𝒵 = {0,1}. The first violation is that some 

units assigned to the control group (𝑍𝑍𝑖𝑖 = 0) acquire the treatment by other means (𝐷𝐷𝑖𝑖 = 1). The 

second violation is that some units assigned to the treatment group (𝑍𝑍𝑖𝑖 = 1) end up not taking the 

treatment (𝐷𝐷𝑖𝑖 = 0). These types of non-compliance are referred to as one-sided non-compliance. 

When both violations occur together (i.e., both directions of one-sided non-compliance), the 

literature denotes this as two-sided non-compliance. We can use the complete compliance 

assumption to write the conditional expectations of the outcome variable in either treatment group 

as purely a function of the assignment rather than a function of both assignment and take-up. As 

mentioned above, when this assumption is violated, researchers commonly move to study the 

assignment mechanism's causal effect rather than the treatment's causal effect (i.e., the effect of 𝑍𝑍 

on 𝑌𝑌 rather than 𝐷𝐷 on 𝑌𝑌). While in that case we can make valid causal inference about 𝑍𝑍, such 

causal effects are typically not of primary interest. 

When Assumptions 1, 2, and 3 hold, we can again write the observed outcome as a function of the 

treatments. Because we have only two levels of 𝐷𝐷𝑖𝑖, equation (1) can be expressed as 

 𝑌𝑌𝑖𝑖 = 𝐷𝐷𝑖𝑖𝑌𝑌𝑖𝑖(1) + (1 − 𝐷𝐷𝑖𝑖)𝑌𝑌𝑖𝑖(0). (2) 

Equation (2) allows us to express the conditional expectations of the observed outcome as a 

function purely of potential outcomes for those who participate in the experiment. That is, we can 

express the average value of the outcome in our treatment group as 𝔼𝔼[𝑌𝑌𝑖𝑖(1)|𝐷𝐷𝑖𝑖 = 1] =

𝔼𝔼[𝑌𝑌𝑖𝑖|𝐷𝐷𝑖𝑖 = 1] and the average value of our control group as 𝔼𝔼[𝑌𝑌𝑖𝑖(0)|𝐷𝐷𝑖𝑖 = 0] = 𝔼𝔼[𝑌𝑌𝑖𝑖|𝐷𝐷𝑖𝑖 = 0]. With 
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this in mind, we can express the differences in conditional expectations between those in the 

treatment group and those in the control group as  

 𝜏̃𝜏 ≡ 𝔼𝔼[𝑌𝑌𝑖𝑖(1)|𝐷𝐷𝑖𝑖 = 1] − 𝔼𝔼[𝑌𝑌𝑖𝑖(0)|𝐷𝐷𝑖𝑖 = 0] =  𝔼𝔼[𝑌𝑌𝑖𝑖|𝐷𝐷𝑖𝑖 = 1] − 𝔼𝔼[𝑌𝑌𝑖𝑖|𝐷𝐷𝑖𝑖 = 0].  (3) 

We define a study as having internal validity if this observed difference, 𝜏̃𝜏, is equal to the average 

causal effect of 𝐷𝐷𝑖𝑖 on 𝑌𝑌𝑖𝑖, defined as: 

 𝜏𝜏 ≡ 𝔼𝔼[𝑌𝑌𝑖𝑖(1) − 𝑌𝑌𝑖𝑖(0)]                     (4) 

Through the lens of our framework, 𝜏̃𝜏 is internally valid for 𝜏𝜏 if the observed difference in 

conditional expectations between treatment and control groups is equal to the average causal effect 

of 𝐷𝐷𝑖𝑖 on 𝑌𝑌𝑖𝑖. To better understand the relationship between 𝜏̃𝜏 and 𝜏𝜏, there is a particularly 

illuminating representation we can arrive at with a bit of manipulation. To see this, it will be useful 

to introduce one more piece of notation: ℙ[𝐷𝐷𝑖𝑖 = 1], the fraction of the population that is treated.  

Just as a property of expectations we know that we can split the ATE (𝜏𝜏) as follows: 

𝜏𝜏 ≡ 𝔼𝔼[𝑌𝑌𝑖𝑖(1) − 𝑌𝑌𝑖𝑖(0)] 

= ℙ[𝐷𝐷𝑖𝑖 = 1]𝔼𝔼[𝑌𝑌𝑖𝑖(1) − 𝑌𝑌𝑖𝑖(0)|𝐷𝐷𝑖𝑖 = 1]���������������
𝐴𝐴𝐴𝐴𝐴𝐴 𝑜𝑜𝑜𝑜 𝑡𝑡ℎ𝑒𝑒 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 (𝐴𝐴𝐴𝐴𝐴𝐴)

+ (1 − ℙ[𝐷𝐷𝑖𝑖 = 1])𝔼𝔼[𝑌𝑌𝑖𝑖(1) − 𝑌𝑌𝑖𝑖(0)|𝐷𝐷𝑖𝑖 = 0]���������������
𝐴𝐴𝐴𝐴𝐴𝐴 𝑜𝑜𝑜𝑜 𝑡𝑡ℎ𝑒𝑒 𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢 (𝐴𝐴𝐴𝐴𝐴𝐴)

  

= ℙ[𝐷𝐷𝑖𝑖 = 1]{𝔼𝔼[𝑌𝑌𝑖𝑖(1)|𝐷𝐷𝑖𝑖 = 1] − 𝔼𝔼[𝑌𝑌𝑖𝑖(0)|𝐷𝐷𝑖𝑖 = 1]}

+ (1 − ℙ[𝐷𝐷𝑖𝑖 = 1]){𝔼𝔼[𝑌𝑌𝑖𝑖(1)|𝐷𝐷𝑖𝑖 = 0] − 𝔼𝔼[𝑌𝑌𝑖𝑖(0)|𝐷𝐷𝑖𝑖 = 0]} 

 

Now, we can consider the components driving a wedge between 𝜏𝜏 and 𝜏̃𝜏. With a bit of algebraic 

manipulation, we find that  

 

𝜏̃𝜏 − 𝜏𝜏 = (1 − ℙ[𝐷𝐷𝑖𝑖 = 1]) {𝐴𝐴𝐴𝐴𝐴𝐴 − 𝐴𝐴𝐴𝐴𝐴𝐴}���������
𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 𝑏𝑏𝑏𝑏 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝑐𝑐ℎ𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜

+ (𝔼𝔼[𝑌𝑌𝑖𝑖(0)|𝐷𝐷𝑖𝑖 = 1] − 𝔼𝔼[𝑌𝑌𝑖𝑖(0)|𝐷𝐷𝑖𝑖 = 0])�������������������������
𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏

   
(5) 

Equation (5) reveals that generally, there is a wedge between 𝜏𝜏 and 𝜏̃𝜏, meaning that the difference 

in outcomes between the treated and control groups does not recover the average causal effect of 

treatment. The wedge comprises the sum of two terms. The first term reflects the potentially 

differential average effect of the treatment for those who choose treatment (ATT) and those who 

do not (ATU). The second term is the selection bias term, 𝔼𝔼[𝑌𝑌𝑖𝑖(0)|𝐷𝐷𝑖𝑖 = 1] − 𝔼𝔼[𝑌𝑌𝑖𝑖(0)|𝐷𝐷𝑖𝑖 = 0]. 

This term reflects differences in untreated outcomes between those who undertook treatment 

(𝐷𝐷𝑖𝑖 = 1) and those who undertook the control condition (𝐷𝐷𝑖𝑖 = 0) that would have existed absent 
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treatment. That is, selection bias of this kind is entirely the result of outcome differences in the 

untreated state. 

Since the choice to undertake treatment may result from an underlying optimization or decision 

problem, there is usually no compelling reason to assume that such units would have the same 

outcomes absent treatment. In naturally occurring data, the assumption that the selection bias term 

is zero might stretch the bounds of credulity. Understanding the difference between 𝜏𝜏 and 

𝜏̃𝜏 requires making assumptions about the assignment mechanism, 𝑍𝑍, that is, making assumptions 

about how each unit came to receive its realized treatment. With the maintained Assumptions 1-3 

in place, a sufficient condition for 𝜏̃𝜏 to be an internally valid estimate of 𝜏𝜏 is statistical 

independence. 

Assumption 4 (Statistical Independence): {𝑌𝑌𝑖𝑖(1),𝑌𝑌𝑖𝑖(0)}  ⊥ 𝐷𝐷𝑖𝑖. 

Statistical independence means that the assignment mechanism governing the 𝐷𝐷𝑖𝑖 is independent of 

potential outcomes. Under this assumption, 𝔼𝔼[𝑌𝑌𝑖𝑖(0)|𝐷𝐷𝑖𝑖 = 1] = 𝔼𝔼[𝑌𝑌𝑖𝑖(0)|𝐷𝐷𝑖𝑖 = 0], so that the 

selection bias is zero due to randomization. Randomization acts as an instrumental variable in this 

case. Moreover, the ATE on the treated among participants (ATT) is equal to the ATE among 

participants: 

 
𝔼𝔼[𝑌𝑌𝑖𝑖(1) − 𝑌𝑌𝑖𝑖(0)|𝐷𝐷𝑖𝑖 = 1] = 𝔼𝔼[𝑌𝑌𝑖𝑖(1) − 𝑌𝑌𝑖𝑖(0)|𝐷𝐷𝑖𝑖 = 0] 

= 𝔼𝔼[𝑌𝑌𝑖𝑖(1) − 𝑌𝑌𝑖𝑖(0)] 
(6) 

And similarly, the ATU is also equal to the ATE.  Thus, ATE = ATT = ATU. Accordingly, the wedge 

between 𝜏𝜏 and 𝜏̃𝜏 is zero, and 𝜏̃𝜏 is internally valid and recovers 𝜏𝜏. Crucially, random assignment to 

treatment automatically implies statistical independence as required by Assumption 4, and hence 

solves the issue of selection bias.    

Within-Subject Design Assumptions 

Assumptions 1-4 represent the exclusion restrictions necessary to recover the ATE from a between-

subject experimental design.  Moving to a WS design demands us to consider data over multiple 

periods.  Now, we consider subjects 𝑖𝑖 ∈ {1, … ,𝑁𝑁} with the outcome, 𝑌𝑌𝑖𝑖𝑖𝑖, measured in periods 𝑡𝑡 ∈

𝒯𝒯 = {0, … ,𝑇𝑇}. Every individual receives a treatment regime 𝐷𝐷𝑖𝑖 = (𝐷𝐷𝑖𝑖1, … ,𝐷𝐷𝑖𝑖𝑖𝑖) where 𝐷𝐷𝑖𝑖𝑖𝑖 

represents unit 𝑖𝑖′𝑠𝑠 treatment assignment in period 𝑡𝑡. The experimenter observes 𝑌𝑌𝑖𝑖𝑖𝑖 in each period 

after the administration of 𝐷𝐷𝑖𝑖𝑖𝑖. The potential outcome for unit 𝑖𝑖 in period 𝑡𝑡 now depends on the 
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contemporary treatment 𝐷𝐷𝑖𝑖𝑖𝑖, the treatment regiment 𝑫𝑫𝑖𝑖, along with all time-specific effects, 𝑡𝑡, and 

can be expressed as 𝑌𝑌𝑖𝑖𝑖𝑖(𝐷𝐷𝑖𝑖𝑖𝑖,𝑫𝑫𝑖𝑖,−𝑡𝑡,𝑇𝑇) where 𝑫𝑫𝑖𝑖,−𝑡𝑡 denotes the vector of treatment statuses in all 

periods other than 𝑡𝑡. 

Several potential treatment effect parameters can be identified using a WS design depending on a 

willingness to make certain assumptions. With only assumptions 1-4, the researcher can identify 

the treatment regime’s causal effect on the outcome in each of the experimental periods because 

this corresponds to a between-subject comparison of 𝑫𝑫𝑖𝑖 and 𝑫𝑫′𝑖𝑖 . Yet, a keen advantage that arises 

from the fact that the experimenter can observe both 𝑌𝑌𝑖𝑖1 and 𝑌𝑌𝑖𝑖0 for a single unit is that it permits 

them to identify the individual treatment effect. The subsequent richness in the outcome space 

provides information beyond estimating marginal distributions; in WS designs, the full joint 

distribution of outcomes is recoverable. Note that we can write Var[𝜏𝜏𝑖𝑖] as a function of potential 

outcomes: 

 
Var[𝜏𝜏𝑖𝑖] = Var[𝑌𝑌𝑖𝑖(1) − 𝑌𝑌𝑖𝑖(0)]

= Var[𝑌𝑌𝑖𝑖(1)] + Var[𝑌𝑌𝑖𝑖(0)] − 2Cov[𝑌𝑌𝑖𝑖(1),𝑌𝑌𝑖𝑖(0)] 
(7) 

A between-subject experiment provides information on the marginal distribution of potential 

outcomes, providing the necessary ingredients to recover Var[𝑌𝑌𝑖𝑖(𝐷𝐷𝑖𝑖)]. However, the fundamental 

problem of causal inference prevents us from obtaining information about the joint distribution of 

potential outcomes in a between-subject design: Cov[𝑌𝑌𝑖𝑖(1),𝑌𝑌𝑖𝑖(0)] is unobserved in such 

experiments. Yet, a WS design generates such information naturally. Within the experimental 

economics community, for example, Isaac and Walker (1988a; 1988b) explore how to measure 

behavioral response to a change in stakes in a WS design.   

Yet, to remain internally valid, the WS design demands three further assumptions. A first new 

assumption is the balanced panel assumption.  

Assumption 5 (Balanced Panel): For all (𝑖𝑖, 𝑡𝑡) ∈ ℐ × 𝒯𝒯, we have ℙ[𝑅𝑅𝑖𝑖𝑖𝑖 = 1] = 1, and for all 

(𝑖𝑖, 𝑡𝑡) ∈ ℐ × 𝒯𝒯 with ℙ[𝑅𝑅𝑖𝑖𝑖𝑖 = 1] = 1 the researcher observes (𝑌𝑌𝑖𝑖𝑖𝑖,𝐷𝐷𝑖𝑖𝑖𝑖,𝑍𝑍𝑖𝑖𝑖𝑖,𝑿𝑿𝑖𝑖𝑖𝑖). 

Assumption 5 requires that all participants remain in the study for all 𝒯𝒯 periods and for each we 

observe their outcome, treatment assignment, actual treatment, and unit-level characteristics.  This 

is stronger than Assumption 2 (observability) because we require it for each period rather than the 

single period used in a between-subject design.   
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The second assumption we must make is the temporal stability assumption.    

Assumption 6 (Temporal Stability): For all 𝑡𝑡 ∈ 𝒯𝒯,𝑌𝑌𝑖𝑖𝑖𝑖(𝐷𝐷𝑖𝑖𝑖𝑖,𝑫𝑫𝑖𝑖,−𝑡𝑡, 𝑡𝑡) = 𝑌𝑌𝑖𝑖𝑖𝑖�𝐷𝐷𝑖𝑖𝑖𝑖,𝑫𝑫𝑖𝑖,−𝑡𝑡�. 

Temporal stability rules out any time-varying effects that affect potential outcomes.7 The main 

threats to temporal stability are discussed below.  Yet, I will note that this assumption is more likely 

to hold when the time between measurements is short (on the order of minutes). Our final new 

assumption we must add to arrive at an internally valid WS parameter is causal transience.  

Assumption 7 (Causal Transience): For all 𝑫𝑫𝑖𝑖, 𝑌𝑌𝑖𝑖𝑖𝑖(𝐷𝐷𝑖𝑖𝑖𝑖,𝑫𝑫𝑖𝑖,𝑇𝑇) = 𝑌𝑌𝑖𝑖𝑖𝑖(𝐷𝐷𝑖𝑖𝑖𝑖,𝑇𝑇). 

The causal transience assumption states that the effect of the contemporary treatment does not 

depend on the regime.8 When causal transience is satisfied, the effect of each treatment does not 

persist over time. This assumption implies that the treatment effects, or outcomes, do not depend 

on the order in which they are implemented. This assumption assumes that future treatments do 

not influence current behavior and no “carryover” effects from previous treatments exist. That is, 

future outcomes are orthogonal to all past treatments and outcomes.  Experimenter demand effects 

represent a key factor that can cause carryover effects that lead to a violation of Assumption 7 

(Rosenthal, 1976; Levitt and List, 2007). 

III.  Three Running Examples 

To make the above matters concrete, I use three running examples. These examples also help to 

draw out certain marginal benefits and marginal costs that the analyst should consider when 

deciding on conducting a between-subject or WS design. The first experimental example comes 

from the laboratory, a clever study on deception due to Gneezy (2005). This example is 

 
7 When there are time-varying factors that influence potential outcomes, one can still estimate an ATE when these 
factors are constant across individuals and do not moderate the treatment effects by controlling for time-fixed effects. 
However, the presence or absence of time-fixed effects are not relevant for the between-subjects design. 
8 In the nonexperimental literature, this assumption is often denoted as “impersistent outcomes.” The interested reader 
should see Hull (2018). In parts of the experimental literature, this assumption is stated as the no-anticipation 
assumption: 𝑌𝑌𝑖𝑖1(𝐷𝐷𝑖𝑖1,𝐷𝐷𝑖𝑖,−𝑡𝑡 , 𝑡𝑡) =  𝑌𝑌𝑖𝑖1(𝐷𝐷𝑖𝑖1, 𝑡𝑡). The no-anticipation assumption states that in period 1, treatments 
implemented in periods 𝑡𝑡 > 1 do not affect potential outcomes in period 𝑡𝑡 = 1. Under this assumption, only the 
contemporary treatment matters in period 1, and we can identify the treatment effect in the standard way, 

𝜏𝜏1 ≡ 𝔼𝔼�𝑌𝑌𝑖𝑖1�1,𝑫𝑫𝑖𝑖,−𝑡𝑡 , 1�|𝐷𝐷𝑖𝑖1 = 1,𝑫𝑫𝑖𝑖,−𝑡𝑡] − 𝔼𝔼[𝑌𝑌𝑖𝑖1�0,𝑫𝑫′𝑖𝑖 ,−𝑡𝑡 , 1 �|𝐷𝐷𝑖𝑖1 = 0,𝑫𝑫′𝑖𝑖 ,−𝑡𝑡� = 𝔼𝔼[𝑌𝑌𝑖𝑖1(1,1) − 𝑌𝑌𝑖𝑖1(0,1)]. 

𝜏𝜏1 is the same treatment effect one estimates with a between-subject design. Since Assumption 7 subsumes the no-
anticipation assumption, I do not include it as a formal assumption.   
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pedagogically viable because for our purposes Gneezy (2005), by design, provides a test of the 

most problematic WS assumption: causal transience. Gneezy leveraged a WS design wherein 

experimental participants judged scenarios in which a car salesman lied about the car’s condition. 

The cost of the lie was randomized across treatments. In one condition, the buyer's repairs cost 

was $250, and in the other, it was $1000.  

Fifty subjects were assigned to the WS design, in which they were presented with both scenarios 

whereas 50 different subjects were placed in a between-subject design and were presented only 

one of the conditions.  Gneezy found that while participants generally consider the cost of the lie 

when rating its fairness, he observed dramatic differences in the results across the WS and 

between-subject designs. In the between-subject design, 36% of the subjects called the lie very 

unfair in the low-cost scenario, in contrast to only 18% of subjects in the WS design. This pattern 

of data is consonant with a violation of causal transience.  For this reason, I refer to the Gneezy 

(2005) study as an overt within-subject design.   

The second experimental example is a study that used a natural field experiment to explore the 

nature and extent of discrimination in the sports card market (List, 2004).  By having confederates 

approach and purchase various pieces of memorabilia from unsuspecting dealers, List leveraged 

the key features of a WS design by having the same dealer bargain with women and men of 

different ages and races. I will focus on observed gender differences in this study.   

List's WS design allowed exploration of aspects of the entire treatment distribution, such as what 

fraction of dealers discriminated, how much the 10th percentile dealer discriminated, and how 

much discrimination was observed amongst the most discriminating dealers. The experimental 

design, which included data gathered from more than 1100 market participants, provided findings 

that suggest there was a strong tendency for women to receive initial and final offers that were 

inferior to those received by men. The observed discrimination was not due to animus but 

represented statistical discrimination. I refer to List’s (2004) design as a stealth within-subject 

design because the three new identification assumptions in this study were reasonably met. This is 

in part due to the stealth-like features of the NFE to send buyers to dealers over a few-hour period 

in a manner that is not different from what would happen in the normal course of business.    

Lastly, in the third example, Rodemeier (2023) used a novel NFE to estimate willingness to pay 

(WTP) for carbon mitigation. His NFE leveraged a grocery and beverage delivery service website. 



14 
 

When a subject visited the website, they were randomized into one of several groups in a between-

subject design. The treatment groups were offered a chance to compensate carbon emissions by 

buying a carbon offset either at market price, with a reduced price (50% or 75%), or with a quantity 

increase (100% or 300%). Empirical results showed that subjects increased demand for mitigation 

when prices fell, but not when the quantity increased. Importantly, the NFE revealed that subjects 

were willing to pay roughly 16 EUR/tCO2 for carbon offsets.   

Rodemeier (2023) then conducted an interesting follow-up survey that was sent to the same 

subjects 10-11 months after the NFE was completed, providing a key WS design feature.  He found 

a considerable difference between results in the NFE and those in the hypothetical valuation survey 

months later: The average WTP in the survey was 200 EUR/tCO2, roughly 1,150% above the 

revealed preference estimate from the NFE. I view Rodemeier’s (2023) WS design as a useful 

mixture of a stealth/overt approach (which I denote as an epochal within-subject design) in that 

his subjects were most likely unaware of the connection between his NFE and the survey because 

of the washout period, but the balanced panel and temporal stability assumptions are called into 

question because of this design choice. This element highlights a key trade-off faced by many 

experimenters conducting a WS design. 

The Three Running Examples and the Within-Subject Design Assumptions 

Even though for each of the three running examples I highlight the WS aspect of their designs, a 

key feature is that they all contain a between-subject nature that allows them to identify the ATE.  

For example, consider a subset of data from List's (2004) stealth WS design, as in Panel A of 

Exhibit 1. Panel A reveals the data generated from the first six dealers approached, three by men 

(denoted 𝑌𝑌𝑖𝑖(0)) and three by women (denoted 𝑌𝑌𝑖𝑖(1)). Dealer #1 was approached by a female buyer 

first, and he offered her a price of $125 for the good. Dealer #2 was approached by a male buyer 

first, and he offered him a price of $95 for the good. In this case, the marginal distributions are 

recovered, and an ATE of $1.67 can be computed if we generated data via a between-subject 

design, as shown in the last row of Panel A.   

Yet, a keen advantage that arises from the fact that the experimenter can observe both 𝑌𝑌𝑖𝑖1 and 𝑌𝑌𝑖𝑖0 

for a single unit is that it permits them to identify the individual treatment effect. To explore this 

point further, let us consider Panel B in Exhibit 1. This panel completes the missing information 

in Panel A by providing the data generated from List’s WS stealth design. Whereas dealer #1 
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offered the female buyer $125, when he was later approached by a male buyer, he offered the good 

to him for $105. Dealer #1, therefore, had an individual treatment effect (𝑌𝑌𝑖𝑖(1) −  𝑌𝑌𝑖𝑖(0)) equal to 

$20. Panel B shows that in these WS data, we can quickly compute what fraction (50%), and which 

dealers (dealers #1, #2, and #5), gave women a higher price offer than men, as well as the relevant 

price differences. Alternatively, Panel A in Exhibit 1 reveals the marginal distributions that are 

recovered from a between-subject design, and an ATE of $1.67 is computed. Had this been List’s 

chosen design, his result would remain directionally in favor of discrimination against women. 

Still, the informational content is considerably lower and very different from the generated data 

by the WS design contained in Panel B of Exhibit 1.   
 

Exhibit 1: ATEs Using Between- and WS Designs 

Panel A: Between-Dealer Data 

 𝒀𝒀𝒊𝒊(𝟎𝟎) 𝒀𝒀𝒊𝒊(𝟏𝟏) 𝝉𝝉𝒊𝒊 

Dealer #1 ? $125 ? 

Dealer #2 $95 ? ? 

Dealer #3 ? $115 ? 

Dealer #4 ? $100 ? 

Dealer #5 $110 ? ? 

Dealer #6 $130 ? ? 

Average  $111.67 $113.13 $1.67 

Panel B: Within-Dealer Data 

 𝒀𝒀𝒊𝒊(𝟎𝟎) 𝒀𝒀𝒊𝒊(𝟏𝟏) 𝝉𝝉𝒊𝒊 

Dealer #1 $105 $125 $20 

Dealer #2 $95 $120 $25 

Dealer #3 $120 $115 -$5 

Dealer #4 $100 $100 0 

Dealer #5 $110 $130 $20 

Dealer #6 $130 $130 0 

Average  $110 $120 $10 

The table highlights the different treatment effects that can be recovered from a between- versus a within-subject (WS) 
design using data from List (2004). In this setting, 𝑌𝑌𝑖𝑖(0) denotes a male while, 𝑌𝑌𝑖𝑖(1) a female customer. Panel A 
focuses on the between-subject design where we observed only the first-period data – for each dealer we have only 
the price they offered to the first customer that approached them (e.g., dealer #1 offered a female customer $125). 
Thus, we can recover only the marginal distributions and, as shown in the last row, the ATE ($1.67). Conversely, as 
shown in panel B, with a WS design we observed data over multiple periods – for each dealer we have the price they 
offered to both buyers that approached them (e.g., dealer #1 offered the female [male] buyer $125 [$105]). Thus, on 
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top of the ATE, as show in the last column, we can recover the individual (per dealer) treatment effect as the difference 
𝑌𝑌𝑖𝑖(1) −  𝑌𝑌𝑖𝑖(0).  
 
 
While gaining insights on the entire distribution of potential outcomes is attractive, there are 

inherent trade-offs when employing a WS design. Consider the overt design of Gneezy (2005) and 

the designs of List (2004) and Rodemeier (2023). When exposing subjects to both treatment 

conditions, researchers introduce several complications that are not present in between-subject 

designs. The first complication arises because the treatment conditions occur at different times. 

This separation across time means that (1) there is an extra burden of data collection whereby 

attrition might become a concern and (2) treatment status will not be independent of potential 

outcomes in the presence of any time-varying factors that influence outcomes.   

For example, suppose that individuals in Rodemeier (2023) were difficult to contact 10-11 months 

after his original NFE. And, even if they were successfully contacted, perhaps they were not 

interested in filling out a survey. Or perhaps there was an informational shock pertaining to the 

threats of climate change among his sampled population during the 10–11-month period. Then, 

the comparison between the two treatments would reflect the effect of the changing treatment and 

the changing nature of the climate threat due to the informational shock. This can be accounted for 

via a WS design that changes order to measure, and control for, such temporal effects but in the 

case of Rodemeier (2023) the NFE was done first, and the survey was completed 10-11 months 

later.  Such a design choice is a traditional one in the literature.   

A second issue is a more difficult problem in many practical settings: Treatments may have more 

than a transient impact. Otherwise stated, the effect of each treatment may not be temporary or 

occur upon administration. This issue is most severe for overt WS designs, as the subject is aware 

of treatment application in such instances. In contrast, in a stealth WS design, by definition, the 

treatments themselves are not salient (in List's case, dealers were approached by hundreds, if not 

thousands, of patrons per day, so bargaining with one extra 30-year-old man or woman who might 

have approached them in the market naturally was not noticeable). Charness et al. (2012) provide 

an excellent discussion of such issues drawing from the evaluability literature (see also Grice, 

1966; Poulton, 1973; Greenwald, 1976; Hsee, 1996; Frederick and Fischhoff, 1998; and List, 2002)  

Let us dig into Assumptions 5-7 more patiently considering the running examples.  Assumption 5 

requires that all participants remain in the study for all 𝒯𝒯 periods and for each we observe their 
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outcome, treatment assignment, actual treatment, and unit-level characteristics. This is a tenable 

assumption for laboratory experiments, such as Gneezy (2005), yet as discussed more fully below, 

this assumption might present greater difficulties for the two NFEs that we consider—measuring 

discrimination amongst dealers over the day and willingness to pay for carbon offsets 10-11 

months after the first treatment was imposed.   

The second assumption is temporal stability.  For Gneezy (2005), this assumption rules out factors 

such as fatigue affecting outcomes in late periods. This assumption is more likely to hold when the 

time between measurements is short (on the order of minutes). Again, this assumption might 

present greater difficulties for the two NFEs we consider. The final assumption is causal transience.  

For the running examples, suppose subjects in Gneezy's lab experiment were unaware that their 

treatment would change in the second period. In that case, there is no reason to expect that they 

would change their behavior in the first period. Likewise, in List (2004), given that he was 

conducting an NFE and randomly allocated confederates to dealers, he could test whether this 

assumption was met (it was). Finally, since Rodemeier (2023) deployed his survey 10-11 months 

after his NFE there was little concern about violation of this assumption. Researchers can increase 

the plausibility of the no-anticipation assumption by concealing the information about treatments 

until they are implemented or by conducting a stealth WS design (whether it is an NFE or other 

experiment type).  This is generally achieved by not revealing what remains in the experiment until 

the experiment reaches that point. The main threats to causal transience running in the other 

direction, no carryover effects, are discussed in the next section.   

IV. Threats to the Internal Validity of Within-Subject Designs 

Understanding threats to internal validity is crucial for causal inference, and for WS designs we 

must be keenly aware of threats to our three new identification assumptions. In this section, I 

discuss in greater detail a few of the most important threats using the three running examples. 

Threats to Balanced Panel 

An oft-cited advantage of WS designs is that the researcher gathers twice the amount of data per 

subject compared to a between-subjects design. In this manner, economies of scale can provide a 

tangible cost advantage.  Yet, a potential trade-off is that Assumption 2 (observability) is violated.  

In a WS design, the added temporal component places an additional strain on identification. In 
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terms of the three running examples, Gneezy's lab experiment had little threat of violating the 

balanced panel assumption and provided List’s (2004) dealers did not leave the market early or 

sell all the goods over a few-hour period, his design satisfied this assumption as well. Yet, since 

Rodemeier (2023) deployed his survey 10-11 months after his NFE there was a potential attrition 

concern. Since for privacy reasons he was unable to match survey respondents with choices in his 

NFE, this potential threat is an open issue. One approach to minimize attrition in such designs is 

to backload incentives. 

Threats to Temporal Stability 

Under temporal stability, a unit’s potential outcome does not depend on the period in which the 

experimenter measures the outcome. The literature has enumerated various threats to temporal 

stability and here I focus on three key threats: (1) time-specific shocks to the outcome, (2) time 

trends such as learning or regression to the mean, and (3) the possibility that measurement outcome 

might change over time.9 While the first two threats are well documented in the economics 

literature, the third threat is new and deserves some explanation. By way of example, consider 

educational interventions that use WS design to explore children's human capital. An assessment 

at three years of age is not appropriate for children who are four years old. If a WS design measures 

students' outcomes over these periods, then differences in the test might lead to differences in 

implications about treatment effects. Thus, how the measurement outcome changes over time is 

an important consideration. 

For Gneezy (2005), these three key threats likely posed few issues. In general, this is true because 

the assumption is more likely to hold when the time between measurements is short (on the order 

of minutes). This seems plausible in most lab experiments. For example, whether Gneezy ran his 

treatments on Tuesday or Wednesday should conceivably not have mattered. However, if one of 

the treatments was run on one day, and the second treatment on another, any time-varying factors, 

such as the day of the week, would then be correlated with treatment and bias estimates of the 

treatment effect. Another exception is time trends, such as learning or natural regression to the 

mean.  Experiments that measure outcomes that are subject to such features, such as a productivity 

experiment, for example, might find differences depending on whether it is measured before or 

 
9 See Campbell and Stanley (1966) and Biesanz and Kwok (2003). 
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after a lunch break or after learning-by-doing on the job occurred. In that case, we would expect 

workers' productivity in the second period to be higher than in the first, absent any changes in 

incentives. Alternatively, workers may become fatigued, making their productivity lower in the 

second period absent any changes in incentives. 

Such threats potentially present themselves more forcefully in List (2004) and Rodemeier (2023).  

An intermediate case is List (2004); what is required in his NFE is that, during the few hours 

between when the dealers were approached by a man or a woman, there was not a shock in demand 

or supply that affected the nature and extent of measured discrimination. He carefully chose items 

to ensure that demand and supply considerations would not exert undue influence for this very 

reason.   

Finally, perhaps the most demanding example is Rodemeier (2023), who needed the valuation of 

carbon offsets not to undergo a substantial change over the 10–11-month period for Assumption 6 

to be satisfied. Importantly, there can be no time-specific shocks to the outcome or time trends, 

such as learning, that influence potential outcomes. Whereas Gneezy (2005) and List (2004) could 

explore whether such assumptions held in their data because they generated different random 

orders of the treatment conditions, Rodemeier (2023) has revealed preference data only in period 

1 and only hypothetical data in period 2 (10-11 months later).  This highlights a useful demarcation 

of WS designs and points toward an optimal design approach. 

One approach to control for time effects is to generate different random orders of the treatment 

conditions. For example, for Gneezy (2005), one order might assign low-cost scenario in period 1 

and then the high-cost scenario in period 2. Another might be the opposite. Participants are then 

randomly assigned to one of the orders. Of course, the experimenter can do this with more than 

two treatments. With 𝑁𝑁𝐷𝐷 treatment conditions, there are 𝑁𝑁𝐷𝐷! different unique orders. When 

multiple orders appear in the same period, one can use time-fixed effects to net out time from the 

treatment effect.  Ideally, all treatment conditions will appear in each of the periods. However, this 

is not always feasible with many treatments.  

The optimal assignment of orders should follow the Latin square design when possible. In a Latin 

square, each treatment appears once on each trial order and in each order across trials. For example, 

when 𝐷𝐷𝑖𝑖𝑖𝑖 = {0,1,2,3}, one potential Latin square design is shown in Exhibit 2. Gneezy (2005) and 
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List (2004) used an approach like a Latin square design. Such an approach is taken to ensure that 

there is balance of treatments in the lab or throughout the day. 

Exhibit 2: An Example of a Latin Squares Design 

 Period 1 Period 2 Period 3 Period 4 

Order 1 𝐷𝐷𝑖𝑖𝑖𝑖 = 3 𝐷𝐷𝑖𝑖𝑖𝑖 = 1 𝐷𝐷𝑖𝑖𝑖𝑖 = 0 𝐷𝐷𝑖𝑖𝑖𝑖 = 2 

Order 2 𝐷𝐷𝑖𝑖𝑖𝑖 = 2 𝐷𝐷𝑖𝑖𝑖𝑖 = 0 𝐷𝐷𝑖𝑖𝑖𝑖 = 1 𝐷𝐷𝑖𝑖𝑖𝑖 = 3 

Order 3 𝐷𝐷𝑖𝑖𝑖𝑖 = 1 𝐷𝐷𝑖𝑖𝑖𝑖 = 2 𝐷𝐷𝑖𝑖𝑖𝑖 = 3 𝐷𝐷𝑖𝑖𝑖𝑖 = 0 

Order 4 𝐷𝐷𝑖𝑖𝑖𝑖 = 0 𝐷𝐷𝑖𝑖𝑖𝑖 = 3 𝐷𝐷𝑖𝑖𝑖𝑖 = 2 𝐷𝐷𝑖𝑖𝑖𝑖 = 1 
The table captures one potential Latin square design when we have four treatments 𝐷𝐷𝑖𝑖𝑖𝑖  = {0,1,2,3}. The key take away 
is that in a Latin square design each treatment appears once on each trial order and in each order across trials. 
 

In Exhibit 2, the balance of treatment conditions implies that many types of violation of the 

temporal stability and causal transience assumptions will have small effects on the experiment’s 

internal validity. However, it will not always ensure the internal validity of the results. For 

example, when learning-by-doing occurs over time rather than over output, the learning confound 

will no longer bias the treatment effect. Conversely, causal transience might be violated when 

learning-by-doing occurs over output. The causal effect of treatment will still be biased. 

Latin square designs also permit researchers to test certain implications of our assumptions. Under 

causal transience and temporal stability or no-anticipation, the treatment effect should not depend 

on when the researcher observes the outcome.  Thus, researchers can test whether treatment effects 

vary with time or with the order. The assumptions are more credible when these effects do not vary 

with these factors.  In List's (2004) NFE, where he leveraged a stealth WS design, for example, 

the data suggested few temporal aspects of discrimination.   

Threats to Causal Transience 

The main threats to causal transience are anticipation and carryover effects. Anticipation effects 

occur when subjects change their behavior because of treatments that will happen in the future. 

This identification requirement usually represents the most troubling assumption in WS designs. 

In some cases, using an NFE can make it more likely that causal transience holds. Consider, for 

example, the NFE of List (2004). This design is stealth because the dealers making the offer 

decision did not know they were part of an experiment. Therefore, the gender of one confederate 
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should not have impacted the decision the dealer made about the other confederates. If instead, the 

dealer had known that they would be confronted with another confederate later in the day of a 

different gender, they might have changed their behavior in a way that they believe would 

maximize profits. 

Causal transience is potentially vexing across many settings. For example, Uber drivers might 

respond to anticipated wage increases in the future. The no-anticipation assumption rules out this 

possibility and allows for an unbiased estimate of the treatment effect in the first period. This "have 

your cake and it too" design is attractive because the first period from a between-subject design 

provides information even if the second period in a WS design is compromised. Of course, if the 

analyst knows the WS design's assumptions will not be met, there remains an opportunity cost and 

resource cost of executing the second period treatment in such cases.    

Carryover effects occur when the impact of treatment persists through the measurement. Consider 

Gneezy (2005).  If his sole purpose was to estimate the treatment effect of the size of lie—the cost 

of the repairs for the buyer is $250 versus $1000—over his 50 subjects in his overt WS design, 

then he must assume that carryover effects are zero. His results suggested otherwise, which was 

the basis of his contribution (to show that the assumption was not met). Unlike Gneezy (2005), 

List's (2004) inference relied on the zero-carryover effect assumption to hold, and his data 

suggested it did (no observed effect of time or sequence in dealer offers, which makes sense given 

his design). Likewise, proper inference about how WTP for carbon offsets changes across the NFE 

and survey relies on this assumption to be met in Rodemeier (2023), and that is why he spaced 

these choices in time (by 10-11 months).  

Another form of carryover effect is sensitization. Sensitization occurs when subjects discriminate 

between differences in treatments and, therefore, may be more responsive than when they are 

exposed to only one treatment. For example, when subjects are inattentive to some factor that 

varies across treatments, researchers increase the salience of that factor by making it the only 

feature that changes across periods. Subjects may be more attuned to the differences caused by 

that variable than they would be naturally, or in a between-subject design. Gneezy (2005) found 

evidence consistent with subjects being sensitive to the size of the lie. Sensitization may also 

increase the threat of experimenter demand effects. Economic experiments that estimate price 
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elasticities are particularly susceptible to such effects, for example, as within-person elasticity 

estimates nearly always are larger than between-person elasticity estimates.   

Researchers may detect carryover effects if they counterbalance treatment regimes and compare 

the effects of a given treatment by position. If effects are asymmetric, carryover effects may be 

confounding the results. One way to reduce the size of carryover effects is to use “washout 

periods,” as in List (2004) and Rodemeier (2023). This approach increases the amount of time 

between treatments. However, the benefits of washout periods are context specific and subject to 

trade-offs. For example, washout periods are likely to remove carryover and fatigue effects but 

come at the expense of potentially introducing violations of temporal stability. 

The logic behind washout periods is that if the treatment effects of interventions fade over time, 

then the experimenter can recover an estimate of the treatment effect absent carryover effects. 

Washout periods are common in pharmaceutical trials. In these settings, the length of washout 

periods is usually determined using some function of the half-life of a pharmaceutical product as 

measured by the drug's concentration in the blood. Yet, it is difficult to find measurements that are 

analogous to the half-life that one can use to determine the proper length of time in an economic 

experiment. Instead, the proper length of washout periods is context specific. For example, in List 

(2004) several hours were used. In Rodemeier (2023), 10-11 months were used. In Gneezy (2005), 

several minutes separated treatments, clearly not long enough to be a useful washout period, which 

was by design. A researcher may determine the proper washout period in pilots by varying the 

length of time between treatments and testing for symmetry across different treatment regimens. 

V.  Key Advantages of Within-Subject Designs 

When the 7 key assumptions are met, we can observe 𝑌𝑌𝑖𝑖𝑖𝑖(1) when we expose unit 𝑖𝑖 to 𝐷𝐷𝑖𝑖 = 1 and 

𝑌𝑌𝑖𝑖𝑖𝑖(0) when we expose unit 𝑖𝑖 to 𝐷𝐷𝑖𝑖 = 0. Because we can observe both potential outcomes for the 

same unit, we can estimate the original parameter of interest, 𝜏𝜏𝑖𝑖 ≡ 𝑌𝑌𝑖𝑖𝑖𝑖(1) − 𝑌𝑌𝑖𝑖𝑖𝑖(0).  Of course, 

from 𝜏𝜏𝑖𝑖 , we can estimate the ATE, which was the objective of the between-subject design, but we 

can also recover the full distribution of treatment effects. This distribution can help to identify 

whether the average masks important heterogeneities.  This is one key scientific advantage of WS 

designs. A complementary advantage is the gain in power from leveraging a WS design. I discuss 

both in turn in this section. 
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Heterogeneity and the Full Distribution of Treatment Effects 

Recall from equation (7) that treatment effect heterogeneity refers to positive variance in the 

individual treatment effect. This means that researchers can easily calculate conditional average 

treatment effects (CATEs), the ATE conditional on some predetermined covariates. Under a WS 

design satisfying all the necessary assumptions, Cov[𝑌𝑌𝑖𝑖(1),𝑌𝑌𝑖𝑖(0)] is observable. This means that 

the heterogeneity in the treatment effects can be studied directly.  That is, the heterogeneity within 

each CATE is now recovered.   

There are numerous benefits gained from understanding such heterogeneity. First, going beyond 

ATEs and understanding who benefits and who is potentially harmed by treatment can allow for 

better distribution of the treatment or program. For example, suppose the government knew the 

type of unemployed people whose outcomes changed the most in response to job retraining 

programs. In that case, they could pinpoint those people for the program and develop alternative 

programs for others. Outside of economics, this can also be important. In medical trials, one might 

want to understand whether some individuals respond positively to a drug while others do not.   

Second, understanding heterogeneity across outcomes helps to uncover mediators. For example, 

in Exhibit 1, panel B, if dealers #1, #2, and #5 have different beliefs about gender valuation or 

bargaining distributions than dealers #3, #4, and #6, this might help us understand the 

underpinnings of the observed discrimination. In that case, they did, and the findings supported 

the notion that the discriminating dealers believed that women and men had different valuation 

distributions. Finally, it can help deepen our understanding of the generalizability of treatment 

effects, predicting when a policy is scalable or it has external validity (List, 2024).  In this sense, 

when treatment effects vary based on observables, understanding which characteristics are 

correlated with treatment can suggest other settings where similar programs should be tested.   

Experimental Power 

Beyond providing richer information, WS designs have the additional benefit in that data collection 

is potentially cheaper and for the same budget the researcher can identify smaller effect sizes. This 

is because WS designs allow for estimations that control for individual-specific effects, reducing 

the variance of the treatment effect estimator to the extent that WS correlations explain the 

outcome.   
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In this manner, WS designs are advocated for their potential to yield more powerful tests for the 

same cost than between-subject designs. The literature suggests an approach based on Monte Carlo 

simulations to compare the power achieved in between-subject versus WS designs. In certain 

cases, a between-subject design requires four to eight times as many subjects as a WS design to 

reach an acceptable level of statistical power.10   

Also, note that we have largely ignored cost considerations in our discussion thus far, assuming 

that collecting data from 𝑁𝑁 subjects twice (WS design) is as costly as collecting data from 2𝑁𝑁 

subjects (between-subject design). In practice, however, this is often not the case; in laboratory 

experiments, adding additional periods often comes at a small additional monetary cost for the 

researchers.  Likewise, many field experiments also have large fixed costs (e.g., hiring and training 

surveyors) that make additional rounds of data collection less expensive on the margin. I consider 

these aspects of the design below.   

Minimum Detectable Effects for Within-Subject Designs 

Statistical power computation for between-subject designs is covered extensively in the literature.  

In this section, I show how to use simulation methods to approximate the statistical power of WS 

designs under relatively general assumptions about the data-generating process. I begin by 

assuming that the analyst is interested in estimating the ATE using the following regression model: 

 𝑌𝑌𝑖𝑖𝑖𝑖 = 𝜋𝜋0 + 𝜏𝜏𝜏𝜏𝑖𝑖𝑖𝑖 + 𝜇𝜇𝑖𝑖 + 𝜖𝜖𝑖𝑖𝑖𝑖, (8) 

Treatment,𝐷𝐷𝑖𝑖𝑖𝑖, is a time-varying treatment variable where 𝐷𝐷𝑖𝑖𝑖𝑖 = 1 when unit 𝑖𝑖 receives treatment 

at period 𝑡𝑡 and is 0 otherwise. Time-invariant subject-level heterogeneity is captured by 𝜇𝜇𝑖𝑖 ∼ 𝐹𝐹𝜇𝜇 

and is assumed to be independent of treatment under randomization. Idiosyncratic errors, 𝜖𝜖𝑖𝑖𝑖𝑖~𝐹𝐹𝜖𝜖|𝐷𝐷, 

are assumed to be homoscedastic.11  

Computing statistical power requires following three steps: 

1. Choose the number of subjects, 𝑁𝑁, the number of periods, 𝑇𝑇, the values of (𝜋𝜋0, 𝜏𝜏), and the 
distributions (𝐹𝐹𝜇𝜇,𝐹𝐹𝜖𝜖). Given this information, generate the sample {{(𝑌𝑌𝑖𝑖𝑖𝑖,𝐷𝐷𝑖𝑖𝑖𝑖): 𝑡𝑡 =
1, . . ,𝑇𝑇}: 𝑖𝑖 = 1, … ,𝑁𝑁}.  

 
10 See, for example, Bellemare et al. (2016). 
11 Following similar logic as with between-subject designs, it is reasonable to use balanced designs when errors are 
homoscedastic. When errors are heteroscedastic, one can increase power by allocating subjects to the noisier 
conditions for a higher number of periods. 



25 
 

2. Estimate equation (8) and compute 𝑧𝑧 = 𝜏𝜏𝑡𝑡�/𝑠𝑠𝑠𝑠(𝜏𝜏𝑡𝑡� ) and the corresponding p-value of the 
null hypothesis 𝐻𝐻0: 𝜏𝜏𝑡𝑡� = 0 against a one-sided or two-sided alternative.12 

3. Repeat steps 1 and 2 for a large number of samples. In each iteration, compute the fraction 
of the p-values less than the significance level of the test. This fraction represents the power 
of the test. 

By repeating these steps for various 𝑁𝑁 and 𝑇𝑇, the analyst can determine the statistical power for 

different sample sizes and calculate the minimal sample size needed to reach a certain statistical 

power. This can be achieved separately for each design or to examine the effect of the number of 

periods and how to balance the number of subjects across the treatments. 

For illustrative purposes, I assume that the parameters in the model are given by 𝜋𝜋0 = 0.37,

(𝜎𝜎�𝜇𝜇)2 = 0.045, (𝜎𝜎�𝜖𝜖)2 = 0.02. Exhibit 3 shows the statistical power attained from a WS design or 

a between-subject design with two periods for various treatment effects. In the between-subject 

case, I assume that the design allocates the same number of subjects to treatment and control 

conditions for all periods. 

Exhibit 3: Statistical Power for Within- Subject and Between-Subject Designs 

 
𝜏𝜏 = 0.05                                  𝜏𝜏 = 0.1                                     𝜏𝜏 = 0.15 

The graphs compare the statistical power obtained from a WS (blue line) and between-subject (red line) design for 
three treatment effects – 0.05, 0.1, and 0.15. Both designs have two periods, the same sample size, and model 
parameters 𝜋𝜋0 = 0.37, (𝜎𝜎�𝜇𝜇)2 = 0.045, (𝜎𝜎�𝜖𝜖)2 = 0.02. A comparison of the two lines in each panel demonstrates that 
the within-subject (WS) design surpasses the between-subject design. The latter requires a greater number of subjects 
to achieve the same statistical power. Additionally, when examining results across panels, we observe that the 
effectiveness of the WS design becomes more pronounced as the effect size diminishes. 

Empirical results from power calculations appear in Exhibit 3. The blue line represents the 

statistical power for given sample sizes using a WS design. In contrast, the red line represents the 

 
12 When there are multiple outcomes or multiple treatments, these p-values should be adjusted for multiple hypothesis 
testing.  
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statistical power for the same sample sizes using a between-subject design. The left-most panel 

shows the power assuming that the treatment effect size is 0.05, the middle panel assumes the 

treatment effect size is 0.1, and the right-most panel assumes the treatment effect size is 0.15. 

Across all three panels of Exhibit 3, we learn that the WS design outperforms the between-subject 

design substantially in each scenario. For example, when the treatment effect size is 0.05, 

researchers must collect data from up to four times as many subjects to obtain the same statistical 

power as a WS design. Importantly, as we move from large detectable effect sizes (0.15) to smaller 

ones (0.1 and 0.05), or as we move from the right-most panel leftward, the efficacy of WS designs 

improve comparatively.   

Exhibit 3 shows that for our example, the largest gains appear when the budget necessitates a small 

sample size, or when the effect sizes are smaller. This means that as the feasible between-subject 

sample size grows, the gains in power from using a WS design diminish. Likewise, the gains from 

using a WS design are smaller when the postulated effect size is larger. However, the exact gains 

will depend on the parameters chosen by the researcher. For this reason, I recommend forming 

priors of the parameters the researcher needs through a pilot before deciding on the optimal sample 

size and which design choice to make.  

VI Discussion 

Once considered unattainable, experiments in economics have now become a cornerstone of 

empirical research. Over the past few decades, their significance has grown immensely, resonating 

through academia, organizations, and policy-making circles. A dominant theme in this research 

agenda is the method employed to recover and estimate treatment effects. Subjects are 

simultaneously assigned to treatment and control groups, followed by the administration of the 

experimental treatment. Treatment effects are then measured by estimating conditional 

expectations, allowing for a precise analysis of the treatment's impact. This study explores an 

alternative to this classic model: a within-subject experimental design.   

The relative unpopularity of WS designs is likely due to the strong assumption they require for 

inference. When the same subject is exposed to different treatment conditions, WS comparisons 

only provide a causal estimate if the new exclusion restrictions I discuss in this study are in place.  
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Many analysts find these new assumptions untenable and therefore opt for between-subject 

designs.   

Yet, the theme of this study is that the decision should be made case-by-case. There are some 

instances wherein there can be a strong argument for a WS design. In such cases, I strongly urge 

the analyst to take full advantage of the WS enhanced features, both through its additional 

experimental power and the rich information provided. I find that in many instances scholars who 

use WS designs do not fully realize the benefits of their data and simply present ATEs. That is a 

fine beginning, but the analysis should not stop there since the full joint distribution of outcomes 

can be recovered.  Another aspect of the literature is that, in general, but not always, compared to 

behavior generated in between-subject designs, subjects in a WS design behave more rationally, 

behave more in line with neoclassical theory, and tend to conform to social norms more closely 

when they have a comparative context, or likewise an evaluability baseline.   

In the end, I encourage researchers to carefully weigh each design's advantages and disadvantages 

along the dimensions discussed in this study and select the design that is best suited to answer the 

research question at hand. To aid in that choice, I provide Exhibit 4, which includes a summary of 

the various WS designs and my guidance on design choice.  When considering Exhibit 4, there is 

usually not a universally preferred approach unless the stealth WS design is in reach. In that case, 

my guidance is to choose that approach whenever possible. Intermediate cases are overt and 

epochal WS designs. Before choosing one of these approaches, the analyst should keep in mind 

that our North Star as experimentalists is achieving internal validity. The analyst should never put 

potential information acquisition or power above succeeding to accomplish that key goal.  In most 

situations, the choice to vary treatment conditions between or within subjects should depend on 

the experimental characteristics, the nature of what information is sought, and the trade-offs the 

experimenter is willing to make.  If a stealth WS design is not in reach, however, great care should 

be taken before choosing a WS design.   
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Exhibit 4: Four Types of Within-Subject Experimental Designs 

 

The diagram offers guidance on selecting the appropriate within-subject (WS) design, considering threats to two key 
identification assumptions: temporal stability and casual transience. Colors in the bottom-right corner of each quadrant 
indicate a preference ranking among the possible designs. If conditions permit, the preferred design is the stealth 
approach, followed by the overt and epochal approaches. 
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